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5.2.2.3 Synthesis of rGO/Sodium Silicate Composites

The sodium silicate has been already introduced in chapter 3 as a possible low cost, envi-

ronmentally friendly material for the reduction of the graphene oxide. In this section graphene

sheets as conductive filler are combined in a sodium silicate gel network and the sodium ions

are used as conductive ions species of the device, going towards more environmentally friendly,

cheaper and safer electrochemical devices. The goal of this experiments is to achieve an in situ

reduction of the graphene oxide and the synthesis of a possible material to use as electrode

material for sodium based supercapacitor applications.

Materials and Methods The chemicals used were: sodium silicate solution, Na2O:SiO2

= 1:3.33), citric acid and Na2SO4 purchased from Sigma-Aldrich, graphene oxide purchased

from ACS Materials (USA). Deionized (DI) water was used as a solvent for the electrolyte. A

solution of 50 mg of sodium metasilicate in 0.5 ml of DI water was obtained by heating the

solution on a hot plate at 80oC for 5 minutes under stirring with a magnetic bar. Dispersions

of graphene oxide in DI water were obtained under mild sonication (25 W, 40 KHz) for a total

volume of 0.5 ml and a concentration of graphene oxide of 0.5 mg/ml.

The graphene oxide dispersion was then added to the sodium silicate solution in order to obtain

a 1.05 equivalent of the solution of sodium silicate in water, and put on the hot plate at 95oC

for 10-15 minutes. Silica hydrosols were prepared by adding 3 M citric acid drop by drop to

the GO/sodium silicate solution of 1.05 specific gravity while stirring for 5 minutes and kept

for gelation in a temperature controlled oven. After gelation, the gels were aged for 3 h at 50oC

to strengthen the gel network.

Results and Discussion In acidic solution the silicate ions react with hydrogen ions and

they form the acidic acid, that forms silica gel a hard and glassy substance. The gel structure

is composed by SiO2 and sodium ions floating in it and possibly they can be part of the ionic

conductivity in an electrochemical system.
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The starting pH of the GO/Sodium silicate dispersion was of 12 and through the addition of the

citric acid the pH dropped to 10.33, pH at which is starting the gelation process and creating

a network of SiO2 with sodium ions floating in the gel structure as showed in Figure 5.32.

The pH value is critical for the gelation of the sodium silicate because if the pH drops lower

Figure 5.32 Sodium silicate gel chemical structure after gelation.

the reaction does not occur. The citric acid was preferred to for example the hydrochloridric

acid for timing of the gelation time, in fact as reported in Figure 5.33 the citric acid has a

slower gelation time that gives the possibility of better control the sample preparation and at

the same time has a relatively low percentage of the volume shrinkage. In Figure 5.34 and

Figure 5.33 Sodium silicate gel conditions.

Figure 5.35 are shown two sample of sodium silicate gel and sodium silica gel with graphene
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oxide as a filler. The gels were prepared adding 0.35 g of sodium silicate in 5.5 g of DI Water

and for the GO composite also 7.5 mg of GO, with a initial pH of 13.50, to which has been

added 1.1 ml of 3 M citric acid while stirring until a pH of 10.33. Finally were transferred in

the oven at 50oC for 1 hour. Aging tests were also performed in order to verify the

Figure 5.34 Sodium silicate gel.

Figure 5.35 Sodium silicate gel with graphene oxide as a filler.

shrinkage percentage, and after 24 hours in air the gel becomes dry solid and fragile by loosing

all the water; solubility test were also performed in order to verify the non solubility in the

electrolyte solution use for electrochemical test, the samples were immersed in 2M Na2SO4 of

solution in DI water and after one hour aging the silica gel structure didn’t lose it shape also

if heated at 200oC eventually becoming stone solid.

In order to complete the electrochemical characterizations the electrode were prepared directly

on the metal grid, following the process described in Figure 5.36, where the metal mesh was

already put in the vial with a magnetic bar for stirring the solution during the gelation, keeping

the solution at an homogeneous value of pH. The grid with the gel formed on top was then

transferred in a vacuum oven at 50oC for 1 hour and rinsed with DI Water. In Figure 5.37
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Figure 5.36 Electrode assembling process scheme.

are showed the GO/sodium silicate electrode at different stage of the process, the gel and

gel/carbon stayed on the grids also after aging and washing with DI water loosing part of their

volume due to the water evaporation. To date, this non-toxic rGO/sodium silicate composite

Figure 5.37 Pictures of GO/sodium silicate electrodes gel on metal grid after aging and wash-

ing processes.

has not been explored for the preparation of electrodes for energy storage, for this reason cyclic

voltammetry measurements were also performed on sodium silicate and GO/sodium silicate

composite electrodes in order to verify the feasibility. In Figure 5.38 and Figure 5.39 are

reported the data obtained at 50 and 100 mV/s in a voltage window of -0.5V to +0.5V.

The curves have similar amplitude in current, the values are in both case very low and so are

the specific capacitance values, not even comparable with previous reported values. For what

concern the shape of the curves it is noticeable that a more squared shape in the GO/sodium

silicate composite sign of a more capacitive behavior compared to the pure sodium silicate gel

possibly due to the higher surface area introduced by the graphene.

5.3 Conclusion

In conclusion, highly porous graphene hybrid composites were prepared using environmen-

tally friendly, low cost and safe material and processes. Among all the materials investigated

the best candidate to become an electrode material for sodium based supercapacitors has been
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Figure 5.38 Cyclic voltammetry of sodium silicate gel electrodes at 50 and 100 mV/s in a

voltage window of -0.5V to +0.5V.

the composite graphene/molybdenum dioxide obtained through a facile one-pot hydrothermal

synthesis. Structural characterization indicates the formation of polycrystalline nanoparticles

of MoO2 on reduced graphene oxide surface. The molybdenum oxide of the hybrid facilitates

redox reaction associated with Na+ ion insertion in aqueous electrolyte. And the ion insertion

behavior is not fully reversible even though there were no apparent changes in the crystal struc-

tures of MoO2. The fact that the hybridization lowers impedance and increases the specific

capacity is intriguing for designing better supercapacitor using RGO-metal oxide hybrid elec-

trodes. Another interesting composite was obtained from the combination of graphene oxide

and expanded graphite. This composite reached similar specific capacitance values compared

to the electrodes with just GO and this result can made this combination a good candidate for

the use in EDLC supercapacitors, lowering the overall cost of the electrodes. The composites

with the sodium silicate have been an interesting study from the point of view of an alternative

way of graphene oxide reduction, but the values of specific capacitance obtained are not enough

high to make it a possible material for supercapacitors applications.
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Figure 5.39 Cyclic voltammetry of RGO/sodium silicate gel electrodes at 50 and 100 mV/s

in a voltage window of -0.5V to +0.5V.
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Chapter6. CONCLUSIONS AND FUTURE WORKS

The goal of this dissertation was to prove the possibility and the feasibility of obtain-

ing graphene based hybrids for high performance devices through the use of environmentally

friendly and safe materials and processes, keeping always in mind the importance of lowering

the overall cost of production of the final devices and the easy manufacturing.

In chapter 2 graphene direct exfoliation synthesis methods have been investigated and dis-

cussed. It was demonstrate that few layer graphene, with a number of layers that ranges

between two and five, can be prepared by direct sonication of the expanded graphite in ionic

liquids solutions. This method is considered simple and green, because it avoids oxidation and

subsequent reduction steps if compared to standards methods, like the Hummers method. The

suitable surface tensions and ionic feature facilitate the exfoliation of graphite and the imida-

zolium based ionic liquid and helps the stabilization of the few layer graphene, according a high

concentration of suspension. It is possible to conclude that this process can be considered as

a possible environmentally friendly, simple and fast method for the exfoliation of the graphite

and the synthesis of few layer graphene.

Unfortunately, the synthesis yields obtained by direct exfoliation is not yet comparable with

the more standard processes, and for large production of graphene chemical ways, through

the oxidation of the graphite, are still the most employed. For this reason reduction meth-

ods, in order to obtain reduced graphene oxide, are necessary and in chapter 3, three methods

concerning UV-light, hydrothermal and chemical reduction of the graphene oxide have been

investigated. These methods have in common low cost, low power consumption, simplicity and

non toxicity aspects on top of being very efficient in the reduction of the graphene oxide. The

characteristics of these methods are interesting and in this dissertation all of them have been

used in the synthesis process of graphene based composite materials, for important applications
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as printed flexible electronics and electrodes for energy storage devices.

The use of the graphene for printed flexible electronics applications has been investigated

in chapter 4, and a route to obtain inkjet printable, environmentally friendly inks based on

graphene/acrylic nanocomposites using water as solvent, was presented and discussed in de-

tail. The concurrent UV-driven polymerization of PEGDA matrix, chosen for its non toxicity

and water solubility properties, and the reduction of graphene oxide filler was verified by XPS

analysis and thin printed samples of the nanocomposite showed a decrease of resistivity by

two orders of magnitude with respect to the pure matrix because of the excellent conductiv-

ity properties of the graphene used as a conductive filler in the polymer matrix. It was also

discovered that the reduction of the graphene oxide through UV-light exposure is proportional

to the amount of incoming light, therefore it is more effective in thin layers, where the light

penetration is higher than in thick layers. As the excellent rheological characteristics of the

formulations warranted printability with good repeatability, suggested applications for the so-

prepared inks can be devoted to flexible and organic electronics as for example, the realization

of an electrode on top of a stacked structure (e.g., an active device such as a transistor or a

photovoltaic cell) made out of organic semiconductor materials.

This graphene/polymer composite can be deposited at room temperature and it is a very im-

portant aspect since metal nanoparticle-based inks instead require sintering thermal treatments

which are not compatible with organic materials. A conductive ink ready to be structured by

an additive process like inkjet printing and needing only a fast post-deposition treatment like

UV curing is very interesting also from an industrial point of view. Further work would explore

the possibility of formulating graphene-based printable inks using different polymeric matrices

such as intrinsically conductive polymers, whose printability has already been demonstrated,

with extremely interesting electrical properties (152), (153) and the incorporation of metal

nanoparticles or carbon nanotubes, to increase the percolation and reduce the ultimate resis-

tivity.

Another application of graphene composite materials used as electrodes for energy storage de-

vices, the supercapacitors, was investigated in chapter 5. Highly porous graphene hybrid com-

posites were prepared using environmentally friendly, low cost and safe material and processes.
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Among all the composites investigated the best candidate to become an electrode material for

sodium based supercapacitors has been demonstrate to be the graphene/molybdenum dioxide

composite, obtained throught a facile one-pot hydrothermal synthesis. The molybdenum oxide

of the hybrid facilitates redox reaction associated with Na+ ion insertion in aqueous electrolyte

reaching the high value of 381 F/g for the specific capacitance. The fact that the composite not

only increases the specific capacity but lowers also the equivalent series resistance values respect

to the graphene oxide only, it is intriguing for designing better supercapacitor using RGO/metal

oxide hybrid electrodes. Another interesting composite was obtained from the combination of

graphene oxide and expanded graphite. This composite was obtained again through the use of

the hydrothermal synthesis and it is able to reach similar specific capacitance values compare

to electrodes with just the graphene oxide and this result can made this combination a good

candidate for EDLC supercapacitors, in particular to lower the overall cost of the electrodes.

Finally a composite of graphene oxide and sodium silicate gel has been investigated with the

idea of obtaining an electrode material with already integrated sodium ions in a 3D structure

of SiO2 with the graphene as conductive filler. The presence of an abundant material like the

SiO2 could be a good solution to lower the cost of production and in addition, the reduction

of the graphene oxide during the gelation process has been also demonstrated. Unfortunately,

the values of specific capacitance obtained from the electrochemical measurements were not

enough to make it a possible material for supercapacitors applications and future work could

involve the optimization of this composite in order to increase the surface area and subsequently

the specific capacitance, by possibly incorporating graphene 3D structures previously obtained

with the hydrothermal synthesis.

The results presented in this dissertation is a good starting point for very interesting future

works. For example, the liquid electrolyte of the supercapacitor could be substitute by a poly-

mer electrolyte mixed with ionic species, in order to obtain a novel sodium based solid state

supercapacitor; ink jet printing or additive manufacturing techniques could be also employed

for the realization of the final device, in order to achieve different electrode shapes and be able

to print devices also on flexible substrates for possible wearable applications.
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APPENDIX A. CHARACTERIZATION METHODS

The intention of this chapter is to provide a brief overview of all the characterization tech-

niques that have been employed in this dissertation for the study of the materials and devices.

The characterizations described in this chapter are organized in three general groups: morpho-

logical, compositional and electrochemical. The morphological characterizations that have been

used in the study of the graphene and the its composites were employed to obtain informations

regarding the dimentions, the shapes and the surface morphology; the main characterizations

that have been employed include optical microscope, for a qualitative low resolution analysis,

scanning electron mycroscopy for a more detailed and high resolution morphologycal analy-

sis in the submicron range, profilometer for a obtain an estimation of the thickness of macro

structures from hundreds of micron to millimiters and atomic force microscopy in order to

obtain information regarding the thickness of the micro/nano materials and an estimation of

the surface roughtness. Transmission electron microscopy has also been employes for the high

resolution imaging of the samples and the characterization of crystalline planes.

Compositional characterizations have been also employed for a deep understanding of the mate-

rials and the composites. Several spectroscopy techniques have been employed for the samples

characterization including Raman, energy dispersive X-Ray, electron energy loss and X-ray

photoelectron spectroscopy are going to be presented together with X-ray diffraction, used for

the detection of crystallinity phase, elemental composition of the composite materials and for

the lattice paramenters modification occurring in the different reactions. In the end are going

to be presented the electrochemical tecniques used for the characterization of the graphene

composites to evaluate the possibility of using them for the applications that are under study.
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A.1 Morphological Characterizations

Optical Microscopy Optical microscope is a type of microscope which uses visible light

and a system of lenses to magnify images of small samples. It is usually used for a rapid

analysis of the wafers anfter the CVD or epitassial growth of the graphene to have rapid in-

formation on the homogenity of the growth on large areas. For what concerns the graphene

obtained by expholiation process, a specific SiO2 wafer is emploied to be able to discriminate

the difference in thickness of the different flakes (204); in fact, the wafer usually used is the

300 nm SiO2 on silicon and in chapter 3 is explained an efficient method, called the ”meniscus”

method, to deposit large quantities of graphene flakes on the substrate avoiding their restack-

ing and agglomeration. The thickess of the oxide allow to see the few layers graphene flakes

in different colors, depending on their thickness due to the different refraction of the light (205).

Profilometer The profilometer is a direct technique because no modeling is required.

The instrument is used to measure a surface’s profile, in order to quantify its roughness. A

diamond stylus is moved vertically in contact with a sample and then moved laterally across the

sample for a specified distance and specified contact force. A profilometer can measure small

surface variations in vertical stylus displacement as a function of position. A typical profilome-

ter can measure small vertical features ranging in height from 10 micrometers to 1 millimeter.

The height position of the diamond stylus generates an analog signal which is converted into

a digital signal stored, analyzed and displayed. Contacting the surface is often an advantage

in dirty environments where non-contact methods can end up measuring surface contaminants

instead of the surface itself. Because the stylus is in contact with the surface, this method

is not sensitive to surface reflectance or color. In this dissertation the profilomenter has been

presented in order to detect ink ket printed tracks thickness and roughness (206).

Atomic Force Microscopy (AFM) AFM system under ambient conditions in tapping

mode with a standard 300 kHz silicon tapping tip (BudgetSensors, radius 10nm) has been em-
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ploied for the graphene sheets analysis. AFM is a very high-resolution type of scanning probe

microscopy, with demonstrated resolution on the order of fractions of a nanometer. The AFM

is one of the foremost tools for imaging, measuring, and manipulating matter at the nanoscale.

The information is gathered by ”feeling” the surface with a mechanical probe. The AFM con-

sists of a cantilever with a sharp tip (probe) at its end that is used to scan the specimen surface.

The cantilever is typically silicon or silicon nitride with a tip radius of curvature on the order

of nanometers. When the tip is brought into proximity of a sample surface, forces between

the tip and the sample lead to a deflection of the cantilever according to Hooke’s law (207).

AFM is largely ued to detect the presence of graphene sheets when the substrate doesn’t have

the right optical properties. AFM is a non destrictive tecniques that scan the surface of the

sample giving topographic informations giving dateiled informations on the shape, the height

roughtness and phase of the graphene sheets (208).

Scanning Electron Microscopy (SEM) SEM analysis was done with a FEI Helios

Nanolab 400S field emission FIB/SEM. SEM is a type of electron microscope that produces

images of a sample by scanning it with a focused beam of electrons. The electrons interact

with atoms in the sample, producing various signals that can be detected and that contain

information about the sample’s surface topography and composition.The most common mode

of detection is by secondary electrons emitted by atoms excited by the electron beam. On a

flat surface, the plume of secondary electrons is mostly contained by the sample, but on a tilted

surface, the plume is partially exposed and more electrons are emitted. By scanning the sample

and detecting the secondary electrons, an image displaying the topography of the surface is

created. SEM is used to investifate the structure and number of the graphene sheets (214). In

face it is a valid characterization for samples highly porous giving the possibility to explore the

structure that otherwise with the AFM would be impossible to analyse due to the roughtness

and thickness of the sample (217).
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Transmission Electron Microscopy (TEM) A JEOL JEM-ARM200F STEM Cs-

corrected cold FEG (Field Emission Gun) atomic resolution analytical microscope with GIF

Quantum post column energy filter and JEOL Centurio SDD EDS (silicon drift detector en-

ergy dispersive spectrometer) was used for Transmission Electron Microscopy analysis. TEM

is a microscopy technique in which a beam of electrons is transmitted through an ultra-thin

specimen, interacting with the specimen as it passes through. An image is formed from the

interaction of the electrons transmitted through the specimen; the image is magnified and fo-

cused onto an imaging device, such as a fluorescent screen, on a layer of photographic film, or

to be detected by a sensor such as a CCD camera. TEM has been employed for the study of

the crystalline structure of the graphene flakes (209), (218) in the study of the crystallinity of

the compoud create with the graphene and with a local EDS was also possible to investigate

the elements composition of the sample in analysis.
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A.2 Compositional Characterizations

Raman Spectroscopy Raman spectra were collected using a Renishaw system 1000 Ra-

man spectrometer equipped with an integral microscope (Leica DMLMS/N). Excitation was

provided by a 25-mW He-Ne laser and the 632.8 nm excitation beam was focused onto the

sample with a 50 objective; the laser power at the sample was approximately 3 mW. The

backscattered Raman light was collected with the same 50 objective and focused into a Peltier

cooled charge-coupled device (CCD) camera (400 600 pixels). An edge filter removed back-

ground from the Rayleigh scattered light, while a holographic grating (1800 grooves/mm) and

a 50µm slit permitted a spectral resolution of ∼1 cm1. A silicon wafer with a Raman band at

520 cm1 was used to calibrate the spectrometer and the accuracy of the spectral measurements

was estimated to be better than 1 cm1.

Raman Spectroscopy is a methods largely used for the characterization of the graphene and,

it helps in the detection of the number of layers, disorder, doping level and all these para-

menters they can be detected by a short-time measurement in ambient condition avoiding

serious degradation of the graphene. The standard measurement data analysis consist in col-

lecting the spectrum of the material and substract the spectrum of the substrate. For what

concerns the carbon raman spectrum, the D peak is mediated by an elastic scattering with

difects and inelastic scattering with a phonon, while the 2D peak is medited by two inelastic

scatterings and it is more sensitive tho the electronic structure of the graphene and it is possible

to distinguish a monolayer from a few layer graphene analysing the 2D peak (210).

X-Ray Photoelectron Spectroscopy (XPS) XPS is a surface-sensitive quantitative

spectroscopic technique that measures the elemental composition that can be used to analyze

the surface chemistry of a material in its as-received state. XPS spectra are obtained by irradi-

ating a material with a beam of X-rays while simultaneously measuring the kinetic energy and

number of electrons that escape from the top 0 to 10 nm of the material being analyzed. The

XPS analysis performed on all the experiments presented in this dissertation are performed us-

ing a Physical Electronics Quantum ESCA Microprobe, using a monochromated Al Kα X-ray
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source, 200 mm spot size throughout and charge neutralization, and 1000 eV survey spectra

(187 eV pass energy, 1.6 eV/step) and high resolution spectra (47 eV PE, 0.4 eV/step) were

aquired. Before performing XPS, the homogeneity of the samples was verified using an in situ

secondary X-ray imaging. An example of use of theis characterization technique is the study of

the oxygenation state of the carbon. the peak C1s is usually analyse in depth and its deconvo-

lution gives quantitative and qualitative informations about the functional groups present on

the surface of the graphene (211), (219).

X-Ray Diffraction (XRD) X-ray diffraction (XRD) measurements were performed on

a Bruker D8 Discover X-ray diffractometer fitted with a 2-dimensional (2D) X-ray detector. All

scans were performed with the detector and incident beam in a symmetric θ-2θ geometry using

graphite monochromated Cu-Kα X-rays (λ = 1.5418 Å) collimated in a pin-hole collimator to

yield ∼650 µm diameter X-ray beam on the sample being measured. Data are collected at

room temperature in the 2D mode with an integration time of at least 30 minutes for each

frame. During measurements, the discharged cathode is oscillated in the x-y plane (the sample

plane) with 2 mm oscillation amplitude. Therefore, the X-ray diffractograms represent a spatial

average over an area of at least 4 X 4 mm2 on the cathode. The collected data (at least four

frames to cover a 2θ range of 80 degrees) is integrated over c, the polar angle orthogonal to

2θ to yield the intensity vs 2θ plots shown in the manuscript. We did not find any noticeable

changes in the XRD patterns over the measurement time. XRD is used for identifying the

atomic and molecular structure of a crystal, in which the crystalline atoms cause a beam of

incident X-rays to diffract into many specific directions. By measuring the angles and inten-

sities of these diffracted beams, a crystallographer can produce a three-dimensional picture of

the density of electrons within the crystal. From this electron density, the mean positions of

the atoms in the crystal can be determined, as well as their chemical bonds, their disorder and

various other information (212), (213).
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Electron Energy Loss Spectroscopy (EELS) All Electron Energy Loss Spectroscopy

(EELS) spectra were taken at 1eV/channel dispersion and GIF was used to collect EELS. Using

a EELS a material is exposed to a beam of electrons with a known, narrow range of kinetic

energies. Some of the electrons will undergo inelastic scattering, which means that they lose

energy and have their paths slightly and randomly deflected. The amount of energy loss can

be measured via an electron spectrometer and interpreted in terms of what caused the energy

loss. Inelastic interactions include phonon excitations, inter and intra band transitions, plas-

mon excitations, inner shell ionizations, and Cherenkov radiation. The inner-shell ionizations

are particularly useful for detecting the elemental components of a material. EELS has histor-

ically been a difficult technique but is in principle capable of measuring atomic composition,

chemical bonding, valence and conduction band electronic properties, surface properties, and

element-specific pair distance distribution functions (216), EELS tends to work best at rela-

tively low atomic numbers, where the excitation edges tend to be sharp, well-defined, and at

experimentally accessible energy losses.

Energy Dispersive X-Ray Spectroscopy (EDX) EDX analysis was done with a FEI

Helios Nanolab 400S field emission FIB/SEM with a Bruker Quantax 200 EDX detector. EDX

excels at identifying the atomic composition of a material, is quite easy to use, and is par-

ticularly sensitive to heavier elements. It is an analytical technique used for the elemental

analysis or chemical characterization of a sample and it relies on an interaction of some source

of X-ray excitation and a sample. Its characterization capabilities are due in large part to the

fundamental principle that each element has a unique atomic structure allowing unique set of

peaks on its X-ray emission spectrum (215). The incident beam may excite an electron in an

inner shell, ejecting it from the shell while creating an electron hole where the electron was.

An electron from an outer, higher-energy shell then fills the hole, and the difference in energy

between the higher-energy shell and the lower energy shell may be released in the form of an

X-ray. The number and energy of the X-rays emitted from a specimen can be measured by

an energy-dispersive spectrometer. As the energy of the X-rays are characteristic of the differ-
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ence in energy between the two shells, and of the atomic structure of the element from which

they were emitted, this allows the elemental composition of the specimen to be measured (215).

Thermogravimetric Analysis (TGA) The Thermogravimetric Analysis (TGA) used

for the analysis of the graphene samples is a Q500 by TA Instruments and all the measurement

were performed in air increasing the temperature 5 degree per minute. The TGA was employed

to obtain an estimation of the mass of the different components in the composite materials.

A.3 Electrical and Electrochemical Characterizations

Current/voltage (IV) measurements were performed on thick and printed films of a graphene/polymer

composite obtained for printed electronic application trough the use of an ink jet printer, were

performed by using a standard two point micro-contact setup of a Keithley 2635A multime-

ter. For electrochemical analysis needed to evaluate paremeter as specific capacitance and

equivalent series resistance for possible electrode materials obtained dureing the experiments,

a BioLogic multi potentiostats/galvanostats/EIS VPS-300 was used with its function of cyclic

voltammetry, electron impedance spectroscopy and galvanostatic charge/discharge techniques.

Cyclic Voltammetry (CV) Cyclic Voltammetry (CV) is a type of potentiodynamic

electrochemical measurement. In a cyclic voltammetry experiment the working electrode po-

tential is ramped linearly versus time like linear sweep voltammetry. Cyclic voltammetry takes

the experiment a step further than linear sweep voltammetry which ends when it reaches a set

potential. When cyclic voltammetry reaches a set potential, the working electrode’s potential

ramp is inverted. This inversion can happen multiple times during a single experiment. The

current at the working electrode is plotted versus the applied voltage to give the cyclic voltam-

mogram trace. Cyclic voltammetry is generally used to study the electrochemical properties

of an analyte in solution. If the redox couple is reversible then when the applied potential is

reversed, it will reach the potential that will reoxidize the product formed in the first reduc-
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tion reaction, and produce a current of reverse polarity from the forward scan. This oxidation

peak will usually have a similar shape to the reduction peak. As a result, information about

the redox potential and electrochemical reaction rates of the compounds are obtained. It is

widely used to study a variety of redox processes, for obtaining stability of reaction products,

the presence of intermediates in oxidation-reduction reactions, reaction and electron transfer

kinetics, and the reversibility of a reaction.

Electron Impedance Spectroscopy (EIS) Electron Impedance Spectroscopy (EIS)

measures the dielectric properties of a medium as a function of frequency. This technique

measures the impedance of a system over a range of frequencies, and therefore the frequency

response of the system, including the energy storage and dissipation properties, is revealed. Of-

ten, data obtained by EIS is expressed graphically in a Bode plot or a Nyquist plot. Impedance

is the opposition to the flow of alternating current (AC) in a complex system. A passive com-

plex electrical system comprises both energy dissipater (resistor) and energy storage (capacitor)

elements. If the system is purely resistive, then the opposition to AC or direct current (DC) is

simply resistance.

Galvanostatic Charge/Discharge (GCD) Galvanostatic Charge/Discharge (GCD) is

the standard technique used to test the performance and cycle life of EDLCs and batteries. A

repetitive loop of charging and discharging is called a cycle. Internal leakage current leads to

a continuous voltage drift that discharges the cell.
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