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Abstract- Three Permanent Magnet traction motors are 
controlled via a unified Direct Flux Vector Control scheme. Two 
of the motors have the same stator with concentrated windings, 
one combined with a Surface Mounted PM rotor and the other 
with an Interior PM rotor. The third motor is a PM-assisted 
Synchronous Reluctance motor with distributed windings. The 
algorithm has a predictive nature and no regulators that need to 
be tuned. When switching from one motor to another, the set of 
motor parameters is changed and nothing else. The key 
parameters are the stator resistance and the dq flux linkage 
curves. Drive commissioning issues are addressed along with the 
effects of parameter errors on the control performance, and 
both are quite acceptable for traction applications. 
Experimental results are provided for all three motors. 

Index Terms: Direct Flux Vector Control, Direct Torque 
Control, Permanent Magnet Machines, Permanent Magnet 
Motor Drives, Predictive Control, Deadbeat Control. 

I. INTRODUCTION 
Battery electric and hybrid electric vehicles very often 

adopt Permanent Magnet (PM) traction motors for their 
powertrains [1-2]. Different PM motor topologies are in use, 
having different pros and cons. Concentrated-winding (CW) 
machines are appreciated by vehicle manufacturers for their 
assembly advantages and their compactness [3]. Other 
competitors prefer distributed windings and salient rotor 
structures [4-5] for their better transient overload power with 
a given inverter size and their larger high-efficiency operating 
regions within the boundaries of their torque-vs-speed 
capability curves. 

When dealing with the control of an electric drive for 
traction applications, some key performance objectives can be 
identified, regardless of the PM motor type: 

• Maximum exploitation of the inverter current and 
voltage limits over a large flux-weakening speed range; 

• High robustness of the control against parameter 
uncertainties and variations of the operating temperature; 

• Optimization of the motor efficiency at all speeds 
and, in particular, at partial loads. 

Similar to Direct Torque Control (DTC), the Direct Flux 
Vector Control (DFVC) directly controls the flux linkage 
vector amplitude and phase angle to control the 
electromagnetic torque. DFVC adopts Space Vector 
Modulation at constant switching frequency for its PWM 
algorithm and uses a rotor position sensor, which is typical 
for traction applications. In previous work, DFVC has been 
applied to a wide range of sinusoidal AC motors including 
Induction and Synchronous Reluctance motors, as well as 
Interior and Surface PM (IPM and SPM) motors [6]. This 
controller has demonstrated its ability to exploit the inverter 
voltage and current limits very easily in the flux weakening 
speed region, and adapts easily to variable dc-link levels. At 
very high speeds, the Maximum Torque Per Voltage region 
(MTPV) is also exploited with relative ease.  

Recently, a predictive version of the DFVC algorithm has 
been proposed and tested on a PM-assisted Synchronous 
Reluctance (SyR) motor, making it possible to reduce the 
calibration burden associated with the three PI regulators of 
the torque controller [7]. The predictive algorithm results in a 
more complicated flux observer scheme and requires a 
commissioning stage for the motor and the inverter. In return, 
the algorithm is applicable to any PM synchronous drive with 
no modification or tuning, making it very appealing for 
industrial applications. The simplification of the motor 
commissioning is another work in progress [15]. The 
objectives of this work are: 1) to provide experimental 
confirmation that predictive DFVC applies to different 
traction motors; and 2) to directly address the commissioning 
sequence and parameter sensitivity issues in order to 
demonstrate the feasibility of the proposed controller in 
production equipment. 

(a) (b) (c) 
Fig. 1. Three types of PM traction motors tested during this investigation. Left) Surface Mounted PM with concentrated windings (CW-SPM);  
Center) Interior PM with Concentrated Windings (CW-IPM); Right) PM-assisted Synchronous Reluctance motor with distributed windings (PMASR). 



II. PREDICTIVE DIRECT FLUX VEC
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responsible for the flux amplitude closed-l
the qs-axis quadrature voltage controls 
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 ቐݒௗ௦ ൌ ܴ௦ · ݅ௗ௦ ൅  ௗ஛ௗ௧ݒ௤௦ ൌ ܴ௦ · ݅௤௦ ൅ ቀௗஔௗ௧ ൅ ωቁ ·
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Fig. 2. Definition of the flux-oriented reference
generic PM motor rotor. 
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The magnetic equations (5) and (6) are now manipulated to 
find the relationship between the control errors Δλ and Δiqs 
and the corresponding load angle variation Δδ. By 
differentiation of the two components of (5) equations (8a) 
and (9a) are found, the former referring to the ds component 
of (5), and the latter to the qs component. 

 ௗ௜೏ೞௗ௧ ൌ A · ௗ஛ௗ௧ ൅ B · ௗ௜೜ೞௗ௧ ൅ C · ௗஔௗ௧  (8a) 

۔ۖەۖ 
ۓ A ൌ ଵ௅బି௱௅ ୡ୭ୱሺଶஔሻB ൌ െ ௱௅ ୱ୧୬ሺଶஔሻ௅బି௱௅ ୡ୭ୱሺଶஔሻC ൌ െ ଶ௱௅൫ୱ୧୬ሺଶஔሻ௜೏ೞା ୡ୭ୱሺଶஔሻ௜೜ೞ൯ି஛೘ ୱ୧୬ሺஔሻ௅బି௱௅ ୡ୭ୱሺଶஔሻ

 (8b)

 ௗ௜೏ೞௗ௧ ൌ BԢ · ௗ௜೜ೞௗ௧ ൅ CԢ · ௗஔௗ௧  (9a) 

 ቐ BԢ ൌ െ ௅బା∆௅ ୡ୭ୱሺଶఋሻ୼L ୱ୧୬ሺଶஔሻCԢ ൌ െ ଶ௱௅൫ୡ୭ୱሺଶஔሻ௜೏ೞି ୱ୧୬ሺଶஔሻ௜೜ೞ൯ି஛೘ ୡ୭ୱሺஔሻ௱௅ ୱ୧୬ሺଶஔሻ  (9b) 

The time derivative of ids is put in evidence in (8a) and 
(9a), so that it can be eliminated by equaling the respective 
right-hand sides of the two equations. The time derivatives 
remeaining in the final equation (10) after the simplification 
of dids/dt are the ones of λ, iqs and δ. 

 ሺC െ CԢሻ · ௗஔௗ௧ ൌ ሺBᇱ െ Bሻ · ௗ௜೜ೞௗ௧ െ A · ௗ஛ௗ௧ (10) 

A further manipulation leads to the expression of the load 
angle variation in the discrete-time domain: 

 Δδכ ൌ ୼௜೜ೞכ  ା ൣಖ෠ሺೖሻషభ൧మಽ෡೜ሺೖሻ  · ୼஛כ
 ౙ౥౩ൣಌ෡ሺೖశభሻ൧ಽ෡೏ሺೖሻ  · ஛೘ି ൣಖ෠ሺೖሻషభ൧·ౙ౥౩ൣమಌ෡ሺೖశభሻ൧ಽ෡೜ሺೖሻ · ஛෡ሺ௞ାଵሻ (11) 

As anticipated, the load angle variation (11) is a function of 
the two control errors Δλכ and Δ݅௤௦כ . Moreover, it is also a 
function of the magnetic model parameters Ld, Lq, λm and of 
the predicted magnitude and phase of the flux linkage vector 
(λ, δ). All those variables are generated by the Predictive 
Flux and Current Observer block, that is the key block of 
the proposed control scheme. 

C. Predictive Flux and Current Observer 
The “predictive” nature of the observer refers to the fact 

that some of the observed quantities are evaluated at the next 
actuation instance (k+1) in a predictive fashion, where (k) 
represents the current computational time instant of the real-
time digital controller [8-9]. The prediction at time (k+1) is 
critically important in model-based controllers for 
compensating the actuation delay of the digital controller. 
Without it, the control response is nervous and oscillatory 
[10-11]. 

The discrete-time block scheme of the predictive observer 
is represented in Fig. 4. The input stage is a closed-loop, non-
predictive stator flux observer, where the current-to-flux 
model in (d,q) coordinates serves the low-speed operating 
region, and the voltage model in (α,β) coordinates serves the 
higher-speed range [6,11]. The crossover angular frequency 
between the low- and high-speed models is set by the 
observer feedback gain g (electrical rad/s). The control 
reference voltage signals are used as the observer inputs 
instead of voltage measurements and the rotor position comes 
from an encoder. The output of the first observer stage is the 
flux linkage vector in (d,q) coordinates, referred to the current 
time instant (k). From this flux linkage estimate, the (d,q) 
inductances are evaluated according to (6) for use in 
predicting the current and the flux linkage at time step (k+1): 

 ൞ܮ෠ௗሺ݇ሻ ൌ ஛෡೏ሺ௞ሻି஛೘௜೏ሺ௞ሻܮ෠௤ሺ݇ሻ ൌ ஛෡೜ሺ௞ሻ௜೜ሺ௞ሻ  (6) 

The (d,q) current components are predicted at time (k+1) 
by means of discrete-time integration based on (7): 

 ቐܮௗ  ௗ௜೏ௗ௧ ൌ ௗെܴ௦݅ௗݒ ൅ ωλ௤ ܮ௤  ௗ௜೜ௗ௧ ൌ ௤െܴ௦݅௤ݒ െ ωλௗ  (7) 

Finally, the (d,q) flux linkage at time (k+1) are calculated 
from the newly-calculated current components by means of 
(2). The amplitude and phase angle (δ, θs) of the flux linkage 
vector in the various reference frames are finally calculated 
using simple mathematics that is not represented in the figure. 

 

 
Fig. 4. Predictive stator flux linkage and current observer. 
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(b) 
Fig. 6.  Switching from the IPM (a) to the S
concentrated-winding motors of [14]. (c) Rotor
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TABLE I. MAIN RATINGS OF THE THREE MACHINES UN

 IPM SPM

Number of slots 12 

Pole pairs (p) 5 

Stator outer diameter 274 

Stack length [mm] 73.4 

Airgap [mm] 0.73 1.85

Rated speed [rpm] 2800 

Rated Torque [Nm] 102 

Rated current [Apk] 113 109 

Characteristic 
current [Apk] 

50 87 

Dc-link voltage [V] 320 320 

s confirm both the 
eved using DFVC 
ameter insensitivity 
lgorithm is capable 

FVC algorithm still 
machine parameters 

a couple blocks in 
ive commissioning 
rameters when the 
ontinued tuning of 
to compensate for 
k is continuing to 
algorithm for PM 

ance and parameter 
hance its suitability 
on drives. 

(a) 

(b) 
. 7b), without dead-time 
ux linkage parameter by 
nd 124°C, respectively. 

NDER COMPARISON 

M PM-SyR 

36 

2 

150 

142 

5 0.3 

2450 

27 

28 

14 

400 

Open-circuit voltage 
line to line [Vpk] 

314 

Inertia [kg m2] 21⋅10-3 

Type of cooling 
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