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“If we knew what it was we were doing,

it would not be called research,

would it?”

Albert Einstein





Abstract

Density Functional Theory (DFT) allows a fully ab-initio treatment of almost all

the quantities that enter in the Eliashberg theory and in many other approaches

used to study both the superconducting and the normal phase. A complete de-

scription from first principles of real materials is, al least in principle, possible.

Here DFT and Eliashberg theory are applied to the study of some members of

the new family of superconductors discovered in 2008, the iron-compounds. Su-

perconductivity here is unconventional and unlikely mediated by phonons. When

electronic mechanisms are involved and the properties of the compounds are more

complex, as in the case of Fe-based superconductors, also the ab-initio treatment

may require some reasonable ad hoc approximations, derived from experimental

evidences or theoretical argumentations, introducing some phenomenological as-

pects in the formulation. In this thesis, Eliashberg theory and DFT are applied

to study the properties of some iron compounds, in particular the properties

of LiFeAs and Co-doped Ba-122 are discussed both in the normal and in the

superconducting state.

In order to unveil the the properties of the superconducting state, in particu-

lar the symmetry and the amplitude of the order parameter and the coupling

mechanism, a four bands Eliashberg model is discussed for LiFeAs suggesting

that the specific electronic structure of this peculiar compound may lead to the

breakdown of the Migdal’s theorem forcing the model to be “phenomenological”.

The relation between the topology of the Fermi surface and the presence of nodes

is studied in Point-contact Andreev-reflection spectra of Ba(Fe1−xCox)2As2 (both

thin films and single crystals) and Ca(Fe1−xCox)2As2. The curves presented are

fitted within the multiband 3D-BTK model that allows the inclusion of the real

shape of the Fermi surface evaluated within DFT.

Thanks to the inclusion of the results obtained within the Eliashberg theory in

the 2D-BTK model some additional structures due to the strong electron-boson

interaction, that appear at energy higher than the amplitude of the gaps in some

AR spectra, can be studied and some guesses about the nature of the supercon-

ducting mechanism can be made. This technique is here applied to the case of

Ba(Fe1−xCox)2As2 thin films with x = 0.08.

Finally, as concern the normal state, the temperature dependence of resistivity

is reproduced both in LiFeAs and Ba(Fe1−xCox)2As2 with a model that contains

two different kind of carriers. For both compounds spin fluctuations play an

important role also in the normal state in addition to being the main bosons

that mediate the Cooper pairing and in both compound the transport coupling
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constant results to be sensibly smaller than the superconducting one, suggesting

a way to find a unifying principle for HTCS.
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Chapter 1

Iron based supercondutors

For more than twenty years cuprates have attracted the attention of physicists,

however the nature of high-temperature superconductivity (HTCS) in these class

of material is still not completely understood. In this direction, the discovery

of iron-based superconducting compounds has given a new motivation to study

superconductivity, with the hope that the comprehension of this new class of

material can provide other elements and new points of view in solving the open

questions about cuprates.

In this chapter the wide framework of iron compounds will be reviewed, clar-

ifying where the work of this thesis is located with respect to the worldwide

research. I will give general overview, focusing on the electronic properties, the

role of magnetic fluctuations and other electron-electron interactions and as con-

cern the superconducting phase, I will also discuss the possible Cooper pairing

mechanisms and the symmetries of the order parameter.

“The philosopher is in love with truth, that is, not with the changing world of

sensation, which is the object of opinion, but with the unchanging reality which

is the object of knowledge.”

Plato

1.1 Introduction

In 2006 the Hosono’s group observed the superconducting transition in LaFePO [1]

at a relatively low temperature, Tc= 4 K. However the great breakthrough was

in 2008 when a similar superconductor, LaFeAsO1−xFx [2] was discovered by

the same research group. This compound presents a critical temperature that

reaches 26 K when the fluorine content is x = 0.11. A so high critical temper-

ature suggests an unconventional pairing mechanism and the possibility to find

1
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Figure 1.1: Schematic phase diagrams of cuprates on the left and of iron
based superconductors on the right. Taken from [8].

similar compounds with even higher critical temperatures. Indeed other struc-

tural types of iron-based superconductors (FeSCs) were synthesized.

Considering bulk iron-based superconductors, the highest critical temperature

obtained without applying pressure is 55 K in SmO1−xFxFeAs [3]. On the basis

of these researches many other superconducting iron-compounds have been dis-

covered [4–7]. During the later years many efforts have been spent to investigate

the physical properties of this new family of superconductors: they share same

characteristics with HTCS cuprates, such as the layered structure that implies

a quasi-two dimensional Fermi surface. Generally, in iron-based compounds,

superconductivity appears in the proximity or even in coexistence of antifer-

romagnetism and then, as cuprates, they are supposed to be unconventional

superconductors, i.e. phonons mediated superconductivity is unlikely. On the

other hand, FeSCs have a lot of properties that tell them apart from cuprates.

First of all the parent compounds of cuprates show strong electron correlations

and they are antiferromagnetic Mott insulators while FeSCs arise from metallic

parent compounds. For what concerns the superconducting state the two families

appear to be very different, cuprates show a single band superconductivity (with

a d-wave symmetry) while iron compounds are more complex showing a Fermi

surface with several sheets, then they generally are multi-band superconductors

(more details will be given in the next paragraphs). Even though cuprates have

been studied for about 25 years, many questions about their physical properties

are still open. In this direction the discovery of a new family of superconductors

gave researchers a new motivation to keep studying the key features of HTCS. In

Figure 1.1 the schematic phase diagram of iron compounds is compared to that

of cuprates. At a first glance the two schemes look very similar, however there

are several differences, for instance, even if both of them present a magnetic or-

der at zero doping, in cuprates it is a conventional antiferromagnetic order while

in iron compounds it is usually a stripe ordering.
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1.2 Basic Properties

More than thousand iron-compounds have already been discovered. Among this

huge variety a lot of common properties can still be found. First of all two

different classes can be distinguished: iron-pnictides, where the combination

“FePn” is always present (Pn=As or P) and iron-chalcogenides, with “FeCh”

(Ch=S, Se or Te). The former can be further divided into four classes on the

basis of the crystal structure, while the later into two. Then, up to now, six

different classes of iron-compound are known. The most relevant for this thesis

are reported in Figure 1.2

1.2.1 Cristal structures

The six different classes of iron compounds all share a quasi two-dimentional lay-

ered structure Fe2X2 (where X=Pn or Ch) that is then intercalated with other

elements. The Fe2X2 structure is built of tetrahedra with a 4m2 site symmetry

where the X ions form a distorted tetrahedra around the Fe ions, giving rise

to two different X-Fe-X bond angles. The Figure 1.3 show the “FeAs” layered

structure.

The first iron based superconductor discovered (LaFeAsO1−xFx [2]), obtained

with doping from LaOFeAs, is the representative of the 1111 family. Soon after

the substitution of lantanium with samarium allowed a growing of the critical

temperature up to 55 K. These LnFeAsO compounds contain rare earth (Ln=La,

Sm, Gd, etc.), transition metal (Fe, Co, Ni), pnictogen (As, P) and oxigen. They

have a primitive tetragonal structure at room temperature, with space group

P4/nmm (No. 129) with 8 atoms per unit cell and undergo a structural transi-

tion in an orthorombic phase with space group Cmma.

The so called 122-class contains compounds like AeFe2As2, where Ae is a metal-

lic alcaline element, i.e. Ca, Sr, Ba, Eu, K etc. Compounds belonging to this

class adopt a body-centered tetragonal structure with the I4/mmm spacegroup

(No. 139). In Figure 1.2 is reported the BaFe2As2 as an example. Here FeAs

layers are intercalated by single atoms and the unit cell contains 10 atoms with

one Ae atom in the center. Among this class the highest critical temperature is

49 K achieved in Pr-doped CaFe2As2 [10].

Another class include peculiar compounds such as LiFeAs (reported in Fig-

ure 1.2), NaFeAs or LiFeP and thus denominated 111. AFeAs compounds crys-

tallize in a structure with P4/nmm symmetry and the unit cell contains two

chemical formula, then six atoms. Here the FeAs layered structure is interca-

lated by two planes of A atoms.

The simplest structure among iron based superconductor is the 11 type and it

is assumed by FeSe (Tc = 8 K). The space group adopted in this case is again
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Figure 1.2: Crystallographyc structure of the Iron-based superconductors.
Adapted from [9].

Figure 1.3: Schematic view of the FeX layer. Adapted from [11].

P4/nmm but here layers of Fe2As2 come in succession. Again each Fe atom is

coordinated with four Se atoms and then they form the classical tetrahedrum.

Moreover, there is the 21311 class (also called 43622) to which belong for example

Sr4Sc2O6Fe2P2 where SrFe2P2 are intercalated with perovskite layers Sr4Sc2O6.

Finally it was discovered the 122∗ class, the most recent discovered, with com-

pounds that can be written as AxFe2−ySe2 where A=K, Rb, Cs or Tl but this

structure can be viewed as FeSe intercalated with the A element.
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1.2.2 Geometry and superconductivity

It it quite commonly accepted that the geometry of the tetrahedra FeX4 influ-

ences drastically the electronic, the magnetic and then also the superconduct-

ing properties of these systems. For example the highest critical temperature

can be obtained when the bond angle As-Fe-As is close to the ideal value of

∼ 109.47◦ [12, 13], as can be seen in the left panel of Figure 1.4.

Another important parameter that influences the superconducting state is the

anion heigh from the Fe layer. This distance depends on the anion and the varia-

tion of the critical temperature related to this parameter is reported in the right

panel of Figure 1.4. This behavior seems to be a peculiar characteristic shared

by at least 1111, 122, 111, 11 iron-based superconductors, there is just a little

exception for the FeSe-derived materials.

Figure 1.4: Relationship between geometry and superconductivity: An-
ion height dependence of Tc for the typical Fe-based superconductors, taken
from [12] in the left panel and Relation between the As-Fe-As angle and Tc,
taken from [? ]

1.3 Normal state properties

Although composed of different elements, generally speaking, the properties of

iron-compounds are quite similar among these materials.

In the next few paragraphs the electronic, magnetic and coupling properties will

be discussed.

1.3.1 Electronic properties

The electronic properties of iron compounds are strongly determined by the Fe

atoms [14–16]. As already explained, iron compounds are metals or semimetals,
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and not Mott insulators as cuprates, with all five 3d orbitals giving contribution

to the Fermi surface (FS). In Figure 1.5, in order to give an example, the FS of

two iron compounds are illustrated.

On the basis of the FS topology, all the iron compounds can be divided in two

big categories: systems having both electron and hole pockets and systems with

only electron sheets. Most of the iron pnictides and Fe(Se,Te) belong to the

first category while heavily electron doped iron pnictides, FeSe single layer and

AxFe2−ySe2 belong to the second category. The exact number of the hole and

Figure 1.5: 3D view of the Fermi surface of Ba(Fe,Co)2As2 and of LaFeAsO.

electron bands depends on the specific compound, but generally speaking there

are 2-4 hole bands centered in the Γ [(0, 0)] point and 2-3 electron bands in

M [(π, π)], if the folded Brillouin zone is considered. The 2D character of the FS

is not so universal, it is very pronounced in the 1111 family, and less remarkable

in the 122 compounds. This characteristic strongly depends on the value of

doping that changes the dimension of hole and electron pockets, leading to a

reduction of the degree of the nesting condition [15] with important implication

on superconductivity, as will be discussed in Chapter 5 in the case of Co-doped

BaFe2As2.

1.3.2 Nematic Phase

Even if the presence of a nematic order in iron-based superconductors is now

commonly accepted and confirmed by experimental measurements, its origin re-

mains unclear. Nematic order breaks the discrete lattice rotational symmetry,

preserving the time-reversal and translational symmetries. This can be caused

by a regular structural transition or by an electronically driven instability.

At first sight, one might view this tetragonal-to-orthorhombic transition as a

regular structural transition driven by lattice vibrations (phonons). However,

some theoretical works [17, 18] suggested that the tetragonal-to-orthorhombic

transition may be driven by electronic rather than lattice degrees of freedom.
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Experimental evidences of electronic anisotropies (for instance the d.c. resistiv-

ity [19]) not proportionate to the corresponding anisotropy of the lattice param-

eters well support this idea. Then this transition is probably driven by the same

fluctuations that give rise to superconductivity and magnetic order.

Electronic nematic phases have been proposed in other unconventional supercon-

ductors, such as high-Tc cuprates and heavy-fermion materials. An electronically

driven nematic state in FeSCs would be in line with a generic reasoning that the

pairing in all these correlated electron systems has the same origin. It is likely

that magnetic fluctuations drive the nematic instability. In any case, all three

orders (spin-driven Ising-nematic, orbital, and structural) appear simultaneously

below Tnem. It is unlikely that nematic fluctuations can mediate superconduc-

tivity as spin or charge fluctuations, as it involves small momentum transfer, but

nematic fluctuations may nevertheless enhance Tc by reducing the bare intra-

pocket repulsion. Intra-pocket interactions, however, in general do not select

the relative sign of the gaps in different pockets. Below Tc nematic order has

been found to compete with superconductivity [20, 21], as density-wave orders

do. A special case in which nematicity strongly affects Tc is when s-wave and

d-wave superconducting instabilities are nearly degenerate, as was suggested to

be the case for strongly hole-doped and strongly electron-doped FeSCs. In this

situation nematic order leads to an enhancement of Tc by lifting the frustration

associated with the competing pairing states [22, 23].

1.3.3 Magnetism and spin fluctuations

Although different families of FeSCs exhibit different phase diagrams, all of their

parent compound are characterized by an anti-ferromagnetic (AF) order. This

suggests that magnetic excitations play an important role in the coupling pairing

that induces superconductivity [24, 25].

The parent compounds of the 11, 1111 and 122 families share the AF collinear

structure and the presence of nesting between hole and electron bands (in Γ

and M points respectively) leads to a quite noticeable peak in static magnetic

susceptibility χ0(q), with q = (0, π) and q = (π, 0). This lead to an antiferro-

magnetic instability and to the formation of spin density wave (SDW) with the

appropriate wave vector.

However, in Fe1−yTe compound the spin structure is bi-collinear and then the

antiferromagnetic wave vector is QAF = (π/2, π/2) incompatible with the nest-

ing. Then this suggests that the only cause of the AF instability cannot be only

the presence of FS nesting.

It is observed that in the electron-overdoped region the spin fluctuations (SF)

vanish as well as the hole bands and the superconducting transition does not take

place [26]. Moreover the correlation between the spin excitation in the normal
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stateand electronic structure is found to be common to for all FeSCs. Finally

the “resonance peak” in the spectrum of the spin fluctuations (i.e. the resonance

in the spin susceptibility) is present in almost all FeSC in the superconducting

state. All these facts strongly support a SF-mediated superconductivity, with

important implications on the symmetry of the order parameter (OP) that will

be discussed in Section 1.4. SFs provide also an explanation for the differences in

the calculated band structure with respect to the experimental data: they dress

the single-electron excitation causing a mass renormalization (with a factor 2-

2.5) compatible with experiments. Obviously the AF order depends on doping.

Generally speaking, electron-doping suppresses the AF order and a resonance is

present for low-energy spin excitation that couples to superconductivity [27]. In

the overdoped region, spin fluctuations become weaker and more transversally

elongated with a reduction of superconductivity. Finally, further increasing the

electron doping superconductivity disappears. Electron doping mostly modify

the low energy excitation and leave almost unchanged the high energy part of

the spectrum suggesting that these arise from itinerant magnetism, while on the

other hand the hole doping suppresses the high-energy spin excitations.

1.4 Superconducting state

In conventional superconductors the pairing of the Cooper pairs is provided by

phonons. Since the discovery of cuprates new possibilities for the mediating

bosons have been taken into account, suggesting a singlet d-wave symmetry

where the gap changes sign on the FS (in this case composed by a single sheet).

As already discussed and highlighted in Figure 1.1 in a similar way to cuprates

in the new class of supercondutors of iron based superconductivity emerges in

close proximity of the magnetic phase. Also in this case this fact suggests an

unconventional pairing mechanisms. Anyway the situation appears to be a little

bit different with respects the previous case of cuprates, indeed now the FS is

built of several hole and electron bands and then a multiband superconductivity

can be also possible. In order to characterize the superconducting state the

mediating bosons and the characteristics of the gap have to be analyzed. As

will be discussed hereafter these two characteristics are strongly tied one to the

other however even considering all the differences between cuprates and iron

compounds it is quite commonly accepted that superconductivity is induced by

the same mechanism.



Chapter 1. Iron based supercondutors 9

1.4.1 Coupling mechanism and symmetry of the order parame-

ter

As soon as the first iron compound was discovered, conventional superconduc-

tivity has been immediately ruled out [25]. DFT calculations on the electron-

phonon interaction demonstrate that some moderate coupling exists, but it is

not strong enough (λ ∼ 0.2) to justify the high critical temperature and this fact

is also confirmed by experimental measurements made on several compounds.

However the presence of a large resonance peak in the magnetic susceptibility

in these compounds [2] suggests a nearness to critical point and a non trivial

contribution between different sheets of the FS.

Spin fluctuations are pair breaking and then, if a singlet superconducting state

is taken into account, they need a sign-change of the order parameter somewhere

in the Brillouin zone in order to create a Cooper pair. In cuprates, where a single

band superconducting state takes place, this condition is realized thanks to the

d-wave symmetry. If the FS is more complex and several sheets are present then

Figure 1.6: Possible symmetries of the order parameter in FeSC.

a multiband superconductivity may appear and various possible gap symmetries

are allowed, at least theoretically, even within the picture of spin-fluctuation

mediated pairing. These possibilities are shown in Figure 1.6: thanks to the

presence of disconnected sheets in the FS the sign-changing can be realized with

a node either away from the Fermi energy, realizing so-called s± or directly at

the Fermi energy, giving rise to a d-wave symmetry. Moreover, in some cases,

also a modulation of the gap amplitude can occur even in the case of s-symmetry,

in this case accidental nodes appear. In FeSC a d-wave symmetry is unlikely be-

cause it would require an unconvincing, strong q dependence of the interaction

on a relatively small FS, however some case of strongly overdoped compounds

may show this kind of symmetry, while the presence of nodes will be discussed

in Chapter 5.

In most of optimally-doped compounds, the so-called s± symmetry with isotropic

OPs of opposite sign on the holelike and electronlike FS sheets is realized [25],
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but the emergence of nodes or zeros on some FSs is theoretically predicted in

various situations [28, 29].



Chapter 2

Theoretical Background: The

Normal State

In this chapter the theoretical methods used to describe the normal state of the

systems under study are explained. DFT is nowadays one of the most popular

methods for ab initio calculations and it provides an alternative way, with respect

to the experiments, to investigate the condensed matter systems. It will be clear

after reading the next chapter that some parameters characterizing the normal

state are necessary to study the superconducting phase. Here the basic concepts

of DFT and the fundamental properties of the ELK code used for the electronic

structure calculations are presented. Generally speaking, the most widely used

programs today are based on the Kohn-Sham ansatz that replaces the original

many-body problem by an auxiliary independent-particle system, introducing

a fictitious and effective Kohn-Sham single-particle potential. The many-body

effects are approximated by a so-called exchange-correlation functional in the

effective Kohn-Sham single-particle potential.

“If the facts don’t fit the theory, change the facts.”

A. Einstein

2.1 Introduction

The main idea of DFT is to describe a many-body interacting system through a

unique variable, the particle density, instead of the usual many-body wavefunc-

tion.

The starting poi of DFT is the Born-Oppenheimer approximation which sepa-

rates the electron Hamiltonian from that of nuclei thanks to the huge difference

between their masses that implies the motion of electrons to be considerably

11
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faster then the nuclear motion. This means that one can consider that the elec-

trons are moving in a static external potential Eext(r) generated by the nuclei.

Then the Hamiltonian of the system is reduced to:

H = − ~2

2me

∑
i

∇2
i︸ ︷︷ ︸

T̂

−
∑
i, I

Zie
2

|RI − ri|︸ ︷︷ ︸
V̂ext

+
1

2

∑
i 6=j

e2

|ri − rj|︸ ︷︷ ︸
V̂

+
1

2

∑
I 6=J

ZIZJe
2

|RI −RJ|︸ ︷︷ ︸
V̂NN

. (2.1)

It is important to note that the last term, that corresponds to the nuclear re-

pulsion, contributes to the total energy with constant quantity, then it can be

removed. However the remaining problem is still too complex to be solved for

large systems.

The breakthrough for computational physics was reached with the development

of DFT by Hohenberg and Kohn [30] and Kohn and Sham [31].

2.2 The Hohenberg-Kohn theorems

In 1964 Hohenberg and Kohn (HK) states two theorems that are the basis of

DFT.

These two theorems refer to the fundamental state without magnetic field, even

if they can be generalized also to this situation.

2.2.1 The first HK theorem

The ground state particle density n0(r) of a system of interacting particles in

an external potential Vext(r) uniquely determines the external potential Vext(r),

except for a constant.

That is to say, there is a one-to-one mapping between the ground state density

n0(r) and the external potential Vext(r), although the exact formula is unknown.

This means that the ground state particle density determines the full Hamilto-

nian, except for a constant shift of the energy, and then, at least in principle, all

the states including ground and excited states of the many-body wavefunctions

can be calculated. The ground state particle density uniquely determines all

properties of the system completely.
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2.2.2 The second HK theorem

There exists a universal functional F [n(r)] of the density, independent of the ex-

ternal potential Vext(r), such that the global minimum value of the energy func-

tional E[n(r)] ≡
∫
n(r)Vext(r)dr+F [n(r)] is the exact ground state energy of the

system and the exact ground state density n0(r) minimizes this functional.

Thus the exact ground state energy and density are fully determined by the func-

tional E[n(r)]. The HK theorems can be generalized to spin density functional

theory with spin degrees of freedom [32]. In this theory, there are two types of

densities, namely, the particle density n(r) = n ↑ (r) + n ↓ (r) and the spin

density s(r) = n ↑ (r)− n ↓ (r) where ↑ and ↓ denote the two different kinds of

spins.

Although HK theorems put particle density n(r) as the basic variable, it is still

impossible to calculate any property of a system because the universal func-

tional F [n(r)] is unknown. This difficulty was overcome by Kohn and Sham [31]

in 1965, who proposed the well known Kohn-Sham ansatz.

2.3 The Kohn-Sham ansatz

Even if the HK theorems are the basis of DFT, they are not sufficient to make

the problem solvable. One more step is essential and it is the Kohn-Sham (KS)

ansatz [31] that makes DFT calculations possible.

The KS ansatz states that the ground state density of the original many-body

interacting system is equal to that of some chosen fictitious independent-particle

system with all the difficult many-body term incorporated into an excange-

correlation functional of the density. It maps the original interacting system

with real potential into a fictitious non-interacting system whereby the electrons

move within an effective Kohn-Sham single-particle potential VKS(r). This aux-

iliary system is then described (if ~ = 1, me = 1, e = 1) by the Hamiltonian:

ĤKS = −1

2
∇2 + VKS(r). (2.2)

For a system with N independent electrons, the ground state can be obtained

by solving N one-electron Shrödinger equations,(
1

2
∇2 + VKS(r)

)
ψi(r) = εiψi(r); (2.3)
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then the density of the auxiliary system can be constructed

n(r) =
N∑
i=1

|ψ(r)|2, (2.4)

with the condition ∫
n(r)dr = N. (2.5)

And then the universal functional F [n(r)] is written in the following form

F [n(r)] = Ts[n(r)] + EH [n(r)] + EXC [n(r)], (2.6)

where Ts[n(r)] is the non-interacting independent-particle kinetic energy, EH [n(r)]

is the classic electrostatic Hartree energy of electrons

EH [n(r)] =
1

2

∫ ∫
n(r)n(r′)

|r− r′|
drdr′ (2.7)

and Exc[n(r)] is the exchange-correlation energy, which contains all the differ-

ences between the exact and the non-interacting kinetic energies and also the

non-classical contribution to the electron-electron interaction.

The ground state energy then can be obtained minimizing the energy functional

E[n(r)] = F [n(r)] +
∫
n(r)Vext(r)dr, under the constrain of conservation of the

number of electrons:

δ

{
F [n(r)] +

∫
n(r)Vext(r)dr− µ

[
n(r)dr−N

]}
= 0 (2.8)

where µ is the chemical potential.

Then the resulting equation is

µ =
δTs[n(r)]

δn(r)
+ VKS(r) (2.9)

and

VKS(r) = Vext(r) + VH(r) + VXC(r)

= Vext(r) +
δEH [n(r)]

δn(r)
+
δEXC [n(r)]

δn(r)
(2.10)

is the KS one-particle potential and in particular

VH(r) =
δEH [n(r)]

δn(r)
=

∫
n(r′)

|r− r′|
dr′, (2.11)

VXC(r) =
δEXC [n(r)]

δn(r)
(2.12)
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are the Hartree potential and the exchange-correlation potential.

The equations (2.3) and (2.10), with the definition (2.4) are the KS equations.

They have to be solved in a self-consistent way because VKS(r) depends on the

density n(r) through the xc potential.

Although exact in principle, the KS theory is approximate in practice because of

the unknown XC energy functional EXC [n(r)]. It is crucial to have an accurate

XC energy functional EXC [n(r)] or potential VXC(r) to obtain a satisfactory

description of a realistic condensed-matter system. The most widely used ap-

proximations for the XC potential are the local density approximation (LDA)

and the generalized-gradient approximation (GGA) that will be described in the

next section.

It is quite important to understand that the KS energy eigenvalues of the equa-

tion (2.3) are not for that of the original interacting many-body system and they

do not have physical meaning, they cannot be interpreted as one-electron excita-

tion energies of the interacting many-body system, i.e., they are not the energies

to add or subtract from the interacting many-body system, because the total

energy of the interacting system is not a sum of all the eigenvalues of occupied

states in equation (2.3), i.e., Etot 6=
∑occ

i εi. Nevertheless, within the KS theory

itself, the eigenvalues have a well-defined meaning and they are used to construct

physically meaningful quantities.

2.4 The exchange-correlation functional

As mentioned in the previous section the KS equation can be solved if the

exchange-correlation functional is known. Given the fact that an exact expres-

sion is not available, the introduction of an approximation is needed. Two such

often used approximations are LDA and GGA.

2.4.1 Local density approximation

The local density approximation (LDA) [33–35] is the oldest approximation in-

troduced in DFT. It defines the exchange-correlation functional as:

VLDA[n(r)] =

∫
n(r)εhomXC [n(r)]dr (2.13)

=

∫
n(r)

{
εhomX [n(r)] + εhomC [n(r)]

}
dr

= EhomX [n(r)] + EhomC [n(r)],
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for the spin unpolarised system and

VLSDA[n↑(r), n↓(r)] =

∫
n(r)εhomXC [n↑(r), n↓(r)]dr, (2.14)

for the spin polarized case. Here εhomXC [n(r)] stands for the exchange-correlation

function of the homogeneous electron gas with interacting electrons and is nu-

merically known from Monte Carlo calculations. The underlying idea is very

simple. At each point in space the exchange-correlation energy is approximated

locally by the exchange-correlation energy of a homogeneous electron gas with

the same electron density at that point. LDA is based on the local nature of

exchange-correlation and the assumption that the density distribution does not

vary too rapidly. In spite of its simplicity, LDA performs quite well even for

more realistic systems.

2.4.2 Generalized gradient approximation

A more sophisticated approach is made with the generalized gradient approxi-

mation (GGA) [36–38]. While LDA only depends on the local density n(r) itself,

GGA also incorporates the density gradient:

VGGA[n(r)] =

∫
n(r)εhomXC [n(r), |∇n(r|]dr. (2.15)

GGA usually performs better than LDA, but in the case of LDA a unique

εhomXC [n(r)] is available. For GGA however, because the density gradient can

be implemented in various ways, several versions exist. Moreover, many ver-

sions of GGA contain free parameters which have to be fitted to experimental

data. GGA generally works better than LDA, in predicting bond length and

binding energy of molecules, crystal lattice constants, and so on, especially in

systems where the charge density is rapidly varying. However GGA sometimes

overcorrects LDA results in ionic crystals where the lattice constants from LDA

calculations fit well with experimental data but GGA will overestimate it. Nev-

ertheless, both LDA and GGA perform badly in materials where the electrons

tend to be localized and strongly correlated such as transition metal oxides and

rare-earth elements and compounds. This drawback leads to approximations

beyond LDA and GGA.

2.5 Solving the Kohn-Sham equations

Thanks to HK theorems and to the KS ansatz by solving the KS equations,

that describe a system of independent-particles, the exact density and energy
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of the ground state of a condensed matter system can be obtained. The KS

equations must be solved self-consistently because the effective KS potential VKS

and the electron density n(r) are closely related, i.e. VXC [n(r)]. This solution

can be found numerically through some self-consistent iterations. The process

starts with an initial electron density, usually a superposition of atomic electron

density, then the effective KS potential is calculated and the KS equation is

solved with single-particle eigenvalues and wavefunctions, a new electron density

is then calculated from the wavefunctions. Finally the self-consistent condition is

checked, comparing the obtained charge density with the initial condition. If the

two quantities differ by a value less than a certain threshold defined, then the self

consistency has been reached, otherwise a new density has to be defined (usually

this value is obtained by mixing the initial and the final electron density) and a

new iteration will start with the new electron density. This process continues up

to the the self-consistency. Having the electron density, various quantities can

be calculated, for instance the total energy, forces, stress tensors, eigenvalues,

the electron density of states, the band structure, etc..

The most time consuming step in the whole process is the solution of KS equation

with a given KS potential. In order to obtain the final solution an important

step is the expansion of the sigle-particle wavefunctions in a suitable basis set,

{φp}. Therefore

ψm =
P∑
p=1

cm,p φp. (2.16)

In principle the basis set should be infinite, but in practice obviously it is finite

and then the the function Ψm will not be described exactly and the choice of

the limited basis set is fundamental to well describe Ψm. The problem will be

then reduced to a solvable matrix problem, whose accuracy increases with the

increase of P, the number of the eigenvalues and eigenfunctions.

Not only the number of the functions contained in the basis is important, but

also the shape of these functions. A good basis has to be efficient and generally

applicable, i.e. adapt to describe a lot of systems.

There are several different schemes to the calculation of the independent-particle

electronic states in solids where boundary conditions are applied.

Plane waves

In this method, the wavefunctions are expanded in a complete set of plane waves,

according to Bloch theorem eigenfunctions of a periodic hamiltonian can be ex-

panded in a plane wave basis set. However in the proximity of nuclei the wave-

functions oscillate rapidly and too many functions in the basis are needed to

describe this behavior and this method becomes very time consuming. Usually
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this is used together with a pseudopotential approach for the external poten-

tial.The most widely used codes using plane waves and pseudopotentials are

Quantum ESPRESSO [39], ABINIT [40] and VASP [41].

Localized atomic orbitals

This method provide a basis that captures the essence of the atomic-like features

of solids and molecules. The most well-known methods in this category are linear

combination of atomic orbitals (LCAO), also called tight-binding (TB) and full

potential non-orthogonal local orbital (FPLO). The basic idea of these methods

is to use atomic orbitals as the basis set to expand the one-electron wavefunction

in KS equations.

Atomic sphere methods

These are the most general methods for precise solutions of KS equations. Gener-

ally speaking they are a combination of plane wave method and localized atomic

orbitals, i.e. they use localized atomic orbital presentation near the nuclei and

plane waves in the interstitial region. The most widely used methods are (full

potential) linear muffin-tin orbital (LMTO) and (full potential) linear augment

plane wave (LAPW) as implemented in WIEN2K and ELK.

In Figure 2.1 are summarized the possible choices for each specific part of the

KS equation that can be made in order to obtain the appropriate solution.

Figure 2.1: Possible choices of approximations to solve KS equation.
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2.6 The Elk Code

The most used code for the calculations here under discussion is the ELK code [42].

This is an all-electron full-potential linearised augmented-plane wave (FP-LAPW)

code for determining the properties of crystalline solids with many advanced fea-

tures. Written originally at Karl-Franzens-Universität Graz as a milestone of the

EXCITING EU Research and Training Network, the code is designed to be as

simple as possible so that new developments in the field of DFT can be added

quickly and reliably.

Elk uses atomic units. In this system ~ = 1, the electron mass me = 1, the

Bohr radius a0 = 1 and the electron charge e = 1 (note that the electron charge

is positive, so that the atomic numbers Z are negative). Thus, the atomic unit

of length is 0.52917720859(36) Å, and the atomic unit of energy is the Hartree

which equals 27.21138386(68) eV.





Chapter 3

Theoretical Background: The

Superconducting State

The basic concepts of superconductivity are explained hereafter. A very brief in-

troduction about the first microscopic theory, proposed by Bardeen, Cooper and

Schrieffer will be given. This theory perfectly describes the so called conventional

superconductors characterized by a weak coupling between electrons mediated

by phonons. Then the more general Eliashberg theory will be described, that

is suitable for unconventional superconductors. I will focus in particular on the

generalization of this theory needed in order to describe the materials under

investigation in this thesis.

“In all things of nature there is something of the marvelous.”

Aristotele

3.1 Introduction

The first microscopic theory for superconductivity was proposed by Bardeen,

Cooper and Schrieffer [43], and then called BCS theory, in 1957 almost 50 years

after the discovery of Kamerlingh Onnes of the zero electric resistance of the

mercury under 4.1 K. The theory of superconductivity can be divided into two

separate conquests: first the establishment of a pairing formalism, which leads

to a superconducting condensate, given some attractive particle-particle inter-

action, and secondly, a mechanism by which two electrons might attract one

another. BCS [44], by simplifying the interaction, succeeded in establishing the

pairing formalism. Indeed, one of the elegant outcomes of the BCS pairing for-

malism is the universality of various properties; at the same time this universality

21
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means that the theory really does not distinguish one superconductor from an-

other, and, more seriously, one mechanism from another. Luckily, while many

superconductors do display universality, some do not, and these, as it turns out,

provided very strong support for the electron-phonon mechanism. Before estab-

lishing a theory of superconductivity, one requires a satisfactory theory of the

normal state [45]. In conventional superconductors, the Fermi liquid theory ap-

pears to work very well, so that, while we cannot solve the problem of electrons

interacting through the Coulomb interaction, experiment tells us that Coulomb

interactions give rise to well-defined quasiparticles, i.e. a set of excitations which

are in one-to-one correspondence with those of the free-electron gas. The net

result is that one begins the problem with a reduced Hamiltonian,

Hred =
∑
kσ

εkc
†
kσckσ +

∑
kk’

Vkk’c
†
k↑c
†
-k↓c-k’↓ck’↑ (3.1)

where, for example, the electron energy dispersion εk already contains much

of the effect due to Coulomb interactions. The important point is that well-

defined quasiparticles with a well defined energy dispersion near the Fermi surface

are assumed to exist, and are summarized by the dispersion εk with a pairing

interaction Vkk’ ≡ V (k,k’). The BCS equation is

∆k = − 1

N(µ)

∑
k’

Vk,k’
∆k’

2Ek’
tanh

Ek’

2T
, (3.2)

where

k =
√

(εk − µ)2 + ∆2
k (3.3)

is the quasiparticle energy in the superconducting state, ∆k is the variational

parameter used by BCS, µ is the chemical potential and N(µ) is the normal

density of states at the chemical potential (at the Fermi energy). An additional

equation which must be considered along side the gap equation is the number

equation,

n = 1− 1

N(µ)

∑
k’

εk − µ
Ek’

tanh
Ek’

2T
. (3.4)

Given a pair potential and an electron density, one has to solve these equations

to determine the variational parameter ∆k and the chemical potential µ gener-

ally with an iterative numerical method. For conventional superconductors the

chemical potential hardly changes from the normal to the superconducting state,

and the variational parameter is much smaller than the chemical potential, with

the result that the second equation was usually ignored. BCS then modeled the

pairing interaction as a negative (and therefore attractive) constant potential V

with a sharp cutoff in momentum space (ωD is the Debye energy):

Vk,k’ ≈ −V θ(ωD− | εk − µ |)θ(ωD− | εk’ − µ |). (3.5)
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Using this potential in the BCS equation, along with a constant density of states

assumption over the entire range of integration,

1

λ
=

∫ ωD

0

dε

E
tanh(E/2T ) (3.6)

where λ = N(µ)V . At T = 0 K, the integral can be done analytically, leading to

∆ = 2ωD
exp(−1/λ)

1− exp(−1/λ)
. (3.7)

Close to the critical temperature, Tc, the BCS equation becomes

1

λ
=

∫ ωD/2Tc

0

tanhx

x
dx (3.8)

which cannot be solved in terms of elementary functions for arbitrary coupling

strength. Nonetheless, in weak coupling regime, one obtains

Tc = 1.13ωDexp(−1/λ). (3.9)

It is clear that Tc or the zero temperature variational parameter ∆ depends on

material properties such as the phonon spectrum ωD, the electronic structure

N(µ) and the electron-ion coupling strength V . However, it is possible to form

various thermodynamic ratios, that turn out to be independent of material pa-

rameters. The obvious example from the preceding equations is the ratio 2∆/Tc.

In weak coupling (most relevant for conventional superconductors), for example,

2∆

Tc
= 3.53, (3.10)

that is a universal result, independent of the material involved. Many other such

ratios can be determined within BCS theory, and the observed deviations from

these universal values contributed to the need for an improved formulation of

BCS theory.

In the ’60s the first discrepancies between the experimental results and the the-

oretical predictions began to be observed and the BCS theory [44] turned out

to be inadequate for superconductors in which the electron-phonon interaction

is strong. The first reason of this unsuitableness is the instantaneous nature of

the BCS interaction which does not incorporate enough of the physics of the

electron-phonon system. For example, the electron-phonon interaction causes

a mass enhancement of electron states near the Fermi level, as can be seen in

specific heat, and a finite lifetime of electron quasiparticle states. In many mate-

rial these effects are very strong and well-defined quasiparticles no longer exists.

Nevertheless, Migdal [46] showed that Feynman-Dyson perturbation theory can
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solve the electron-phonon problem to high accuracy, because the small parame-

ter λΩD/EF ≈ 10−3 keeps higher order corrections small.

Table 3.1 shows the values of the principal quantities for some characteristic el-

ements. They differ more and more from the BCS predictions with the increase

of coupling constant λ. According to the BCS theory, the expected values are

2∆/TC = 3.53 and (Cs − Cn)/Cs = 1.43. These deviations arise when the in-

2∆/Tc (Cs − Cn)/Cs λ TC
Al 3.535 1.43 0.43 1.18
Sn 3.705 1.68 2.77 3.75
Pb 4.497 2.77 1.55 7.22
Hg 4.591 2.49 1.62 4.19

Table 3.1: Some deviations from the universality of many formulas of the
BCS theory.

teraction between electron and phonon is strong, indeed, in the weak-coupling

approximation the properties of the lattice and the dispersion of phonon curves

do not enter directly into the BCS theory.

The prediction of superconducting properties such as the critical temperature

or the superconducting energy gap remains one of the outstanding challenges in

modern condensed matter theory. Owing to the complex nature of the super-

conducting state, a quantitative understanding of the pairing mechanism in su-

perconductors requires a very detailed knowledge of the electronic structure, the

phonon dispersions, and the interaction between electrons and phonons (bosons).

For example the conventional superconductors below the critical temperature

electron pairing results from a subtle interplay between the repulsive Coulomb

interaction and the attractive electron-phonon interaction. Starting from the

BCS theory several approaches to the calculation of the superconducting prop-

erties have been proposed including the first-principles Green’s function methods

such as is done in the Migdal-Eliashberg [47, 48] formalism that provides a very

accurate description of the superconducting state in almost all superconductors.

The electron-electron coupling provided by Eliashberg theory is local in space

and retarded in time, reflecting the delay in the development of lattice over-

screening. The result is in contrast with the non local, instantaneous nature of

the BCS the model interaction, attractive for any pair of electrons both within

ωD (Debye energy) of the Fermi surface. Eliashberg theory is valid only when

λωD/EF ('
√
m∗/M) � 1, where EF is the Fermi level. This is the range of

validity of the Migdal’s theorem.

Migdal [46] argued that all the vertex corrections are O(
√
m∗/M) (where m∗ is

the electron effective mass and M is the ion mass) compared to the bare vertex,

and therefore they can be ignored; this means that only single phonon scattering

terms will contribute to the electronic self energy.
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3.2 Imaginary-axis Eliashberg equations

3.2.1 The Nambu formalism

The Fröhlich interaction is formally very similar to the electron-electron inter-

action via Coulomb forces, thus the mutual scattering of two electrons can be

explained through the electron-phonon-electron interaction in the same way. But

the phase transition to the superconducting state invalidates the perturbation

theory developed for a metal in the normal state. However, in 1960, Nambu

showed how the formalism used in the normal state can be rewritten in such a

way that the diagrams used to deal with the normal state are applicable also to

the superconductive state [49]. The inclusion of Coulomb interactions causes the

electron-phonon interaction to be screened and this can constitute a considerable

reduction.

In spite of the strong electron-phonon coupling, it remains true that phonons

corrections to the electron-phonon vertex are small. On the contrary, Coulom-

bic corrections are not necessarily small, but are more or less constant factors,

so they can be included in the coupling constant. In the Nambu formalism a

2-component spinor for the electron

ψk =

(
ck↑

c†−k↓

)
, ψ†k =

(
c†k↑ c−k↓

)
(3.11)

and a bare-phonon field operator

ϕqν = bqν + b†−qν (3.12)

are defined. The Hamiltonian of an electron-phonon interacting system can be

written [45] in terms of ψ and ϕ, including Coulomb interactions and it becomes

H =
∑
k

εkψ
†
kσ3ψk +

∑
qλ

Ωqλb
†
qλbqλ

∑
kk′λ

gkk′λϕk−k′λψ
†
k′σ3ψk

+
1

2

∑
k1k2k3k4

〈k3k4|VC |k1k2〉
(
ψ†k3σ3ψk1

)(
ψ†k4σ3ψk2

)
, (3.13)

where εk is the one-electron Bloch energy relative to the Fermi energy EF , σ3 is

a Pauli matrix1, Ω is the bare phonon energy of wavevector q and mode ν, gkk′ν

are electron phonon matrix element and VC is the coulomb potential.

Translational invariance of VC restrict k1 + k2 − k3 − k4 to be either zero or

a reciprocal lattice vector K. The electrons are described in an extended zone

1The Pauli matrices are

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
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scheme and the phonons are described in a reduced zone scheme which is ex-

tended periodically throughout q-space. In order to apply perturbation meth-

ods to superconductors the possibility of the existence of Cooper pairs has to be

included. This can be done taking the anomalous propagators. Thanks to the

new formalism, the Green function [50] becomes

Ĝ(k τ) = −〈T{ψk(τ)ψ†k(0)}〉, (3.14)

Dλ(qτ) = −〈T{ϕqλ(τ)ϕ†k(0)}〉 (3.15)

where the average is over the grand canonical ensemble (β = 1/T , here T is the

temperature)

〈Q〉 =
Tr e−βHQ

Tr e−βH
, (3.16)

where the operators develop with imaginary time and T represents the usual

time-ordered product. As the matrix operator ψk(τ)ψ†k(0) does not conserve the

number of particles the definition of a new operator U that adjusts the number

of particles is necessary:

U = 1 +R† +R, (3.17)

where R converts a given state in an N -particle system into the corresponding

state in the N + 2 particle system.

By this definition, the Green function for electrons is a 2×2 matrix, the diagonal

elements are the conventional Green functions for spin-up electrons and spin-

down holes, while G12 and G21 describe the pairing properties. It is defined

as

Ĝ(k, τ) = −

 〈T{ck↑(τ)c†k↑(0)}〉 〈UT{ck↑(τ)c−k↓(0)}〉

〈UT{c†−k↓(τ)c†k↑(0)}〉 〈T{c†−k↓(τ)c−k↓(0)}〉

 . (3.18)

The diagonal elements are the ‘normal’ propagators, while the off-diagonals ele-

ments are Gor’kov’s F and F̄ , respectively.

The phonon and electron Green Function could be expanded in a Fourier series

Dλ(q, τ) =
1

β

∞∑
n=−∞

e−iνnτDλ(q, iνn) (3.19)

G(k, τ) =
1

β

∞∑
n=−∞

e−iωnτG(k, iωn), (3.20)

where

νn = 2nπ/β, ωn = (2n+ 1)π/β (3.21)

where νn and ωn are the Matzubara frequencies and n is an integer. The

Matzubara frequencies are odd multiples of π/β for fermions while for bosons
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they are even.

3.2.2 The Migdal-Eliashberg Theory

The basic components of a many-body system are the propagators and the

Migdal-Eliashberg theory [51–57] is not an exception. The one-electron Green

function for the non-interacting system (in momentum and imaginary frequencies

space) is given by

Ĝ0(k, iωn) =
[
iωn1− εkσ3

]−1
(3.22)

and for phonons

D0(q, iνn) =
[
M [ω2(q) + ν2

n]
]−1

(3.23)

where M is the ion mass and ω(q) is the phonon dispersion.

From a diagrammatic analysis a Dyson-like equation for the electron and phonon

Green functions can be written, though now the electron one will be a 2×2 matrix

equation.

[Ĝ(k, iωn)]−1 = [Ĝ0(k, iωn)]−1 − Σ̂(k, iωn), (3.24)

[D(q, iνn)]−1 = [D0(q, iνn)−Π(q, iνn)]−1 (3.25)

where Σ is the electronic self-energy and Π the bosonic one. In principle, in

these self-energies, there are also vertex corrections. Migdal’s approximation

(see Figure 3.1) was to set the vertex values equal to the bare vertex, then the

electron-phonon interaction is truncated at order
√
m/M ∼ ωD/EF .

By using the Hamiltonian reported in (3.13), the Coulomb interaction can be

included and the discussion generalized to a temperature different from zero

(Eliashberg wrote his equations at T = 0), obtaining

Σ̂(k, iωn) = − 1

β

∑
k′,n′

σ3G(k′, iωn′)σ3

×

[∑
ν

∣∣gk,k′,ν∣∣2Dν(k− k′, iωn − iωn′) + VC(k− k′)

]
,(3.26)

where VC(k− k′) is the screened Coulomb potential which has been taken to

depend only on the momentum transfer k− k′.

It is important to note that this equation actually represents four coupled equa-

tions, one for each component of the matrix Σ. This equation can be rewritten

by using a linear combination of the Pauli matrices

Σ̂(k, iωn) = iωn [1− Z(k, iωn)]1 + χ(k, iωn)σ3

+φ(k, iωn)σ1 + φ̄(k, iωn)σ2. (3.27)
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Figure 3.1: Feynman graph (a) and (b) are the next-order correction to the
propagator. Graph (a) is included in Migdal’s theory and graph (b) is the first
term omitted. In (c) and (d) are shown schematic Fermi surfaces and particular
k-states which contribute to (a) and (b) respectively. The last term, in general,
will involve large energy denominators (as 3-4 and 1-4) so this results negligible.
This theorem may fail in two special cases: first, if either phonon has |q| small,
and second, if the Fermi surface has a one-dimensional topology.

By using the Dyson equation the Green function become[
Ĝ(k, iωn)

]−1
= iωnZ1− (εk + χ)σ3 − φσ1 − φ̄σ2. (3.28)

Now, the equation of the self energy (3.27) should be solved by using the Green

functions (3.28). The solution with φ = φ̄ = 0 always exists and correspond to

the normal state. However, a solution with non-zero φ or φ̄, if it exists, has a

lower free energy and describes a state with Cooper-pairs condensation.

Now, the matrix inversion has to be applied

Ĝ(k, iωn) =
1

Θ

[
iωnZ1 + (εk + χ)σ3 + φσ1 + φ̄σ2

]

=
1

Θ

(
iωnZ + (εk − µ+ χ) φ− iφ̄

φ+ iφ̄ iωnZ − (εk − µ+ χ)

)
(3.29)

where

Θ = (iωnZ)2 − (εk − µ+ χ)2 − φ2 − φ̄2. (3.30)

Eliashberg theory is valid also in the normal state [51], where Ĝ is diagonal;

therefore, in that case, φ and φ̄ must vanish and Z and χ must be determined

by the normal-state self-energy; it is clear from the above equation that χ shifts

the electronic energies and Z is a renormalizazion function. Actually, it can be

shown that, if in the Hamiltonian there are no terms describing spin-dependent

interactions, φ and φ̄ satisfy identical nonlinear equations hence the solution will

have φ = φ̄, except for a proportionality factor.2

Now, looking at the Green function, it appears clear that the poles, the electrons

2The arbitrary phase comes from the one of the one-electron state. Normally, the physical
quantities cannot depend on this phase. However, it is measured by Josephson tunnelling. Thus
BCS theory exhibits a broken gauge symmetry.
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(and holes) elementary excitation are given by

Ek =

√(
εk − µ+ χ

Z

)2

+

(
φ+ φ̄

Z

)2

; (3.31)

and then the gap function is given by

∆(k, iωn) =
φ− iφ̄
Z

. (3.32)

Now, inserting the Green function into the self-energy and comparing the result

with the general expression a set of equations for Z, χ, φ and φ̄ is obtained:

[1− Z(k, iωn)] iωn =
1

β

∑
k′,n′,ν

∣∣gk,k′,ν∣∣2 iωn′Z(k′, iωn′)Dν(k− k′, iωn − iωn′)
Θ(k′, iωn′)

χ(k, iωn) =
1

β

∑
k′,n′,ν

∣∣gk,k′,ν∣∣2 χ(k′, iωn′) + εk′

Θ(k′, iωn′)
Dν(k− k′, iωn − iωn′)

φ(k, iωn) = − 1

β

∑
k′,n′,ν

[
∣∣gk,k′,ν∣∣2Dν(k− k′, iωn − iωn′)− VC(k− k′)]

φ(k′, iωn′)

Θ(k′, iωn′)

φ̄(k, iωn) = − 1

β

∑
k′,n′,ν

[
∣∣gk,k′,ν∣∣2Dν(k− k′, iωn − iωn′)− VC(k− k′)]

φ̄(k′, iωn′)

Θ(k′, iωn′)

n = 1− 2

β

∑
k′,n′

χ(k′, iωn′) + εk′ − µ
Θ(k′, iωn′)

(3.33)

where the last row represents the electron number equation and determines the

chemical potential µ. These are the Eliashberg equations. Usually, these equa-

tions are averaged over energy isosurface in k-space and solved in one dimension.

This approximation turns out to be good for elemental superconductors, but fails

in describing more complex systems. Now, the arbitrary phase of φ, φ̄ can be

fixed, then φ̄ = 0. The k-dependence in Ĝ comes mainly from the explicit εk

dependence of Θ, while can be averaged out in Z and φ (fixing εk = EF because

these quantities are non zero only near the Fermi surface), so:

Z(k, iωn) → 〈Z(k, iωn)〉ε=EF = Z(iωn)

φ(k, iωn) → 〈φ(k, iωn)〉ε=EF = φ(iωn)

χ(k, iωn) → 〈χ(k, iωn)〉ε=EF = χ(iωn) (3.34)

The same k average in the right hand side of the Eliashberg equation can be

done applying an operator 1
N(0)

∑
k δ(εk) where N(0) is the normal density of

state at the Fermi level and introducing a unity factor
∫
dω δ(ω − ωq,ν), where



Chapter 3. Theoretical Background: The Superconducting State 30

q = k− k′ is the phonon wavevector, and then 3:

[1− Z(iωn)] iωn = − 1

βN 2(0)

∑
n′

∫
dω
∑
k,ν

∑
k′

∣∣gk,k′,ν∣∣2 δ(εk′)δ(εk)δ(ω − ωq,ν)2ωq,ν

(ωn − ωn′)2 + ω2
q,ν

×
∫ ∞
−∞

dε
N(ε)iωn′Z(iωn′)

Θ(ε, iωn′)

φ(iωn) =
1

βN 2(0)

∑
n′

∫
dω
∑
k,ν

∑
k′

∣∣gk,k′,ν∣∣2 δ(εk′)δ(εk)δ(ω − ωq,ν)2ωq,ν

(ωn − ωn′)2 + ω2
q,ν

×
∫ ∞
−∞

dε
N(ε)φ(iωn′)

Θ(ε, iωn′)

χ(iωn) = − 1

βN 2(0)

∑
n′

∫
dω
∑
k,ν

∑
k′

∣∣gk,k′,ν∣∣2 δ(εk′)δ(εk)δ(ω − ωq,ν)2ωq,ν

(ωn − ωn′)2 + ω2
q,ν

×
∫ ∞
−∞

dε
N(ε) [ε− µ+ χ(iωn′)]

Θ(ε, iωn′)

n = 1− 2

βN(0)

∑
n′

∫ ∞
−∞

dε
N(ε) [ε− µ+ χ(iωn′)]

Θ(ε, iωn′)
, (3.35)

as the phonon interaction is very low, the sum over k′ has been splitted up into

an angular average for εk = EF and an integration in ε on the ε dependence of

the electronic Green function. Only the states near the Fermi level will concur to

this integral, because of the εk terms in Θ(ε, iωn), then, if the density of state can

be considered constant in this region, a further simplification can be introduced

using N(ε = µ) = N(0) instead of N(ε) and integrate analytically: in this way

the final result is χ(iωn) = 0 and n = 1 (half filling approximation).

At this point is useful to define the electron-boson spectral function, that is

always a positive-definite function,

α2F (ω) = N(0)
∑
q,ν

g2
q,νδ(ω − ωq,ν) (3.36)

=
1

N(0)

∑
k,k′

∑
ν

∣∣gk,k′,ν∣∣2 δ(εk′)δ(εk)δ(ω − ωq,ν), (3.37)

where

g2
q,ν =

1

N2(0)

∑
k′

∣∣gk,k′,ν∣∣2 δ(εk+q)δ(εk) (3.38)

3the equation for χ will be omitted from now on because, in many cases, its contribution
can be neglected.
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is the electron-phonon coupling which is q-depending. Then the Eliashberg sys-

tem takes the form:

[1− Z(iωn)] iωn = −π
β

∑
ω
n′

Z(iωn′)iωn′

Ξ(iωn′)

∫
dω

2ωα2F (ω)

(ωn − ωn′)2 + ω2
(3.39)

φ(iωn) =
π

β

∑
ω
n′

φ(iωn′)

Ξ(iωn′)
[

∫
dω

2ωα2F (ω)

(ωn − ωn′)2 + ω2
−N(0)Vcol](3.40)

Ξ(iωn) =

√
[Z(iωn)ωn]2 + [φ(iωn)]2 (3.41)

where Vcol represents an appropriate Fermi surface average of the quantity VC .

The sum over Matsubara’s frequencies can be cut off at an energy ωC .

Solving these equations, it is possible to obtain the electron self energy at the

Fermi level.

3.2.3 The Coulomb pseudopotential

The point to clarify is how the large Coulomb effects [56] can be replaced by a

simple number µ∗ ∼ 0.1.

Including the repulsive term in the Eliashberg equations is a hard task. The

Coulomb interaction cannot be introduced with the same accuracy of the electron-

phonon one, since it does not have a natural cut-off to ensure a convergent sum

on the Matsubara’s frequencies.

The electron-electron interaction has a large energy scale (and then a narrow in-

teraction time) with respect to electron-phonon attraction. The electron-phonon

interaction has a timescale typical of the much larger inverse phonon frequencies.

The time scale difference is normally dealt using an energy window ωC with a

renormalized electron-electron interaction

µ∗ =
µ

1 + µ ln (EF/ωC)
, (3.42)

which is called Morel-Anderson pseudopotential. In this formula, µ is an average

electron-electron matrix element times the density of states at the Fermi level.

In the normal state self-energy the Coulomb potential is included, therefore only

the off-diagonal term will be affected by this correction and the result is

φCoul(iωn) = −µ∗π
β

∑
ω
n′

φ(iωn′)

Ξ(iωn′)
θ(ωC − |ωn′ |). (3.43)
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Including this contribution in the Eliashberg equation for φ, it becomes

∆(iωn)Z(iωn) =
π

β

∑
ω
n′

∆(iωn′)√
ω2

n′ + ∆2(iωn)

[
λ(iωn′ − iωn)− µ∗(ωC)

]
θ(ωC − |ωn′ |)

Z(iωn) = 1 +
π

ωnβ

∑
ω
n′

ωn′√
ω2

n′ + ∆2(iωn)
λ(iωn′ − iωn) (3.44)

where λ(iωn′ − iωn) is a function related to the electron-boson spectral density

α2F (ω) through the relation

λ(iωn − iωn) = 2

∫ ∞
0

Ωα2F (Ω)dΩ

Ω2 + (ωn′ − ωn)2
. (3.45)

3.3 Real-axis Eliashberg equations

The Green function can be analytically continued onto the real-frequencies axis,

by using the expression ω + iδ, where δ is an infinitesimal quantity.

The density of state is contained in the imaginary part of G(k, ω + iδ).

In their real-axis formulation, Eliashberg equations are a set of two non-linear

integral equations for a complex frequency-dependent gap ∆(ω) and renormal-

ization function Z(ω), which exists also in the normal state. Both ∆(ω) and

Z(ω) are temperature dependent.

∆(ω, T )Z(ω, T ) =

∫ ωC

0
dω′<

[
∆(ω′, T )√

ω′2 −∆2(ω′, T )

]∫ ∞
0

dΩα2F (Ω)

×
{[
n(Ω) + f(−ω′)

] [ 1

ω + ω′ + Ω + iδ+
− 1

ω − ω′ − Ω + iδ+

]
−
[
n(Ω) + f(ω′)

] [ 1

ω − ω′ + Ω + iδ+
− 1

ω + ω′ − Ω + iδ+

]}
−µ∗

∫ ωC

0
dω′<

[
∆(ω′, T )√

ω′2 −∆2(ω′, T )

] [
1− 2f(ω′)

]
, (3.46)

[1− Z(ω, T )]ω =

∫ ∞
0

dω′<

[
ω′√

ω′2 −∆2(ω′, T )

]∫ ∞
0

dΩα2F (Ω)

×
{[
n(Ω) + f(−ω′)

] [ 1

ω + ω′ + Ω + iδ+
− 1

ω − ω′ − Ω + iδ+

]
−
[
n(Ω) + f(ω′)

] [ 1

ω − ω′ + Ω + iδ+
− 1

ω + ω′ − Ω + iδ+

]}
. (3.47)

Here, ωC is the boson energy cut-off introduced into the Coulomb repulsion term

in order to assure the convergence in (3.46), f(ω) = 1/(eβω + 1) is the Fermi

function and n(Ω) = 1/(eβΩ − 1) is the Bose function. The real part of the prod-

uct ∆(ω, T )Z(ω, T ) and of Z(ω, T ) is determined by the principal-value integrals

(3.46) and (3.47), while the imaginary part comes from the delta-function parts.
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The denominators can vanish for particular energies, then the integrals in (3.46)

and (3.47) must be done carefully when a numerical approach is used. The

low frequency behaviour of the various functions is, at T = 0, <[∆(ω)] = c,

=[∆(ω)] = 0, <[Z(ω)] = d and =[Z(ω)] = 0 while, at T 6= 0, <[∆(ω)] ∝ ω2,

=[∆(ω)] ∝ ω, <[Z(ω)] = d(T ) and =[Z(ω)] ∝ 1/ω where c and d are constants.

3.4 Simplified approaches

3.4.1 BCS limit

In order to better understand these equations, it can be useful to reduce them

to BCS limit. To achieve this aim further approximations are introduced. First

of all, in the most rough case, all the bosons factor in the real-axis Eliashberg

equations can be ignored, i.e., real bosons scattering are not taken into account.

Further, the imaginary parts of ∆ and Z must be neglected and one can set

∆(ω, T ) = ∆0(T ) for ω < ωD and ∆(ω, T ) = 0 for ω ≥ ωD where ∆0(T ) is a real

number and ωD is the Deybe energy. And Z(ω, T ) can be replaced by its value

in the normal state at ω = 0 and T = 0, then

Z(0, T )− 1 = 2

∫ ∞
0
dω′

∫ ∞
0
dΩα2F (Ω)

[
f(−ω′)

(ω′ + Ω)2
+

f(ω′)

(ω′ + Ω)2

]
≡ λ(T ) (3.48)

and, in the T → 0 limit it becomes

Z(0, 0)− 1 =

∫ ∞
0
dΩα2F (Ω)

∫ ∞
0

2dω′

(ω′ + Ω)2
≡ λ. (3.49)

The gap equation becomes

∆0(T ) =

∫ ωD

∆0(T )
dω′

∆0(T )√
ω′2 −∆2

0(T )

λ− µ∗

1 + λ

[
1− 2f(ω′)

]
. (3.50)

It is interesting to note that now ωD is important for both λ and µ∗ contribution.

If one consider ε =
√
ω′2 −∆2

0, the equation can be rewritten as

∆0(T ) =
λ− µ∗

1 + λ

∫ ωD

0
dε

∆0(T )√
ε2 + ∆2

0(T )

[
1− 2f

(√
ε2 + ∆2

0(T )
)]
, (3.51)

which is the usual BCS equation at finite temperature. In the the T → 0 limit

∆0 =
λ− µ∗

1 + λ

∫ ωC

0
dε

∆0√
ε2 + ∆2

0

, (3.52)

which correspond to the BCS gap equation if a new coupling constant is defined,

λBCS = (λ− µ∗)/(1 + λ).
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The renormalization factor 1/(1 + λ) comes from the Z term in the Eliash-

berg equation, i.e. from having included electron-phonon effect. In general

the Eliashberg equations are solved numerically with iterative method until you

reach convergence. The numerical procedure is very simple in the formulation

on imaginary axis, much less in the real one. The critical temperature can be

calculated by solving an eigenvalue equation [51] or, more easily, by giving a very

small test value to superconducting gap (for the Pb it is ∆ = 1.4 meV at T = 0

K so, for example, ∆(T ) = 10−7 meV) and looking for the temperature at which

the solution converges. In this way, a precision in the Tc value is obtained that

is much higher than the experimental verification.

3.4.2 The critical temperature’s equations

Solving the Eliashberg system, even in the isotropic form, is a quite demanding

task. However the most relevant results can be obtained with a simpler approach,

that was proposed by Mc Millan [58]. Trough a fit of a large set of results

obtained considering the spectral function of lead and solving the Eliashberg

equations in a small range of the parameters (λ < 2 and µ∗ < 0.15), Mc Millan

obtained an analytic formula for the critical temperature:

TC =
ΘD

1.45
exp

[
− 1.04 (1 + λ)

λ− µ∗ (1 + 0.62λ)

]
, (3.53)

where ΘD is the Debye temperature and the number λ appearing in this formula

has the same meaning as the electron-phonon coupling parameter, and can be

derived from the Eliashberg function as

λ = 2

∫
dΩ

α2F (Ω)

Ω
. (3.54)

Later, this formula has been refined by Allen and Dynes [58] and the factor

ΘD/1.45 has been substituted with Ωlog/1.2, which uses a much more represen-

tative frequency:

Ωlog = exp

[
2

λ

∫
dΩ log Ω

α2F (Ω)

Ω

]
, (3.55)

which is a weighted average of the phonon frequencies. The Mc Millan formula

predicts an upper limit for TC even if λ increases indefinitely. However this was

a wrong conclusion because the equation (3.53) was not derived analytically but

obtained by numerical solutions in a fixed range of the coupling constant and

then it is not possible to consider the limit for λ → ∞. For λ � 1, taking the

limit of the Eliashberg equations the following expression for TC can be obtained

in an analytical way

TC = 0.183ωD
√
λ (3.56)
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and it is clear that in Eliashberg theory does not exist an upper limit for the

critical temperature.

3.5 Relation between the real- and the imaginary-

axis formulation

3.5.1 Padé approximants method

Eliashberg equations on the real axis are very difficult to solve but in their for-

mulation on the imaginary axis can be used almost only to evaluate the critical

temperature.

Therefore, a procedure which allows obtaining the real-axis gap and the renor-

malization function by analytically continuing ∆(iωn) and Z(iωn) is used [59, 60].

This procedure makes use of Padé approximants.

This allow to speed up the numerical solution of Eliashberg equations. However

the Padé method is valid only at T < TC/10, thus it is often necessary to solve

for ∆(ω) directly from the real-frequency equations. Also when in the Eliash-

berg equations exist some terms that describe the presence of impurities in the

superconductor the accuracy of the Padé approximants can be not so good.

The N -point Padé approximant to a complex function u(z) of the complex vari-

able z, whose N values ui (i = 1, ..., N) are given at N complex points zi, is

defined as a continued fraction:

CN (z) =
a1

1 +
a2(z−z1)

1+
a3(z−z2)

...

1+ an(z−zn−1)

(3.57)

such that

CN(zi) = ui, i = 1, ..., N. (3.58)

The coefficients ai are given by recursive formula

ai = gi(zi), g1(zi) = ui with i = 1, ..., N ,

gp(z) =
gp−1(zp−1)− gp−1(z)

(z − zp−1)gp−1(z)
with p ≥ 2.

It can be shown that CN (z) = AN (z)
BN (z) where AN and BN are polynomials give by

the recursion formula

An+1(z) = An(z) + (z − zn)an+1An−1(z) with n = 1, 2, ..., N − 1

Bn+1(z) = Bn(z) + (z − zn)an+1Bn−1(z) with n = 1, 2, ..., N − 1

and A0 = 0, A1 = a1, B0 = B1 = 1.
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A comparison between results obtained with the real-axis equations and results

obtained with the Padé method is shown in Figure 3.2 .

Figure 3.2: Validity check of Padé approximants methods. Here real and
imaginary part of ∆(ω) and Z(ω) are shown at T < TC/10.

3.5.2 Marsiglio, Schossmann and Carbotte formulation

In a more recent method [53] of analytic continuation from imaginary to real

axis there are two equations for the renormalized frequency ω̃(ω) and the pairing

function φ(z), here ω̃(z) = zZ(z).

ω̃(ω) = ω + iπT

∞∑
m=1

ω̃(iωm)√
ω̃2(iωm) + φ2(iωm)

[
λ(ω − iωm)− λ(ω + iωm)

]
+iπ

∫ ∞
−∞

dz
ω̃(ω − z)√

ω̃2(ω − z)− φ2(ω − z)
α2F (z)

[
n(z) + f(z − ω)

]
(3.59)

φ(ω) = iπT
∞∑
m=1

φ(iωm)√
ω̃2(iωm) + φ2(iωm)

[
λ(ω − iωm)− λ(ω + iωm)− 2µ∗θ(ωC − |ωm|)

]
+iπ

∫ ∞
−∞

dz
φ(ω − z)√

ω̃2(ω − z)− φ2(ω − z)
α2F (z)

[
n(z) + f(z − ω)

]
. (3.60)
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These equations give solutions for the real-axis gap and renormalization function

that are identical to those obtained from the solution of the real-axis equations.

Then they are valid at any temperature, but their numerical solution presents

problems completely analogous to those of the formulation on the real axis. The

choice between these equations and those on the real axis is just a matter of

personal choice.

3.6 Approximations of Standard Eliashberg Equations

As mentioned before, the standard Eliashberg theory has been formulated within

a lot of approximations. Here a list of these simplifications with possible gener-

alizations is reported:

• Validity of Migdal’s theorem: In almost all superconductors the condi-

tion ωD/EF << 1 is fulfilled. In HTCS and fullerenes ωD/EF ∼ 10−1 and

the it is necessary to include the vertex correction in the self-energy [61, 62].

• One conduction band: Before the discovery of MgB2 all the known su-

perconductors could be described within one-band models. Then the the-

ory has been generalized to two (MgB2) [63] or more bands (iron pnictides).

• Isotropic order parameter: In the oldest superconductors the order pa-

rameter does not depend on the position on the Fermi surface. There are

experimental evidences that this is not true in HTCS, i.e. ∆ ≡ ∆(k) [64–

66].

• Singlet superconductivity: Usually the spin of Cooper pairs is equal to

zero, but in Sr2RuO4 [67] probably it is equal to one and this implies also

a different spatial symmetry (p-wave) [51].

• Infinite conduction bandwidth: In almost all superconductors the

width of the conduction band is much larger then the representative energy

of the boson mediating the Cooper pairs interaction (phonons, antiferro-

magnetic spin fluctuations) and then it can be considered to be infinite. In

HTCS and Fullerenes this approximation breaks down and the real band-

width has to be included in the theory [56].
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• Half filling: Typically the number of the carriers conduction band is

symmetric but in HTCS this is not true and the number of the Eliashberg

equation increases because χ(ω) 6= 0 [56].

• Flat normal density of state: Generally the normal density of state can

be approximated by a constant around the Fermi level. In PuCoGa5 and in

a small number of other compounds this approximation is not possible [68]

and also in this case the number of Eliashberg equations increases [51].

• No disorder and magnetic impurities: A material can be disordered

with chemical doping or neutron irradiation, moreover magnetic impurities

can be added. In order to describe these physical situations new terms in

the Eliashberg equations have to be introduced [69].

• No proximity effect: The system of a thin layer of a noble metal over a

superconductor can be described by means of a generalization of Eliashberg

equations [57].

3.7 Multiband Eliashberg Theory

The equations seen so far (in all their formulations) are suitable to describe only a

relatively small number of superconductors. There are many materials which are

less trivial and show a multiband structure. Consider a superconductor contain-

ing several different groups of electrons occupying distinct quantum states. The

most typical example is a material with several overlapping energy bands. One

can expect that each band will possess its own energy gap. This means that the

density of states of the superconducting pairs contains several peaks. Of course

if the energy gap were defined as the smallest quantum of energy that can be

absorbed by the material, then only the smallest gap of the system would satisfy

this definition. Thus to avoid misunderstanding, when talking about multigap

structure of a spectrum we will mean explicitly the aforementioned multipeak

property of the density of statesIn this case the previous equations must be gen-

eralized.

Considering a two band system [63] as the MgB2, the parameters multiply: if a

two bands model is considered, there are four separate electron-phonon spectral

functions α2
ijF (Ω), where i, j = 1, 2 and four Coulomb pseudopotential µ∗ij.

The isotropic Eliashberg equations generalized to n bands (i = 1, ..., n), without
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impurities, are written on the imaginary axis as

ωnZi(iωn) = ωn + πT
∑
m,j

λij(iωn, iωm)NZ
j (iωm) +

+
∑
j

[
Γij + ΓM ij

]
NZ
j (iωn) (3.61)

Zi(iωn)∆i(iωn) = πT
∑
m,j

[
λij(iωn, iωm)− µ∗ij(ωc)

]
×

×Θ(ωc − |ωm|)N∆
j (iωm) +

∑
j

[ΓM ij + ΓM ij]N
∆
j (iωn) (3.62)

where Γij and ΓM ij are the non magnetic and magnetic impurity scattering rates,

and, in a manner quite similar to the single band case,

λij(iωm − iωn) ≡ 2

∫ ∞
0

dΩ
Ωα2

ijF (Ω)

Ω2 + (ωn − ωm)2
(3.63)

and

N∆
j (iωm) = ∆j(iωm)·

[√
ω2
m + ∆2

j (iωm)
]−1

, NZ
j (iωm) = ωm·

[√
ω2
m + ∆2

j (iωm)
]−1

.

The diagonal elements describe the intraband coupling, while the off-diagonal

the interband one.

The values of the interband coupling constants are not completely free, but there

is a constrain
λij
λji

=
Ni(0)

Nj(0)
. (3.64)

This means that the ratio of the interband coupling constant λ12 and λ21 is equal

to the ratio of density of states.

It is interesting and propaedeutic for the subsequent chapters to analyze different

situations, as the coupling constants change, the limit of small interband coupling

and the opposite case i.e. a pure interband case [63] will be considered. The first

case is interesting because it allows understanding that an, even small, interband

coupling leads to the correlation of the two bands, otherwise completely indepen-

dent as it is shown in Figure 3.3. In a superconductor without interband coupling

(λij = λji = 0) the bands behaves as n different superconductors and they will

have n different transition temperatures, TC1
and TC2

, each associated with the

respective band. The superconducting state will results, in several properties,

the sum of the n bands contributions which are completely independent. As

the off-diagonal components grow the n bands become connected. However, this

does not means that the superconductor behaves as a one-band system. Until

each band has different spectral function, and then different coupling constant,

they will apport different contributions. Changing the off-diagonal elements λij,

different temperature dependence of the upper and lower gaps comes out. Each

band contains its own set of Cooper pairs. Since, generally speaking, kFi and
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kFk (here kFi and kFk are the Fermi momenta for different bands), there is

no pairing of electrons belonging to different energy bands i.e. λik, of course,

does not represent a pairing between electrons of different bands. This does not

mean, however, that the pairing within each band is completely insensitive to

the presence of the other. On the contrary, a peculiar interband interaction and

the appearance of nonlocal coupling constants are fundamental properties of the

multiband model. Consider two electrons belonging to band i. They exchange

phonons and form a pair as a result. There exists two pairing scenarios. In one

of them, the first electron emits a virtual phonon and makes a transition into a

state within the same energy band. The second electron absorbs the phonon and

also remains in the same energy band, forming a bound pair with the first one.

This is the usual pairing picture, described by a coupling constant λii. How-

ever, the presence of the other energy band gives rise to an additional channel.

Namely, the first electron, originally located in the i band, can emit a virtual

phonon and make a transition into the k band. The phonon is absorbed by the

second electron, which also is scattered into the k band, where it pairs up with

the first electron. As we know, there is no energy conservation requirement for

single virtual transitions; such conservation, however, must hold for the initial

and final states. In our case this criterion is met. Indeed, the initial and final

states correspond to particles on the Fermi surface. Note that, in addition, the

initial and final total momenta are equal to zero. Thus the initial state had two

electrons in the i band, while the final state finds a pair in the k band. Interband

charge transfer processes are described by nondiagonal coupling constants λik,

and because of them the system is characterized by a single critical temperature.

Otherwise, each set of electrons would have its own Tc.

There is a formal similarity between the Eliashberg equations for a proximity

system [57] and for a two band system: if the mathematical expression of Elias-

berg theory for a system with two gaps is compared with a proximity system

it is possible to notice a profound formal analogy between these two situations.

In both cases there is induced superconductivity because in the second band,

as in a noble metal film, a very week intrinsic pairing can be chosen so this

band alone would not become superconductive. However the mechanisms giving

rise to induced superconductivity are very different. In the two band model the

systems are ”separated” in momentum space and the second band acquires an

order parameter thanks to phonon exchange. The phase space for phonons is

effectively increased. In the proximity effect on the other hand the systems are

spatially separated and superconductivity is induced by the tunnelling of Cooper

pairs.

The multiband Eliashberg model developed above can also be used to explain

the experimental data of temperature dependence of the upper critical magnetic

field [70, 71]. For the sake of completeness, the linearized gap equations in the

presence of magnetic field, for a superconductor in the clean limit are reported.
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In the following, vFj is the Fermi velocity of the j − th band, and Hc2 is the

upper critical field:

ωnZi(iωn) = ωn + πT
∑
m,j

λij(iωn − iωm)sign(ωm)

Zi(iωn)∆i(iωn) = πT
∑
m,j

[
λij(iωn − iωm)− µ∗ij(ωc)

]
·

·θ(|ωc| − ωm)χj(iωm)Zj(iωm)∆j(iωm)

χj(iωm) =
2√
βj

∫ +∞

0
dq exp(−q2) ·

· tan−1

[
q
√
βj

|ωmZj(iωm)|+ iµBHc2sign(ωm)

]
. (3.65)

Here βj = πHc2v
2
Fj/(2Φ0) and Φ0 is the unit of magnetic flux. In these equations

the bare Fermi velocities vFj [71] are the input parameters.

Figure 3.3: Temperature dependence of the gaps ∆1 and ∆2 in a two-band
model, calculated in the cases of: no intraband coupling (solid lines); weak
intraband coupling (dotted lines); strong interband coupling (dash-dot lines).
The intraband coupling constants are arbitrary; here we used those for MgB2.





Chapter 4

LiFeAs

In this chapter I will describe in more details LiFeAs compound, a member of

the 111 family of FeSC. I will discuss both the normal and the superconducting

phase. The resistivity curve will be studied above the critical temperature, in

order to study the transport properties. As concern the superconducting state

the symmetries and the amplitudes of the order parameters are discussed within

the Eliashberg theory supported by DFT first principle calculations to evaluate

the principal input parameters that are needed to solve the Eliashberg equations.

In order to explain the phenomenology of LiFeAs superconductor we proposed a

four-band s± Eliashberg model.

Experimental data taken from literature, in particular the critical temperature,

the gap values and the upper critical magnetic field, can be reproduced very

well within an effective model in a moderate strong coupling regime that must

include both the usual interband spin-fluctuation coupling (λtotsf ∼ 1.5) and an

unusual intraband term (with coupling strength λ11 ∼ 0.9). The presence of a

not negligible intraband coupling is discussed as a possible fictitious effect due

to the breakdown of the Migdal’s theorem.

“I don’t mind not knowing. It doesn’t scare me.”

Richard P. Feynman

4.1 Introduction

The 111 class of iron compounds has been discovered in 2008 later than some

other superconductors belonging to the 1111 and 122 classes were studied. The

interest in these compounds was dictated obviously by the presence of the Fe-As

structure, supposed to be heavly influence the superconducting properties in all

the FeSc. It has been found that compounds as LiFeAs or NaFeAs are super-

conducting at 18K [72] and 9K [73] even without doping or applied pressure.

43
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It was immediately clear that these compounds showed peculiar characteristics;

as instance they are, at least from the structural point of view, simpler with

respect to the other FeSCs discovered. This induced the hope to find answers to

some questions about this new class of materials. Actually, the situation is not

so simple: despite the huge theoretical and experimental effort devoted to the

comprehension of its properties, several questions about this compound do not

have a definite answer.

4.1.1 A very peculiar compound

LiFeAs is really peculiar with respect to all the other FeSC. In most of all super-

conductors belonging to this new family the main characteristic is the proximity

or even the coexistence of the magnetic and the superconducting phase. However

for LiFeAs the situation is not so clear. First principle calculations predicted a

magnetic collinear stripped antiferromagnetic ground state with a very small

spin moment and a structural transition from the tetragonal to the orthorombic

Cmma state [74], suggesting an unconventional mechanism for the Cooper pair-

ing [75], without anomalies with respect to the other iron compounds. However

experimental data were not in agreement with these indications. There is no in-

dication of AFM ordering down to Tc, no structural phase transition have been

observed [76], even up to 20 GPa [77, 78] and neither a magnetic transition [79].

4.2 General properties

4.2.1 Crystal structure

The crystal structure of LiFeAs was already studied in 1968 [80] and the presence

of Fe2As2 layers suggested, after the discovery of other superconductors with this

characteristic, to deeper analyze this compound.

The synthesis of this compound was not easy, and at the beginning it was thought

that in order to have superconductivity Li vacancies were needed [7].

LiFeAs crystallizes in a tetragonal unit cell with a=3.7914(7) Å and c=6.364(2) Å with

spacegroup P4/nmm (No. 129). The crystal structure is shown in Figure 4.1 and

all the crystal parameters are reported in Table 4.1.

As the other iron compounds, LiFeAs contains FeAs4 edge-sharing tetrahedra.

The Fe-As bond distance within the layers is 2.4204(4) Å, the nearest Fe-Fe

distance is 2.6809(4)Å, compared with “1111” RFeAsO or “122” AFe2As2, both
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c axis or ab plane is considerably shrunk for “111” LiFeAs. The Fe2As2 lay-

ers are alternately stacked along the c axis with nominal double layers of Li

atoms. The parallel stacking of the FeAs layers in LiFeAs inhibits close inter-

Atom Wyckoff x y z

As(1) 2c 0.25 0.25 0.2635(1)
Fe(2) 2b 0.75 0.25 0.50
Li(3) 2c 0.25 0.25 0.8459(15)

Table 4.1: Crystal structure parameters of LiFeAs. Tetragonal unit cell with
a=3.7914(7) Å and c=6.364(2) Å with spacegroup No. 129.

layer contacts between As atoms. This is different from the “slipped” stacking

in (A,Ae)Fe2As2 wherein adjacent Fe2As2 layers are oriented by a mirror plane

perpendicular to c passing through z=1/2, which allows closer, yet nonbonding,

As-As interlayer distances. Although the interlayer distances in LiFeAs (3.1822

Å) are shorter than the ROFeAs phases, the nearest interlayer As-As distances

are long (4.29297 Å). More importantly, unlike LaOFeAs, the nominal tetrahe-

dral sites within the nominal Li-double layers Li-Li distances of 3.32184 Å, as

shown in Figure 4.1 do not have any notable electron densities and thus are

unoccupied.

Figure 4.1: Crystal structure of LiFeAs superconductor lateral and top view.

4.2.2 Electronic structure

In LiFeAs, as in many other iron-compounds, the density of state (DOS) near

the Fermi level is dominated by the Fe 3d states as depicted in Figure 4.2(a). In

a similar way to other FeSCs the FS is composed of hole cylinders at the cen-

ter of the BZ and electrons pockets at the corners [15]. We have evaluated the

band structure and the Fermi surface of this compound, our results (reported in

Figure 4.8(b) and Figure 4.3) are compatible with other calculations that can be



Chapter 4. LiFeAs 46

FS N(0) v
‖ab
F v

‖c
F ω

‖ab
p ω

‖c
p

1 0.556 1.157 0.207 1.131 0.202
2 0.646 1.382 0.032 1.455 0.034
3 0.616 1.535 0.865 1.581 0.890
4 0.370 2.014 0.459 1.161 0.365
5 0.039 2.454 1.227 0.639 0.319

TOT 2.228 1.523 0.529 2.980 1.035

Table 4.2: Fermi Surface resolved Kohn Sham properties: The Fermi density
of states (N(0)) is given in states/spin/eV, the Fermi velocities (vF ) in 105

m/sec, and plasma frequencies (ωp) in eV. ab indicates the in-plane and c the
out-of-plane direction of the Fermi velocities and the diagonals of the plasma
tensor [82].

found in literature. We obtained three hole bands around the Γ point and two

electronic bands at the corner of the Brillouin zone (around the M point). The

Figure 4.2: Electronic properties of LiFeAs: Density of the states (taken
from [15]) and Fermi surface.

first principle calculations have been performed with Quantum Espresso [39] and

compared with the results obtained within the all-electron code ELK [42].

The electronic calculations with Quantum Espresso [81] have been done within

Kohn-Sham [31] density functional theory in the PBE [36] approximation for the

exchange correlation functional and using the experimental lattice structure [72].

Ultrasoft pseudopotentials are used to describe core states, while valence wave-

functions are expanded in planewaves with a 40 Ryd cutoff (400 Ryd for charge

expansion). A coarse grid of 20 x 20 x 16 k-points is explicitly calculated and

then Fourier interpolated to compute accurate Fermi velocities and plasma fre-

quencies. All the results obtained are reported in Table 4.2. All the calculations

have been performed also with the all-electron, full-potential, linear augmented

plane wave (FP-LAPW) method as implemented in the ELK code [42], still

adopting the PBE approximation for the exchange-correlation potential. The

Brillouin zone was sampled with a 20 x 20 x 16 mesh of k-points and the conver-

gence of self-consistent field calculations has been attained with a total energy



Chapter 4. LiFeAs 47

Figure 4.3: Band structure of LiFeAs evaluated within Elk code along the
path depicted in the right panel.

convergence tolerance of 10−8 Hartree.

We set the parameter RMTKmax = 7, where RMT is the smallest muffin-tin

radius and Kmax is a cutoff wave vector. The valence electrons wave functions

inside the muffin-tin spheres are expanded in terms of spherical harmonics up

to lmax = 8, and in terms of plane waves with a wave vector cutoff Kmax in the

interstitial region. The charge density is Fourier expanded up to a maximum

wave vector Gmax = 13a0. The results are totally compatible with that obtained

with the pseudopotential method and with other first principle calculations that

can be find in literature [15] and also with experimental data, as can be seen by

looking the Figure 4.4 (taken from [83]) where the authors compare the ARPES

measurements with theoretical calculations. The largest hole band is almost per-

fectly two-dimentional, as found experimentally. However the other two bands

centered in Γ seems to be a little bit more three-dimensional in our calculations

with respect the measurements we are referring to. The electronic bands seems

to be in very good agreement with measurements. A van Hove singularity in

the proximity of the Fermi level can be obtained within first principle calcu-

lations and also observed with ARPES measurements. And this could be the

necessary point to explain superconductivity in this compound. Moreover, de

Haas-van Halphen measurements [84] suggest that the renormalized mass m∗ is

much larger with respect to other iron compounds, and this feature can have

important implications as will be discussed hereafter.

4.2.3 Phonons

Several calculations prove that the electron-phonon coupling for iron based super-

conductors is too weak to justify so high critical temperatures [85]. The LiFeAs

compound does not deviate from this feature. Also in this case DFT calculations
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Figure 4.4: ARPES measurements of the electronic structure of LiFeAs: (a)-
(c) Fermi surface maps at different excitation energies at ∼1 K, energy disper-
sion around the Γ point and (e) comparison with first principle calculations.
Taken from [83].

of electronic and lattice properties [86] demonstrate that phonons cannot be re-

sponsible for the superconducting transition. The evaluated coupling strength is

λ ∼ 0.29. Considering the phonon spectra [86], that gives a logarithmic average

phonon frequency (expressed in Kelvin) ωlog ∼ 100 K, one obtains through the

Allen and Dynes formula a rough idea of the critical temperature:

Tc =
ωlog
1.2

exp

[
−1.04(1 + λ)

λ− ν∗(1 + 0.62λ)

]
. (4.1)

This results in a critical temperature lower than 1 K. The conclusion is then that

LiFeAs, as other iron-based superconductors, is not a conventional superconduc-

tor.

Confirmations of this idea come from the experimental front [87] where the

phonon modes have been investigated and no anomalies have been found across

the superconducting transition nor evidence for relevant electron-phonon cou-

pling has been measured.

4.2.4 Magnetic fluctuations

As already explained in Chapter 1, generally speaking, in this new class of su-

perconductors there is a magnetic phase with a SDW order attributed to the

presence of nesting between electron and hole pockets of the Fermi surface. The

SDW order is then suppressed, often by a structural transition, and this allows

the superconducting transition, in any case antiferromagnetic spin fluctuations



Chapter 4. LiFeAs 49

still persist below the critical temperature and are responsible for the pairing.

However LiFeAs does not undergo to a structural or magnetic transition and its

FS does not show nesting. This could suggest that this superconductor, because

of its electronic structure, may have peculiar properties if compared with other

Fe-compounds.

However, since 2010 the better quality of the single crystal allowed a lot of mea-

surements in order to deep investigate the magnetic state of this compound and

to clarify what are the possible coupling mechanisms in this peculiar compound.

Strong evidences of low-temperature spin fluctuations came from NMR stud-

ies [88] and this could unify LiFeAs with other FeSC suggesting that they all

share the same superconducting mechanism. Several questions about the rela-

tion between nesting and spin fluctuations at this point are still open, but it

could seem that nesting is not necessary to have an unconventional supercon-

ductor.

Incommensurate magnetic fluctuations [76, 89] supposed to originate from the

scattering between the large hole pocket and the two electron pockets [90]. The

reason of the choice of the large hole pocket is that it is two dimensional; the

inner hole pocket is smaller but strongly three dimensional and this would pro-

duce a strong dispersion of the incommensurate magnetic excitations along the

qz-axis [90]. Then LiFeAs is located very near the boundary with the magnetic

phase and that AF spin fluctuations could play a significant role in the super-

conductivity of this compound. This is in agreement with the INS observation

of a peak in the imaginary part of the susceptibility at an incommensurate AF

wave vector [89] despite the poor nesting between the electron and hole pockets

observed by ARPES [83]. Taylor et al. [91] observed an increase of the intensity

at an energy of the order of 8 meV on cooling below Tc, this is consistent with a

superconductivity-induced spin-resonance peak. It is quite important to notice

that also ferromagnetic fluctuations are present but the AF-SF dominate at low

energy that is the scale relevant for superconductivity.

4.3 The superconducting phase:

a four band Eliashberg model

Dealing with the superconducting state the most important points to be dis-

cussed are the symmetry of the superconducting gaps and the pairing mecha-

nism. We are able to reproduce experimental data taken from literature within

a four band Eliashberg model with two hole and two electron gaps with op-

posite phase, as described for FeSC [25], where the spin fluctuations mediate

the Cooper pairing, if a new intraband coupling is introduced. The presence of
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this peculiar term is supposed to be a fictitious effect of the breakdown of the

Migdal’s theorem [92].

4.3.1 Order parameter

The SC gap, which characterizes the energy cost for breaking a Cooper pair,

is an important quantity to clarify the SC mechanism. The gap size and its

momentum dependence reflect the strength and the anisotropy of the pairing

interactions, respectively. Several measurements of the superconducting gaps in

LiFeAs are reported in literature. Low-temperature behavior of the penetra-

tion depth λ(T ) supports a fully gapped state [93], no evidence of zero-energy

quasiparticle excitations are observed in thermal conductivity [94] supporting an

isotropic gap, excluding the presence of nodes or deep minima in any direction

of any part of the FS. The s± symmetry is also supported in some theoretical

papers [95]. On the other hand there are APERS [96] and QPI [97] measure-

ments that support anisotropy, but still excluding the presence of nodes.

As concern the coupling, some groups [83, 98] have supported LiFeAs to be a com-

pound with 2∆/kBTc values much smaller with respect to other iron compounds.

This could suggest the idea of a conventional superconductivity, differentiating

this compound with respect all the other FeSC.

In 2012 ARPES measurements on high quality single crystals revealed the pres-

ence of four different gaps [96]. They are reported to be slightly anisotropic, but

the presence of nodes is excluded. The isotropic values reported are ∆1 = 5.0 meV,

∆2 = 2.6 meV, ∆3 = 3.6 meV and ∆4 = 2.9 meV. It is important to note that

the gap value is largest on the smaller band, i.e. ∆1 = 5.0 meV is on the inner

hole pocket that barely cross the Fermi level [96]. The considerable amplitude

of the larger gap suggests that high values of the coupling constants might be

necessary to account for the experimental data so that the Eliashberg theory for

strong-coupling superconductors should be used instead of the BCS theory.

4.3.2 The general model

Despite the Fermi surface shows five different sheets, according to our electronic

structure calculations the 5-th sheet can be disregarded because of its low density

of states (see Table 4.2 and Figure 4.8(b)) and size. Consequently, as a starting

point, we can model the electronic structure of LiFeAs by using a four-band

model [99, 100] with two hole bands (that will be indicated with 1 and 2) and

two electron bands (in the following labelled with 3 and 4).

A four-band Eliashberg model includes eight coupled equations for the gaps

∆i(iωn) and the renormalization functions Zi(iωn), where i is the band index
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(that ranges between 1 and 4) and ωn are the Matsubara frequencies. The

imaginary-axis equations are here reported again:

ωnZi(iωn) = ωn + πT
∑
m,j

ΛZij(iωn, iωm)NZ
j (iωm) +

+
∑
j

[
Γij + ΓM ij

]
NZ
j (iωn) (4.2)

Zi(iωn)∆i(iωn) = πT
∑
m,j

[
Λ∆
ij(iωn, iωm)− µ∗ij(ωc)

]
×

×Θ(ωc − |ωm|)N∆
j (iωm) +

∑
j

[Γij + ΓM ij]N
∆
j (iωn) (4.3)

where Γij and ΓM ij are the non magnetic and magnetic impurity scattering rates,

ΛZij(iωn, iωm) = Λphij (iωn, iωm) + Λsfij (iωn, iωm), (4.4)

Λ∆
ij(iωn, iωm) = Λphij (iωn, iωm)− Λsfij (iωn, iωm), (4.5)

because obviously in the most general case both the phonon (ph) and the spin

fluctuations (sf ) couplings have to be taken into account.

Θ(ωc − |ωm|) is the Heaviside function and ωc is a cutoff energy. Moreover,

Λph,sfij (iωn, iωm) = 2

∫ +∞

0
dΩΩ

α2
ijF

ph,sf (Ω)

(ωn − ωm)2 + Ω2
, (4.6)

µ∗ij(ωc) are the elements of the 4×4 Coulomb pseudopotential matrix and, finally,

N∆
j (iωm) = ∆j(iωm) ·

[√
ω2
m + ∆2

j (iωm)
]−1

, (4.7)

NZ
j (iωm) = ωm ·

[√
ω2
m + ∆2

j (iωm)
]−1

. (4.8)

As usual, the electron-boson coupling constants are defined as

λph,sfij = 2

∫ +∞

0
dΩ

α2
ijF

ph,sf (Ω)

Ω
. (4.9)

The solution of (4.2) and (4.3) requires a huge number of input parameters (32

functions and 16 constants). Nevertheless, some of these are interdependent,

others may be extracted from experiments and still others fixed by appropriate

approximations.

At the beginning we fixed the same conditions that have been used for many

other pnictides, as reported by Mazin at al. [25], and we assumed that:

(i) the total electron-phonon coupling constant is small and mostly intraband [101];

(ii) antiferromagnetic spin fluctuations mainly provide interband coupling [102,
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103].

To account for these assumptions in the simplest way (as has already been done

for other iron-compounds with good results) we can set, considering the assump-

tion (i), the phonon coupling constants to zero (λphii = λphij = 0) doing the same

for the Coulomb pseudopotenzial µ∗ii(ωc) = µ∗ij(ωc) = 0. This does not really

mean that they are really zero, instead that the electron-phonon coupling con-

stant and the Coulomb pseudopotential compensate each other, at least in first

approximation.

For what concerns the coupling mediated by spin fluctuations, the assumption (ii)

allow us to set λsfii = 0, i.e. spin fluctuations produce only interband cou-

pling [103]. Moreover, as the coupling mediated by spin fluctuations is pair

braking unless the order parameter has opposite sign in the two pockets, the

result is that there is no coupling between the hole bands and neither between

the electron ones. Therefore, in the specific case of LiFeAs considering two hole

and two electron bands, λsf12 = λsf34 = 0. At this point the matrix of the coupling

constant would be:

λij =


0 0 λ13 λ14

0 0 λ23 λ24

λ31 = λ13ν13 λ32 = λ23ν23 0 0

λ41 = λ14ν14 λ42 = λ24ν24 0 0

 (4.10)

where νij = Ni(0)/Nj(0) and Ni(0) is the normal density of states at the Fermi

level for the i− th band (in this case, i = 1, 2, 3, 4).

We chose spectral functions with Lorentzian shape to describe the spin fluctua-

tions in the superconducting state i.e:

α2
ijFij(Ω) = Cij

{
L(Ω + Ωij , Yij)− L(Ω− Ωij , Yij)

}
(4.11)

where

L(Ω± Ωij , Yij) =
1

(Ω± Ωij)2 + Y 2
ij

(4.12)

and Cij are normalization constants, necessary to obtain the proper values of λij ,

while Ωij are the peak energies and and Yij specifies the width of the Lorentzian

functions, respectively [103].

In all the calculations we set Ωij = Ωsf
ij = Ωsf

0 = 8 meV [91], and Yij = Y sf
ij =

Ωsf
ij /2 [104]. The cut-off energy is ωc = 18 Ωsf

0 and the maximum quasiparticle

energy is ωmax = 21 Ωsf
0 . We set the parameters of the impurities to be zero

Γij=ΓM ij=0 because the ARPES measurement are on very good quality single

crystals of a non-magnetic stoichiometric compound [96] then also the disorder

should be absent.

Band structure calculations (see Table 4.2) provide information about the fac-

tors νij that enter the definition of λij . The obtained values are ν13 = 0.9019,
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λ11 λtot λ13 λ23 λ14 λ24 ∆1 ∆2 ∆3 ∆4 Tc

Ex. - - - - - - 5.0 2.6 3.6 2.9 18.0
sf 0.00 1.80 1.78 0.66 0.45 0.52 3.7 2.6 3.6 2.9 15.9

sf,? 2.10 2.00 1.15 0.80 0.45 0.30 5.0 2.6 3.6 2.9 18.6
sf, ph (1) 0.86 1.62 1.06 0.79 0.42 0.30 5.1 2.6 3.7 2.9 20.0
sf, ph (2) 0.90 1.63 1.15 0.80 0.45 0.30 5.0 2.6 3.6 2.9 20.1

Table 4.3: The first row shows the experimental data. The second row
concerns the pure interband case (λii = 0) while the last three include an
intraband term (λ11 6= 0): A very large value appears in the first case (the
third row), a smaller one if the phonon spectral function G(Ω) (fourth row) or
the electron-phonon spectral function α2F (Ω) (fifth row) are considered. The
critical temperatures are given in K and the gap values in meV.

ν14 = 1.5010, ν23 = 1.0483, ν24 = 1.7447.

4.3.3 The inclusion of an intraband coupling

However, within these assumptions, we were not able to reproduce the gap values

of LiFeAs, and in particular the high value of ∆1, the best results that can be

obtained within this model are reported in the second row of Table 4.3.

In order to solve this problem it is necessary to introduce at least an intraband

coupling in the first band, then λ11 6= 0.

The final matrix of the electron-boson coupling constants becomes

λij =


λ11 0 λ13 λ14

0 0 λ23 λ24

λ31 = λ13ν13 λ32 = λ23ν23 0 0

λ41 = λ14ν14 λ42 = λ24ν24 0 0

 (4.13)

After these considerations the free parameters are reduced to the five coupling

constants λ13, λ23, λ14, λ24 and λ11.

First of all we solved the system on the imaginary axis (equations 4.2 and 4.3)

and we continued them analytically on the real-axis by using the approximants

Padé technique. This process is less time consuming and at low temperature it

provides the same results (as shown in Chapter 3). In this way we fixed the free

parameters in order to reproduce the gap values at low temperature.

This value reproduced the experimental data1 as can be seen in Figure 4.5

The large number of free parameters (five) may suggest that it is possible to find

different sets that produce the same results. This is not the case, as a matter of

1note that the gap values we are referring to [96] are measured at 8 K. Then we fixed the
values of the coupling constants at a lower temperature, in a range where the Padé approximants
methods is valid but keeping into account that the values at 8 K were fixed.
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fact the predominantly interband character of the model drastically reduce the

number of possible choices.

At the beginning, in order to have the fewest number of free parameters, we set

Ω11 to be the same of the antiferromagnetic SF. It is important to underline that

with the symmetry of the order parameter considered in this case an intraband

coupling cannot be mediated by SF, our choice is just made in order to see the

effect of an intraband coupling and not to have a new free parameter, because

following the phonon’s calculations they cannot be responsible of superconduc-

tivity as the electron-phonon coupling is reported to be small. The question

mark that we inserted in the set of data reported in Table 4.3 indicates precisely

this, i.e. that we do not know which boson can mediate a coupling of that type

with the same characteristic energy of spin fluctuations.

The results obtained within this model are reported in the third row of Table 4.3,

the value of λ11 necessary to obtain the large value of the first gap is very large.

Figure 4.5: Temperature dependence of the absolute gap values (lines) and
experimental data (symbols) at 8 K. The dark cyan solid (dashed) line repre-
sents the first gap, the orange solid (dashed) line the second one, the violet solid
(dashed) line the third and the red solid (dashed) line the fourth, calculated
with the parameters of fourth (third) row of Table 4.3.

4.3.4 The breakdown of the Migdal’s Theorem

A lot of high-temperature superconductors (such as cuprates and fullrene com-

pounds) are characterized by a very small value of the Fermi energy (EF ), of the

order of the characteristic energy of the mediating boson (the Debye frequency

if the superconductor is conventional). This implies a breakdown of the Migdal’s

theorem and then a generalization of the many-body theory of superconductivity

(therefore of the Eliashberg equations) is required. The inclusion in a perturba-

tive way (with respect to the parameter λωD/EF ) of the first order corrections
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have been discussed in several papers by Pietronero, Grimaldi, Strässler and

coworkers [61, 62, 105, 106]. They showed that when the vertex corrections are

positive an enhancement of the critical temperature is possible and that the dis-

cussion can be extended also to unconventional superconductors. The vertex

corrections have a complex structure and they depend on the frequency and the

momentum of the exchanged phonon. In particular for small momentum they

give rise to a positive correction and then to an enhancement of Tc.

This means (reverting the point of view) that in the case where the vertex cor-

rections are positive and the bare Eliashberg equations are applied anyway a

fictitious very strong coupling λ ∼ 3 phenomenology will occur; all of this can

be reinterpreted, within the theory that include this further perturbative order,

in terms of a weak-coupling scheme with λ = 0.5− 1.0.

From band structure calculations on LiFeAs it is possible to see that the value of

the Fermi energy for the smaller hole band is very small. Than we can suppose

that a peculiar behavior can take place because of the breakdown of the Migdal’s

theorem. The effect of the vertex corrections [61, 62] can be simulated by an ef-

fective coupling that is bigger than real coupling [106, 107]. Then we allowed the

value of λ11 to change. The presence of an intraband coupling concentrated only

in the first band is pretty peculiar, however is important to stress once again that

this is explained as a fictitious enhancement of the real coupling constant due to

the fact that we are using a theory that do not include the vertex corrections.

4.3.5 A fictitious enhancement of the phonon coupling

At this point it can be reasonable to consider phonons. Even if it has been

demonstrated and summarized in Section 4.2.3 that the electron-phonon coupling

is small this is just a fictitious effect due to the fact that vertex correction should

not be disregarded.

Then we considered for Ω11 the typical phonon energies [108]. In this case (as

reported in fourth and fifth row of table 4.3) the value of intraband coupling

constant obviously decreases with respect to the previous case and we obtain

λ11 = 0.86− 0.9, while the antiferromagnetic spin fluctuations contribution still

correspond to a moderate strong coupling regime (λsftot ∼ 1.5).

We have solved the Eliashberg equations in two other cases: in the first case

we used as spectral function for the first band the calculated phonon density of

states G(Ω) and in the second case we considered the calculated total electron-

phonon spectral function α2Ftot(Ω) both of them appropriately scaled.

The proper choice is the second one, but this spectral function should be in

principle different for each band because it is not only the phononic spectra, but

it describes the coupling with the electrons and in principle this is not the same

for all the bands of the FS; moreover, in LiFeAs the first band shows peculiar
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characteristics and then the evaluation of the electron-phonon coupling could be

not so reliable. Then we decided to use the phonon spectra G(Ω) and let the

coupling (λ11) to be a free parameter. These two spectral functions are shown

in Figure 4.6. At this point there are no more free parameters and the model

Figure 4.6: The calculated phononic density of states G(Ω) (red dashed line)
and the calculated total electron-phonon spectral function α2Ftot(Ω) (black
solid line).

can be tested and used to reproduce other experimental data. First of all we can

use the real-axis Eliashberg equations to evaluate the temperature dependence

of the superconducting gaps (reported in Figure 4.5) and to obtain in this way

the critical temperature. We obtain a value that results to be very close to

experimental one, T calcc = 18.6− 20.1 K.

All the procedure has been followed both for the case with G(Ω) both for that

with α2F (Ω) the parameter used are reported in the third and fourth row of

Table 4.2 however the difference is not relevant from the practical point of view.

4.3.6 Critical magnetic field

The multiband Eliashberg model that we have developed above now can be used

to explain the experimental data of temperature dependence of the upper critical

magnetic field [109]. For simplicity, I report here the linearized gap equations

in the presence of magnetic field for a superconductor in the clean limit. In the

following, vFj is the Fermi velocity of the j-th band, and Hc2 is the upper critical
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magnetic field:

ωnZi(iωn) = ωn + πT
∑
m,j

ΛZij(iωn − iωm)sign(ωm) (4.14)

Zi(iωn)∆i(iωn) = πT
∑
m,j

[
Λ∆
ij(iωn − iωm)− µ∗ij(ωc)

]
×

×θ(|ωc| − ωm)χj(iωm)Zj(iωm)∆j(iωm) (4.15)

χj(iωm) =
2√
βj

∫ +∞

0
dq exp(−q2)×

× tan−1

[
q
√
βj

|ωmZj(iωm)|+ iµBHc2sign(ωm)

]
. (4.16)

Here βj = πHc2v
2
Fj/(2Φ0) and Φ0 is the unit of magnetic flux. In these equations

the four bare [71] Fermi velocities vFj are the input parameters. Since, as I have

already explained, the first band shows peculiar characteristics with important

consequences on the value of the parameters that enter the model if the simple

bare theory, i.e. still without the vertex corrections, then also in the calculation

of the Fermi velocity associated to this first band some anomalous behavior

can be present. For this reason we decided to let the first Fermi velocity to

be a free parameter and we choose it in order to obtain the best fit of the

experimental data [109] while the other values have been fixed to the values

reported in Table 4.2. In this way, we allow a sort of renormalization of the

Fermi velocity in order to reabsorb the possible effect of the perturbative order

that are not included in the Eliashberg equations.

Figure 4.7: Experimental temperature dependence of the upper critical field
(symbols), and the relevant fitting curves (lines) obtained by solving the Eliash-
berg equations in magnetic field. Red circles and solid red (dashed dark blue)
line for H‖c, black square symbols and solid black (dashed orange) line for H‖ab
calculated with the parameters of fourth (third) row of Table 4.3. The dotted
olive (H‖c) and navy (H‖ab) and the dashed-dotted magenta (H‖c) and pink
(H‖ab) lines are,respectively, the fourth and first case of Table 4.3 but where
vF1 is not a free parameter but it is taken by Table 4.2.
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Then vF1, in each case, is the only free parameter.

As done before we analyzed two different cases and the values that we have

obtaind are: v
‖c
F1 = 2.28 · 105 m/s and v

‖ab
F1 = 1.74 · 105 m/s, in the phonon case,

while if the spin fluctuation spectral function is considered the values that allows

the best fit of the experimental data are v
‖c
F1 = 2.79 · 105 m/s and v

‖ab
F1 = 2.14 · 105 m/s.

Figure 4.7 shows the experimental data and the best theoretical curves (solid and

dashed lines) obtained by solving the Eliashberg equations within the model dis-

cussed above. As can be seen, the results obtained in the two considered cases

are almost indistinguishable and in very good agreement with the experimental

data.

In the Figure 4.7 also the curves calculated with vF1 taken by Table 4.2 when

λ11 6= 0 (fourth case in Table 4.3, dotted line olive and navy) and when λ11 = 0

(first case in Table 4.3, dashed-dotted line magenta and pink). In both situa-

tions there is no agreement with the experimental data. The curves calculated in

absence of the term λ11 do not agree with the experimental data, so we deduce

that the higher value of v
‖ab,c
F1 is not produced by the presence of an intraband

term (λ11 6= 0) but, probably, by the peculiar characteristics of band 1. How-

ever one must consider the fact that the Eliashberg equations are derived by

assuming compliance to Migdal’s theorem. In presence of an anomalous band

dispersion as for band 1, the theory may partially break down. Allowing v
‖ab,c
F1

as a free parameter implicitly implies that we are “phenomenologically” going

beyond the first order contributions (i.e. now we cannot neglect the effects of

the vertex corrections in the band 1). The break down of the Migdal’s theorem

leads to use effective values of λ11 and vF1 different from real value because the

framework of the theory is partially inadequate.

4.4 The normal phase: resistivity

We consider the experimental temperature dependent resistivity as measured

by Heyer and coworkers [110], and reported in Figure 4.8(a). Its saturation at

high temperature [109] suggests that the presence of several sheets in the Fermi

surface also affects the normal state transport properties. While the low tem-

perature behavior ρ(T ) ∝ T 2 seems to indicate that a non-phononic mechanism

plays a relevant role [111].

We tried to fit the data within a one-band model [112, 113] (see equation 4.18

with i = 1) where the phonon spectrum has been taken from DFT calcula-

tions [114] and the plasma energy has been obtained by first principle calculation

(see Table 4.2). The transport coupling constant and the value of the impurities

are considered as free parameters and they are fixed to reproduce the experimen-

tal data. The obtained values are reported in Table 4.4, in particular λtr,tot = 0.32

which is in agreement with the calculated value of the transport electron-phonon
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coupling constant [108]. However, as can be seen in Figure 4.8(a), within a one-

band model (black dashed line) the experimental data cannot be reproduced.

4.4.1 The model for resistivity in a multiband metal

A saturation at high temperature in the normal-state electrical resistivity has

been observed in many alloys [115, 116] since the 60s. This behavior can be

explained within a phenomenological model containing two kinds of carriers with

different scattering parameters [117], then two parallel conductivity channels

have to be considered so that

1

ρ(T )
=

1

ρe(T )
+

1

ρsat
, (4.17)

where ρe(T ) is the resistivity of the first group of carriers, characterized by a

strong temperature-dependent scattering because of its weak scattering on de-

fects, and ρsat is the contribution of the second group of carriers that gives a

strong temperature-independent contribution. It has been discussed for other

iron compounds [118] that this shunt model can be derived for hole doped iron

pnictides and can explain the normal-state resistivity saturation in Ba1−xKxFe2As2

single crystals. The resistivity in a multiband case can thus be obtained, extend-

ing the single-band case [112, 113] and considering the contribution of all the

different channels:

1

ρ(T )
=
ε0

~

N∑
i=1

(~ωp,i)2

γi +Wi(T )
, (4.18)

where N is the total number of the different carriers considered, ωp,i is the bare

plasma frequency of the ith-band and

Wi(T ) = 4πkBT

∫ ∞
0

dΩ

[
~Ω/2kBT

sinh
(
~Ω/2kBT

)]2
α2
tr,iFtr(Ω)

Ω
, (4.19)

with γi =
∑N

j=1(Γij + ΓMij ), that is the sum of the inter- and intra-band non-

magnetic and magnetic impurity scattering rates, and

α2
tr,iFtr(Ω) =

N∑
j=1

α2
tr,ijFtr(Ω), (4.20)

where α2
tr,ij(Ω)Ftr(Ω) are the inter- and intraband electron-boson transport spec-

tral functions related to the Eliashberg functions [112]. Just for practical pur-

poses we can define a normalized spectral function α2
tr,ijF

′
tr(Ω) such that

α2
tr,ijFtr(Ω) = λtr,ijα

2
tr,ijF

′
tr(Ω), (4.21)
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where the coupling constants λtr,ij are defined as in Eliashberg theory [51, 112].

In order to capture the main concepts of the physical problem and not to get lost

in a huge number of free parameters, we set all the normalized spectral functions

to be equal, i.e. α2
tr,ijF

′
tr(Ω) = α2

trF
′
tr(Ω). In this way the transport spectral

functions α2
tr,ijFtr(Ω) differ only for a scaling factor, i.e. the coupling constant.

α2
tr,iFtr(Ω) = λtr,iα

2
trF
′
tr(Ω), (4.22)

where, obviously, λtr,i =
∑N

j=1 λtr,ij . It is also possible to define the total trans-

port coupling constant

λtr,tot =
N∑
i=1

Niλtr,i/
N∑
i=1

Ni (4.23)

(Ni being the density of the states at the Fermi level of the i−th band) for

similarity with the superconducting state where

λsup,tot =

N∑
i,j=1

Niλsup,ij/

N∑
i=1

Ni. (4.24)

Note that the specific shape of the spectral function depends on which is the

boson that mediates the interaction.

4.4.2 Spin fluctuations or phonons?

In the wake of our model for the superconducting state, we propose a multiband

model [118, 119] to analyze the resistivity data. Two possible mechanisms re-

sponsible for resistivity will be examined: phonons and antiferromagnetic spin

fluctuations.

The basic idea, based on ARPES and de Haas-van Alphen data, is that transport

is drawn mainly by the electronic bands and that the hole bands have a weaker

mobility [120]. Then the impurities are mostly present in the hole bands and

γ1,2 � γ3,4, while the transport coupling is much higher in bands 3 e 4 and this

means that, at least as a first approximation, λ1 and λ2 can be fixed to be zero.

In this way we will have two contributions almost temperature independent and

two which change the slope of the resistivity with the temperature [118].

Let us start with the phononic case. For simplicity we considered all the spec-

tral functions to be proportional to the phonon spectra used also in a previ-

ous fit [114]. As mentioned above the transport spectral functions are similar

to the standard Eliashberg functions. The main difference is the behavior for

Ω→ 0 [112], where the transport function behaves like Ω4 instead of Ω2 as in the

superconducting state. So the condition α2
tr(Ω)Ftr(Ω) ∝ Ω4 has been imposed
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Figure 4.8: Temperature dependence of resistivity in LiFeAs. Experimental
data (from Ref. [110]) and calculated fits are reported. The black dashed line
comes from a single-band model. Within a four-band model two different cases
have been considered, one obtained with the phononic spectrum (green dash-
dotted line) and one with the antiferromagnetic spin fluctuation spectrum (red
solid line). The inset shows the two normalized spectral functions that have
been used, the phonon spectrum (black solid line) and the spectrum used for
antiferromagnetic spin fluctuations (red dashed line). The lower panel is an
enlargement of the upper panel at low temperature.

in the range 0 < Ω < KBTD/10 and then

α2
tr(Ω)F ′tr(Ω) = biΩ

4ϑ(kBTD/10− Ω)

+ciα
2
tr(Ω)F ′′tr(Ω)ϑ(Ω− nBTD/10), (4.25)

where TD = 240 K is the Debye temperature [121], the constant bi and ci

have been fixed by imposing the continuity in KBTD/10 and the normalization.

α2
tr(Ω)F ′′tr(Ω) is proportional to the electron-phonon spectral function [114]

while α2
tr(Ω)F ′tr(Ω) is shown in the inset of Figure 4.8(a).

All the plasma frequencies have been determined by first principle calculations

(see Table 4.2) and the coupling constants considered as free parameters as well

as the impurities parameters. The best fit is obtained with λtr,tot = 0.14, as re-

ported in Table 4.4, which is in agreement with the hypothesis that the phonon
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λtr,tot λtr,3 λtr,4 γ1 γ2 γ3 γ4 Ω0

ph 1 band 0.32 - - 0.90 - - - -
ph 4 bands 0.14 0.44 0.10 5100 5100 0.65 550 -
sf 4 bands 0.77 1.70 1.70 164 164 4.87 1.52 47

Table 4.4: The first and second rows concern the phonon case while the
third one concerns the case of the antiferromagnetic spin fluctuation spectral
function. The γi and Ω0 are given in meV.

coupling in LiFeAs is very weak and the value of λtr,4 almost does not influence

the final result. However the experimental data are not perfectly reproduced,

as can be seen by looking the green dash-dotted curve in FIG. 4.8. Moreover

a huge quantity of impurity has been necessary to obtain this theoretical curve

and this is not consistent with the good quality of the single crystal [109].

Then we considered the case of antiferromagnetic spin fluctuations. Now for

Ω → 0 the transport function behaves like Ω3 instead of Ω as in the supercon-

ducting state. So the condition α2
tr(Ω)Ftr(Ω) ∝ Ω3 has been imposed in the

range 0 < Ω < Ω0/10, then

α2
tr(Ω)F ′tr(Ω) = biΩ

3ϑ(Ω0/10− Ω)

+ciα
2
tr(Ω)F ′tr(Ω)ϑ(Ω− Ω0/10) (4.26)

and the constants bi and ci have been fixed in the same way as before.

For the spectral function α2
tr(Ω)F ′′tr(Ω) we chose the theoretical antiferromag-

netic spin fluctuation function in the normal state [100]

α2
trF
′′(Ω) ∝ Ω0Ω

Ω2 + Ω2
0

ϑ(Ω− Ω0), (4.27)

where Ω0 is a free parameter: from the fit of experimental data we obtain

Ω0 = 47 meV.

Also in this case the value of the free parameters are reported in Table 4.4 and

in Figure 4.8 depicts the obtained results with the red solid line as well as the

spectral function (in the inset). It is also important to note that the values of the

impurities obtained in this case better reflect the fact that these measurements

have been done on high-quality single crystal.

4.5 Conclusion

In this chapter I have discussed the very peculiar properties of LiFeAs, both in

the superconducting and in the normal state.

A phenomenological model for LiFeAs superconductor able to describe its critical

temperature, the multigap structure measured by Umezawa and coworkers [96]
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and the critical magnetic field measurements [109].

However this process was not straightforward. In order to conjugate a spin fluc-

tuation dominated pairing with the experimental gap structure we have been

forced to introduce an intraband coupling that acts only on the first band.

This seems to be a phononic, purely intraband term and this would suggest an

intrinsic incompatibility between this structure of the superconducting gaps and

a purely spin-fluctuation mediated pairing.

A possible explanation may be linked to the very low Fermi energy of the band

for which vertex corrections [61, 62] to the usual Migdal-Eliashberg theory may

be relevant, and are expected to increase the intensity of the phononic coupling

constant [106, 107], i.e. if the theory is forcedly used even out of the range of

validity of the Migdal’s theorem it turns out that in any case the data can be

reproduced but the parameters used will be larger than the real ones.

An analogous effect appears if we try to fit the experimental data of the upper

critical field. In this case we suppose that the effect of the breakdown of the

Migdal’s theorem can be reabsorbed in a fictitious enhancement of the value of

the fermi velocity. Allowing v
‖ab,c
F1 as a free parameter implicitly implies that we

are “phenomenologically” going beyond the first order contributions.

In conclusion, as concern the superconducting state, the breakdown of the Migdal’s

theorem leads to use effective values of λ11 and vF1 different from real value be-

cause the framework of the theory is partially inadequate. Our calculations show

that LiFeAs presents peculiar features with respect to other iron compounds and

it cannot be explained within the framework of a pure interband spin-fluctuation

mediated superconductivity.

As concern the normal state we considered a model with two kind of carriers,

grouping together holes and electrons. This approach reproduces accurately the

experimental data, significantly better than previous attempts. The total cou-

pling obtained is λtr,tot = 0.77 consistent with expectations, and actually smaller

than the value in the superconducting state.

Moreover the impurity scattering parameters seem to account properly for the

high quality of the sample. We are aware that, in spite of the good fitting, this

is still a rough simplification as compared to the more plausible situation where

the two mechanisms coexist. However, it is clear from our analysis that the an-

tiferromagnetic spin fluctuations must constitute the main contribution.

In conclusion, we have shown that antiferromagnetic spin fluctuations play an

important role not only in the superconducting state but also in the normal

state, and by fitting the experimental resistivity we have extracted relevant in-

formation on the energy peak of the spectral function and the total transport

coupling constant.





Chapter 5

Ba(Fe,Co)2As2

In this chapter I will investigate the properties of the iron based compound that

has been perhaps the most studied: Ba(Fe1−xCox)2As2. I discuss the normal and

the superconducting state, both in single crystal and in thin films. As concern

the former Point-Contact Andreev Reflection (PCAR) measurements are ana-

lyzed in order to obtain information about the symmetry and the amplitude of

the order parameter. A further analysis of the normalized conductance spectra

and in particular of the additional features that appear at energy higher than

the gaps allow exploring the possible coupling mechanism will be explained and

the results obtained on thin films are reported.

As regards the normal state properties, a comparison of the temperature depen-

dence of resistivity between single-crystals and thin films is presented analyzing

different level of doping. A model analogous to that used for LiFeAs is proposed

and this allow a good reproduction of the experimental data if one admits a

“hardening” of the electron-boson spectral function in thin films that can be

explained as an effect of the strain due to the presence of the substrate.

“Believe you can do it and you are halfway there.”

Theodore Roosvelt

5.1 Introduction

The 122 class is probably the most studies among all the iron based supercon-

ductrs. The prototypical member of this class is the parent compound BaFe2As2.

Superconductovity can be induced by doping (both with holes [4] and elec-

trons [6]), with isovalent substitution for example of P instead of As or applying

pressure [122].

65
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The stoichiometric parent compound undergoes a coupled structural and anti-

ferromagnetic transition at 140 K [123]. Even if several studies have been made

on this compound a lot of question are still unanswered. The main question, not

only associated to this compound but to all the iron-based superconductors, is

still related to the role of spin fluctuations. The cobalt doped compound is par-

ticular interesting because this kind of doping suppresses both the the magnetic

and structural transitions leading to superconductivity [6], then this material

allows an exploration of the interrelation between the structural and magnetic

phase transitions with superconductivity.

As concern the superconducting state of the 122 superconductors a multigap sce-

nario is suggested by the presence of several sheets of the fermi surface (as can be

understood from the band structure of a specific case reported in Figure 5.1) but

different possible situation can occur depending on several factors. A nodeless

OP is expected (referring to the usual s± symmetry predicted for spin fluc-

tuation superconductivity in iron compounds) but some authors promoted the

hypothesis of a peculiar nodal symmetry, with three-dimensional nodes on one

hole-like Fermi surface, when the latter acquires a more three-dimensional char-

acter [124] and a possible relation has been claimed between the ratio 2∆h/kBTc

(where ∆h is the amplitude of the gap associated to the hole band) and the

occurrence of nodes of the order parameter [125] suggesting nodless gaps for

hole-doped (Ba,K)Fe2As2 and electron-doped Ba(Fe,Co)2As2 and a nodal order

parameter for the isovalent compound BaFe2(As,P)2 [29, 125]. In this direction

PCARS may help. Thanks to this technique the symmetry of the order param-

eter and the possible presence of nodes can be investigated, I will discuss this

point in more details hereafter in this chapter. The properties of the normal

Figure 5.1: Band structure of Ba(Fe1−xCox)2As2 with x=0.08, details of
calculation are given in Section 5.3.2

state may give a lot of information also about the superconducting properties of
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the material under investigation. The transport properties are a huge support to

investigate the relationship between superconductivity and magnetism. In the

parent compound BaFe2As2 for which electron and hole contents are identical

the Hall coefficient is surprisingly negative, indicating that electrons dominate

the transport properties. The same observation is found for the Co-doped sam-

ples. An analysis of the resistivity in a two-band model may allow drawing some

conclusion about the properties of this compound and about the importance of

spin fluctuations also in the normal state.

5.2 PCARS and the 3D version of the BTK model

The order parameter is one of the fundamental quantities of the superconduct-

ing phase of the material since it gives information on the Cooper pairs, and

as a consequence, also about the coupling mechanism. Then the study of the

properties of the gap, such as the number, the amplitude and the symmetry, is a

fundamental step to add an important piece of information to complete complex

puzzle of the properties of iron based superconductors. Here I will discuss some

results obtained with the PCARS technique in compounds of the 122 family. As

already described in this dissertation, the order parameter of iron compounds

is generally characterized by a sign changing (i.e. a different phase factor) on

the different sheets of the Fermi surface, with or without the presence of nodes

depending on the specific compounds. Even if the point-contact spectroscopy is

not able to appreciate the phase difference between the gaps belonging to sepa-

rate sheets of the FS, but only its module, important information about the gap

can be extracted with this kind of analysis.

5.2.1 The Andreev-reflection phenomenon

Andreev reflection is a particular type of scattering which occurs at the interface

between a normal metal (N) and a superconductor (S) in the ideal condition of

no potential barrier between them, for clearness the situation is schematized in

Figure 5.2(a).

If the energy of an incident electron coming from the N side is higher than the

value of the gap of S, i.e. E > ∆, then the electron simply propagates in S if on

the other side of the interface there are vacant electronic state at that energy.

If instead the energy of the electron is E < ∆ it cannot propagate because at

that energy on the other side only Cooper pairs exist. But if a hole is reflected

and two electrons can be transmitted in S as a Cooper pair, conserving the total

charge and momentum.
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Figure 5.2: Schematic representation of the Andreev reflection taken
from [126] and the I-V curve in the ideal case of an interface with no potential
barrier.

If a voltage V is applied at the interface a double current, and then a dou-

ble conductance, is expected as long as the energy of the electrons E = eV is

smaller than the gap value. Then measuring the I-V curve, as can be appreci-

ated by looking Figure 5.2(b), the amplitude of the order parameter ∆ can be

determined. From the solution of the Bogoliubov-de Gennes equations near a

N-S interface [127] it is possible to note that Andreev reflection does not occur

abruptly at the interface but over a length scale ξ of the order of the coherence

length. In general this is also the scale over which ∆ is depressed due to the

proximity effect generated by N on S. However, if the contact size is smaller than

ξ, this effect can be neglected. Analyzing the shape of normalized conductance,

i.e. dI/dV divided by the respective conductance of the normal state, several

information about the gap can be extracted and in particular condition even

about the boson that mediate the superconductivity.

5.2.2 2D-BTK model

The first theoretical formulation of this phenomenon appeared in 1982 and it

was proposed by Blonder, Thinkam and Klapwijk [128]. The most noticeable

simplification is that the model is 1D, i.e. all the involved momenta are nor-

mal to the interface and parallel to the x axis. The barrier is represented by

a repulsive potential U0(x) located at the interface, which enters in the calcu-

lations through the dimensionless parameter Z = U0/~vF . In 1996 the gener-

alization to the 2D case was proposed [129] and the normalized conductance

G(E)=(dI/dV )NS/(dI/dV )NN at T=0 (where INS and INN are the current

flowing through the interface when the material is in the supeconducting or in
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the normal state) can be written as a function of two quantities:

Nq =
E√

E2 −∆2
and Np =

∆√
E2 −∆2

(5.1)

whose real parts are the BCS quasiparticle and pair density of states, respec-

tively. In the 2D version the charge carriers can approach the interface from any

direction in the plane xy and the only condition set by the AR theory is that

the component of the k vector parallel to the interface is conserved in all pro-

cesses. In the S side a Cooper pair propagates essentially in the same direction

as the incident electron (neglecting the small refraction due to the different fermi

velocities in the two side of the interface). Calling θ the angle between the di-

rection of the incident electron and the normal to the interface, the conservation

of transverse momenta leads to the following dependence of the transparency τN

on θ:

τN (θ) =
cos2θ

cos2θ + Z2
(5.2)

at the increase of Z the transmission becomes progressively weaker and more

directional around the perpendicular to the interface. In particular, for a trans-

parent barrier (Z = 0), the normal transmission probability is identically 1 for any

direction of the incoming electron. When Z 6=0, instead, the barrier transparency

depends on the direction of the incoming electron; and for Z = 10 (tunneling

regime) the transmission probability is always small and highly directional. it is

possible to demonstrate that the BTK conductance at T = 0 is given by:

σS(E, θ) =
1 + τN (θ)|γ(E)|2 + (τN (θ)− 1) |γ2(E)|2

|1 + [τN (θ)− 1] γ2(E)|2
(5.3)

where

γ(E) =
Nq(E)− 1

Np(E)
(5.4)

and finally the conductance is given by:

G2D(E) =

∫ π/2
π/2 σS(E, θ)τN (θ)cosθ dθ∫ π/2

π/2 τN (θ)cosθ dθ
(5.5)

Immediate generalization of this model allow to properly include the effects of

the temperature and the inclusion of possible inelastic scattering at the interface.

The first point is very simple to solve and a convolution of the normalized conduc-

tance with the Fermi function is sufficient, the second point can be solved adding

an imaginary part to the energy [130] described by a broadening parameter γ

and then E → E + iΓ because this describe the reduction of the quasiparticle

lifetime.
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5.2.3 3D-BTK model

In order to analyze the AR spectra of iron based a first obvious generalization

that allow the inclusion of the contribution of the several sheets of the Fermi

surface is necessary.

With the aim to keep limited the number of fitting parameters, the standard

approach is to consider a two-band and two-gap system where the values of ∆i,

Zi and Γi of each band (i = 1, 2) have to be determined by the best fit of the

experimental curves. The total normalized conductance is thus written as:

Gtot(E) = w1G1(E) + (1− w1)G2(E) (5.6)

where Gi(E) is the normalized conductance of the i-th band, evaluated in 1D or

2D BTK model, depending on the case under discussion and w1 is the weight of

the band that at this point is still a free parameter but within the 3D model will

be fixed by the interaction between FS shape and the direction of the current

injection.

Now the model has to be generalized to arbitrary shapes of the FS, the final result

will be the full 3D generalization of the BTK model to any anisotropic feature

both of the FS and of the pair potential symmetry. For simplicity the calculations

is limited to the contribution of only two bands and for the directionality of

the contact, only the current injections along the x axis (yz -plane interface)

and along the z axis (xy-plane interface) will be analyzed (as they represent the

typical experimental conditions in single crystals of the Fe-based compounds, i.e.

ab-plane and c-axis contacts, respectively. The particular shape of the i-th FS is

described by the wave vector kF,i(θ, φ), while the unitary vector perpendicular

to the FS at any point of the reciprocal space is given by

nF,i(θ, φ) =
∂kF,i(θ, φ)

∂θ
×
∂kF,i(θ, φ)

∂φ
(5.7)

by neglecting possible interference effects between bands that can lead to the

formation of bound states at the surface the normalized conductance for current

injection along the x axis is given by:

G3D,x(E) =

∑
i

∫ π−φmin

φmin

∫ π/2

−π/2
σx,i(E, θ, φ) τN,x,i(θ, φ)

vFx,i(θ, φ)

vFi(θ, φ)
k2

Fi(θ, φ) sinθ dθ dφ

∑
i

∫ π−φmin

φmin

∫ π/2

−π/2
τN,x,i(θ, φ)

vFx,i(θ, φ)

vFi(θ, φ)
k2

Fi(θ, φ) sinθ dθ dφ

,

(5.8)
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and on the z axis

G3D,z(E) =

∑
i

∫ π/2

φmin

∫ 2π

0
σz,i(E, θ, φ) τN,z,i(θ, φ)

vFz,i(θ, φ)

vFi(θ, φ)
k2

Fi(θ, φ) sinθ dθ dφ

∑
i

∫ π/2

φmin

∫ 2π

0
τN,z,i(θ, φ)

vFz,i(θ, φ)

vFi(θ, φ)
k2

Fi(θ, φ) sinθ dθ dφ

,

(5.9)

where

τN,x,i(θ, φ) =
vFi(θ, φ)vNx

[vFi(θ, φ) + vNx]2 + 4Z2
x,iv

2
N

(5.10)

and τN,z,i has an analogous expression obtained projecting along the z axis.

To obtain this generalization of the BTK model some reasonable hypothesis

have been kept or added. First of all the FS of the N side is considered always

spherical, moreover the points on the FS are close to the points of maximum

symmetry of the energy bands, i.e. they are close to the top or the bottom

of parabolic-like bands, and this hypothesis is absolutely valid in iron based

superconductors. The condition of no mismatch of Fermi velocities across the

interface translates here into vFi(θ
∗, φ∗) = vN where θ∗ and φ2 define a point

on the FS (usually in the kxky plane) where we suppose the two velocities to

be equal. By imposing this condition, we eliminate the need to know the term

~/m∗ that enter in the general formulation of the Fermi velocities. In this way,

of course, we neglect the small deviation of the quasiparticles in crossing the

interface due to the modest mismatch of Fermi velocities in N and S simply

arising from the geometry of the FS in S. Finaally the limits of integration in

φ (φmin and π − φmin for the injection along the x axis and φmin and π/2 for

the injection along the z axis) are fixed to restrict the integration over the first

Brillouin zone.

5.3 The order parameter symmetry of 122 Fe-based

superconductors

Here I will discuss some results of directional point-contact Andreev-reflection

measurements in single crystals of 8% Co-doped Ba-122 and thin films with the

same Co-content. The PCAR spectra are analyzed within the two-band 3D

version of the BTK model for Andreev reflection, that includes an analytical

expression for the Fermi surface in order to mimic the one calculated within

the Density-Functional Theory. In the first case, the PCAR spectra taken with

the current injected along the ab plane are compatible with the presence of

two nodless gaps of different amplitude of different amplitude, with the smaller

associated to the electronic band, as suggested by ARPES measurements [131].

In the case of thin films the current is injected along the c axis and the 3D-BTK
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model with two nodless gaps fails to fit the PCAR spectra at low energy. This

last argument is still under discussion, this could indicate the presence of “hot

spots” where where the gap is strongly suppressed or 3D nodal lines on some

sheets of the FSs, which has been proposed [28] to explain Raman results in

this compound [132]. Moreover, some results obtained in single crystals of 6%

Co-doped Ca-122 will be discussed within a model that includes line nodes on

the smallest gap (residing in this case on the holelike sheet of the Fermi surface)

while the large gap is supposed to be isotropic.

This picture agrees with the predictions about the emergence of 3D nodes in

the order parameter of 122 compounds when the holelike FS evolves toward a

topological transition from a warped cylinder to separate pockets [29, 133].

5.3.1 Experimental details

The Ba(Fe1−xCox)2As2 single crystals (with x = 0.08) were prepared by the

self-flux method [6] under a pressure of 280 MPa at the National High Magnetic

Field Laboratory in Tallahassee. The crystal size is ∼ 1 x 1 x 0.1 mm3, and

the c axis is perpendicular to the larger surface. The resistive transition starts

at T on
c = 24.5 K with ∆Tc(10 − 90%)=1 K. The Ba(Fe1−xCox)2As2 epitaxial

films (with x = 0.08) were deposited at the Leibniz Institute for Solid State and

Materials Research (IFW) in Dresden, Germany. Two kinds of substrates were

used: single-crystalline CaF2 or MgO (in this case, with a Fe buffer layer on

top of it) and the c axis is perpendicular to the surface. The superconducting

transition of the films on CaF2 has a midpoint at Tmid
c = 23.35 K and its width

is ∆Tc(10 − 90%)=1.70 K while for the films on MgO the same quantities are

Tmid
c = 23.8 K and ∆Tc(10− 90%)=1.50 K.

The Ca(Fe1−xCox)2As2 single crystals were grown at ETH Zurich [134], and

were plate-like, with the c axis perpendicular to the plate. The superconducting

transition measured from DC susceptibility starts at T on
c = 20.0 K and an effective

T eff
c = 17.0 K can be determined by extrapolating the linear part of the curve.

The point contacts were made by using the “soft” technique [126]. In single

crystals the contacts were put on a fresh side surface so that the current was

mainly injected along the ab planes. In films, the point contacts were put on the

top surface. Owing to the film orientation, this means that the injection occurs

along the c axis. The conductance curves dI/dV vs. V of each point contact

were obtained by numerically differentiating the measured I-V characteristics.

The spectra were then normalized, i.e. divided by the normal-state conductance

of the same contact [135].
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5.3.2 Calculations of the Fermi surface within the VCA

The FS of the materials under study, i.e. Ba(Fe1−xCox)2As2 with x = 0.08

and Ca(Fe1−xCox)2As2 with x=0.06, was calculated within the DFT by using

the ELK code where the generalized gradient approximation, in the Perdew-

Burke-Ernzerhof version [38] was used for the exchange correlation potential.

The effects of doping are included by means of the virtual-crystal approximation

(VCA), an average-potential approximation that is beyond the method based

only on the rigid bands shift. Generally speaking this approximation is valid at

low level of doping (max 15-20%) because one studies a crystal with the primitive

periodicity, but composed of fictitious “virtual” atoms that is a sort of mixture

between the original specie and that used as substitutive.

In ELK [42] this approximation is implemented in the standard way, by introduc-

ing a fictitious atom at the original sites which has a fractional charge between

that of the original atom and the dopant, mixing the properties of the two atoms

in each orbital. This approach differs from rigid band in that it includes the self-

consistent rearrangement of the charge density.

All calculations presented here in the case of Ba(Fe1−xCox)2As2 have been per-

formed with the experimental crystal structure for BaFe2As2 with spacegroup

I4/mmm, and not the low-temperature orthorhombic distortion. The arsenide

Whyckoff position is fixed to the value value obtained with the relaxation of

the internal coordinates, in agreement with [15] and then zAs = 0.342. Mag-

netism breaks the tetragonal symmetry and leads to a small orthorhombic dis-

tortion that also affects the lattice. However, the orthorhombic distortion of

the lattice parameters is small and at for our scope can be ignored. The lat-

tice constants used for the calculations in the case of Ba(Fe1−xCox)2As2 are

a = b = 3.9625 Åand c = 13.0168 Å [15]. The height of the As atom above the

Fe layer is hAs = 2.0567 Å, in agreement with the doping dependence of this pa-

rameter [15]. The resulting FS is shown in Figure 5.3(a). It features two hole-like

FS sheets in Γ at the center of the Brillouin zone. Both have the shape of warped

cylinders whose cross section is maximum at the top and bottom edges of the

BZ, but the outer one shows a more marked warping. The two electron-like FS

sheets at the corners of the BZ are also warped cylinders with the characteristic

elliptical cross section whose semi-major axis varies along kz.

The Brillouin zone was sampled with a 28x28x1 mesh of k-points and the con-

vergence of self-consistent field calculations is attained with a total energy con-

vergence tolerance of 10−5 Hartree. The radius of the muffin-tin spheres for the

carbon atoms were taken as 1.3a0, where a0 is the Bohr radius. We set the

parameter RMTKmax = 7, where RMT is the smallest muffin-tin radius and

Kmax is a cutoff wave vector. The valence electrons wave functions inside the

muffin-tin spheres are expanded in terms of spherical harmonics up to lmax = 8,

and in terms of plane waves with a wave vector cutoff Kmax in the interstitial
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Figure 5.3: The Fermi surface of Ba(Fe1−xCox)2As2 with x=0.08 as evaluated
by first principle calculations. And the representation of the analitical expres-
sion used in the 3D-BTK model to fit the experimental conductance curves
(solid surfaces) with the amplitude of the corresponding energy gap (gridded
surfaces).

region. The charge density is Fourier expanded up to a maximum wave vector

Gmax = 13a0.

Similar ab initio calculations have been done for Ca(Fe0.94Co0.06)2As2. In this

case the problem was that there were no experimental information about the

low-temperature lattice constants. Owing to the small dependence of the room

temperature lattice parameters on the doping content [136], we assumed the low-

temperature lattice constants of the parent compound CaFe2A2 in the tetragonal

phase to be a good first approximation to the real ones at the doping content

of our interest (x = 0.06). We then started from the lattice constants of the

orthorhombic phase of CaFe2A2 at pressure P = 0 calculated as in [137], and

then we made the structure tetragonal by averaging a and b. The result is

a = b = 3.925 Å and c = 11.356 Å.

These values are in good agreement with the experimental ones measured in

the tetragonal phase of CaFe2A2 at 300 K (and pressure P = 0.8-1 GPa [138]).

Starting from the calculated equilibrium phase and always considering the anti-

ferromagnetic phase, an optimized parameter hAs = 1.309Åwas obtained. The

charge density was thus integrated over 8 x 8 x 4 k-points in the Brillouin zone

and the band structure as well as the FSs were calculated in the nonmagnetic

body-centered tetragonal phase. The resulting FS is shown in Figure 5.4(a).

It is clear that at this doping content the hole-like FS sheets are undergoing a

topological transition. While at lower doping, they have the shape of strongly

warped cylinders (similar to those shown for Ba-122 in Figure 5.3(a)), at x =

0.06 they split into separate cup-shaped pockets centered around the Z points.
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Figure 5.4: The Fermi surface of Ca(Fe1−xCox)2As2 with x=0.06 as evaluated
by first principle calculations and the the representation of the analitical ex-
pression used in the 3D-BTK model to fit the experimental conductance curves
(solid surfaces) with theamplitude of the corresponding energy gap (gridded
surfaces) .

5.3.3 Ba(Fe1−xCox)2As2 single crystals

The results obtained within the ab intio calculations are useful information for

the analysis of the superconducting state. Now the Fermi surfaces can be used

within the 3D-BTK model in order to reproduce the normalized conductance of

the Andreev-reflection spectra.

In Figure 5.5 are reported two of the spectra measured on Ba(Fe0.92Co0.08)2As2

single crystals, both the result of ab-plane contacts. Both the curves (and also

all the other measured on this sample) show a zero-bias dip. This is a very

strong indication of the symmetry of the order parameters, this suggests both

the gap to be nodeless, in agreement with ARPES measurements [131]. More-

over, two symmetric maxima appear at energy of the small gap and two other

kinks related to the larger gap, in both the curves. These two structures are

indicated by the dashed lines in Figure 5.5. Additional structures appear at

higher energies, as indicated by the arrows. These structures are supposed to be

bosonic resonances but the discussion of this kind of structure is resend to the

Section 5.4. The red curve in Figure 5.5 represent the fit obtained within the

3D-BTK model that takes into account the real shape of the Fermi surfaces, as

depicted in Figure 5.3(a), via the analitic approximation showed in Figure 5.3(b).

Our approximation of the FS consists of two separate hyperboloids of revolution,

meant to simulate the main hole-like and electron-like sheets, whose radii at the

center and at the top (and bottom) of the BZ are in the same proportions as

in the real FS, although in Figure 5.3(b), the distance between them has been

enhanced for clarity.

Taking into account all the considerations formulated so far, the model for-

mulated in order to fit these curves contains two order parameter with s-wave

symmetry, with different amplitude. The large gap is called ∆1 and it is allo-

cated on the hole band, while ∆2 is the small gap, set on the electron sheet. The
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Figure 5.5: Two examples of normalized conductance curves of ab-plane point
contacts in Ba(Fe0.92Co0.08)2As2 single crystals (black symbols) and of the rele-
vant fit (red lines) with the 3D-BTK model using the FS shown in Figure 5.3(b).
The fitting parameters of the curve in (a) are: ∆1 = 11.5 meV, Γ1 = 1.85 meV,
Z1 = 0.03, and ∆2 = 3.0 meV, Γ2 = 3.60 meV, Z2 = 0.31. The weights of the
two bands in the conductance are w1 = 0.23 and w2 = 0.77. The parameters
for the fit of the curve in (b) are instead ∆1 = 12.0 meV, Γ1 = 1.75 meV,
Z1 = 0.08, and ∆2 = 4.6 meV, Γ2 = 3.00 meV, Z2 = 0.245. The weights in this
case are w1 = 0.21 and w2 = 0.79.

model contains 3 adjustable parameters for each band, i.e. the gap amplitude

∆i, the barrier parameter Zi and the broadening parameter Γi, with i = 1, 2.

The weight of each band is directly fixed by the shape of the Fermi surface and

by the barrier parameter.

The values of the parameters used to obtain the best fit of the Figure 5.5 are

indicated in the caption and summed in Table 5.1; the average values are ∆1 =

11.75± 0.25 meV and ∆2 = 3.8± 0.8 meV.

If the 2D-BTK model were considered to evaluate the best fit of the same curves

the gaps turned out to be ∆1 = 10.7± 0.2 meV and ∆1 = 4.4± 0.6 meV. With

respect to the 2D-BTK fit, the 3D one gives smaller values of the small gap and
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larger values of the large gap, and the theoretical curves are narrower. This is

∆1 ∆2 Γ1 Γ2 Z1 Z2 w1 w2 Tc

curve (a) 11.5 3.0 1.85 3.60 0.030 0.310 0.21 0.79 23.9
curve (b) 12.0 4.6 1.75 3.00 0.080 0.245 0.21 0.79 24.0

Table 5.1: Parameter used in 3D-BTK model for Ba(Fe0.92Co0.08)2As2 single
crystals. Here ∆i and Γi are reported in meV and the Tc in K.

due to the fact that in the 3D model the weight is fixed (in these two cases, the

weight of band 1 is about 0.2). Indeed, the 2D fit can be forced to follow the

experimental curve at energies higher than 13 meV (where the 3D fit fails) if the

weight of the bands is kept around 0.5, but this clearly would not reflect the real

shape of the FS sheets. The inability of the model to reproduce the higher-energy

structures (in particular the kinks at about 20 meV) simply confirms that these

structures are related to effects that are not accounted for by the model (and

indeed can be explained as being due to the strong electron-boson coupling, as

shown in will be explained in Section 5.4).

5.3.4 Ca(Fe1−xCox)2As2 single crystals

Having a look at Figure 5.6 it appears immediately clear that in the case here

analyzed, i.e. single crystal of CaFe2As2 with 6% of cobalt doping, the situation is

very different. The two curves depicted with black symbols show two examples

of typical conductance curves of ab-plane contacts. Contrary to the case just

analyzed, here zero-bias maxima or peaks appear in all the curves measured.

This is a clear sign that one of the gaps is strongly anisotropic in the (kx, ky)

plane.

Theoretical calculations [29] demonstrated that the pnictogen height hAs strongly

reduces with the P substitution of As in BaFe2As2 and that this causes the

increase of the outer hole-like FS sheet in the vicinity of the top and bottom

faces of the BZ and that this can create the good condition for the appearance

of nodal lines.

The DFT calculations here presented show that the effect of Co substitution

in CaFe2As2 is very similar, and that the FS of Figure 5.4(a) is actually the

extreme consequence of a doping-induced increase in the warping of the hole-like

sheet. Thus, these PCAR measurements confirm that, even within a general s±
picture of spin-fluctuation mediated superconductivity, nodal lines can appear

in the hole-like FS when the latter is strongly deformed. In particular, it seems

that the crucial point is the topological transition that splits into separate closed
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Figure 5.6: Two examples of normalized conductance curves of ab-plane point
contacts in Ca(Fe1?xCox )2As2 single crystals with x = 0.06 (black symbols)
and of the relevant fit (red lines) with the 3D-BTK model using the FS shown in
Figure 5.4(b). The fitting parameters of the curve in (a) are: ∆1 = 5.70 meV,
Γ1 = 6.15 meV, Z1 = 0.145, and ∆2 = 1.40 meV, Γ2 = 1.25 meV, Z2 = 0.050.
The parameters for the fit of the curve in (b) are instead ∆1 = 5.60 meV,
Γ1 = 6.50 meV, Z1 = 0.230, and ∆2 = 1.45 meV, Γ2 = 1.70 meV, Z2 = 0.050.
In both (a) and (b), the angle between the normal to the interface and the a
axis is α = π/8.

pockets the hole sheet.

Thus the FS has been modeled with one hyperboloid (for the electron-like sheets)

and one spheroid (for the hole-like pocket) as in Figure 5.4(b) and assumed an

isotropic large gap ∆1 on the former and an anisotropic small gap ∆2 on the

latter.

The gap on the hole FS should be the evolution of the situation before the

topological transition and should have a symmetry that produce the zero-bias

maximum (and then the the probability of constructive interference between

electron-like and hole-like quasiparticles). However to create this situation a

change of sign of the gap is not absolutely necessary, the existence of angular

regions where the gap has very small amplitude could also be sufficient [139].
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Therefore we modeled the gap on the hole-like pockets with a fully anisotropic s-

wave gap of equation ∆2(ϑ, φ) = ∆2 cos4(2ϑ)sin2φ and the other one is fixed to be

isotropic, as depicted by the gridded surfaces in Figure 5.4(b). The fit of the two

spectra are reported with red solid lines in Figure 5.6. The parameters used for

this fit are reported in the caption and summarized in Table 5.2. From different

∆1 ∆2 Γ1 Γ2 Z1 Z2 Tc

curve (a) 5.70 1.40 6.15 1.25 0.145 0.050 18.0
curve (b) 5.60 1.45 6.50 1.70 0.230 0.050 17.0

Table 5.2: Parameter used in 3D-BTK model for Ca(Fe0.94Co0.06)2As2 single
crystals. Here ∆i and Γi are reported in meV and the Tc in K.

fits, we get the following average values for the gaps: ∆2 = 1.4 ± 0.1 meV and

∆1 = 5.5±0.3 meV. If one chooses a d-wave symmetry for the small gap, a fit of

comparable quality is obtained, but the values of the gaps are ∆1 = 1.6±0.1 meV

and ∆2 = 5.3± 0.2 meV [133].

5.3.5 Ba(Fe1−xCox)2 thin films

In Figure 5.7 two example of PCAR spectra obtained in Ba(Fe1−xCox)2 thin

films with x = 0.8. The two spectra have been measured in two different kind of

films: the (a) curve refers to a film on MgO substrate with Fe buffer layer, while

the (b) curve was measured in a film on CaF2.

Comparing the curves in Figure 5.7 the first thing that leaps out is that in the

curve (a) some structures appear at energies similar to that of single crystal,

but they are even clearer. On the other hand the curve (b) show much smoother

structures, in particular the large gap manifests itself with very broadened shoul-

ders at about ±6 meV.

In the case of thin films the normal state at TAc is not related to the contact

alone, but includes a contribution from the portion of the film between the point

contact and the voltage electrode and this gives rise to some ambiguity to the

normalization and consequently could affect the shape of the curve and, to some

extent, the fitting parameters, actually the gap values are do not change, but

the broadening Γ and the barrier parameter are most affected. In Figure 5.7

are reported fit obtained within the 3D-BTK model (blue dashed lines) where

the same analitical form of the FS has been used (see Figure 5.3(b)). It is clear

that the 3D-BTK model fails in well reproducing the curve of thin films because

of a Z-enhancing effect due to the shape of the FS [139]. In fact, even if the

values relate to the potential barrier are kept to zero in band 2 and to a very

small vale in band 1 the very deep minimum at zero-bias cannot be removed. All
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Figure 5.7: Two examples of normalized conductance curves of c-axis point
contacts in Ba(Fe1−xCox)2As2 films with x = 0.08 ( black symbols) but on
different substrates: MgO + Fe buffer layer in (a) and CaF2 with no buffer
layer in (b). The blu dashed lines represent the 3D-BTK fit, while solid lines
represent the 2D-BTK fit. The corresponding gap amplitudes are indicated in
the labels. The weights of the bands in the 3D fit are w1 = 0.39 and w2 = 0.61.
The 2D fit was performed by fixing instead w1 = 0.44 and w2 = 0.56.

the parameters of the two fit shown in Figure 5.7 are reported for completness

in the label and in Table 5.2. Several factors can be responsible of this failure.

The first possibility is that, maybe caused by the roughness of the surface and

then a not-oriented percentage of grains, the probe current is injected mainly

along the ab-plane despite the orientation of the film. However, in the present

case, this possibility is rather unlikely. The other possibility is that the use of two

isotropic gaps is not the best choice to reproduce the real distribution of the gaps

over the FS. Indeed, the presence of “hot spots” where the gap is significantly

suppressed has been evidenced by Raman spectroscopy [132] and then justified

theoretically [28]. The hot spots seem to reside on the electron-like FS sheets,

then one might try to improve the model by using a small anisotropic gap with

zeros and a large isotropic gap (as we did in the case of Ca(Fe1−xCox)2As2).

This would certainly improve the fit because the quasiparticle excitations, even
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at very low energy, thanks to the anisotropy might compensate the Z-enhancing

effect [139].

As already said, in the 2D-BTK model the presence of two more adjustable pa-

rameters allows sometimes a better fit. In this case the results obtained letting

w1 and w2 to change with respect to the value obtained considering the real

shape of the Fermi surfaces are reported in Figure 5.7 with the red solid lines.

The fits are rather good in the energy region of the gaps and catch the main

features of the curves but now the values of the two weight have not been deter-

mined from the FS.

All the adjustable parameters have been fixed to better reproduce the experimen-

tal curves and mediated over several different fit obtained changing the weight of

the two bands. Their final values for the curve (a) are ∆1 = 9.5± 0.2 meV and

∆2 = 5.4±0.2 meV, while for the curve (b) we obtained ∆1 = 7.4±0.3 meV and

∆2 = 4.20± 0.25 meV. In the labels of Figure 5.7 and in Table 5.3 are reported

the values used for the specific fit showed here.

∆1 ∆2 Γ1 Γ2 Z1 Z2 w1 w2 Tc

curve (a) 2D 9.5 5.5 0.47 1.85 0.95 0.12 0.44 0.56 23.80
curve (a) 3D 10.8 3.0 3.85 1.40 0.10 0.00 0.39 0.61 23.80
curve (b) 2D 7.1 4.4 4.00 2.16 0.36 0.14 0.50 0.50 24.35
curve (b) 3D 7.3 3.3 2.65 1.20 0.02 0.00 0.39 0.61 24.35

Table 5.3: Parameter used in 3D-BTK model for Ca(Fe0.94Co0.06)2As2 single
crystals. Here ∆i and Γi are reported in meV and the Tc in K.

Comparing these results with 2D-BTK fit of similar curves (with current injection

along the c axis) in single crystals of the same material where ∆1 = 9± 1 meV

and ∆2 = 4.1 ± 0.4 meV [140], a partial superposition of the gap values can be

appreciated, although there is not a perfect agreement. This is not particularly

surprising, first of all the situation in a thin film is more complex with respect

that observed in single crystals and there may be some effect of the substrate,

especially in the case of the films on Fe buffer layer; moreover, although the

high quality of these thin films, the measurements highlight a certain degree of

inhomogeneity in the superconducting properties. For these reasons the statistics

of the measurements in films needs to be extended to draw definite conclusions.

5.4 Analysis of bosonic structures in AR spectra

The presence of bosonic resonances in the normalized conductance of the Andreev-

reflection spectra is signal of strong electron-boson-interaction (EBI). These
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structures appear in the sign-changed first derivative of the normalized con-

ductance at Ep ∼ Ω0 + ∆max where Ω0 is the characteristic bosonic energy and

∆max is the maximum gap. Analyzing the temperature dependence of the peak

energies we can obtain information about the representative bosonic energy and

its nature [141].

5.4.1 The 2D-BTK model with Eliashberg theory

The mean-field BCS definition of a constant superconducting order parameter

∆ is only a crude approximation of the physical reality. Actually, as described

in Chapter 3, even in the weak-coupling regime ∆ is a complex function of the

energy as outlined in Eliashberg theory. Electron-boson structures appear in nor-

malized conductance of quasiparticles tunneling or also in the Andreev-reflection

regime if this energy dependence is taken into account.

By solving Eliashberg equations in a strong-coupling regime (within a model de-

fined for each compound adjusting defining the number and the symmetry of the

OP, the coupling, by means of the spectral functions, the Coulomb pseudopo-

tential µ∗ on the base of experimental data and theoretical calculations) it is

possible to obtain the full energy dependence of the order parameter ∆(E). The

imaginary part of the order parameter increases at the increase of the coupling

and accounts for the finite lifetime of Cooper pairs. Since the BTK theory and

its modifications reduces to the BCS theory for superconducting tunnel in the

limit of large Z it is easy to predict that the introduction of ∆(E) into the BTK

expressions will lead to electron-phonon interaction structures in the normalized

conductance for any Z value in the ballistic regime [142, 143]. This can be done

because the BTK theory contains operators which do not affect the energy.

As can be seen in in Figure 5.8 in the simple case of lead, that is a ‘classic’

strong-coupling superconductor for which the spectral function is known and

µ∗ = 0.11 at eV ≈ ∆Pb +Eph (where Eph represents the range of energies of the

electron-phonon spectral function of lead) the electron-phonon interaction struc-

tures appear for any Z value but their amplitude increases with Z Figure 5.8(a).

In Figure 5.8(b) the sign-changed first derivative of the normalized conductance

−dG/dV = −d2INS/dV
2 vs. V is compared to the lead spectral function (top

red curve). The positions of the structure hardly change when Z decrease, this

means that it is possible to use the same law of the tunneling case to obtain the

characteristic bosonic energy.

The BTK model is suitable only for isotropic superconductors. It is possible to

relax this condition and describe Andreev-reflection point-contact spectroscopy

also for anisotropic superconductors. However this is not the case of the com-

pound under discussion here that can be described by an isotropic model, where
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Figure 5.8: Normalized conductance and sign changed voltage derivative of
the normalized conductance −dG/dV , for different Z values within the 3D
BTK model in the Pb case [126]. The curve represents the Eliashberg spectral
function and its is here reported in arbitrary units (it is translated of a value
equal to the amplitude of gap).

the order parameter have opposite sign on the different sheets of the FS (this

characteristic that cannot be appreciated by tunnelling or Andreev reflection

measurements that are not phase sensitive).

5.4.2 Ba(Fe1−xCox)2 thin films

In particular PCARS measurements on a thin film of Ba(Fe,Co)2As2 with 8%

of cobalt content are now considered, for example the spectrum described by

symbols in Figure 5.9. A possible bosonic resonance appears around 20-25 meV.

The following line of reasoning has to be followed in order to verify that this is

really correlated to the electron-boson interaction. First of all the analysis with

the standard two bands 2D-BTK model (the blue curve in Figure 5.9) has been

done. In this way it is possible to obtain two gap values and, from their temper-

ature dependence, the critical temperature, this gave as results ∆1=∆e=4 meV,

∆2=∆h=7 meV and Tc=25.4 K [140].

Furthermore on the base of the phenomenological relation between Ω0 and Tc,

valid in almost all iron-compounds and already verified also for Ba(Fe,Co)2As2 [140]

the characteristic bosonic energy can be taken to be Ω0 = 11 meV. This value

supports the picture of a pairing mediated by antiferromagnetic spin fluctuations

and it is in good agreement with neutron inelastic scattering [104]. At this point

an analysis within a three bands s± Eliashberg model, is possible [140]. Here

there is one holonic order parameter that has opposite sign with respect to the
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Figure 5.9: Andreev reflection spectra at 4.2 K in Ba(FexCo1−x)2As2, with
x=8%. The dark blu curve is the usual BTK fit, and the orange curve is the
fit obtained with the inclusion of the Eliashberg theory.

Figure 5.10: Temperature dependence of the bosonic stuctures in
Ba(Fe1−xCox)2As2 thin film with x=8%. In the left panel is depicted the
temperature dependence of the sign-changed first derivative of the normalized
conductance spectra. The black arrow indicates the evolution in temperature
of the resonance. And the right panel shows the temperature dependence of
the energy of the peak in the sign-changed first derivative of the normalized
conductance spectra.

two electronic ones and now the coupling is present only between the holonic (in-

dicated by the index 2) and the electronic bands (indicated by the index 1 and 3)

i.e. λ23 = λe1,e2=0. In these calculations, in order to describe the electron-boson

spectral function a lorentzian spectral function peaked at Ω0 with FWHM of 4

meV [140] has been chosen. In order to fix the free parameter λ12 = λh,e1 and

λ13 = λh,e2, the Eliashberg equations have been solved to reproduce the low tem-

perature gap values and the values obtained are λh,e1 = 0.50 and λh,e2 = 1.65,


