
04 August 2020

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Fast Feedback Cycles in Empirical Software Engineering Research / Vetro' A.; Ognawala S.; Mendez Fernandez D.;
Wagner S.. - ELETTRONICO. - (2015), pp. 583-586. ((Intervento presentato al convegno 37th International Conference
on Software Engineering tenutosi a Florence nel 16-24 May 2015.

Original

Fast Feedback Cycles in Empirical Software Engineering Research

Publisher:

Published
DOI:10.1109/ICSE.2015.198

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2587982 since: 2016-04-11T16:05:40Z

IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PORTO@iris (Publications Open Repository TOrino - Politecnico di Torino)

https://core.ac.uk/display/234903787?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fast Feedback Cycles in
Empirical Software Engineering Research

Antonio Vetrò⇤, Saahil Ognawala⇤, Daniel Méndez Fernández⇤ and Stefan Wagner†
⇤Technische Universität München, Germany

Email: vetro — ognawala — mendezfe@in.tum.de
†University of Stuttgart, Germany

Email: stefan.wagner@informatik.uni-stuttgart.de

Abstract—Background/Context: Gathering empirical knowl-
edge is a time consuming task and the results from empirical
studies often are soon outdated by new technological solutions. As
a result, the impact of empirical results on software engineering
practice is often not guaranteed.

Objective/Aim: In this paper, we summarize the ongoing
discussion on ”Empirical Software Engineering 2.0” as a way to
improve the impact of empirical results on industrial practices.
We propose a way to combine data mining and analysis with
domain knowledge to enable fast feedback cycles in empirical
software engineering research.

Method: We identify the key concepts on gathering fast
feedback in empirical software engineering by following an
experience-based line of reasoning by argument. Based on the
identified key concepts, we design and execute a small proof of
concept with a company to demonstrate potential benefits of the
approach.

Results: In our example, we observed that a simple double
feedback mechanism notably increased the precision of the data
analysis and improved the quality of the knowledge gathered.

Conclusion: Our results serve as a basis to foster discussion and
collaboration within the research community for a development
of the idea.

Index Terms—Empirical methods, Research methods, Data
mining, Knowledge transfer.

I. INTRODUCTION

In recent years, the contributions made in empirical soft-
ware engineering enabled a shift in our discipline from a
more design-science-driven engineering, where we applied
scientific methods to isolated practical problems, to a more
epistemology-driven and insight-oriented science [2]. That is,
over the years, we could establish a reliable software engineer-
ing body of knowledge which supports the problem-driven
development and evaluation of various methods and tools,
thus, supporting scientific progress in our field. A common
parallelism is often drawn with physics, where experimental
physics is devoted to conduct research upon the theorems
and proofs provided by theoretical physics. However, whereas
physics is governed by precise laws which we can express
and objectively interpret in mathematical forms, software en-
gineering laws are less structured and more difficult to model,
because they rely on the cognitive abilities of people [14].
In addition, software engineering laws are often valid only
within specific contexts, whose boundaries are difficult to
draw because of the multitude and incertitude of the human,
economical, technological, and cultural factors involved. The

aforementioned intrinsic difficulties and the young age of
the discipline make theory building and scientific knowledge
acquisition often slow and not always in tune with the current
speed of industrial practices and innovation. Techniques are
often not tested in practical settings for many years after they
were invented [5].

These issues are well-know in the empirical community,
and since a few years, a need for change has pulsed under the
surface: the traditional empirical techniques might need to be
complemented by new technologies and new ways in which
we treat knowledge today [16]. In particular, data mining
and analysis of software engineering data has captured a lot
of attention in technical briefs, panel sessions and editorials,
and the related concepts have often been identified under the
umbrella of “Empirical Software Engineering (EMSE) 2.0”.

We will summarize the ongoing discussion and evolve it
with our preposition, which is: Empirical Software Engineer-
ing research should steer towards the automatic collection
of domain knowledge as driver and corrector for further
automatic analysis and as facilitator for fast feedback cycles.
We can combine the speed of data mining with the human
domain expertise and knowledge. The expected benefits are
an iterative knowledge-value chain and an iterative pattern
discovery process which allows us a fast transfer into practice
and provides input for follow-up studies.

II. EMSE 2.0

The term EMSE 2.0 was coined first by Thomas Zimmer-
mann and appeared in Andreas Zeller’s 2007 keynote of the
Mining Software Repositories conference [20]. He underlined
that, although empirical studies and their results are valuable,
collecting the proper data takes a high amount of effort and
time and their analysis brings results that are limited in scope
and time. In that keynote, Zeller suggested a scenario based
on the transposition of the techniques and concepts of Web
2.0 into the empirical software engineering community. He
envisioned data being available with no effort and instanta-
neous results aligned to the current situation of the software
project. The vision was grounded on a simple technological
solution that, in fact, has become current practice in the later
years: software archives. Nowadays, we have a large amount of
software repositories (especially open source) which contain
not only source code but also additional information about

© IEEE. This is the author's version of the work. It is posted here by permission of the IEEE for your personal use. Not for redistribution. The definitive version was published in the conference/workshop proceedings.

artifacts and processes: for example, bugs, requirements, de-
velopers’ mails, or change requests. The empirical community
is also making an effort to share this kind of data, spread over
various sources, through the shared PROMISE repository1 and
the related conference.

The keyword EMSE 2.0 appeared again during an ICSE
2011 technical brief by Menzies and Shull [10]. The motiva-
tions of the brief resided in the same problems of slowness
and weak impact of empirical studies. The proposed idea was a
scalable empirical research approach based on the combination
of automated analysis of data with human domain expertise
and knowledge. This approach breaks the narrow technological
view of the original idea of Zeller, including also the domain
knowledge as driver and corrector of the automatic analysis.
This piece of the puzzle has become more and more central
in the later follow-ups. In an editorial introduction of the
IEEE Software magazine in 2012 [16], Shull wrote about
Research 2.0 taking inspiration from the idea of Science 2.0
coined by Shneiderman [15]. Shull stressed again the need of a
hybrid approach that combines the cognitive power of manual
hypothesis testing with the speed of automatic analysis. The
vision was to have tools which would enable practitioners to
take data-driven decisions linked to the business and strategic
goals of an organization. A few months later, in the intro-
duction for the special issue on Software Analytics for the
same magazine [17], the focus on the human intuition behind
massive data analysis was more explicit and enriched with an
accent on collaborative effort in the hypothesis testing process.
In that special issue, we also have found several practical
applications that indicate that we, as a community, are already
heading in this direction.

We are still far from an end point, however. The approach
is promising but not easy, and the original picture drawn by
Zeller might be too optimistic. First, combining data from
different sources is not an easy task: data mining opportunities
can be neutralized by poor quality of the data itself, like a
lack of common semantics, low accuracy, or low degree of
completeness. In addition, even when data is of high quality, a
big amount of data contains big amounts of useless data as well
as statistical noise. Therefore, applying statistical techniques
with human qualitative analysis of input data is essential [21].
Yet, one more important aspect emerging from success stories
in software analytics is to incorporate domain knowledge
and to enable a close relationship between researchers and
practitioners, interactively and iteratively [22]. Also in the
International Workshop of Conducting Empirical Studies in
Industry co-located with ICSE’132, part of the discussion
focused on the value of feedback with stakeholders. The im-
portance of feedback is also stressed by Basili in his personal
perspective on the Empirical Software Engineering story [2]
and it is embedded in the cyclic process for technology
transfer in Software Engineering proposed by Gorshek et
al. [7]. Recent work has even suggested the use of minimum

1https://code.google.com/p/promisedata/
2http://www.essi.upc.edu/ franch/cesi2013/program.html

viable products, which is built around the feedback concept,
in industry-academia collaborations [11] .

Finally, past work showed that learning and flexibility has
positive impact on process decisions [6]. In the same way, we
think that applying fast iterations of feedback in the empirical
cycle, we can minimze risks of failure in industry-research
collaborations and focus on value.

Therefore, we center our idea around the role of feedback
and our proposition is that data mining can speed up the
feedback cycles with stakeholders at any of the steps of the
traditional empirical research cycle3.

III. ENABLING FAST FEEDBACK CYCLES

Feedback can be collected informally, for example in ret-
rospective meetings, and also using more formal empirical
methods like surveys or interviews. The Web 2.0 technologies,
however, have revealed mechanisms and tools to collect fast
feedback, both explicitly and implicitly. Some straightforward
examples: Facebook and Google use “like” , “+1” and recently
even “emoticons” to gather opinion and sentiments. Stackover-
flow has a mechanism of arrows up and down to rate proposed
solutions. The New York Times traces users navigation to
suggest similar interesting readings. Amazon does even more:
It tracks user purchases and navigations on the website to
build customized recommendations and after purchases asks
the buyer to leave reviews. These examples4 show that simple
but effective mechanisms can easily and quickly collect a large
amount of feedback to extract knowledge. In addition, when
it comes to combining a large amount of data with human
feedback, results are even more promising: Google Translator5

refines its probabilistic models based on millions of digitalized
books with human feedback. Another project, reCAPTCHA6,
instead, reverts this cycle: it uses a large amount of human
feedback (crowd wisdom based on independent judgements)
to build knowledge for text recognition tasks. We can take
inspiration from these mechanisms and elaborate them for the
following goals:

1) Shorten our feedback time towards industry collaborators,
2) fasten feedback among scientists, and
3) tune the empirical approach in any of its phases from

design to data analysis and interpretation.
In our vision, the data sources include data from the de-
velopment, execution, and maintenance of software projects.
As stated in the introduction, collecting data from software
production has become a normal practice in the last years.
Yet, understanding which data to collect, what is good data,
and how to get it is not an easy task at all. For this reason,
we think that domain knowledge is still an important missing
piece in EMSE 2.0 [21]. In addition, tuning of the data
mining techniques for empirical software engineering research
purposes is still an open issue [18].

3Herein, we will refer to the cycle reported by Jedlitschka [8] which is
based on the Quality Improvement Paradigm and Experience Factory [3].

4Some of these examples are from [9]
5http://translate.google.com/
6https://www.google.com/recaptcha

These two concepts form the basic of the proposed ap-
proach: tune data analysis techniques with automatic injection
of stakeholders’ feedback. For a first test of this approach, we
built a fast feedback cycle with a local company as described
next.

IV. PROOF OF CONCEPT

We developed a small proof of concept with an industrial
partner to investigate our proposed approach. The industrial
partner follows the Scrum development process with tool
support for the process steps by Atlassian Jira. Examples of
the available data, by phase, are:

• Sprint planning: Story points, tasks, features, dependen-
cies between features, characteristics of stories

• Coding: Implementation time, code, structural metrics
from code, bugs, changes

• User acceptance: Outcome, bugs, customer comments
• Retrospectives: Notes, problems
For the proof of concept, we concentrated on the user

stories to learn more about the context of the requirements and
recurring patterns within them. The main practical goal was to
discover “scope creeps”, i.e. discrepancies in the mapping of
user stories and project goals. As a secondary use, a prediction
mechanism could reveal recurring topics for user stories which
were wrongly estimated or which code exposed the most bugs.

All the user stories used in this study were marked as
“100% complete” or “Unresolved”. For our analysis, we only
used those stories marked as completed and belonging to a
single project. To extract semantic information, we followed
a process that consisted of two steps:

1) Text Sanitization: Pre-processing the text of user stories
into a consistent format. This includes removal or con-
version of non-ASCII characters, or accents followed by
language-specific stemming [12].

2) Topics Extraction: A probabilistic method of inferring
topic distribution from the set of all user stories. This
method is described in more detail in the next sub-section.

A. Topics Extraction: Implementation
We applied a probabilistic approach to inferring topic dis-

tribution from a set of documents as described in [19]. Given
a list of topics, the collection of documents is assumed to
contain a distribution of these topics. Similarly, the topic itself
has a distribution over all words in the vocabulary. This can
be formalized as below:

P (wi) =
TX

j=1

P (wi | zi = j)P (zi = j) (1)

Here, P (wi) is the probability of drawing the ith word in
the vocabulary. Index j denotes the topic id. zi is the topic
from which wi is sampled. Therefore, P (zi = j) denotes the
probability of drawing from topic j. The probability P (wi) is
given as the sum of conditional probabilities of drawing word
wi from any of the T topics present in the document corpus.

Every document is assumed to have been generated with
these probability distributions (topic distribution in document

corpus and word distribution in topics). This is called the
generative model. The idea of the generative model can be
inverted to a statistical inference process to learn these prob-
ability distributions: This inversion process to learn the topics
from a big set of text documents is called Topic Modeling.
In the set of user stories, we treat each story (indexed by
Story ID) as a separate document. On the output from the text
sanitization step, we perform a statistical inference to get a list
of k topics from the list of user stories. We then associate a
feature vector to every user story that denotes whether a topic
was seen in it or not depending on the top n words (according
to the probability distribution) that belong to a topic. The
value of k was chosen to be such that the feedback from the
stakeholders is fast.

B. Fast Feedback Mechanism
We evaluated the topic extraction step by assuming that the

group of words present in a topic indicate a functional or non-
functional area of requirements. Examples of such areas are
logistics, database, or web framework. We simulated a simple
feedback collection mechanism with two iterations. In the first
iteration, we presented the list of topics to the partners to
get their feedback. In the list of extracted topics, the partners
marked the ones where the group of words together clearly
point to a functional or non-functional area. Partners also
marked the most influential words in all topics, i.e. those words
that were significant and could be related to functionalities or
important functional requirements.

We used this feedback to tune the topic extraction process
in the following way: We removed the terms that were not
marked as influential assuming that these words do not have
an effect on the ability to identify a functional or a non-
functional requirement. After this, we ran the topic extraction
process in a second iteration to extract the same number of
topics as before. The stakeholders give the same manner of
feedback on the second iteration. The most important knowl-
edge that we obtained from the second iteration, which was
tuned with the stockholders’ feedback, was that the number
of topics that were marked with one or more functional or
non-functional area of requirement increased after the second
iteration. Specifically, this number increased from 3 out of 10
to 9 out of 10 from the first iteration to the second iteration.
Concretely, this means that incorporating the feedback from
the first iteration helped to improve the topic extraction stage
quantitatively by having more related influential terms appear
together in topics. Additionally, there were 23 functional or
non-functional areas identified within these 9 topics in the
second iteration, compared to only 5 in the 3 topics of the
first iteration.

Therefore, this proof of concept demonstrates potential
benefits of proceeding with fast feedback cycles to gather
knowledge. In particular, instead of classifying the user stories
with a lot of human effort and with the risk of still being wrong
(at least in part), it is possible run quick automatic analysis,
get the domain knowledge through feedback mechanisms
and automatically refine. In our example we observed that

a simple double feedback mechanism (i.e. marking influential
work and writing on text box functionalities connected to the
automatically extracted topics), notably increased the precision
of the topics extraction algorithm from the user stories.

C. Research Roadmap

From a conceptual point of view, our future effort will be
devoted to understand under which circumstances and at which
points of the empirical cycle [8] it is possible to inject feedback
cycles. It is important to understand which techniques to use
when to build quantitative analyses upon qualitatively gathered
information. Research in such directions has been already done
in the interactive machine learning community (e.g., [1], [4]).
In particular, the trend towards iterative development with
very short iterations supports in quickly observing results of
feedback. Considering this research as a community effort, it
will hopefully result in:

1) A coarse artefact model in support of the approach
2) A set of method building blocks and their combination

to create the artefacts
3) Application of the building blocks to real problems in the

field and collection of preconditions, lessons learnt, and
fail conditions

From the implementation point of view, our next step is a
more complete evaluation of the proof of concept presented
here. To this end, we aim at implementing the feedback
mechanism within an interactive web application and test the
improvements longitudinally with more iterations. We are also
investigating the application of our idea in the field of software
energy efficiency research (for details see [13]).

V. CONCLUSIONS

The promise of EMSE 2.0 is to speed up the transfer of
empirical studies and improve their impact into industrial
practice. To this end, we envisioned a way to enable fast
feedback cycles in empirical software engineering research.
Our proposition is that the analysis of data from software
projects can be combined with automatic mechanisms to
gather stakeholders feedback and improve precision and ap-
plicability of the analyses. We built a proof of concept with
two iterations of feedback cycles to tune the extraction of user
stories’ topics and reported improvements.

AKNOWLEDGEMENTS

We thank Forrest Shull, Davide Falessi, Andreas Jedl-
itschka, and Jens Heidrich for the time spent around this idea
at Fraunhofer CESE in College Park. Thanks also to Henning
Femmer and Jakob Mund for their feedback.

REFERENCES

[1] S. Amershi, M. Cakmak, W. B. Knox, and T. Kulesza. Power to
the people: The role of humans in interactive machine learning. AI
Magazine, 35(4):105–120, 2014.

[2] V. Basili. A personal perspective on the evolution of empirical software
engineering. In J. Muench and K. Schmid, editors, Perspectives on
the Future of Software Engineering, pages 255–273. Springer Berlin
Heidelberg, 2013.

[3] V. R. Basili, G. Caldeira, and H. D. Rombach. Encyclopedia of Software
Engineering, chapter The Experience Factory, pages 469–476. John
Wiley & Sons, 1984.

[4] S. Das, T. Moore, W. Wong, S. Stumpf, I. Oberst, K. McIntosh,
and M. M. Burnett. End-user feature labeling: Supervised and semi-
supervised approaches based on locally-weighted logistic regression.
Artif. Intell., 204:56–74, 2013.

[5] O. Dieste, N. Juristo, and M. Martins. Software industry experiments: A
systematic literature review. In Conducting Empirical Studies in Industry
(CESI), 2013 1st International Workshop on, pages 2–8, 2013.

[6] H. Erdogmus. The economic impact of learning and flexibility on
process decisions. Software, IEEE, 22(6):76–83, Nov 2005.

[7] T. Gorschek, C. Wohlin, P. Carre, and S. Larsson. A model for
technology transfer in practice. Software, IEEE, 23(6):88–95, Nov 2006.

[8] A. Jedlitschka, L. Guzmán, J. Jung, C. Lampasona, and S. Steinbach.
Empirical practice in software engineering. In J. Muench and K. Schmid,
editors, Perspectives on the Future of Software Engineering, pages 217–
233. Springer Berlin Heidelberg, 2013.

[9] V. Mayer-Schönberger and K. Cukier. Big Data: A Revolution That Will
Transform How We Live, Work, and Think. Houghton Mifflin Harcourt,
2013.

[10] T. Menzies and F. Shull. Empirical software engineering 2.0. http:
//tinyurl.com/mdjlxhq, Jan. 2011.

[11] J. Muench, F. Fagerholm, P. Johnson, J. Pirttilahti, J. Torkkel, and
J. Jarvinen. Creating minimum viable products in industry-academia
collaborations. In Proceedings of the Lean Enterprise Software and Sys-
tems Conference (LESS 2013), LNBIP, Galway, Ireland, 2013. Springer-
Verlag, Heidelberg.

[12] M. F. Porter. An algorithm for suffix stripping. Program: electronic
library and information systems, 14(3):130–137, 1980.

[13] G. Procaccianti, P. Lago, A. Vetrò, D. Méndez Fernández, and
R. Wieringa. The green lab: Experimentation in software energy
efficiency. In Proceedings of the 37th International Conference on
Software Engineering (ICSE), 2015. To appear.

[14] D. Rombach. Empirical software engineering models: Can they become
the equivalent of physical laws in traditional engineering? In J. Muench
and K. Schmid, editors, Perspectives on the Future of Software Engi-
neering, pages 1–12. Springer Berlin Heidelberg, 2013.

[15] B. Shneiderman. Science 2.0. Science, 2008.
[16] F. Shull. Research 2.0? IEEE Software, 29(6), 2012.
[17] F. Shull. Getting an intuition for big data. IEEE Software, 30(4):3–6,

2013.
[18] D. I. K. Sjoberg, T. Dyba, and M. Jorgensen. The future of empirical

methods in software engineering research. In 2007 Future of Software
Engineering, FOSE ’07, pages 358–378, Washington, DC, USA, 2007.
IEEE Computer Society.

[19] M. Steyvers and T. Griffiths. Probabilistic topic models. Handbook of
latent semantic analysis, 427(7):424–440, 2007.

[20] A. Zeller. Empirical software engineering 2.0: How mining software
repositories changes the game for empirical software engineering re-
search. http://tinyurl.com/k7vaj6p, 2007.

[21] A. Zeller, T. Zimmermann, and C. Bird. Failure is a four-letter word:
A parody in empirical research. In Proceedings of the 7th International
Conference on Predictive Models in Software Engineering, Promise ’11,
pages 5:1–5:7, New York, NY, USA, 2011. ACM.

[22] D. Zhang, S. Han, Y. Dang, J.-G. Lou, H. Zhang, and T. Xie. Software
analytics in practice. Software, IEEE, 30(5):30–37, 2013.

