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5  
 

Physiological Applications of the System 

 

 

5.1 General 

This section describes two physiological applications using the multi-channel HD-

sEMG recording system with wireless communication (HD-sEMG RSWC) prototype.  

 

In the first application, EMG signals are acquired from the subject’s biceps brachii and 

single differential EMG signals along muscle fiber direction column by column (7 

single differential signals per column) are plotted. Motor unit action potential (MUAP) 

produced by motor units of biceps brachii is detected with an inter-electrode distance 

(IED) of 1cm. Information concerning the innervation zone (IZ) and conduction 

velocity of the MUAP can be obtained from all columns showing the MUAP. The 

propagation of MUAPs is along muscle fiber direction. Location of the IZ is estimated, 

by visual inspection. Conduction velocity (CNV) is estimated as the ratio between the 

distance D travelled by the MUAP in the time interval T. 
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In the second application, EMG signals are acquired by placing 64-channel electrodes 

grid (IED=1cm) on the proximal portion of dorsal forearm of subjects. Spatial 

distribution of surface EMG amplitude on the forearm is used to estimate the most 

active muscle area during the following specific biomechanical actions, including: wrist 

extension (WRIST EXT), ulnar deviation (ULN DEV), middle finger extension (MID), 

ring finger extension (RING) and little finger extension (LIT). Whether spatial 

properties of monopolar EMG amplitude distribution (RMS) over the proximal portion 

of dorsal forearm can be used to discriminate different contractions or not is studied 

and the results is presented in SECTION5.3.7. 

 

5.2 Application 1: Analysis of EMG Signals Acquired from 

Biceps Brachii Muscle 

5.2.1 Background 

High Density sEMG (HD-sEMG) applies a linear 2D surface electrode array placed 

along the muscle fibers detects motor unit action potentials (MUAPs) propagating 

bilaterally to the tendons. The location of the propagation source is presumed to mark 

as an innervation zone (IZ) [1]. Biceps brachii is a two headed muscle located 

superficially on the upper arm and is considered as a muscle that has better EMG signals. 

Main action of biceps brachii is supination of the forearm. It also flexes the arm at the 

elbow and at the shoulder. The anatomy of biceps brachii in the upper arm is depicted 

in Figure5.1. 
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Figure5.1: Anatomy of the upper arm. The muscles of the upper arm are responsible for the flexion 
and extension of the forearm at the elbow joint. Flexion of the forearm is achieved by a group of 
three muscles – the brachialis, biceps brachii, and brachioradialis. These flexor muscles are all 
located on the anterior side of the upper arm and extend from the humerus and scapula to the ulna 
and radius of the forearm. Additionally, the biceps brachii operates as a supinator of the forearm 
by rotating the radius and moving the palm of the hand anteriorly. On the posterior side of the 
upper arm is the triceps brachii, which acts as an extensor of the forearm at the elbow and the 
humerus at the shoulder. The triceps brachii, as its name indicates, has three heads whose origins 
are on the scapula and humerus. These three heads merge to insert on the olecranon of the ulna 
[2].  

5.2.2 Experiment Protocol 

5.2.2.1 Muscle of Interest 

Muscle of interest in this study is biceps brachii (see Figure5.10). It is a two headed 

muscle located superficially on the upper arm and is considered as a muscle that easy 

to detect propagation of motor unit action potential (MUAP).  
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5.2.2.2 Devices and Instruments 

Devices and instruments that used in the measurements include: a grid of sixty-four 

electrodes organized in a 8x8 matrix with 10 mm inter electrode distance (IED), a 

prototype of the multi-channel HD-sEMG recording system with wireless 

communication (HD-sEMG RSWC), an access point, a laptop, abrasive paste, alcohol 

(for cleaning the surface skin), reference electrodes and cables.  

5.2.2.3 Placement of Electrode Grid 

A sixty-four electrode grid is placed to cover a skin portion (located from 10% to 38%) 

of the upper arm length (measured from the elbow to the shoulder), as presented in 

Figure5.2. The average upper arm length of participated subjects is 29 cm, 10% 

corresponds to 3 cm and 38% corresponds to 11cm (measured start from elbow side). 
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Figure5.2: Placement of 64-channel (8x8) electrodes array on the surface of the subject’s biceps 
brachii along muscle fiber direction. The IEDs of the electrodes are 10mm. The average upper arm 
length of participated subjects is 29 cm, 10% corresponds to 3 cm and 38% corresponds to 11cm 
(measured start from elbow side). 
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5.2.3 Experiment Connections 

Connections between the subjects and the prototype of multi-channel HD-sEMG 

recording system with wireless communication (HD-sEMG RSWC) are depicted in 

Figure5.3. 
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Figure5.3: Connections between the subject and the prototype of multi-channel HD-sEMG 
recording system with wireless communication. During the measurements, a grid of sixty-four 
electrodes (8x8, 10mm IED) is placed on the the surface of the subject’s biceps brachii along 
muscle fiber direction and is connected to the on-board 64-channel AFE ( Analog Front End) 
inputs, while two strips (wetted) are also placed on the wrist separated from each other as 
references (patient reference and ground). The prototype is linked with an access point 
wireless (radio at 2.4GHz with Wi-Fi). Sampled data are stored in a micro-SD memory card, 
meanwhile, a subset of 1/10th of every second (first 100ms) are transmitted to a stand-alone 
Wi-Fi module. A laptop (with on-line visualizing software installed) is linked with the same 
access point and is used for on-line visualization to check signals quality. 

  

 

 

136 

 



 

5.2.4 Experiment Procedures 

Before the beginning of the experimental session, the subjects (two subjects, one female 

and one male) were allowed to familiarize with the experimental setup and with the 

tasks required for the experimental protocol. The treatment of the skin and the 

placement of electrodes followed the European SENIAM (Surface EMG for a Non-

Invasive Assessment of Muscles) standard [3]. During acquisition, two subjects are 

asked to sit down with back on the chair and hold 3kg weight with their palm up for 5 

seconds, as presented in Figure5.4. 

 
Figure5.4: Position and task of the subject during HD-sEMG acquisition. The subject was 
asked to sit down with back on the chair and hold 3kg weight with her palm up without touch 
the leg for 5 seconds. 
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5.2.5 Results and Discussions 

Table 5.1 presents the information of the two subjects who participated in our 

measurements. 

 
Table5.1: Information about the two subjects who participated in the measurement. All two 
subjects are dextromanuality (right-handed) and the forearm in this table refers to right forearm. 

Subject Gender 
Age 

[year] 
Height 
[cm] 

Weight 
[kg] 

Upper-arm 
Length 

[cm] 
S1 Male 32 170 63 29 
S2 Female 22 170 60 29 

 

EMG signals acquired by the prototype of multi-channel HD-sEMG recording system 

with wireless communication were analysed with MATLAB (version 2010a). EMG 

signals were acquired during 5s of isometric contractions and were recorded in SD 

memory for off-line signal processing. These off-line signal processing (were described 

in SETCTION4.2-4.4 in detail), includes:  

1) DC Removal, the DC offsets were removed from each signal after channel remapping.  

2) A 2nd order digital Butterworth zero-lag band-pass (around [20, 500] Hz) filter was 

performed to remove the noises outside surface EMG bandwidth.  

3) If 50Hz power line interference and its harmonics were detected using spectral 

analysis, an approach called spectrum interpolation was performed to reduce the power 

line interference and its harmonics (up to 10th harmonics as descried in SECTION4.4). 

4) EMG signals (monopolar) inside the epoch [1s, 4s] were extracted. 

5) Single differential EMG signals along muscle fiber direction column by column (7 

single differential signals per column) were plotted.  

 

A motor unit (MU) consists of an α-motoneuron in the spinal cord and the muscle 

fibers it innervates [4]. The α-motoneuron is the final point of summation for all the 
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descending and reflex input. The number of MUs per muscle in humans may range 

from about 100 for a small hand muscle to 1000 or more for large limb muscles. A 

single MU activation is indicated as a “discharging” or “firing” and it generates a 

“motor unit action potential” (MUAP), which is the sum of the contributions provided 

by the individual fibers that make up the MU [5]. The neuromuscular junctions (NMJs) 

of the fibers of a MUC are usually grouped in a narrow region described as the 

“innervation zone” (IZ), which is often (but not always) in the central part of the MU.  

 

Examples of signals acquired during the same position presented in Figure5.4 but 

without holding any weight are presented in Figure5.5. Anatomical model consists of 

bone, muscle tissue, a subcutaneous layer and skin [6][7] are used to explain the 

phenomena detected in Figure5.5. 
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Figure5.5: Signals detected by a 64-channel electrode grid placed on the subject 1’s biceps 
brachii during the same position presented in Figure5.4 but without holding any weight. 
Placement of the 64-channel electrode grid is presented in Figure5.2. C1 is column 1 of 
the electrode grid at lateral end, C8 is column 8 of the electrode grid at medial end. The 
signals acquired during low level isometric condition is dominant by noise and electrode-
gel-skin interface. As presented in this figure, the distributions of noise and electrode-gel-
skin interface in 8 different columns are more or less unique. The amplitude of signals 
acquired (marked in red dashed rectangle) from a MU in the same time appears different, 
since the distance between the source (MU) and each column is different. The amplitude 
of signals in column 1-3 are higher than other columns, which is also explained by an 
anatomical model presented in Figure5.6. 
 

 
Figure5.6: Anatomical model to explain the phenomena detected in Figure5.5. The model 
consists of bone, muscle tissue, a subcutaneous layer and skin while MU is simplified as 
several cylindrical muscle fibers cluster. The source of EMG signals is a MU closer to 
column 1-3 than other columns of the electrode array placed on the surface of skin. C1 is 
column 1 and C8 is column 8 of the electrode array. R1 is the distance between MU and 
C1. R8 is the distance between MU and C8. 
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Figure5.7: RMS amplitude of monopolar signals detected by a 64-channel electrode grid 
placed on the subject 1’s biceps brachii during the same position presented in Figure5.4 but 
without holding any weight. As presented in this figure, the distributions of noise and 
electrode-gel-skin interface in 8 different columns are more or less unique. The maximal RMS 
is 28 μV detected at column 1 which has the short distance between the source (MU) and 
electrodes in column 1 (as shown in Figure5.6) 

C4

Estimated IZ

1

2

3

4

5

6

7

0 10 20
Time
(ms)

T
D

D/T = estimated V

 
Figure5.8: An example of single differential EMG signals acquired from column 4 of the 64-
channel electrode grid (see Figure5.2) of subject 1 (S1) contracting with holding 2kg weight. 
EMG signals acquired originally were monopolar and were converted to single differential by 
software. Motor unit action potential (MUAP) produced by motor units of biceps brachii is 
detected with an inter-electrode distance (IED) of 1cm. Information concerning the 
innervation zone (IZ) and conduction velocity of the MUAP can be obtained from the 7 signals. 
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The red lines indicate the propagation of the MUAP along muscle fiber direction. The location 
of the IZ is estimated, by visual inspection, under electrode 4. Conduction velocity (CNV) is 
estimated by visually estimated as the ratio between the distance D and the time interval T. 
The estimated CNV in this figure is 3.75 m/s (D=30mm and T=8ms). 

 

As shown in Figure5.8, propagation of MUAPs is along muscle fiber direction. The 

location of the propagation source is presumed to mark as an innervation zone (IZ). 

Location of the IZ is estimated, by visual inspection. Conduction velocity (CNV) is 

estimated as the ratio between the distance D travelled by the MUAP in the time interval 

T. A 250ms epoch of single differential EMG signals detected from a 64-channel 

electrode grid placed on the biceps brachii of subject 1 and subject 2during hold 3kg 

weight isometric condition is presented in Figure5.9 and Figure5.11. 
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Figure5.9: Time course (over 250ms) of the longitudinal single differential (LSD) EMG signals 
detected from each column (columns 1-8, 7 channels per column). By visual analysis, the 
innervation zone is detected under rows 3-4. The LSD signals are sampled at 2000 S/s (0.5ms 
between samples). A 64-channel electrode grid (see Figure5.2) is placed on the biceps brachii 
of subject 1 holding 3kg weight in isometric condition. EMG signals are initially acquired in 
monopolar configuration and are converted to SD later. The propagation of MUAPs is marked 
with red line. Different MUs are also marked with number in a circle. The anatomical model 
to explain phenomena detected in this figure is presented in Figure5.10. No propagation 
MU is detected in column 1 and column 2, which is marked with red dashed rectangle. These 
no propagation MU may be due to cross talk from its neighbour muscle (triceps) or motion 
artefacts. CNVs estimated (with the method presented in Figure5.7) from each column are 
more or less the same.  

 

 
Figure5.10: Anatomical model to explain the phenomenon detected in Figure5.9. The 
model consists of bone, muscle tissue, a subcutaneous layer and skin while MUs are 
simplified as several cylindrical muscle fibers cluster marked with number. MU1 (marked 
with 1) has the largest territory so that can be detected in all columns. MU2 also has a large 
territory and can be detected in column 2-7. MU 3-7 are small MUs located more superficial 
to skin and can only be detected in fewer columns of the electrode array. C1 is column 1 and 
C8 is column 8 of the electrode array. 
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Figure5.11: Time course (over 250ms) of the longitudinal single differential (LSD) EMG 
signals detected from each column (columns 1-8, 7 channels per column). By visual analysis, 
innervation zone is detected under rows 3-4. The LSD signals are sampled at 2000 S/s (0.5ms 
between samples). A 64-channel electrode grid (see Figure5.2) is placed on the biceps brachii 
of subject 2 holding 3kg weight in isometric condition. EMG signals are initially acquired in 
monopolar configuration and are convert to SD later. The propagation of MUAPs is marked 
with red line. Different MUs are also marked with number in a circle. The anatomical model 
to explain phenomena detected in this figure is presented in Figure5.12. No propagation MU 
is detected in column 1 and column 2, which is marked with red dashed rectangle. These no 
propagation MU may be due to cross talk from its neighbour muscle (triceps) or motion 
artefacts. CNVs estimated (with the method presented in Figure5.7) from each column are 
more or less the same.  

 
Figure5.12: Anatomical model to explain the phenomenon detected in Figure5.11. The 
model consists of bone, muscle tissue, a subcutaneous layer and skin while MUs are 
simplified as several cylindrical muscle fibers cluster marked with number. MU1 (marked 
with 1) has the largest territory so that can be detected in column 1-7. MU2 also has a large 
territory and can be detected in column 2-6. MU 3-5 are small MUs located more superficial 
to skin and can only be detected in fewer columns of the electrode array. C1 is column 1 and 
C8 is column 8 of the electrode array. 
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5.3.6 Conclusions 

In the first application, information concerning the innervation zone (IZ) and 

conduction velocity of the MUAP can be obtained from all columns showing the MUAP 

as described in Figure5.9 and Figure5.11. The propagation of MUAPs is along muscle 

fiber direction. Location of the IZ is estimated, by visual inspection. Conduction 

velocity (CNV) is estimated as the ratio between the distance D travelled by the MUAP 

in the time interval T. 

 

As shown in Figure5.10, the territories of different MUs are different in subject 1 both 

in size and in depth. Only MU1 can be detected in all 8 columns, some MUs (MU2 and 

MU3) can be detected in more columns (column 2-7) and some MUs (MU5 and MU6) 

can only be detected in two columns. 

 

As shown in Figure5.12, the territories of different MUs are different in subject 2 both 

in size and in depth. MU1 has the largest territory and can be detected in column 1-7, 

MU2 can be detected in more columns and the rest MUs (MU 3-5) can only be detected 

in 2-3 columns.  
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5.3 Application 2: Spatial Localization of EMG RMS 

Amplitude Distributions Associated to the Activation of 

Dorsal Forearm Muscles 

5.3.1 Background 

5.3.1.1 State of the Art 

The study of the degree of independent control of the major extrinsic extensors 

(extensor digitorum communis, EDC) in [8] indicated that fingers can be selectively 

extended with a certain degree of independence. Experiments conducted on single 

motor units of two forearm muscles, extensor carpi radialis (ECR) and extensor 

digitorum communis (EDC) of human subjects concluded that motor-unit task groups 

do exist within EDC motoneuron pool [9]. 

 

Furthermore, the force study results acquired from strict actions of the human wrist 

extensors with an electrical neuromuscular stimulation (ENS) method suggest that 

extensor carpi radialis longus (ECRl) is an abductor and extensor while extensor carpi 

radialis brevis (ECRb) an extensor rather than an abductor [8]. Other experiments [9]  

indicated that ECRl is activated more strongly during radial deviation contractions than 

for wrist extension contractions while ECRb was activated more strongly for extension 

contractions than for radial deviation contractions.  

 

Human extensor carpi ulnaris (ECU) was found anatomically partitioned and may have 

up to four partitions by innervation alone or three congruent partitions by innervation 

and muscle fiber architecture [12].  

 

The results in [13] indicated that specific biomechanical actions [wrist extension (EXT), 
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ulnar deviation (ULN), middle finger extension (MID), ring finger extension (RING) 

and little finger extension (LIT)] only activated a relatively small area of the proximal 

portion of dorsal forearm. The anatomy of muscles in the dorsal compartment of the 

forearm is depicted in Figure5.13. 

 
Figure5.13: Muscles in the superficial layer of the posterior forearm, redrawn from [12]. The 
superficial layer of the posterior forearm contains seven muscles. Brachioradialis (BR) originates 
from the proximal surface of the supraepicondylar ridge of the humerus, and attaches to the distal 
end of the radius, just before the radial styloid process. Extensor carpi radialis longus (ECRl) 
originates from the supracondylar ridge, while extensor carpi radialis brevis (ECRb) originates 
from the lateral epicondyle. Their tendons attach to metacarpal bones II and III. Extensor 
digitorum communis (EDC) originates from the lateral epicondyle of the humurus, and attaches 
to the base of metacarpal V. Extensor carpi ulnaris (ECU) originates from the lateral epicondyle 
of the humurus, and attaches to the base of metacarpal V. Extensor digiti minimi (EDM) originates 
from the lateral epicondyle of the humerus. It attaches, with the extensor digitorum tendon, into 
the extensor hood of the little finger. Aconeus originates from the lateral epicondyle, and attaches 
to the posterior and lateral part of the olecrannon. 
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5.3.1.2 Objective of the Physiological Application 

In this study we investigated how to use the spatial distribution of surface EMG 

amplitude acquired by the new multi-channel HD-sEMG recording system with 

wireless communication (HD-sEMG RSWC) prototype to estimate the most active 

muscle area during different specific biomechanical actions. These specific 

biomechanical actions [wrist extension (EXT), ulnar deviation (ULN), middle finger 

extension (MID), ring finger extension (RING) and little finger extension (LIT)] only 

activate a relatively small area at the proximal portion of dorsal forearm, according to 

literature.  

5.3.2 Experiment Protocol  

5.3.2.1 Muscles of Interest 

Muscles of interest in this study are extensor carpi radialis longus (ECRl), extensor 

carpi radialis brevis (ECRb), extensor digitorum communis (EDC), extensor carpi 

ulnaris (ECU). These muscles are all located at the dorsal forearm (see Figure5.13) and 

are known as responsible muscles for the following tasks: [wrist extension (EXT), ulnar 

deviation (ULN), middle finger extension (MID), ring finger extension (RING) and 

little finger extension (LIT)]. 

5.3.2.2 Devices and Instruments 

Devices and instruments that were used in the measurements include: a grid of sixty-

four electrodes organized in a 8x8 matrix with 10 mm inter electrode distance (IED), a 

prototype of the multi-channel HD-sEMG recording system with wireless 

communication (HD-sEMG RSWC), an access point, a laptop, abrasive paste, alcohol 

(for cleaning the surface skin), reference electrodes and cables.  
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5.3.2.3 Placement of Electrodes Grid 

A sixty-four electrode grid was placed to cover a skin portion (located from 10% to 

40%) of the forearm length (measured from the lateral epicondyle to the ulnar styloid) 

(see Figure5.14). Considering the average forearm length of participated subjects is 25 

cm, 10% corresponds to 2.5 cm and 40% corresponds to 10.0 cm (both from the lateral 

epicondyle side). 

C1 C8…...
R1

R8

…
…

 
Figure5.14: The horizontal line of the sixty-four electrodes grid (8x8, 10mm IED) was placed 
at the 10% of the forearm, while the vertical line of the grid coincided with the line connecting 
the lateral epicondyle and the ulnar styloid. Lateral epicondyle near elbow is the start point 
(0% of the forearm length) and ulnar styloid near wrist is the end point (100% of the forearm 
length). The position of brachioradialis (BR), extensor carpi radialis longus (ECRl), extensor 
carpi radialis brevis (ECRb), extensor digitorum communis (EDC) and extensor carpi ulnaris 
(ECU) are also marked in this figure. C1 is column 1 (medial) and C8 is column 8 (lateral) of 
the electrode grid. R1 is row 1 (distal) and R8 is row 8 (proximal). 
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5.3.4 Experiment Connections 

Connections between the subjects forearm and the prototype of multi-channel HD-

sEMG recording system with wireless communication (HD-sEMG RSWC) are 

depicted in Figure5.15. 

 
Figure5.15: Connections between the subjects forearm and the prototype of multi-channel 
HD-sEMG recording system with wireless communication. During the measurements, a grid 
of sixty-four electrodes (8x8, 10mm IED) was placed on the dorsal forearm of the subject and 
connected to the on-board 64-channel AFE ( Analog Front End) inputs, while two strips 
(wetted) were also placed on the wrist separated from each other as references (patient 
reference and ground). The position of brachioradialis (BR), extensor carpi radialis longus 
(ECRl), extensor carpi radialis brevis (ECRb), extensor digitorum communis (EDC) and 
extensor carpi ulnaris (ECU) are also marked in this figure. 
 

The prototype was linked to an access point wireless (radio at 2.4GHz with Wi-Fi). 

Sampled data were stored in a micro-SD memory card, meanwhile, a subset of 1/10th 

of every second (first 100ms) were transmitted to a stand-alone Wi-Fi module. A laptop 

(with on-line visualizing software installed) was linked to the same access point and 

used for on-line visualization to check EMG signals quality.  

 

 

156 

 



 

5.3.5 Experiment Procedures 

Before the beginning of the experimental session, the subjects (three subjects, one 

female and two males) were allowed to familiarize with the experimental setup and 

with the tasks required for the experimental protocol. These tasks include: wrist 

extension (EXT), ulnar deviation (ULN), middle finger extension (MID), ring finger 

extension (RING) and little finger extension (LIT).  The treatment of the skin and the 

placement of electrodes followed the European SENIAM (Surface EMG for a Non-

Invasive Assessment of Muscles) standard [3]. 

 

For all the contractions, the subjects were asked to keep their right palm and fingers 

without contraction relaxing on a table without clenching their fingers. The forearm 

was pronated, in order to limit the contribution of the ECU during wrist extension. The 

tested contractions were (in random order): wrist extension (EXT), ulnar deviation 

(ULN), middle finger extension (MID), ring finger extension (RING) and little finger 

extension (LIT). Each of these contractions was performed for five second duration. 

Monopolar surface EMG signals were collected with a 64-channel electrode grid placed 

on the proximal dorsal portion of the forearm with 2000Hz sampling frequency.  

5.3.6 Results and Discussions 

Data acquired by the prototype of multi-channel HD-sEMG recording system with 

wireless communication were analysed with MATLAB (version 2010a). The average 

forearm length was 23.7±1.5 cm (mean ±standard deviation), whereas the forearm 

circumference in its proximal portion was 26±2 cm. Table5.2 presents the information 

of the three subjects who participated in our measurements. 
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Table5.2: Information about the three subjects who participated in the measurement. All three 
subjects are dextromanuality (right-handed) and the forearm in this table refers to right 
forearm. 

Subject Gender 
Age 

[year] 
Height 
[cm] 

Weight 
[kg] 

Forearm 
Length 

[cm] 

Forearm 
Circumference 

[cm] 
S1 Female 28 155 56 22 24 
S2 Male 25 176 90 25 28 
S3 Male 32 170 63 24 26 

 

EMG signals were acquired during 5s of these contractions and recorded in SD memory 

for off-line signal processing. These off-line signal processing (described in 

SETCTION4.2-4.4 in detail), includes:  

1) DC Removal, the DC offsets were removed from each signal after channel remapping.  

2) A 2nd order digital Butterworth zero-lag band-pass (around [20, 500] Hz) filter was 

performed to remove the noises outside surface EMG bandwidth.  

3) If 50Hz power line interference and its harmonics were detected using spectral 

analysis, an approach called spectrum interpolation was performed to reduce the power 

line interference and its harmonics (up to 10th harmonics as described in 

SECTION4.4). 

4) EMG signals (monopolar) inside the epoch [1s, 4s] were extracted to calculate the 

RMS values of each channel and fill these values to a 2D map with a colorbar. 

5) Single differential EMG signals along muscle fiber direction column by column (7 

single differential signals per column) were plotted. 

5) Centroids of these 2D RMS map (in step4) were used to estimate the position of the 

EMG source during these contractions. These 2D RMS maps were updated by replacing 

the RMS values below a threshold (70% of the maximal RMS value of the RMS map) 

with zero, in order to make a better estimation of most active region.  

 

Single differential EMG signals of subject 3 acquired during wrist extension contraction 
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is presented in Figure5.16. Due to the fact that the 8x8 array cover more than one muscle 

and during each task only a small portion of the area were active, the propagation of 

motor unit action potential (MUAP) can only be detected clearly on column 3 (C3) and 

column 4 (C4). 

 

Selection of 70% (of the maximal RMS value of the RMS map) as threshold to compute 

centroids of the most active area during contractions is through visual inspection among 

results that set 60%, 70% and 80% (of the maximal RMS value of the RMS map) as the 

threshold. As shown in Figure5.18, Figure5.19 and Figure5.20, set 70% (of the maximal 

RMS value of the RMS map) as the threshold can select most active area properly in 

our experimental data.  
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Figure5.16: Time course (over 250ms) of the EMG signals detected from each column 
(columns 1-8, 7 channels per column). The EMG signals are sampled at 2000 S/s (0.5ms 
between samples). The placement of the 64-channel electrode grid (see Figure5.14) of subject 
3 (S3) during wrist extension. EMG signals are initially acquired in monopolar configuration 
and are converted to SD later. The propagation of MUAPs is marked with red line. Due to the 
fact that the 8x8 array covers more than one muscle and during each task only a small portion 
of the area are active, the propagation of motor unit action potential (MUAP) can only be 
detected on column 3-5 (a portion of extensor digitorum communis, EDC). The territory of 
MU1 is column 3-5 (the maximal amplitude detected in column4 and decreased to two sides). 
The territory of MU2 is column 4-5. The CNVs estimated (with the method presented in 
Figure5.7) from column 3-5 are more or less the same. 

 

 
Figure5.17: Anatomical model to explain the phenomena detected in Figure5.16. The 
model consists of bone, muscle tissue, a subcutaneous layer and skin and MUs are 
simplified as several cylindrical muscle fibers cluster marked with number. Extensor carpi 
radialis longus and brevis (ECRl and ECRb) are considered as the muscles to generate 
wrist extension. The source of EMG signals is two MUs (marked with number) located in 
these muscles. The territory of MU1 is larger and can be detected in column 3-5. The 
territory of MU2 is smaller and can be detected in column 3-4. C1 is column 1 and C8 is 
column 8 of the electrode array.  
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Figure5.18: Monopolar EMG amplitude distribution during wrist extension contraction of 
subject 1 (S1) and the positions of centroid by set 60%, 70% and 80% of the maximal RMS 
value of the RMS map as threshold. (a) Monopolar Surface EMG amplitude distribution 
(RMS) over the skin during wrist extension contraction of a representative subject (S1, subject 
1). (b) The updated RMS map and its centroid by setting 60% of the maximal RMS value of 
the RMS map as threshold. (c) The updated RMS map and its centroid by setting 70% of the 
maximal RMS value of the RMS map as threshold. (d) The updated RMS map and its centroid 
by setting 80% of the maximal RMS value of the RMS map as threshold. 
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Figure5.19: Monopolar EMG amplitude distribution during ring finger extension of subject 1 
(S1) and the positions of centroid by set 60%, 70% and 80% of the maximal RMS value of the 
RMS map as threshold. (a) Monopolar Surface EMG amplitude distribution (RMS) over the 
skin during ring finger extension of a representative subject (S1, subject 1). (b) The updated 
RMS map and its centroid by setting 60% of the maximal RMS value of the RMS map as 
threshold. (c) The updated RMS map and its centroid by setting 70% of the maximal RMS 
value of the RMS map as threshold. (d) The updated RMS map and its centroid by setting 80% 
of the maximal RMS value of the RMS map as threshold. 
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Figure5.20: Monopolar EMG amplitude distribution during middle finger extension of 
subject 1 (S1) and the positions of centroid by set 60%, 70% and 80% of the maximal RMS 
value of the RMS map as threshold. (a) Monopolar Surface EMG amplitude distribution 
(RMS) over the skin during middle finger extension of a representative subject (S1, subject 1). 
(b) The updated RMS map and its centroid by setting 60% of the maximal RMS value of the 
RMS map as threshold. (c) The updated RMS map and its centroid by setting 70% of the 
maximal RMS value of the RMS map as threshold. (d) The updated RMS map and its centroid 
by setting 80% of the maximal RMS value of the RMS map as threshold. 

 

Figure5.21 presents the positions of centroid in surface EMG amplitude RMS map 

during different contractions [wrist extension (WRIST EXT), ulnar deviation (ULN 

DEV), middle finger extension (MID FINGER), ring finger extension (RING FINGER) 

and little finger extension (LIT FINGER)] of all three subjects.  
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Figure5.21: Positions of the centroids (estimated the most active area) identified from EMG amplitude distributions during the contractions tested. These contractions 
include: wrist extension (WRIST EXT), ulnar deviation (ULN DEV), middle finger extension (MID FINGER), ring finger extension (RING FINGER) and little finger 
extension (LIT FINGER). Furthermore, the number “1, 2, 3” inside the mark of centroid gravity indicated that they were from subject 1, subject 2 or subject 3. The 
centroids of the subject 2 and 3 (ulnar deviation) are too close and it looks like only one point in the figure. 
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As shown in Figure5.21, the estimated positions (centroid gravities) of the most active 

area during different contractions are distinguishable. After normalization (X 

coordinate normalized with forearm circumference, Y coordinate normalized with 

forearm length), these positions from three different subjects follow a same trend. The 

positions of the most active area during middle finger extension have the biggest 

deviation, this properly due to less independence of the middle finger extension 

contraction compared to other contractions. 

5.3.7 Conclusions 

This physiological application shows that the spatial properties of monopolar EMG 

amplitude distribution (RMS) over the proximal portion of dorsal forearm can be used 

to discriminate different contractions [wrist extension (WRIST EXT), ulnar deviation 

(ULN DEV), middle finger extension (MID), ring finger extension (RING) and little 

finger extension (LIT)]. These contractions only activated a relatively small area of the 

proximal portion of dorsal forearm in our experiments. Experiment results also show 

that each contraction corresponded to a specific EMG distribution with relevantly high 

amplitude values in few channels only. 
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6 

Discussions and Conclusions 

 

 

 

 

 

6.1 General 

This section discusses about the technical advantages/disadvantages, the limitations and 

the future technologies of the prototype of HD-sEMG RSWC. The technical advantages 

and disadvantages of the design is described in SECTION6.2. The limitations that 

discovered in the prototype are discussed in SECTION6.3 and future technologies that 

may be useful for a new design are discussed in SECTION6.4. 
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6.2 Technical Advantages and Disadvantages 

6.2.1 Technical Advantages 

The HD-sEMG RSWC prototype satisfied the design criteria as defined in 

SECTION2.2 and has some advantages over two of the most advanced commercial 

available multi-channel EMG detection systems as following: 32-channel Wi-Fi 

Trentadue EMG portable device by OT Bioelecttronica [1] and 64-channel optical fiber 

WEMG device [2] by LISiN. 

 

With respect to the 32-channel Wi-Fi Trentadue EMG portable device, the HD-sEMG 

RSWC has the following advantages: 

1) Considering the price of 10.000,00 € each 32-channel Wi-Fi Trentadue EMG 

portable device, the cost of the HD-sEMG RSWC protocol is much more 

economical (less than 1.000 €, except 64-channel AFE, which is available at LISiN).  

2) Provide 64-channel EMG detection that is twice of 32-channel. 

 

With respect to the 64-channel optical fiber WEMG device, the HD-sEMG RSWC has 

the following advantages: 

1) Cable-free in EMG signals communication and provide more freedom in EMG 

measurement. 

2) By using only one-single channel ADC, the cost of HD-sEMG RSWC is much less 

than the 64-channel WEMG system, in which 8 chips of 8-channel ADC and also 

higher cost MCU are used. 
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6.2.2 Technical Disadvantages 

Although the HD-sEMG RSWC prototype satisfies the design criteria as described in 

SECTION2.2 and provides good EMG signals as described in SECTION5.2.5&5.3.6, 

it still has some minor disadvantage. 

 

With respect to the 32-channel Wi-Fi Trentadue EMG portable device, the HD-sEMG 

RSWC has the following technical disadvantages: 

1) The size of the prototype (188 mm x 188 mm x 67 mm with enclosure) is a little 

large and should be reduced to make the subjects more comfortable during 

measurement. 

2) The weight (1.2kg) of the prototype is a little heavy and shall be reduce to make the 

subject more comfortable. 

 

With respect to the 64-channel WEMG detection system, the HD-sEMG RSWC has the 

following technical disadvantages: 

1) The resolution of the HD-sEMG RSWC is 16-bit, less than 24-bit in the 64-channel 

WEMG detection system. 

2) By using multiplexed solution with only one-channel ADC, the prototype 

introduces 5-6 μs delay between two adjacent channels. 
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6.3 Limitations 

Although the HD-sEMG RSWC prototype satisfies the design criteria that described in 

SECTION2.2 and provides quite good EMG signals as described in 

SECTION5.2.5&5.3.6, it still has some minor limitations as following: 

1) The capacity of the rechargeable battery (2200mAh) is too small, which provides 

only 1 hour continuous acquisition time. It should be replaced by a higher capacity 

battery. 

2) Stability and distance of the wireless communication. By adopting 2.1dB gain 

external antenna, the wireless communication of the prototype inside 5 meter has 

no data loss. However, the stability can be improved by using 5GHz wireless band 

instead of 2.4GHz. The communication distance between EMG detection system 

and Wi-Fi access point can also be increased by using 5GHz band, as usually there 

is less interference from other Wi-Fi devices in 5GHz band. 

3) The prototype can only use 64-channel electrode grid for EMG signal. This 

generates redundancy information, when less channels (such as 32-channel) are 

used. 

4) The prototype functions as a data logger and the txt configuration file (write into 

the SD card) is the only way to change configuration. Experiment with different 

contraction time is not convenient. User must plug in and out SD memory card to 

change a configuration file for each contraction time. 

5) Abstract file (defined by LISiN to record the information of subject, device and 

measurement such as muscles) can only be added by user off-line. It is not a 

convenient way and may lead to wrong documentation. 

 

Most of these limitations can be overcome by adopting new technologies that are 

discussed in SECTION6.4.  
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6.4 Future Technologies 

The design of the HD-sEMG RSWC was proposed four years ago and it is normal to 

has some limitations in nowadays. By introducing the newest technologies, most of the 

limitations discussed in SECTION6.3 can be overcome.  

 

The newest 64-channel AFE RHD2164 (by Intan Techonogies) is available only in 7.3 

mm x 4.2 mm x 0.2mm size [3] and provides digital output through SPI bus, which 

saves time and cost to add ADCs. By introducing this chip, the size and the weight of 

the future design will be reduced significantly. Also the time delay between two 

channels will disappear. 

 

Another technology is IEEE 802.11ac [4]. It is a wireless networking standard in the 

802.11 family (which is marketed under the brand name Wi-Fi), providing high-

throughput wireless local area networks on the 5 GHz band. The standard was 

developed from 2011 through 2013 and approved in January 2014. This specification 

has expected multi-station WLAN throughput of at least 1 gigabit per second and a 

single link throughput of at least 500 megabits per second (500 Mbit/s). Working on the 

5GHz band makes IEEE 802.11ac technology more stable and faster than IEEE 

802.11b/g/n that used in the HD-sEMG RSWC prototype. 
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