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Abstract

In this paper, the efficiency of the radial basis functions (RBFs) method when applied to higher-order

beam theories is investigated. The displacement field of the generic-order beam model is expressed by

making use of the Carrera Unified Formulation (CUF). The strong form of the Principle of Virtual

Displacements (PVD) is used to obtain the equations of motion of beams in free vibration. The hier-

archical capability of the CUF, in conjunction with the PVD, allows to write the governing equations

and the natural boundary conditions in terms of fundamental nuclei. The nuclei can be automatically

expanded depending on the theory order N , which is a free parameter of the formulation. Locally

supported Wendland’s C6 radial basis functions are subsequently used to approximate the deriva-

tives of the generalized displacements, which are collocated on a number of points (centers) along

the beam axis. Several numerical results are proposed including solid structures as well as open and

closed thin-walled sections. The solutions by the proposed method are compared both by published

literature and by solid/shell models from the commercial code MSC Nastran.

Keywords: Radial basis functions; Unified formulation; Free vibration; Higher-order theories;

Beams
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1 Introduction

Vibration of slender bodies is an important topic in the design of aerospace, mechanical, and civil

applications. The majority of classical theories, such as the Euler-Bernoulli beam model (EBBM)

[1], usually neglect the transverse shear and the rotatory inertia. EBBM yields reasonably good

results when slender, solid, homogeneous structures are subjected to flexure. Conversely, in the case

of deep beams where the thickness is not negligible, the Timoshenko model (TBM) [2, 3] is preferable

since it assumes a uniform shear distribution along the cross-section of the beam together with the

effects of rotatory inertia. However, according to Novozhilov [4], the analysis of thin-walled, open

section beams may require more sophisticated theories to achieve sufficiently accurate results.

Over the last century, many refined beam theories have been proposed to overcome the limitation

of classical beam modelling. These approaches include the introduction of shear correction factors,

the use of warping functions based on de Saint-Venant’s solution, the variational asymptotic solution

(VABS), the generalized beam theory (GBT), and others. Some selective references and noteworthy

contributions are briefly discussed below, with particular attention to dynamic analysis.

Early investigators have focused on the use of appropriate shear corrections factors to increase

the accuracy of classical formulations, see for examples Timoshenko and Goodier [5], Sokolniko [6],

Stephen [7], and Hutchinson [8]. However, in [9], Jensen showed how the shear correction factor

can vary with the natural frequencies. The works by El Fatmi [10, 11, 12] and Ladevéze et al.

[13, 14] are some excellent examples of refined methods based on the use of warping functions. Rand

[15] and Kim and White [16] used more or less the same approach in the free vibration analysis

by introducing out-of-plane warping with no in-plane stretching terms. Asymptotic type expansion

coupled with variational methods has also been proposed by Berdichevsky et al. [17]. Some further

valuable contributions are by Volovoi [18], Popescu and Hodges [19], Yu et al. [20], Yu and Hodges

[21, 22]. The generalized beam theory (GBT) probably was originated from the work of Schardt

[23, 24] and it improves classical beam theories by using piece-wise beam description of thin-walled

sections. It has been widely employed and extended in various forms by Silvetre et al. [25, 26] and

a dynamic application has been presented by Bebiano et al. [27].

The present work is focused on 1D higher-order theories based on the Carrera Unified Formulation

(CUF) to carry out free vibration analysis of solid and thin-walled structures. CUF is well established

in the literature for over a decade [28, 29, 30, 31] and it is a hierarchical formulation that considers

the order of the model, N , as a free-parameter (i.e. as an input) of the analysis or in other words,
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refined models are obtained without having the need for any ad hoc formulations. In the present

work, beam theories using CUF are obtained on the basis of Taylor-type expansions (TE). EBBM

and TBM can be obtained as particular cases. The strength of CUF TE 1D models in dealing with

arbitrary geometries, thin-walled structures and identifying local effects are well known for both

static and free-vibration analysis [32, 33, 34, 35, 36].

In majority of the papers on 1D CUF, the finite element method (FEM) has been used to handle

arbitrary geometries and loading conditions. In the present work, the extension of Radial Basis

Functions (RBFs) method to higher-order 1D CUF models is proposed. The use of alternative

methods to the finite elements for the analysis of structures, such as the meshless methods based

on collocation with RBFs, is attractive due to the absence of a mesh and the ease of the collocation

techniques. In recent years, RBFs method showed excellent accuracy in the interpolation of data and

functions. The RBFs method was first used by Hardy [37, 38] for the interpolation of geographical

scattered data and later used by Kansa [39, 40] for the solution of partial differential equations.

Afterwards, Ferreira successfully applied RBFs to the analysis of beams and plates [41, 42].

In this work, CUF is adopted to automatically build any-order beam theories. Then, the Prin-

ciple of Virtual Displacements (PVD) is used to derive the differential governing equations and the

associated natural boundary conditions for the generic N -order model. Next, by assuming harmonic

oscillation, the equilibrium equations and the natural boundary conditions are formulated in the

frequency domain. The resulting system of ordinary differential equations of second order with

constant coefficients is subsequently solved by making use of collocation with Wendland’s C6 RBFs

[43]. Finally, modal analyses of both solid and thin-walled structures are produced and compared

by published literature and solid/shell models from the commercial code MSC Nastran.

2 1D Unified Formulation

2.1 Preliminaries

The adopted rectangular cartesian coordinate system is shown in Fig. 1. Let us introduce the

transposed displacement vector,

u(x, y, z; t) =

{

ux uy uz

}T

(1)
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The cross-sectional plane of the structure is denoted by Ω, and the beam boundaries over y are

0 ≤ y ≤ L. In the case of small displacements with respect to a characteristic dimension in the plane

of Ω, the strain - displacement relations are

ǫ = Du (2)

where D contains linear differential operators. The expressions of this matrix can be found in [31].

Constitutive laws are exploited to obtain stress components to give

σ = C̃ ǫ (3)

The matrix C̃ is explicitly given in [31] and it contains the material coefficients C̃αβ , which depend on

the Young’s modulus, Poisson’s ratio, and fiber orientation angle in the case of orthotropic material.

For the sake of brevity, the expressions for the coefficients C̃αβ are not reported here, but can be

found in standard texts, see for example Tsai [44] and Reddy [45].

Within the framework of the CUF, the displacement field u(x, y, z; t) can be expressed as

u(x, y, z; t) = Fτ (x, z)uτ (y; t), τ = 1, 2, ....,M (4)

where Fτ are the functions of the coordinates x and z on the cross-section. uτ is the vector of

the generalized displacements, M stands for the number of terms used in the expansion, and the

repeated subscript, τ , indicates summation. The choice of Fτ determines the class of the 1D CUF

model that is required and subsequently to be adopted. TE (Taylor expansion) 1D CUF models

consists of a Maclaurin series that uses the 2D polynomials xi zj as base of the Fτ functions, where

i and j are positive integers. For instance, the displacement field of the second-order (N = 2) TE

model can be expressed as

ux = ux1 + x ux2 + z ux3 + x2 ux4 + xz ux5 + z2 ux6

uy = uy1 + x uy2 + z uy3 + x2 uy4 + xz uy5 + z2 uy6

uz = uz1 + x uz2 + z uz3 + x2 uz4 + xz uz5 + z2 uz6

(5)

The order N of the expansion is set as an input option of the analysis; the integer N is arbitrary

and defines the order the beam theory.

An important feature of TE 1D CUF models is that classical beam theories can be obtained as
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special cases. For intance, the Timoshenko beam model (TBM) can be realised by using a suitable Fτ

expansion. Two conditions have to be imposed: (1) a first-order (N = 1) approximation kinematic

field:

ux = ux1 + x ux2 + z ux3

uy = uy1 + x uy2 + z uy3

uz = uz1 + x uz2 + z uz3

(6)

(2) the displacement components ux and uz have to be constant above the cross-section:

ux2 = uz2 = ux3 = uz3 = 0 (7)

Classical theories and first-order models (N = 1) require the necessary assumption of reduced

material stiffness coefficients to correct Poisson’s locking (see [46]). In this paper, Poisson’s locking

is corrected according to the method outlined by Carrera et al. [31], where further details about TE

models can be found.

2.2 Governing equations of the N-order TE model

The principle of virtual displacements is used to derive the equations of motion.

δLint =

∫

V

δǫTσ dV = −δLine (8)

where Lint stands for the strain energy and Line is the work done by the inertial loadings. δ stands

for the usual virtual variation operator. The virtual variation of the strain energy is rewritten using

Eq.s (2), (3) and (4). After integrations by part, Eq. (8) becomes

δLint =

∫

L

δuT
τ K

τsus dy +
[

δuT
τ Π

τsus

]y=L

y=0
(9)

whereKτs is the differential stiffness matrix andΠτs is the matrix of the natural boundary conditions

in the form of 3× 3 fundamental nuclei. The components of Kτs are provided as follows in the case

of isotropic material and they are referred to as Kτs
(ij), where i is the row number (i = 1, 2, 3) and j

denotes the column number (j = 1, 2, 3)

Kτs
(11) = E22

τ,xs,x + E44
τ,zs,z − E66

τs

∂2

∂y2
, Kτs

(12) =
(

E23
τ,xs −E66

τs,x

) ∂

∂y
, Kτs

(13) = E12
τ,xs,z +E44

τ,zs,x

Kτs
(21) = −

(

E23
τs,x − E66

τ,xs

) ∂

∂y
, Kτs

(22) = E66
τ,xs,x + E55

τ,zs,z − E33
τs

∂2

∂y2
, Kτs

(23) =
(

E55
τ,zs − E13

τs,z

) ∂

∂y

Kτs
(31) = E12

τ,zs,x +E44
τ,xs,z , Kτs

(32) = −

(

E55
τs,z − E13

τ,zs

) ∂

∂y
, Kτs

(33) = E44
τ,xs,x + E11

τ,zs,z − E55
τs

∂2

∂y2

(10)
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The generic term Eαβ
τ,θs,ζ above is a cross-sectional moment parameter

Eαβ
τ,θs,ζ

=

∫

Ω
C̃αβFτ,θFs,ζ dΩ (11)

The suffix after the comma in Eq. (10) denotes the derivatives. As far as the natural boundary

conditions are concerned, the components of Πτs are

Πτs
(11) = E66

τs

∂

∂y
, Πτs

(12) = E66
τs,x

, Πτs
(13) = 0

Πτs
(21) = E23

τs,x, Πτs
(22) = E33

τs

∂

∂y
, Πτs

(23) = E13
τs,z

Πτs
(31) = 0, Πτs

(32) = E55
τs,z , Πτs

(33) = E55
τs

∂

∂y

(12)

The virtual variation of the inertial work is given by

δLine =

∫

L

δuτ

∫

Ω
ρFτFs dΩ üs dy =

∫

L

δuτM
τsüs dy (13)

where Mτs is the fundamental nucleus of the mass matrix and double over dots stand as second

derivative with respect to time (t). The components of matrix Mτs are

M τs
(11) = M τs

(22) = M τs
(33) = Eρ

τs

M τs
(12) = M τs

(13) = M τs
(21) = M τs

(23) = M τs
(31) = M τs

(32) = 0

(14)

where

Eρ
τs =

∫

Ω
ρFτFs dΩ (15)

ρ is the material density. The derivation of the fundamental nuclei is not provided in this paper but

it can be found in [31] in the case of both weak- and strong-form formulations.

The governing equations of the undamped dynamic problem can be written in the following

compact form:

δuτ : Kτsus = −Mτsüs (16)

Letting Pτ (y; t) =

{

Pxτ Pyτ Pzτ

}T

to be the vector of the generalized forces applied at the

ends of the beam, the natural boundary conditions are

δuτ : Ps = Πτsus (17)
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For a fixed theory order N , Eq.s (16) and (17) have to be expanded using the indices τ and s in order

to obtain the governing differential equations and the natural boundary conditions of the desired

model.

In the case of harmonic motion, the solution of Eq. (16) is sought in the form

us(y; t) = Us(y) e
iωt (18)

where Us(y) is the amplitude function of the motion, ω is an arbitrary circular or angular frequency,

and i is
√
−1. Equation (18) allows the formulation of the differential equilibrium equations and the

natural boundary conditions in the frequency domain. Equations (16) and (17) can be rewritten as

follows:

δUτ : (Kτs − ω2Mτs)Us = 0 (19)

δUτ : Ps = ΠτsUs (20)

In Eq. (20) the load Pτ (y; t) has been assumed harmonic with amplitude equal to Pτ (y).

3 The Radial Basis Functions Method

Radial basis functions (RBFs) approximations are collocation schemes that can exploit accurate

representations of the boundary, are easy to implement and can be spectrally accurate. In the

framework of the RBFs method, the amplitude of the harmonically varying generalized displacement

Us(y) is approximated with a linear combination of the radial basis functions φi.

Us(y) = αs iφi (‖y − yi‖2) , i = 1, ..., n (21)

where yi is a finite set of n distinct points (centers) and ‖y − yi‖2 is the Euclidian distance ri,

which in the case of 1D problems corresponds to |y − yi|. In Eq. (21), index i indicates summation.

Derivatives of Us(y) over y can be treated similarly.

Us,y(y) = αs iφi,y (|y − yi|) , i = 1, ..., n

Us,yy(y) = αs iφi,yy (|y − yi|) , i = 1, ..., n
(22)
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In the present paper a Chebyshev grid distribution of points yi is used, which is known to be the

best choice in terms of stability (see for example [47, 48, 49]).

yi =
L

2

[

1− cos

(

i− 1

n− 1
π

)]

, i = 1, ..., n (23)

Several RBFs have been formulated over the years and they are covered in a large literature. In

the present paper, locally supported Wendland’s C6 functions [43] are chosen as φi

φi(ri, c) = max
(

(1− c ri)
8, 0
)

+
(

32 c3r3i + 25 c2r2i + 8 c ri + 1
)

(24)

where c is a positive shape parameter. The shape parameter c is known to play a very important

role in collocation with RBFs for approximating functions and solving partial differential equations,

see for example [50, 51]. The accuracy of the solution can vary significantly depending on the choice

of the shape parameter indeed. In the literature, several solutions for the evaluation of an optimal

value of c have been proposed depending upon the number of nodes, the distance between the nodes

and the type of the RBFs. For instance, in [52] a shape parameter inversely proportional to the

square root of the number of grid points was proposed in the case of multiquadrics RBFs. However,

finding a good value of the parameter c is not always an easy task. As specified in [53], smaller

values of c generally lead to higher accuracy. On the other hand, instable numerical solutions may

occur as the value of c is decreased (see [54]). In the present paper, a constant value of c is used

and no optimization procedures are employed. An optimization technique, such as the one recently

introduced by Fantuzzi et al. [55], will be the subject of future work.

3.1 From a differential problem to a eigenvalue problem via RBFs

Let the domain of the problem be denoted by Γ and let ∂Γ be its boundary. We consider nI nodes

in Γ and nB nodes on ∂Γ, with n = nI + nB . In the particular case of 1D beam theories as in this

paper, nB = 2 (i.e. the two ends of the beam). By substituting Eq.s (21) and (22) into Eq. (19), the

differential equations of motion are reduced to a classical eigenvalue problem. For a node yj ∈ Γ, it

reads:

(Kτsij − ω2
M

τsij)αs i = 0 (25)
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where K
τsij and M

τsij are the 3 × 3 fundamental nuclei which contains the coefficients of the

algebraic equations of motion. The components of matrix K
τsij are

Kτsij

(11) = −E66
τsφij,yy +

(

E22
τ,xs,x

+ E44
τ,zs,z

)

φij , Kτsij

(12) =
(

E23
τ,xs

− E66
τs,x

)

φij,y

Kτsij

(13) =
(

E44
τ,zs,x

+ E12
τ,xs,z

)

φij , Kτsij

(21) =
(

E66
τ,xs

− E23
τs,x

)

φij,y

Kτsij

(22) = −E33
τsφij,yy +

(

E66
τ,xs,x

+ E55
τ,zs,z

)

φij , Kτsij

(23) =
(

E55
τ,zs

− E13
τs,z

)

φij,y

Kτsij

(31) =
(

E44
τ,xs,z

+ E12
τ,zs,x

)

φij , Kτsij

(32) =
(

E13
τ,zs

− E55
τs,z

)

φij,y − E55
τsφij,yy

Kτsij

(33) = −E55
τsφij,yy +

(

E44
τ,xs,x

+ E11
τ,zs,z

)

φij

(26)

The components of matrix M
τsij are

Mτsij

(11) = Mτsij

(22) = Mτsij

(33) = Eρ
τsφij

Mτsij

(12) = Mτsij

(13) = Mτsij

(21) = Mτsij

(23) = Mτsij

(31) = Mτsij

(32) = 0

(27)

In Eq.s (26) and (27), φij stands for φi(|yj−yi|). For a given theory order N , the eigenvalue problem

describing the motion of the beam in free vibration is obtained by expanding K
τsij and M

τsij for

τ = 1, 2, ..., (N + 1)(N + 2)/2, s = 1, 2, ..., (N + 1)(N + 2)/2, i = 1, ..., n, and j = 1, ..., nI .

(KI − ω2
M

I)α = 0 (28)

where the superscript I denotes the fact that Eq. (28) applies in Γ. In a similar way, the natural

boundary conditions can be written in algebraic form by substituting Eq.s (21) and (22) into Eq. (20).

For a node yj ∈ ∂Γ, it reads:

Ps j = B
τsij

αs i (29)
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where the components of the fundamental nucleus Bτsij are as follows:

Bτsij

(11)
= E66

τsφij,y , Bτsij

(12)
= E66

τs,x
φij , Bτsij

(13)
= 0

Bτsij

(21) = E23
τs,xφij, Bτsij

(22) = E33
τsφij,y , Bτsij

(23) = E13
τs,zφij

Bτsij

(31) = 0, Bτsij

(32) = E55
τs,z

φij, Bτsij

(33) = E55
τsφij,y

(30)

For a given expansion order N , the natural boundary conditions can be obtained in the form of

Eq. (31) by expanding B
τsij for τ = 1, 2, ..., (N + 1)(N + 2)/2, s = 1, 2, ..., (N + 1)(N + 2)/2,

i = 1, ..., n, and j = nI + 1, ..., n. In the case of homogeneous natural boundary condition one has

B
B
α = 0 (31)

where superscript B denotes the fact that Eq. (31) applies on ∂Γ. Matrix B
B is not derived in

this paper in the case of essential boundary conditions for the sake of brevity. Essential boundary

conditions can be applied by imposing a certain value to the amplitude of the harmonically varying

generalized displacement Us(y) = Us(y).

Once matrices KI , MI , and B
B are obtained, the final eigenvalue problem can be solved

(







K
I

B
B






− ω2

k







M
I

0







)

αk = 0 (32)

where αk is the k-th eigenvector. It is well known that some RBFs produces ill-conditioned matrices

and this problem increases as the number of grid points rises. Some authors reduce the conditioning

number by using preconditioners, see [56]. Moreover, the present work shows that, increasing the

expansion order N , the problem can be severely ill-conditioned. However, scaling the matrices K
I

and M
I as well as the matrix of natural (not essential) boundary conditions BB by the maximum

coefficient of the stiffness matrix itself, was sufficient to obtain a well-conditioned problem for each

case considered. Nevertheless, in order to further improve the accuracy of the solution, the general-

ized displacements on the boundary centers could be condensed with respect to those on the internal

nodes, as presented in [57].
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4 Numerical Results

A number of structural problems were considered and the results are discussed in this section. First,

free vibration of beams with square cross-section are addressed. Both opened and closed thin-walled

structures are subsequently considered so as to show the higher-order capabilities of the present

models. The results by the present RBFs method are compared with reference solutions from the

literature together with the results obtained from the finite element commercial code MSC Nastran.

In all the results below, we use a constant shape parameter c =
2.4

L
, where L is the length of the

beam. Our numerical experience shows that this value of the shape parameter produces accurate

results. However, the use of an optimization technique will be the subject of a forthcoming work.

4.1 Square cross-section

A beam with the cross-section shown in Fig. 2 is considered as the first assessment. The cross-

section is square with sides b = h = 0.2 m. The structure is made of an aluminium alloy with

Young’s modulus E equal to 75 GPa, Poisson’s ratio ν = 0.33, and density ρ = 2700 Kg/m3.

First the influence of the number of nodes is investigated. Fig. 3 shows the first bending and

torsional natural frequencies versus the number of collocation points for the second-order (N = 2)

model of a clamped-free (CF) beam with length-to-height ratio, L/h, equal to 10. In Fig. 3, the

natural periods computed through the present RBFs method are compared to the exact solution

from [36] and they are given in non-dimensional form.

ω∗ =
ωL2

h

√

ρ

E
(33)

Good solutions are found by using 37 points, which is the value of n used in the following analyses.

Table 1 shows the first two bending and torsional natural frequencies for the same beam con-

sidered in the convergence study above. Classical TBM and up-to-fifth-order (N = 5) refined beam

models are addressed. The results by the present CUF-RBFs models are compared to exact refined

CUF beam solutions from [36] and a MSC Nastran FE solid model, which is referred to as NAS3D.

The NAS3D model was constructed by using a mesh of 24× 24× 24 8-node CHEXA solid elements.

In [36, 58, 58], the Dynamic Stiffness Method (DSM) was used to solve in exact form the equations

of motion of CUF beam models. However, the main drawback of the DSM is that it results in a

transcendental non-linear eigenvalue problem and iterative algorithms (e.g. Wittrick-Williams al-

gorithm) are needed. On the other hand, the proposed RBFs method results in a common linear
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eigenvalue problem, whose resolution is extremely fast. Figure 4 shows the modes under considera-

tion according to the fifth-order CUF-RBFs model (N = 5).

The results by CUF beam models are in good agreement with the MSC Nastran 3D elasticity

FEM model. It is additionally shown that RBFs gives good results when applied to 1D CUF models.

Although the shape parameter c is known from the literature to be dependant on the geometrical

and mechanical properties of the problem, it is shown in the present analysis that, once the shape

parameter c has been chosen, both torsional and bending modes exhibit a good convergence versus

the number of collocation points n. Moreover, the results show that for the problem considered good

results are obtained for a value of c equal to
2.4

L
, which is demonstrated to be independent on the

expansion order of the beam theory.

4.2 Open thin-walled beams

A beam with a C-shaped cross-section is addressed as the second example. The geometry of the

cross-section is shown in Fig. 5. The beam has sides b = h = 0.2 m and length-to-side ratio L/h = 10,

whereas the thickness of the flanges is t = 0.02 m. The structure is made of a steel alloy with the

following characteristics: E = 198 GPa, ν = 0.3, ρ = 7850 Kg/m3.

Good solutions were found for the C-shaped beam with c =
2.4

L
and n = 33, and the results

are given in Table 2 for clamped-clamped (CC) boundary conditions. In Table 2 the first 10 modes

are considered together with the number of the degrees of freedom (DOFs) for each model, and the

results by the present method are compared with the results by 1D, 2D, and 3D MSC Nastran FE

models. In particular, the model denoted as NAS1D in column 9, was obtained by using 50 CBAR

beam elements. The NAS2D model was constructed by using 3000 4-node CQUAD MSC Nastran

plate elements, whereas the NAS3D model was made of 112 8-node CHEXA solid elements on the

cross-section with aspect-ratio equal to 2. In Table 2, columns 2 to 8 quotes the results by classical

TBM to eight-order (N = 8) beam models obtained with the present RBFs method. Figure 6 shows

some selected modes of the C-shaped beam by the present eight-order (N = 8) 1D CUF model.

The shown results clearly demonstrate the efficiency of the present models, which are able to

deal with shell- and solid-like phenomena with a very low number of DOFs. It is clear that higher-

order models are able to deal with torsional, local shell-like as well as coupling effects in accordance

with NAS2D and NAS3D models. On the other hand, classical and lower-order beam models are

sufficient to characterize pure bending modes (e.g. Mode 2). It is further shown that the present

RBFs method gives good accuracy and stability when applied to higher-order models, even if very

13



high expansion orders are considered. Instability problems only occurred when considering higher

than eight-order models. Nevertheless, an optimization procedure of the shape parameter c - which

is considered to be constant and equal to
2.4

L
in the present paper - could give us the possibility to

further enrich the displacement field so that to enhance the solution.

The thin-walled Z-shaped cross-section of Fig. 7 is further considered. The height of the cross-

section is h = 0.3 m, whereas the length of each horizontal flange is equal to b = 0.2 m. The thickness

of both the flanges and the vertical web is t = 0.005 m. The beam is subjected to clamped-free (CF)

boundary conditions and it has length equal to 3 m. A homogeneous steel alloy with E = 206 GPa,

ν = 0.3, and ρ = 7800 Kg/m3 is considered for this problem.

The first natural frequencies for each model implemented are shown in Table 3, where also the

number of DOFs is given. In Table 3 the natural frequencies related to the first bending, the first

torsional, and the first two local flanges modes are given and the results by the present methodology

are compared with those from a 2D MSC Nastran model made by 5251 4-node CQUAD elements.

The mode shapes by the present eight-order N = 8 beam model are shown in Fig. 8.

The results provided by the present CUF beam models were obtained by using c =
2.4

L
and

n = 33. The analysis once again highlights the capability of the present beam theories to deal with

higher-order and localized phenomena. In fact, results in good agreement with NAS2D model were

found with very low DOFs. As in the previous analysis case, better results could be found by further

increasing the expansion order N but this would require appropriate optimization techniques of the

RBFs shape parameter.

4.3 Thin-walled cylinder

A thin-walled cylinder is considered as the final example to further highlight the higher-order capa-

bilities of the present formulation. The cross-section geometry is shown in Fig. 9. The cylinder has

the outer diameter d equal to 2 m, thickness t = 0.02 m, and length L = 20 m. The structure is

made of the same metallic material as in the first example, i.e. E = 75 GPa, ν = 0.33, and ρ = 2700

Kg/m3. For the problem under consideration a number of points n equal to 31 was used along the

y-axis direction.

Table 4 show the natural frequencies of the thin-walled cylinder for different boundary conditions.

In particular, free-free (FF), clamped-free (CF), clamped-clamped (CC), as well as simply-supported

(SS) ends were considered. Both classical TBM and higher-order CUF beam models are shown in

Table 4, where the results by the present RBFs-based method are compared to exact higher-order

14



beam models and MSC Nastran 2D FE shell solutions from [36]. It is shown that classical and

lower-order beam models are able to capture bending and torsional modes, whereas 1D higher-order

theories are mandatory in order to detect local shell-like modes in accordance with 2D solutions.

Figure 10 shows the percentage error between the present RBFs method and exact reference

solution from [36]. In Fig. 10 the first bending, torsional, and shell-like modes for different expansion

orders N and boundary conditions are considered. It is shown that, for fixed values of the parameters

c and n, bending and torsional modes exhibit a good convergence for all the boundary conditions

and theory order considered. On the other hand, shell-like modes become instable if higher than

fourth-order (N = 4) models and CF or FF boundary conditions are examined. This is the reason

why in Table 4 only up to N = 4 models are considered for those boundary conditions. However,

the authors are confident that an optimization procedure on parameters c and n will overcome the

issue.

To conclude, Fig. 11 shows the first two bending, shell-like, and torsional mode shapes of the

cylinder with CC boundary conditions in order to further underline the 3D capabilities of the present

theories.

5 Conclusions

An higher-order beam formulation has been developed by using the CUF, which allows for the for-

mulation of any-order beam theories by setting the expansion order as an input of the analysis.

Numerical results have been obtained and the differential equations of motion solved trough RBFs

collocation method. Wendlands C6 RBFs has been used to approximate the generalized displace-

ments and their derivatives along the beam axis. A shape parameter inversely proportional to the

beam length has been used. Compact as well as open and closed thin-walled sections have been ana-

lyzed and the results compared with those obtained using MSC Nastran FEM models and with those

from the literature. It is shown that accurate and computationally efficient results can be obtained

by coupling CUF with RBFs method. The proposed study also shows that the choice of the RBFs

shape parameter can have a non-negligible influence on the accuracy of the solution. However, the

investigation provides optimism for future studies of techniques aiming in the optimization of the

shape parameter depending on the geometry, on the boundary condition, as well as on the expansion

order of the beam theory.
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Tables

Model I Bending II Bending I Torsional II Torsional

MSC Nastran, [36]
NAS3D 1.016 6.088 8.852 26.516

Reference CUF solutions, [36]
N = 5 1.013 6.069 8.868 26.603
N = 4 1.013 6.070 8.871 26.619
N = 3 1.014 6.075 9.631 28.893
N = 2 1.015 6.107 9.631 28.893
TBM 1.008 6.069 -∗ -

Present CUF-RBFs
N = 5 1.011 6.075 8.872 26.605
N = 4 1.012 6.078 8.875 26.623
N = 3 1.013 6.081 9.634 28.895
N = 2 1.014 6.115 9.634 28.895
TBM 1.007 6.076 - -

*: not provided by the model

Table 1: First two bending and torsional non-dimensional natural periods for the CF square beam,

L/h = 10, c =
2.4

L
, n = 37
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TBM N = 1 N = 2 N = 4 N = 6 N = 7 N = 8 NAS1D NAS2D NAS3D
DOFs 165 297 594 1485 2772 3564 4455 298 15345 337305

Mode 1b1 324.575 324.575 326.251 188.454 139.540 134.796 130.659 272.327 120.715 123.035
Mode 2b2 267.018 267.018 268.805 259.464 258.242 257.549 257.052 259.183 253.081 255.122
Mode 3b1 802.476 802.476 805.308 421.352 327.164 317.465 307.669 612.380 273.476 280.688
Mode 4f -∗ - - 1897.637 495.647 462.566 372.945 - 289.323 297.244
Mode 5f - - - 1919.707 536.076 500.446 417.306 - 331.782 340.822
Mode 6f - - - 1952.249 610.236 568.936 491.753 - 403.791 414.174
Mode 7b1 1408.623 1408.623 1418.413 700.446 540.593 517.619 493.195 1010.938 406.396 420.235
Mode 8t - 779.002 762.101 491.664 468.266 466.559 465.139 - 460.264 463.815
Mode 9f - - - 2002.983 704.519 659.198 589.383 - 499.572 511.418
Mode 10b1 2088.731 2088.731 2085.379 998.768 734.409 689.258 647.332 1432.700 521.399 539.183

b1: Bending (plane yz)/Flanges mode

b2: Bending mode on plane xy

f : Flanges mode

t: Torsional mode

∗: Mode not provided by the theory

Table 2: Natural frequencies (Hz) of the CC C-shaped beam, c =
2.4

L
, n = 33
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TBM N = 1 N = 2 N = 4 N = 6 N = 7 N = 8 NAS2D
DOFs 165 297 594 1485 2772 3564 4455 27000

Mode 1b 15.261 15.261 15.375 15.306 15.091 15.058 15.048 15.214
Mode 2t -∗ 265.748 162.570 38.767 24.763 24.269 24.187 21.247
Mode 3f - - - 250.566 41.035 40.805 40.018 37.893
Mode 4f - - - 505.329 91.971 78.532 66.927 54.559

b: Bending mode on plane xy

t: Torsional mode

f : Flanges mode

∗: Mode not provided by the theory

Table 3: Natural frequencies (Hz) of the CF Z-shaped beam, c =
2.4

L
, n = 33

BCs Model I Bending II Bending I Shell-like II Shell-like I Torsional II Torsional
SS NAS2D, [36] 13.978 51.366 14.913 22.917 80.415 160.810

N = 5, Exact [36] 14.022 51.503 18.405 25.460 80.786 161.573
N = 5 14.294 51.567 18.608 25.574 80.639 162.551
N = 4 14.294 51.568 23.656 29.403 80.636 162.692
N = 3 14.295 51.583 35.049 61.353 80.847 161.712
N = 2 14.463 53.648 -∗ - 80.838 161.596
TBM 14.459 53.604 - - - -

CC NAS2D, [36] 28.498 68.960 17.396 30.225 80.415 160.810
N = 5, Exact [36] 28.576 69.110 20.484 32.222 80.786 161.573
N = 5 28.354 69.096 20.463 31.974 80.838 161.596
N = 4 28.352 69.097 25.060 34.897 80.838 161.596
N = 3 28.259 68.921 38.889 70.056 80.838 161.596
N = 2 30.742 77.452 - - 80.838 161.596
TBM 30.435 76.489 - - - -

CF NAS2D, [36] 5.059 29.001 14.235 17.435 40.209 120.620
N = 4, Exact [36] 5.077 29.090 23.069 25.239 40.394 121.181
N = 4 5.047 29.002 23.003 24.979 40.431 121.203
N = 3 5.059 28.953 26.934 49.356 40.431 121.203
N = 2 5.059 30.423 - - 40.431 121.203
TBM 5.060 30.312 - - - -

FF NAS2D, [36] 30.829 76.806 14.129 14.171 80.415 160.810
N = 4, Exact [36] 30.932 77.043 22.987 23.053 80.789 161.577
N = 4 30.945 77.052 22.864 23.048 80.787 161.592
N = 3 31.121 77.099 23.043 34.678 80.787 161.592
N = 2 31.349 80.346 - - 80.787 161.592
TBM 31.341 80.286 - - - -

*: not provided by the model

Table 4: Natural frequencies (Hz) of the thin-walled cylinder for different boundary conditions,

c =
2.4

L
, n = 31
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Figure 1: Coordinate frame of the beam model
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Figure 2: Square cross-section
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Figure 3: Influence of the number of points, n, on the first bending (a) and torsional (b) non-
dimensional periods for the second-order (N = 2) model of the CF rectangular beam
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(a) I Bending (b) II Bending

(c) I Torsional (d) II Torsional

Figure 4: First two bending and torsional modes of the CF rectangular beam, N = 5, c =
2.4

L
,
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Figure 5: C-shaped cross-section
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(a) Mode 1 (b) Mode 2

(c) Mode 4 (d) Mode 5

(e) Mode 8

Figure 6: Natural modes of the CC C-shaped beam: (a) Bending (plane yz)/flanges mode; (b)

bending on plane xy; (c-d) flanges modes; (e) torsional mode. N = 8, c =
2.4

L
, n = 33
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b

Figure 7: Z-shaped cross-section
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(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

Figure 8: Natural modes of the CF Z-shaped beam: (a) Bending (plane xy); (b) torsional; (c-d)

flanges modes. N = 8, c =
2.4

L
, n = 33
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Figure 9: Cross-section of the thin-walled cylinder
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(b) I Torsional mode
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(c) I Shell-like mode

Figure 10: Percentage error between the present RBFs and exact reference solutions [36] for various

expansion orders and BCs. Thin-walled cylinder, c =
2.4

L
, n = 31
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(a) I Bending (b) II Bending

(c) I Shell-like (d) II Shell-like

(e) I Torsional (f) II Torsional

Figure 11: First two bending, shell-like, and torsional modes of the SS thin-walled cylinder, N = 5,

c =
2.4

L
, n = 31
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