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Abstract 

Purpose: Developing a real time method for the localization of muscle activity regions from high 

density surface electromyogram (EMG).  

Method: The inverse problem of source localization is solved by a regularized technique applied to 

an over-determined problem searching for the least mean squares approximation of the recorded 

signal with a linear combination of a set of basis waveforms (subject specific).  

Results: The method, tested on simulations, provides accurate estimates of the mean location of the 

sources (in ideal conditions, it has about 1 mm of mean error in locating the depth, negligible error 

in locating the transverse location of the active region). For reasonably small perturbations, it is 

stable to possible detection problems (e.g., misalignment between the electrodes and the fibres, 

noise), inaccurate knowledge of the anatomical and physical properties of the investigated tissues 

(e.g., tissue thickness, location of IZ, fibre length, tissue conductivity) with mean estimation errors 

of about 1.5-2.8 mm.  

Conclusions: An innovative algorithm is proposed for the non-invasive localization of the active 

regions of a muscle. It is real time and opens potential future applications for prosthesis control and 

biofeedback.   

 

Keywords: electromyography, inverse problem, source localization, real time  
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1. Introduction 

Surface electromyogram (EMG) is the potential recorded over the skin resulting from the 

generation (at the innervation zone - IZ), propagation (along muscle fibres, across the membrane), 

extinction (at the tendon endings) of current sources that induce fibre contraction. High density 

surface EMG (HDsEMG) has been proposed to investigate the muscle activity on a wide spatial 

area with a good selectivity [1]. Indeed, spatial filters allow to overcome in part the smaller 

selectivity with respect to needle EMG [2]. As a results, HDsEMG may find many clinical 

applications, some of them similar to those of the routinely used needle EMG (e.g., concerning the 

recruitment strategy of different motor units - MU [3]), but without requiring invasive procedures 

[4-6]. Moreover, as a wide area is considered, many important features (not attainable from needle 

EMG) can be extracted, e.g. concerning the anatomy of the muscle (positions of IZ and tendon 

endings [7-11]) and the velocity of propagation of MU action potentials (MUAP) [12]. 

An important information on muscle contraction is the position of the active regions. In principle, 

this information could be extracted from HDsEMG by estimating the location of the current sources 

generating the surface potential. However, identifying the sources from the recorded EMG is not 

simple, as it is an inverse problem. The localization of sources within the brain was studied 

extensively from surface electroencephalogram (EEG) [13]. In the field of EMG, some studies have 

been proposed [14-20]. The identification of the source of a single MUAP was addressed by 

considering that the decay of the potential in the transverse direction with respect to the fibres is 

slower when the MU is deeper [17]. This method requires the (computationally intensive) 

decomposition of the surface EMG as a preliminary step, if interference EMG is considered. 

Sophisticated methods, based on advanced simulations by the finite elements method (FEM), were 

also proposed to investigate interference EMG [14-18]. More recently, FEM simulations combined 

with regularization techniques were applied [19-20]. All these methods have a high computational 

cost. Thus, they are not feasible for real time applications, like prosthesis control or rehabilitation 
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guidance with a biofeedback (where an estimation of the active regions would be beneficial, to 

improve prosthesis control without introducing an unpleasant delay or to examine the activity of the 

muscle during a rehabilitation program [20]). As an alternative, a simple and fast method was 

proposed to estimate the relative depth of the sources from interference surface EMG [21]. Such a 

method, together with a simple algorithm to estimate the location of the sources in the directions 

parallel to the skin (e.g., based on the mean amplitude of the signal) could provide real time 

estimates. However, this approach has some limitations: it provides only relative depth information 

(i.e., the region activated in a period is deeper or more superficial than in another moment), it gives 

an average estimate of depth (for example, if there are two active regions at different depths, the 

information obtained by the method is related to the average depth among the two regions, 

weighted by the amplitude of the sources and the distance from the detection channels) and it does 

not estimate the contributions of different sources (that could be useful, e.g. to reduce cross-talk 

[20]). 

Here, an innovative method is proposed to provide a rough localization of the sources of 

interference surface EMG in real time. It is based on a set of pre-determined waveforms, each 

associated with a source in a specific location (as in [14][18]), recorded by a HDsEMG system 

(with number of electrodes higher than the number of waveforms). A regularization method is used, 

in order to stabilize the estimates (as in [19][20], where an expensive FEM model is used). The 

problem is stated in terms of the minimization of a functional in the least mean squares sense, 

whose solution is achieved with a series of matrix multiplications, which can be obtained quickly, 

opening new potential real time applications.   

2. Materials and Methods 

The method and the simulated signals used to test it are described in the following. 

2.1 Algorithm for source localization 

Assume to describe the recorded EMG ),( txb by the following expression 
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where ),( txan  is a normalized waveform representing the activity of fibres in a specific muscle 

region (NR is the number of regions considered), x is the space variable indicating the position of the 

recording channel, t is the time variable, nk  is a delay (N is the number of considered delays), 

knX ,  are unknown coefficients to be determined, indicating which muscle region is active and the 

average intensity of the source. The functions ),( txan  (referred to as basis waveforms in the 

following) could be simulated using a model replicating as far as possible the investigated 

physiological system: for example, the geometry of the tissues could be measured (by ultrasound 

scanning [22] or MRI [15][16][18-20][23]), their conductivity could be taken from the literature 

[24][25] and the anatomy of the muscle fibres (positions of the IZ and tendons) could be 

investigated by preliminary surface EMG recordings [8-11]. Another possible choice is to measure 

the surface potential resulting from the activity of a specific region: needle EMG can be recorded 

from different locations and decomposed in order to identify the activity of single MUs [26]; then 

the surface response related to each identified MU can be estimated by spike triggered averaging 

[27], obtaining very selective information on the surface EMG response of the activity of specific 

muscle regions.  

Equation (1) can be rewritten in matrix form 

bAX                                                                         (2) 

where A contains the basis waveforms, b the measurements, X the unknowns 
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where the arrows indicate that a vector is formed listing the values corresponding to each detection 

channel and time sample.  

There are some problems in solving the linear system (2): inverting A is not possible because it is 

usually rectangular; the measurement vector b is not in the image of A, as it should be smooth (as it 

is the solution of a problem of potential [28]), but it is not, due to the noise (always present in the 

experimental data [29]).  

The problem could be solved in the least mean squares sense 

2
min bAX

X
                                                                (4) 

with solution 

  bAAAX TT 1
                                                                 (5) 

However, this solution could result in many contributions, which compensate each other. In order to 

get a reliable solution, a-priori information can be included by introducing penalization terms and 

imposing constraints [13]. Tikonov regularization is obtained solving the following problem  



norm
solution

22

norm
residual

min XbAX
X




                                                    (6) 

in which the solution is imposed not to have a large norm (ruling out oscillating solutions), by 

properly tuning the penalization parameter (equal to the maximum eigenvalue of the matrix AAT  

divided by 1000, in this paper). The problem has an analytical solution obtained considering that 
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from which we have 

    bAIAAXbAXIAAcBBXB TTTTTT 1
        (8) 

This solution is less sensitive to noise than (5) (as the condition number of the matrix to be inverted 

was decreased), but it could have unphysical negative values. To avoid this problem, the solution 

was constrained to be non-negative. The projected Landweber method [30] was used. It updates the 

solution in the direction of steepest descent of the square error functional and then employs 

projections onto the constraint set, i.e. the non-negative orthant, which is a closed convex set. The 

algorithm is the following 
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where the initialization for X0 is given by the Tikonov method (Equation (8)), )(max AAT  is the 

maximum eigenvalue of the square matrix AAT , the step size parameter  was chosen in order to 

achieve convergence in a few steps (5 iterations were used here) and the maximum operator in the 

definition of Xk+1 is evaluated component-wise [30]. In order to have a fast algorithm, the matrix A 

is obtained considering a fixed geometry and a constant velocity of propagation of the current 

sources along the fibres (4 m/s). Thus, the matrix   TT AIAAM
1

   (needed to compute the 

Tikonov solution (8)), the matrix AAT  and its maximum eigenvalue can be computed before the 

application of the method to the signals. As a result, the algorithm (9) consists only of a few matrix 

multiplications, which could be performed very quickly (see the Results section for details).  

As the considered geometry is fixed, the method could be applied in isometric conditions or in 

situations in which the movement is limited. If dynamic conditions are considered, a set of matrixes 

could be saved, each corresponding to a specific geometrical configuration of the muscle fibres and 
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the matrix corresponding to the actual condition could be selected on the basis of the measured joint 

angle. In the following, isometric conditions are simulated (however, the effect of different IZ 

positions and fibre lengths is considered).  

The average muscle fibre conduction velocity (CV) can change during a contraction, for example 

due to the recruitment of different MUs with different CV (e.g., when a non-isotonic contraction is 

studied [31]) or as a myoelectric manifestation of muscle fatigue [32]. Muscle fibre CV was 

estimated from the linear electrode array aligned to the muscle fibres that corresponded to the 

maximum average rectified value (ARV). CV was computed with a multichannel least mean 

squares approach [33], applied to monopolar signals to which the common mode (CM) was 

subtracted. This method, tested on a few signals, appeared to be more stable than applying the 

algorithm to double differential (DD) signals (as often done in the literature [33]). This is probably 

due to the larger number of monopolar channels and to a lower effect of noise with respect to DD 

(fully testing this hypothesis is beyond the aims of this paper). For the specific application 

considered here, using monopolar signals is beneficial also because they have a larger detection 

volume than DD. Once an estimate of CV was obtained, all the signals were rescaled in time in 

order to compensate the CV variation with respect to the simulated waveforms. In different tests, 

CV compensation was included or excluded, indicating the effect of such an additional step.  

Another important consideration is required on the number of conditions and of unknowns in the 

inverse problem to be solved. Preliminary tests indicated that more accurate results were obtained 

using an over-determined system. The number of measurements (equal to the number of rows in the 

matrix A and reflecting conditions) is given by the number of detection channels (most of the tests, 

described in Section 2.2.1, were performed considering 9 linear arrays of 7 monopolar channels, 

aligned to the fibres) multiplied by the number of time samples in the considered epoch of signal 

(indicated by EPOCH in the following). The number of unknowns (equal to the number of columns in 

the matrix A) is given by the number of waveforms considered (given by the number of considered 

depths multiplied by the number of positions along the direction transverse to the fibres), multiplied 



 9 

by the number of time delays. In most of the simulation tests (Section 2.2.1), I considered 6 depths 

(one every 2 mm, in the range 1 to 11 mm), 9 transverse displacements (one every 8 mm, from -32 

to 32 mm), delays from -WF to EPOCH, where WF is the duration of a simulated waveform (defined 

as the simulated length of the fibre divided by CV plus 10 ms, added in order to consider the time 

needed for the generation/extinction of the source). This range of delays includes all non-zero 

contributions of the waveforms to the recorded potential. In order to decrease the number of 

unknowns, the delays were down-sampled of a factor 2 with respect to the sampling rate. In this 

way, considering a number of source positions to be estimated less than or equal to the number of 

channels in the detection grid, the linear system (2) is over-determined, irrespective to the duration 

of the epoch.  

As an estimate of the dimensionality of the problem, consider the case of processing an epoch of 

signal with duration 100 ms: the number of conditions is 9 (arrays) x 7 (channels) x 100 (number of 

samples in the epoch, sampled at 1 kHz) = 6300; the number of unknowns is 6 (depths) x 9 

(transverse displacements) x 60 (number of considered delays, equal to 50, which is the number of 

samples in an epoch sampled at 500 Hz, plus 10 samples to cover a waveform) = 3240.  

2.2 Simulated signals 

To test the algorithm, interference surface EMG was simulated. A plane layer volume conductor 

model was used to simulate single fibre action potentials (SFAP) [34], assuming time sampling 

frequency of 1 kHz and muscle fibre CV equal to 4 m/s. The conductivity of the tissues were the 

followings: skin thickness 1 mm, conductivity 2.2∙10
-2

S/m [24]; fat thickness 3 mm, conductivity 

4∙10
-2

S/m [24]; muscle longitudinal conductivity 40∙10
-2

S/m and transverse conductivity 9∙10
-2

S/m 

[25].  

A sensitivity analysis (Section 2.2.1 below) was performed on the basis of a dataset simulating an 

active region moving around the muscle. The geometry of the volume conductor is shown in Figure 

1A. The performances of the algorithm in localizing the centroid of the active region were tested 
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(Figures 2-7). Then, a specific example of application was considered (Section 2.2.2), in which 4 

distinct muscles were considered and all their possible co-activations were simulated (Figure 8). 

The algorithm was used to identify which muscle was active in order to discriminate between 

different activation patterns (Table 1). 

2.2.1 Sensitivity analysis  

Monopolar surface EMGs were simulated as detected by a two dimensional grid of 9 parallel arrays 

of 7 electrodes, centred at 25 mm distal to the IZ, aligned to the muscle fibres, with 8 mm inter-

electrode distance (IED, Figure 1A). Muscle fibres were simulated inside a rectangular cross-

section area with 70 mm of lateral extension and 10 mm of maximal depth. Symmetrical muscle 

fibres (with IZ half way between the tendons) were simulated with semi-length 50 mm.  

Each SFAP was used to simulate single MUAPs, approximating the smoothing due to the spread of 

the IZs and tendon endings (8 mm) by a time convolution with a Gaussian window function [32]. 

The number of fibres in the MUs was distributed as an exponential function [35], with the largest 

MU including a number of fibres 20 times greater than that of the smallest one. The distribution of 

single MU CV was assumed to be Gaussian, with a mean of 4 m/s and standard deviation of 0.3 

m/s. MUs were recruited according to the recruitment threshold excitation function proposed in [35] 

with range of thresholds equal to 60%. The discharge statistics were modelled assuming minimum 

and maximum discharge rates of 8 and 35 pulses per second (pps), a linear increase of the discharge 

rate with force once the MU was recruited (0.5 pps/% of maximal voluntary contraction - MVC, 

between the minimum and maximum rates stated above) and a Gaussian distribution of the inter-

pulse interval variability (coefficient of variation equal to 0.2). The MUs were recruited from low to 

high CV [36].  

An interference surface EMG of duration 20 s was simulated, imposing a contraction level of 50% 

of MVC (a few tests with different contraction levels provided equivalent results). Different regions 

within the muscle were activated during the simulation. Specifically, the simulation time was 
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divided into 100 epochs. In each epoch, only the MUs included in a specific region were activated: 

such a region was an ellipse with semi-axes 2.5 and 10 mm, in the depth and transverse direction 

respectively, as shown in Figure 1B. The active region was displaced during the simulation so that 

its centre toured around an elliptical path, with semi-axes 4 and 30 mm, in the depth and transverse 

direction, respectively (Figure 1B).  

The algorithm was applied to non-overlapped epochs of the simulated surface EMG of 50, 100 or 

150 ms, in different tests. In order to check the accuracy of the algorithm in detecting the active 

region, for each epoch, the mean position of the firing MUs was computed and compared to the 

mean of the estimated distribution (cumulated over the considered time delays and removing the 

values under the 30% of the maximum, in order to reduce the contribution of noisy estimates and of 

the blurring). The mean and the standard deviation of the distances (across different epochs) 

between the mean position of the firing MUs and the mean of the estimated distribution was 

considered to measure the performance of the method.  

First, a reference test was considered in which the basis waveforms were obtained using the same 

simulation model as that used to simulate the MUAPs. Then, a sensitivity analysis was performed, 

assuming that there was a mistake between the actual investigated physiological system and the 

simulated or experimental waveforms used to fit the EMG data (by Equation (1)). Indeed, errors 

could be done in estimating the geometry or the conductivity of the tissues and the anatomy of the 

investigated muscle fibres. The same simulated interference signal was considered for the tests, but 

different models were used to simulate the waveforms included in the matrix A in (3). The 

following parameters were changed one at a time or altogether, in different sets of simulations: skin 

thickness, fat thickness, skin conductivity, muscle conductivity, IZ location and fibre length. 

Moreover, technical problems were considered: misalignment of the detection system with respect 

to the fibres and Gaussian additive noise was added to the interference EMG (with SNR between 10 

and 25 dB). In order to test the effect of a change on CV, instead of using the reference CV of 4 m/s 



 12 

(which is equal to the average CV of the simulated MUs), a different CV (between 3 and 5 m/s) was 

used to simulate the waveforms.  

Moreover, different spatial filters were considered, as an alternative to the monopolar potential used 

as a reference (which assumes a common reference electrode for all channels): a variation of the 

monopolar derivation (borrowed from EEG), using the average potential across all electrodes as the 

reference (it is the so-called virtual reference [1]); single differential (SD); double differential (DD); 

Laplacian (NDD). 

The algorithm was implemented in Matlab and tested on the three following personal computers 

(acquired between 5 and 2 years ago), in order to investigate the time required to process an epoch: 

 PC1: Intel(R) Dual-Core, T5500, with clock frequency 1.66 GHz, 2 GB of RAM, 32 bits 

operating system;  

 PC2: Pentium(R) Dual-Core, with clock frequency of 2.8 GHz, 4 GB of RAM, 64 bits 

operating system; 

 PC3: Intel(R) Core i7-2630QM, Quad-Core, with clock frequency of 2 GHz, 6 GB of RAM, 

64 bits operating system. 

2.2.2 Example of application: identification of patterns of co-contractions  

Monopolar interference surface EMGs were simulated using the same simulator described in 

Section 2.2.1. Four different muscles were simulated (muscle geometry is represented in Figure 

8A). They had rectangular cross-sections with 30 mm of lateral extension and were either 

superficial (maximal depth lower than 8 mm) or deep (range of depth between 9 and 16 mm). The 

muscle fibres were 200 mm long, with two IZs uniformly distributed among the MUs of the 

muscles and located 20 mm apart from each other. An interference signal (20 s in duration, force 

level 75% MVC) was simulated for each muscle as recorded by electrode grids covering the same 

portion of muscle (centred half way between the tendons, with dimension 50 mm along the fibres 
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and 100 mm in the transverse direction) with different densities: IED between 5 and 10 mm were 

considered. The basis waveforms simulated sources with 6 possible depths (between 1 and 16 mm), 

11 transversal distances (between -50 and 50 mm) and either of the 2 IZs: thus, a total number of 

132 waveforms were simulated (notice that, having 2 randomly distributed IZs implies that the 

number of waveforms, and thus also of unknowns, is doubled). It is worth noticing that the number 

of electrodes was larger than the number of basis waveforms only for IED = 5 mm and the 

investigated mathematical problem was over-determined only in such a case. The algorithm was 

first applied to 5 s of each of the 4 signals simulating the selective contraction of a single muscle: 

the distribution of sources was computed for each 50 ms epoch and then averaged to estimate the 

mean distribution associated to the activity of each muscle. This phase was a sort of training of the 

algorithm, which learned the distribution associated to the activity of each of the 4 investigated 

muscles. Then, the signals of different muscles were summed in order to simulate all the 15 

possible co-contractions (4 single muscle contractions plus 6 pairs of co-contracting muscles plus 4 

triplets and 1 case in which all muscles were co-contracted). The algorithm was tested on these 15 

patterns of activations, considering epochs of 50-200 ms. The estimated distribution was 

decomposed in the least mean squares sense as a linear combination of the 4 distributions associated 

to the selective activation of each of the 4 muscles. The rational of this decomposition is that the 

distribution estimated from the activity of the muscles is well approximated by the sum of the 

distributions obtained processing the activation of each muscle separately (correlation coefficient 

above 98%). Indeed, the contribution of each source is linearly combined in the recorded signal. 

Moreover, the algorithm requires mostly linear operations, with the exception of the imposition of 

the positivity constraint. This property allows to identify the contribution in a co-contraction of each 

of the considered muscles.   

3. Results 

Figure 1 shows the simulation model, indicating the geometry and the conductivity of the volume 

conductor, the anatomy and position of the considered MUs. The active region changes during the 
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simulation. As a consequence, the simulated interference signal shows variations in amplitude, both 

in time and across different channels.  

 Figure 2 shows an example of application of the algorithm. Each epoch of EMG is approximated as 

a sum of amplitude scaled and delayed basis waveforms, each representing the activity of a specific 

region within the muscle. Four sample epochs are selected in Fig. 2A and considered in Fig. 2B. 

The distribution of activities was computed for each considered time sample. Such a distribution 

was then cumulated over the delays obtaining the average activity of each region within the muscle 

in the considered epoch (the contour plot of the distribution is shown for each of the four selected 

epochs in Fig. 2B). The barycentre of the distribution is computed and compared with that of the 

centres of the MUs which are active in the considered time epoch (the locations of the MUs which 

fire during the epoch are shown in Fig. 2B). Repeating this estimation for each epoch in which the 

simulated signal is divided, the performance of the method can be assessed (the estimation of depth 

and transverse displacement are shown in Fig. 2C). 

Figure 3 considers different errors in the anatomy of the muscle or in the geometrical or 

conductivity properties of the model used to generate the basis waveforms: A) skin thickness, B) fat 

thickness, C) skin conductivity, D) muscle conductivity, E) fibre length, F) IZ location. A mistake 

in the thickness of the tissues over the muscle determines a bias in estimating the depth of the active 

region. The variation of distance of the detection system from the sources determined by a wrong 

measurement of the thickness of the tissues is in part ascribed by the algorithm to the depth within 

the muscle (e.g., if the fat layer is assumed to be thinner, the estimated depth within the muscle is 

larger). However, the relative depth within the muscle is still kept. Consider also that, using an 

ultrasound or MRI system, the measurement of the tissue thickness is expected to be more precise 

than the simulated conditions.  

It is noteworthy that the estimation is not much affected, neither by the skin conductivity (which 

could have large variations both between and within subjects during an experiment), nor by the 

muscle conductivity (which is not simple to measure).   
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There is a bias in the estimation of the superficial active regions when too short fibres are used to 

simulate the basis waveforms, a bias in estimating the deep active regions if the basis waveforms 

refer to fibres which are too long. This is probably due to the contribution of non-propagating, end-

of-fibre components: if the fibres are assumed short, the basis waveforms have a higher content of 

such components, biasing the location of superficial active regions, which have a low content of 

end-of-fibre components; vice versa if the fibres are assumed too long. 

The performances are largely affected by an error in locating the IZ. The simulated conditions 

consider a maximal displacement which is larger than the IED. The localization of the IZ from 

HDsEMG can be very precise [7]. However, the IZ can move under the electrode grid (both in 

isometric [37][38] and in dynamic contractions [39]). In such a case, different kernel matrices could 

be saved for different locations of the IZ and selected, e.g., on the basis of the measured joint angle. 

As an alternative, the electrodes could be placed between the IZ and a tendon, being careful that the 

IZ does not shift under the electrodes during the investigated movement. This could be useful also 

to record less correlated information (some of the simulated channels on either side of the IZ record 

the same potentials).  

Figure 4 considers A) different spatial filters or possible problems related to B) misalignment of the 

detection system with respect to the fibres, C) experimental noise, D) CV.  

The performances of the method decrease as the spatial filter is more and more selective. Indeed, 

the detection volume is smaller for more selective spatial filters. The performances are only slightly 

degraded when using the monopolar detection with virtual reference. Thus, this detection method 

could be used instead of other spatial filters in cases in which large non-physiological CM 

components corrupt the signal.  

The error in locating the depth of the active region is largely affected (mostly in the superficial 

region) by a possible misalignment of the electrode grid, when it is about 10° or higher. Indeed, a 

misalignment with respect to the fibres induces large variations of the shapes of the action 

potentials in the channels that the algorithm assumes to be aligned to the muscle fibres. Thus, the 
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EMG cannot be represented accurately by model (1) and the estimated activity distribution is not 

reliable. Hence, care should be given in placing the electrode grid (or in estimating the 

misalignment, if the muscle has not parallel fibres [40][41]; in such a case, the misalignment should 

be considered in simulating the basis waveforms). Another possible way to counteract misalignment 

problems is to reduce the number of channels aligned to the fibres and increase the density of the 

channels in the transverse direction. This solution could be a strict requirement, e.g. in the cases in 

which the fibres change orientation in different dynamic tasks of the investigated muscle. 

The effect of noise is clearly visible when the SNR is about 15 dB or lower. The most affected are 

the deepest active regions, as they are associated to a smaller EMG with respect to the superficial 

ones.  

There is a bias toward lower depths if a larger CV is considered and toward higher depths if the CV 

used to simulate the basis waveforms is smaller than the average CV of the simulated MUs. This 

result could be interpreted considering that a larger CV corresponds to a larger contribution of the 

high frequency components in the spectrum [42]; a large contribution of high frequency 

components in the EMG is also obtained when superficial MUs are active (vice versa, in the case of 

small CV, the spectrum is scaled toward the low frequency components [42], as if the active region 

was deep in the muscle). 

Figure 5 shows the results of the whole tests, considering three different durations of the processed 

epochs (50, 100 and 150 ms) and all the testing conditions shown in Figures 3 and 4. The results are 

shown in terms of mean and standard error (to make the figure more readable with respect to using 

the standard deviation, as in Figures 3 and 4; note that the number of epochs is larger when they are 

shorter, reducing the standard error). We can notice that the mean error is always lower (with very 

few exceptions) when the duration of the epoch is larger. A further additional result is shown in 

panel I), where the compensation of CV is considered: the error is slightly reduced when the 

average CV is equal to that used in the model simulating the basis waveforms, suggesting that the 

compensation is not needed if the simulated CV is the same as the average CV of the MUs (the 
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variations within different epochs, due to the random recruitment of MUs with simulated Gaussian 

distributed CV, can be neglected); the reduction of the error by CV compensation is very important 

when the average CV varies of about 10-20% with respect to the simulated one (with larger 

reduction in the case in which the CV used for the basis waveforms is lower than the average value 

of the simulated MUs). 

In Figure 6, the mean estimation error in localizing the sources was computed considering 300 

different simulations of the basis waveforms, obtained choosing the following parameters randomly 

(Gaussian distribution, with mean given by the correct value and standard deviation specified 

below): skin thickness, fat thickness, skin conductivity, muscle conductivity (standard deviation of 

the previous 4 parameters equal to the 30% of the correct value), IZ displacement (standard 

deviation 3 mm), fibre length (standard deviation equal to the 10% of the correct value), angle of 

misalignment (standard deviation of 5°) and CV (standard deviation equal to 0.4 m/s). Considering 

a random choice of the parameters allows to make a test closer to the experimental conditions, in 

which different parameters can be estimated within some degree of accuracy. The possible 

variations of the parameters were chosen within reasonable ranges, considering the accuracy with 

which the thicknesses of tissues could be estimated (about 1 mm), the possible error in the 

conductivity of the tissues, the error in estimating the position of the IZ (about 5 mm) or the length 

of the fibres (about 1 cm), the misalignment of the electrode grid with respect to the fibres (up to 

about 10°)  and the mean CV (that could vary during the contraction). Moreover, a white Gaussian 

noise was added with SNR of 20 dB. The localization errors are in the range 1-2.8 mm. The results 

are in line with the sensitivity analysis performed before. For example, the accuracy of the 

estimation is not largely affected neither by a reasonable mistake in the thickness of the skin or fat 

layer, nor by an error in the conductivity of the tissues used in the model simulating the basis 

waveforms: in the first 4 upper panels, the points indicating the mean error in different tests form a 

cloud which is hard to be interpolated with a second order polynomial. The mean error is affected 

by a displacement of the IZ: the errors increase in the average when a displacement of IZ affected 
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the generation of the basis waveforms. The mean error is marginally affected by a mistake in the 

estimation of the fibre length: indeed, the errors in different simulations are quite grouped about the 

interpolating parabola, which has a minimum close to the correct value of 100 mm. The error is 

largely affected by a misalignment: in this case, the error points follow quite well the interpolating 

parabola (apart from some outliers), which is symmetric with a minimum around 0°. The mean 

error is also affected by CV: the error points are quite clustered around the interpolating parabola, 

which has a minimum on the right (in line with the sensitivity analysis shown in Figure 5, where the 

error obtained using a CV of 4.5 was lower than that obtained using a CV of 3.5 m/s).           

Figure 7 shows the processing time (mean and standard deviation) of the reference processing (but 

equivalent results are obtained for all other cases discussed above), considering different durations 

of the epochs and including or excluding the CV compensation (which requires to find the electrode 

array with maximum amplitude, to estimate CV and to rescale each channel accordingly). The 

computational cost is increasing at a rate which is about quadratic. Notice that the number of 

unknowns increases with the epoch duration with a rate which is less than linear (the number of 

unknowns is about equal to the number of measurements for short epochs of a few tenths of ms, 

whereas it is about a half of the number of measurements for long epochs of hundreds of ms). Thus, 

the dimension of the matrixes involved in the method increases at a rate which is less than 

quadratic. Moreover, the algorithm requires only products of square matrixes with vectors which 

has a cost of about N
2
 (where N is the number of measurements). Using the first two PCs, the 

processing time is longer than the duration of the processed epoch. Moreover, the first PC failed to 

process epochs of 150 ms, for memory problems. The third PC has a processing time lower than the 

duration of the epoch if the CV compensation is excluded and if the epoch duration is as long as 

200 ms. For epochs longer than 300 ms, memory problems occurred. However, in order to reduce 

the computational cost, a long epoch could be decomposed into a set of smaller ones (being careful 

to include at least a few complete MUAPs, i.e. using epochs of at least 10-20 ms). Consider also 

that in many applications (e.g., prosthesis control or biofeedback), using epochs of duration longer 
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than 100 ms could be detrimental, as a long delay would be introduced (for example, delays up to 

100 ms are considered as tolerable in prosthesis control [43]; such a delay includes the time needed 

to record and process the signal, including also the post-processing necessary to choose the control 

command). Finally, a note on CV compensation: most of the time is spent to rescale the signals 

from all the channels. As the compensation of CV is really useful only if the variations are in the 

order of 10% or larger (refer to Figure 4D), in case of large CV variations (induced by different 

contraction levels [31] or fatigue [32]), it is suggested to save more kernel matrixes, each 

corresponding to a certain average CV (e.g., 3.5, 4.0, 4.5 m/s) and to monitor CV occasionally to 

select the proper matrix.   

Figure 8 and Table 1 show the results of the application of the algorithm to the identification of 

different patterns of co-activation of 4 muscles. Two muscles are superficial and two are deep 

(Figure 8A). Two muscles (M2 and M3) are one over the other. By symmetry, the co-activation of 

M1 and M4 is equivalent to that of a muscle placed over M4 and another located under M1: thus, 

the simulated conditions could be extended to the case in which there are 3 superficial and 3 deep 

muscles. Similar muscle distributions are found in the human body: for example, in the forearm, the 

muscles extensor carpi radialis, extensor digitorum communis and the extensor carpi ulnaris are 

superficial and are placed over the supinator muscle; in the leg, the vastus medialis, rectus femuris 

and vastus lateralis are superficial muscles and the vastus intermedius is a deep one (placed under 

the rectus femuris). Two IZs were randomly distributed in the simulated muscles. Figure 8B shows 

an examples of simulated signal, where waveforms propagating in different directions are visible 

(due to the two IZs). The algorithm was first applied to 5 s of EMGs resulting from each of the 

selective contractions of the muscles: Figure 8C shows the mean distributions associated to each 

muscle. Notice that the activity of deeper muscles results in a lower amplitude of the estimated 

distribution, due to the normalization of the waveforms (used to consider a constant regularization 

parameter without introduce a bias with respect to depth [19]). The results of the identification of 

the co-activations are reported in Table 1. The performances increase for longer epochs (the mean 
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correct classification rate was 94.8 and 96.7% for epoch durations of 50 and 200 ms, respectively
1
). 

Performances were not degraded by a lower electrode density. The classification errors were mostly 

related to a problem in identifying the level of activity of the deep muscle M3 (probably due to the 

blurring of the estimated distribution associated to the activity of M2, which is placed over M3).  

Table 1. Results of the test on the identification of muscle co-activation. Correct classifications 

are indicated as a percentage of the total test epochs.  

 
Active muscles 

 

Percentage of correct identifications Most 
common 

error 
IED 5 mm IED 7.5 mm IED 10 mm 

Epoch duration (ms) 

50 |100|150|200 50 |100|150|200 50 |100|150|200 

1 M1    100|100|100|100% 100|100|100|100% 100|100|100|100%  

2  M2   100|100|100|100%   99|100|100|100% 100|100|100|100%  

3   M3  100|100|100|100% 100|100|100|100% 100|100|100|100%  

4    M4 100|100|100|100% 100|100|100|100% 100|100|100|100%  

5 M1 M2   100|100|100|100% 100|100|100|100% 100|100|100|100%  

6 M1  M3    70|  76|  79|  80%   80|  84|  87|   86% 93|  95|  95|   96%  6→1 

7 M1   M4 100|100|100|100% 100|100|100|100% 100|100|100|100%  

8  M2 M3  100|100|100|100% 100|100|100|100% 100|100|100|100%  

9  M2  M4  91|  94|   95|  95%   79|  84|  86|  87% 77|   83|  84| 86% 9→14 

10   M3 M4 100|100|100|100% 100|100|100|100% 100|100|100|100%  

11 M1 M2 M3    71|  76|   77|  79%   87|  92|  93|  93% 80|  88|  89|  91% 11→5 

12 M1  M2  M4   79|  82|   84|  83%  78|   84|  86| 87% 95|  97|  98| 98% 12→5 

13 M1  M3 M4   94|  97|   97|  97% 97|   98|  98|98% 100|100|100|100% 13→7 

14  M2 M3 M4 100|100|100|100% 100|100|100|100% 100|100|100|100%  

15 M1 M2 M3 M4   97|  98|   98|  98%  99|  99|   99| 99% 100|100|100|100% 15→12 

4. Discussion  

Surface EMG found many important applications in the study of muscles, both in healthy and 

pathological conditions [4-6]. The estimation of the location of the active regions within a muscle 

was addressed only in a few works, probably due to the difficulty of the problem. Indeed, 

simulations clearly indicated the important effect of even small details in the conductivity or 

geometry of the volume conductor in the recorded potential [23][44-49]. Moreover, locating the 

sources of the recorded EMG is an inverse problem, affected by stability issues [13]. Thus, even 

small imprecisions in the representation of the volume conductor could result in large mistakes in 

the estimates. For this reason, regularization methods applied to detailed (MRI based) volume 

                                                           
1
 As expected, performances were even higher if the method was trained on 5 s of all 15 possible co-activations to be 

identified, instead of only on the selective activations of the 4  muscles. Mean correct classification rates were 98.8 and 

99.4% for epochs of 50 and 200 ms, respectively.  
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conductor models have been recently proposed [19-20]. However, this approach has a high 

computational cost, precluding real time applications (discussed below), which could even benefit 

from a rough estimate. Thus, as a valuable alternative, this paper proposes an algorithm which 

provides approximate localization of the active regions in a muscle from HDsEMG in real time. 

Indeed, when it is run on a modern PC (with medium performances), it is fast enough to complete 

the computations in a time lower than the duration of the processed epoch of EMG (up to 200 ms of 

epoch duration). Faster processing could be obtained using a more efficient processor, a compiled 

routine (instead of the Matlab implementation here considered) or by separating the epoch into short 

adjacent portions and cumulating the estimated distributions (using shorter epochs, also the memory 

load is reduced). In this way, the time needed to record and process the shortest epoch here 

considered (which is 50 ms in duration) could be of about 60 ms (i.e., the epoch could be divided 

into portions of 10 ms, so that 50 ms are required to record the signal and process the first part and 

about 10 ms are needed to process the last portion). This time is close to the electromechanical 

delay in human skeletal muscles (which is about 50 ms [50]). 

The estimates provided by the algorithm are approximate as there is no attempt to identify single 

sources (as proposed in [19-20], where a regularized under-determined approach is used). An over-

determined regularized problem is solved to approximate the recorded EMG as the linear 

combination of a set of basis waveforms, each representing the activation of a muscle region.  

The method was tested on the basis of simulations, showing a sensitivity analysis and a 

representative example of application. The sensitivity analysis was performed considering a test 

condition in which a single muscle region was active in each time epoch. A specific detection 

system was considered which properly covered the muscle. Different perturbations of the test signal 

or of the basis waveforms were considered, to test the sensitivity of the estimates to experimental 

problems (related to noise or electrode placement) or to reasonable errors in replicating the anatomy 

of the muscle when simulating the basis waveforms. A plane layer model was used to simulate 

interference EMG from muscle fibres of finite length. The configuration of the detection system and 
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the regularization parameter were chosen after a fine tuning based on preliminary tests in which the 

basis waveforms were generated with the same simulator used for generating the test interference 

EMG. The selected condition guarantees to approximate well the investigated signal with a linear 

combination of the basis waveforms (with a root mean square error of about 2-3%). Different 

choices could better fit different applications, so that a preliminary study of the proper set of 

detection channels and basis waveforms is required. For example, the IED, the dimension of the 

electrodes, the number of rows and columns of the detection system may affect the accuracy of the 

estimates, depending on both the investigated muscle (in terms of location, dimension, anatomy) 

and task (e.g., the position of the IZ, the fibre length and their orientation could change during the 

specific contraction under study; in such a case, I suggest to place more channels in the transverse 

direction, far from the IZ, and only a few along the fibres, which are more affected by a variation of 

IZ displacement, fibre length or orientation).  

The simulated active region was moved around the muscle, with a small change in the average 

depth (in the range 2-8 mm) and a larger variation in the transverse direction (average location in 

the range -30 to 30 mm, with respect to the centre of the 2D detection grid). As expected, locating 

the transverse location was very simple. Thus, identifying the activity of different muscles located 

at different locations under the skin (like biceps and triceps, investigated by an array placed around 

the upper arm [19-20]) is not difficult. On the other hand, problems were found in identifying the 

depth of the active regions.  

The best results were obtained considering monopolar detections, in line with the conclusions of 

[19]. Indeed, the monopolar signal has a larger detection volume than that of other spatial filters, 

which were designed to be selective to the activity of a specific (usually superficial) region of the 

muscle [2]. Using the virtual reference for monopolar detection determined a small degradation of 

the results: indeed, such a derivation removes the CM of the signal, largely affecting generation and 

extinction components, which are far field potentials, providing contributions even from deep 

muscle regions. Thus, this result is not surprising, as both propagating and non-propagating 
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components (taken separately or considering their relative weights) provide useful information to 

estimate the location of the active regions within a muscle. By using more selective filters (SD, DD, 

NDD), the localization of the sources is increasingly degraded (as selective filters remove the CM 

components and have a small detection volume, which exclude the deep sources).  

An error in the simulation of the basis waveforms used to approximate the EMG reflected in a 

mistake in the localization of the sources. The sensitivity of the method to errors in the basis 

waveforms was assessed, with the following indications. 

1. An error in the estimation of the thickness of subcutaneous layers determines a bias in the 

location of the active regions, but relative depth information is preserved. 

2. If fibres are longer or shorter than expected, there is a bias toward the deep or superficial 

portions, respectively, due to the erroneous evaluation of the end-of-fibre components.  

3. If the IZ is displaced in the basis waveforms, there is a bias in the estimation toward the 

deep direction.  

4. The effect of a mistake in the conductivity of the tissues is marginal. 

5. An error in CV has important effects only if it is at least as large as 10% of the average 

correct value.  

6. A misalignment of about 10° between the electrodes and the muscle fibres determines a bias 

in the estimation of the superficial sources. Care should be taken in placing the electrodes or 

the misalignment should be considered in generating the basis waveforms (especially for 

muscles with different fibre directions [40][41][48]).  

Moreover, tests with the presence of additive noise were performed: the noise reduces the ability of 

the method to localize deep sources, especially when the SNR is lower than 15 dB.  

In general, the sensitivity analysis indicated that the method can provide stable information, with 

errors in the estimation of the average depth of an active region of the order of 1.2 mm, if the 

volume conductor is well represented in the generation of the basis waveforms. Some bias is present 

if the assumed volume conductor used to build the basis waveforms is different from the actual 
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tissue investigated. For example, when the basis waveforms were generated using a model with 

parameters randomly chosen about their correct values, the average estimation errors were in the 

range 1-2.8 mm. However, if the basis waveforms do not provide an accurate representation of the 

activity of the muscle, the approximation of the interference signal provided by the method is poor, 

indicating that they should be refined. Consider also that, even in the presence of a bias, relative 

information about the location of the active regions can be obtained. A more important problem 

could be encountered in the case of non-stationary conditions, changing the shapes of the MUAPs: 

for example, this happens in the presence of large CV variations or in dynamic conditions. In such 

cases, the physiological system can be periodically monitored and different basis waveforms (e.g., 

associated to different CV or representing a different IZ location or shortening of the fibres) can be 

selected, in order to better represent the actual conditions.  

A further representative test on simulation was performed to investigate the performance of the 

algorithm in identifying the co-activation of different nearby muscles. The simulated conditions 

were complicated by the presence of two different IZs, randomly distributed in the muscles, which 

required to simulate more waveforms to represent their effect. Moreover, different densities of the 

electrode grid were considered and only with the largest one (with IED = 5 mm) the problem was 

over-determined. The source distributions estimated from EMG during co-activation of different 

muscles were approximately equal to the sum of the source distributions computed processing the 

selective activation of each muscle separately. This property allowed to identify different patterns of 

co-activation after decomposing the estimated source distribution as a linear combination of the 

distributions related to the selective contraction of each muscle. The identification of the co-

contraction pattern was quite accurate, even using short epochs and low electrode density (showing 

that, for this specific application, useful indications can be obtained even considering an under-

determined problem).     

Estimating the location of the active region within a muscle or investigating the co-activation of 

different muscles could be useful to address many interesting problems. 
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1. The diagnosis of musculoskeletal deficits, as a problem in assessing a specific portion of the 

muscle could be assessed.  

2. Guiding rehabilitation, indicating activity variations in individual muscles (instead of 

limiting to a functional assessment [51]).  

3. The investigation of muscle synergies [52][53], by assessing the muscles (or portions of 

muscles) with synergic activity during a specific movement.  

4. Reducing cross-talk [54][55], as the signal of the nearby muscles could be identified, 

estimated and subtracted [20].  

5. Different tasks or torque directions could be accomplished using the same muscle, but 

activating different regions [56][57]. Identifying the active region within a muscle could be 

important to investigate the different functional properties of the same muscle performing 

different tasks. 

6. Different nearby muscles can be involved in different tasks with a different weight. 

Identifying the location of the sources, the level of activation of each muscle could be 

investigated [19]. This could be useful to identify the task on the basis of the surface EMG 

(e.g., for the control of a prosthesis [20]) or to investigate the load sharing among synergic 

muscles [58]. 

7. Different portions of a muscle could be recruited or de-recruited/refreshed during an 

endurance task [59][60]. Identifying the active regions, the control strategy during a 

fatiguing task could be addressed. 

8. Many methods for force estimation from surface EMG are based on the envelope of the 

recorded signal [61]. The estimation of the location of the active regions could be used to 

estimate directly the force or to compensate for the effect on EMG amplitude of the distance 

from the sources to the detection channels. 

9. The clinical assessment of motor axonal loss is usually quantified by the motor unit number 

estimation (MUNE), which is based on the ratio between the amplitude of the maximal 
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compound muscle action potential (CMAP) and that of the average single MU [62]. The 

localization of the sources could allow to compensate for the effect of their relative position 

with respect to the detection channel, in order to obtain a more accurate estimation of the 

average CMAP and MUAP.    

Some of these potential applications require a real time processing and may tolerate a rough 

estimate. For example, prosthesis control [63] or rehabilitation with a biofeedback [64] would 

benefit on the localization of the active portions of the muscles only if the estimation is real time. 

Moreover, real time algorithms which require to reduce the effect of cross-talk (e.g., to provide 

biofeedback on force or fatigue) could benefit from the presented method. For example, consider a 

system which requires to estimate muscle fibre CV in real time from a muscle affected by cross-

talk. Such a system could consist in a biofeedback providing the subject with information on 

fatigue, measured in terms of CV variations [32]. Otherwise, the system could be devoted to the 

control of a prosthesis or of an electrical stimulator (adapting the stimulation parameters to the 

myoelectric manifestations of fatigue [57]). The real time estimation of the active regions could be 

used to remove cross-talk as a pre-processing step before the estimation of CV, in order to get 

selective information on the specific investigated muscle.  

The algorithm is here tested on simulations from a basic EMG model. Experimental data are 

represented only within some approximation by the considered simulations. However, as the 

proposed method provides approximate estimations, using a sophisticated simulator to test it on a 

specific inhomogeneity would not add much information. Moreover, the algorithm is adaptive, so 

that a specific inhomogeneity could be counteracted by the off-line investigation of the volume 

conductor and selection of the basis waveforms (which can be optimized till the EMG signal is well 

represented as a linear combination of the waveforms). An experimental test is not simple and 

beyond the aims of this paper. Indeed, the positions of the sources are difficult to measure. An 

attempt could be made by jointly recording the needle and the surface EMG. However, this is an 

invasive method, requiring to use many needles to properly investigate different regions. A non-
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invasive possibility is investigating the activity of muscle regions with ultrasounds [65] while 

recording the EMG with a system of electrodes transparent to ultrasounds [22]. Also in this case, 

the resolution of the identification of the muscle activity could be a limitation. As an alternative, 

indirect indications of the value of the proposed method could be obtained by using the estimated 

distribution of activity to improve the performance of other algorithms, e.g. a movement classifier, a 

force estimator or a technique for CV estimation from signals affected by cross-talk. In such cases, 

a possible improvement of the stability and correctness of the estimates of the movements or of the 

developed force or a reduction of the bias on CV estimation during the activation of the nearby 

muscles would indicate the reliability and the value of the proposed method. Such tests are 

suggested for further future works.    

 

6. Conclusions 

This paper proposes an innovative, real time method for the localization of the muscle sources from 

HDsEMG. The method provides accurate estimates of the mean location of the sources of activity 

and is stable to possible detection problems or inaccurate knowledge of the anatomical or physical 

properties of the investigated tissues. The algorithm provides estimates in real time, opening 

potential future applications for prosthesis control or biofeedback.   
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Figure 1. Description of the simulated interference EMG used for the sensitivity analysis of the algorithm. 

A) Plane layer volume conductor model, with indication of tissues thickness and conductivity, properties and 

location of the simulated muscle fibres (each corresponding to a motor unit - MU) and bi-dimensional 

detection grid of electrodes. B) Physiological cross-section area of the considered muscle (left), with a 

representation of the electrode grid, 3 of the 100 regions which are subsequently activated (small ellipses), 

and the path of the centres of the active regions (large ellipse); three monopolar EMGs are also shown 

(right). 
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Figure 2. Representative example of application of the algorithm. A) Simulated monopolar interference 

EMG from the central channel (5
th
 array, 4

th
 electrode) and examples of four epochs (50 ms of duration) 

corresponding to four distinct active regions. B) Active MUs (firing at least one time within the epoch), 

contour plot and barycentre of the estimated activity distribution. C) Comparison between estimated and 

simulated location of the active region (from left to right: depth and transverse displacement, each across 

different epochs and together). 
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Figure 3. Sensitivity analysis when the simulation of the basis waveforms has problems in replicating the 

geometry or conductivity of the tissues or the anatomy of the muscle: A) skin thickness, B) fat thickness, C) 

skin conductivity, D) muscle conductivity, E) fibre length, F) IZ. In each panel, there are two graphs: the 

simulated (thick grey line) and estimated centre of the active region in non-overlapping epochs of 150 ms 

(left) and the estimation error (right; mean and standard deviation of the distance between simulated and 

estimated centre of the active region). The formats of the lines correspond in the two graphs (the thick, black 

line corresponds to the reference processing, using correct values of the parameters for the simulation of the 

basis waveforms).  
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Figure 4. Sensitivity of the algorithm to the use of different spatial filters or to a bad orientation of the 

electrode array or to additive noise: A) spatial filters, B) misalignment of the detection system with respect to 

the fibres, C) noise , D) conduction velocity (CV). Same format as in Figure 3.   
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Figure 5. Collective results of the test of the algorithm (showing the mean and standard error of the distance 

between the simulated and estimated centre of the active region): A) skin thickness, B) fat thickness, C) skin 

conductivity, D) muscle conductivity, E) IZ displacement, F) fibre length, G) misalignment of the detection 

system, H) noise, I) conduction velocity (CV), J) spatial filters. Different epoch durations are considered. 

The bold label in each graph indicates the results of the reference condition (correct simulation parameters, 

monopolar noise free signals, short side of the detection matrix aligned to the muscle fibre).  
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Figure 6. Mean error in the source localization obtained considering a noisy interference signal (SNR = 20 

dB) and basis waveforms simulated using 300 different random choices of the following parameters: A) skin 

thickness, B) fat thickness, C) skin conductivity, D) muscle conductivity, E) IZ displacement, F) fibre length, 

G) angle of misalignment, H) conduction velocity. Monopolar signals were considered, with epochs of 150 

ms. The mean error is shown as a function of each of the parameter at a time. The interpolation of the 

scattered points with a second order polynomial is also shown.    
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Figure 7. Processing time (mean and standard deviation) of epochs of different durations obtained using 

three personal computers (with performances indicated in Section 2.3). At the bottom, PC 3, the most 

performing personal computer, is tested further till the time required to process the data is larger than the 

duration of the epoch (the dot line indicates a processing time equal to the epoch duration).  

 



 41 

 

Figure 8. Test of the algorithm in the identification of the activity of different muscles. A) Geometry of the 

volume conductor and position of the detection grid. B) Portion of simulated signal (generated by muscle 

M2, recorded by the central column aligned to the fibres with IED of 5 mm). Some MUAPs are indicated, 

showing the different directions of propagation due to the presence of 2 distinct IZs. C) Mean distributions 

estimated from 5 s of signals simulating the selective contraction of each of the 4 muscles. 

 


