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Black-box passive macromodeling in
electronics: trends and open problems

Abstract

Design and verification flows in the electronics
industry are relying more and more on behavioral
models of components, electrical interconnects,
and subsystems. Such models are often derived
from tabulated frequency responses obtained via
direct measurements or through electromagnetic
field solvers. Model extraction from this data in-
volves a mix of system identification and approx-
imation in the complex frequency domain. This
problem becomes difficult or badly scalable due to
the presence of passivity constraints, which must
be enforced during model extraction. We review
recent trends to deal with this complexity, and re-
lated open issues.

Electrical interconnects
Let us consider a modern electronic system, such as a serv-
er for high-performance computing (Fig. 2) or a smartphone.
These objects include a complicated network of wires routed
through chips, packages and boards, that provide electrical
connectivity between all system parts (Figs. 3 and 4). Some
of these wires are responsible for delivering power in form
of a constant supply voltage, some others are responsible for
delivering high-speed digital data signals to possibly billions
of interconnected components.
The fact that so many electrical interconnects must coexist
in close proximity is one of the major challenges in elec-
tronic design. This is due to unwanted electromagnetic in-
teractions that inevitably take place within the system, lead-
ing to parasitic couplings between conductors that by design
are supposed to be electrically separated. Such couplings are
observed in form of noise spreading in the system. If proper
countermeasures are not taken, this noise may be so large to
disrupt system behavior, leading to malfunctioning.

Modeling approaches
The first step for understanding noise generation and propa-
gation through the system is the solution of an electromag-
netic field problem. Several approaches exist, based on time-
domain or frequency-domain differential or integral forms of
Maxwell’s equations. The underlying electromagnetic system
is linear, and the main challenge is in the extreme complexity
of geometry, with fine details over a wire range of scales, and
especially non-ideal material properties (e.g., skin and prox-
imity effects that cause a nonuniform current density flow
within a single conductor cross-section). Although research
is ongoing to improve the capacity of field solver engines, de-
sign flows in industry rely on commercial solvers, which in-
variably provide their results in forms of tabulated frequency
responses of the system over a finite bandwidth, and at a finite
number of interface ports where input and output signals are
defined. The number K of available frequency values often
exceeds several thousands or tens of thousands, whereas the
number P of input/output ports can reach several hundreds
or more. Most often the frequency responses are defined and
computed in the Scattering representation, with inputs being
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incident power waves into the structure, and outputs being
the corresponding reflected power waves. This justifies the
common denomination “S-parameter block”.

Figure 2: Schematic illustration of a server, highlighting
a chip-to-chip interconnect link routed through packages,
boards, and connectors.

Figure 3: One layer (portion) of an electronic package.

Figure 4: A CAD model of a high-speed connector.

Signal and power integrity verification requires repeated cy-
cles of time-domain simulations of several interconnected S-
parameter blocks, terminated at their interfaces by nonlinear
and dynamic device models representing transistors or groups
of transistors. Such system-level simulations are exceedingly
complex and require major computing resources, forming a
major bottleneck in product design flows.
The so-called passive macromodeling strategy provides a
convenient approach to reduce this complexity. We process
each individual S-parameter block, and we extract a corre-
sponding reduced-order state-space model

ẋ(t) = Ax(t)+Bu(t)
y(t) = Cx(t)+Du(t)

(7)

by enforcing the fitting condition H(jωk)≈ Ĥk over the avail-
able frequency samples ωk, k = 1, . . . ,K, where

H(s) = C(sI−A)−1B+D (8)

is the transfer function of (7), and where Ĥk ∈ CP×P rep-
resents the frequency response obtained from the electro-
magnetic solver at frequency ωk. The computation of state-
space matrices A,B,C,D is often performed by rational
curve fitting (e.g., using the so-called “Vector Fitting” algo-
rithm [9],[5] followed by a state-space realization, but there
exist approaches (e.g., Löwner matrix interpolation [11]) that
generate directly the state matrices. Both these approaches
are efficient and can handle large input datasets. Once a mod-
el in form (7) is available, its inclusion as a component in
standard circuit simulation environment such as SPICE is
straightforward.

Passivity conditions
The above-described model construction is not complete and
likely to fail in production environments. In fact, the model
must fulfill some fundamental physical consistency proper-
ties, such as (asymptotic) stability and more generally pas-
sivity. Two are the main reasons: first, electrical interconnects
are passive structures (they are unable to generate energy), so
any model that intends to represent them must be passive to
be realistic; second, if a model is not passive, when intercon-
nected with other (even passive) models, it may give rise to
instabilities, leading to transient simulations that blow up for
late time [7]. All modeling efforts would then be wasted.
For scattering representations, passivity requires that the
model transfer function H(s) is bounded real [1]. When the
state-space matrices are real-valued and all eigenvalues of A
have a strictly negative real part (these two conditions are eas-
ily enforced in the fitting phase), bounded realness holds if
H(s) is an element of the Hardy space H∞, with

‖H‖H∞
≤ 1, (9)

or equivalently when

σ1(jω) = maxσ(H(jω)) = ‖H(jω)‖ ≤ 1 ∀ω ∈ R , (10)

where σ() denotes the set of singular values of its matrix ar-
gument. An alternative passivity condition is provided by the
Bounded Real Lemma (BRL), which states that system (7) is
passive if and only if(

ATP+PA+CTC PB+CTD
BTP+DTC −(I−DTD)

)
≤ 0 (11)

for some matrix P = PT > 0. Finally, provided that ‖D‖< 1,
passivity holds if the Hamiltonian matrix

M =

(
A+BR−1DTC BR−1BT

−CTS−1C −AT−CTDR−1BT

)
(12)

where R = I−DTD and S = I−DDT, does not have purely
imaginary eigenvalues.
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Passivity enforcement
Direct enforcement of any of the above passivity constraints
in the model identification stage is not practical for the large-
scale models that are found in electronic applications. There-
fore, common modeling flows involve a first model extrac-
tion without passivity constraints, followed by a second per-
turbation stage where passivity is enforced. The state-space
matrices of the initial model are perturbed, and the near-
est passive model is sought for by minimizing a suitable
cost function (e.g., the minimum perturbation of the impulse
response in L2 sense). Various algorithms have been pro-
posed [2],[4],[12],[10],[6], each based on a particular passiv-
ity constraint in form (9)–(12). We believe that there is still
significant margin for improvement.

If the H∞ norm constraint (9) is used, the perturbation-
based passivity enforcement problem is convex, and the
optimal solution will be found. However, since the H∞

norm is a nonsmooth function of the decision variables,
one cannot use gradient-based descent schemes and has
to resort to subgradient or localization methods [2].
These are well-known to require many iterations with
a very slow convergence rate. So, even if optimal, such
schemes are impractical.
Similar difficulties arise when using the BRL con-
straint (11). Also in this case passivity enforcement can
be cast as a convex optimization, but the constraint is
here represented as a Linear Matrix Inequality where
also the auxiliary matrix P is an unknown [4]. The
main difficulty in applying off-the-shelf semidefinite
programming algorithms is the excessive memory re-
quirement. So, also this approach is only viable for
small-scale academic examples that are far from real-
world applications.
Suboptimal schemes based on local passivity con-
straints are widely used [12],[10]. For instance, one
may enforce (10) only at a finite number of frequencies
ϖn, n = 1, . . . ,N, only for those singular values such
that σi(jϖn) > 1. This perturbation requires iterations
and is not globally convex, so that it may happen that the
scheme does not converge to a solution. Even if found,
this solution may not be optimal.
Another suboptimal scheme that is widely used is
based on perturbation ot the imaginary eigenvalues of
the Hamiltonian matrix M in (12). Using a first-order
Hamiltonian matrix perturbation, one constrains these
eigenvalues to move off the imaginary axis, thus achiev-
ing model passivity [6]. Also this approach requires it-
erations and is not globally convex.

In summary: optimal schemes are too heavy, and suboptimal
schemes may not converge or may not lead to sufficiently
accurate models [8]. Therefore, fundamental research efforts
both in formulation and in algorithm development are still
needed to keep the pace of technology and manufacturing
advancements. It is remarkable that it is easier to build high-
ly complex electronic systems than producing accurate and
scalable models for their parts.

Modeling distributed systems

Figure 5: Frequency response of an elecrtically long inter-
connect.

High-speed interconnects carry signals characterized by a
spectrum that extends to very high frequencies. The larger the
frequency, the smaller is the characteristic wavelength of the
electromagnetic field associated with the signals. When this
wavelength is smaller than the physical size of the system, the
effects due to the finite propagation speed of the electromag-
netic field become visible in the system responses in terms of
delays, and the macromodeling process is more challenging.
An accurate representation of propagation effects requires a
suitable inclusion of delay terms in the model. For instance,
a possible model structure that achieves this goal is

H(s) =

(
M

∑
m=1

Cme−sτm

)
(sI−A)−1B+D , (13)

where τm > 0 are the delays. As an example, Fig. 5 compares
a frequency response of a passive model with structure (13) to
the corresponding “true” system response for a simple elec-
trically long interconnect. One can note that the phase is char-
acterized by fast oscillations, induced by the presence of the
delay terms e−sτm . If a standard lumped model (7) were used,
without an explicit extraction and inclusion of these terms
in the model structure, the number of poles that would be
required for an accurate representation of the frequency re-
sponse would be exceedingly large and impractical.
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Figure 6: Frequency-dependent singular values of a (non-
passive) delay-rational model for a simple two-port intercon-
nect.

For these delay-rational macromodels, another layer of com-
plexity adds to the already challenging passivity enforcement
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problem. For instance, the Hamiltonian matrix (12) becomes
frequency-dependent, and the associated eigenproblem reads

M(s)w = sw , (14)

where M(s) is a linear combination of (incommensurate) de-
lay terms [3]. The purely imaginary solutions sk = jωk of (14)
correspond to the frequencies ωk at which one of the singu-
lar values of the model transfer function cross or touch the
passivity threshold σ = 1. The number of these eigenvalues
is not upper bounded, as in the delayless case, by the size of
M(s): the quasi-periodicity of M(s) is in fact responsible for
a possibly very large number of such eigenvalues, as depicted
in Fig. 6 for a simple test case.
Very little results are available to reliably check and enforce
model passivity in this delayed case. A complete search of
all imaginary eigenvalues, e.g., via rational Krylov solvers,
is in principle feasible but likely to be very time consum-
ing. In addition, deployment of a perturbation scheme for all
such imaginary eigenvalues might even be unnecessary, giv-
en their strong correlation induced by quasi-periodicity. For
these reasons, passive macromodeling of distributed intercon-
nect macromodels including delay terms is considered to be
an interesting opportunity for future research.
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