\CO p
@9?.-- n-n.{..?»o
Sy (O
J

« PO

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Evolution of Model-Based System Engineering Methodologies for the
Design of Space Systems in the Advanced Stages of the Project

Original
Evolution of Model-Based System Engineering Methodologies for the Design of Space Systems in the Advanced Stages
of the Project (Phases B-C) / Cencetti, Michele. - (2014).

Availability:
This version is available at: 11583/2572760 since:

Publisher:
Politecnico di Torino

Published
DOI:10.6092/polito/porto/2572760

Terms of use:
openAccess

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

04 August 2020

POLITECNICO DI TORINO

SCUOLA DI DOTTORATO

Dottorato in Ingegneria Aerospaziale XXVI Ciclo

Ph.D. Thesis

Evolution of Model-Based System Engineering Methodologies for the
Design of Space Systems in the Advanced Stages of the Project
(Phases B-C)

Academic Tutor:
Prof. Paolo Maggiore

Company Tutor:
Dott. Valter Basso
Ing. Mauro Pasquinelli

Student:
Michele Cencetti

December 2013

To my family

Contents

Abstract
Acknowledgments
Acronyms
1 Introduction
1.1 Definition of the problem statement
1.2 Motivationof thechoice
1.3 Purpose ofthe proposedanalysis
1.4 Background e e e
1.4.1 Engineering Design Process e e
1.4.2 Engineering AnalysisProcess e
1.5 Problem Solving Environments (PSE) e
2 System Engineering

2.1 Lifecycle management. L e e e e
2.2 System Analysis concepts, methodologies and activities
2.2.1 Usescasesand SCenarios o i i i e e e e e e
2.2.2 Requirements Analysis e e
2.2.3 Functional Analysis e
2.2.4 Operational Analysis e e e
2.2.5 CostAnalysisand Estimation
2.3 Simulation Model - Mathematical Model
2.4 SpaceSystem Engineering. L L
2.4.1 European Cooperation for Space Standardization-ECSS

Model Based System Engineering Methodology

3.1 Introduction e e e e e
3.2 INCOSEinitiative o o e
3.2.1 System modeling language-SysML oL oL
3.2.2 Taxonomyanddefinitions e
3.2.3 SysMLtools e e e e
3.2.4 Semantically-Rigorous System Engineering using SysMLand OWL
3.2.5 Systems Modeling & Simulation Working Group (SMSWG)
3.3 Collaborative environments e e
3.4 Examples of MBSE initiatives and Collaborative Engineering environments
3.4.1 Responsive Engineering L e e
3.4.2 ESA-ESTECinitiative e e
3.4.3 Centre National d’Etudes Spatiales—CNES
3.4.4 ThalesAleniaSpace e e
3.5 Benefitsof MBSE e e e
3.6 Drawbacksand mainneedsof MBSE e

11
11
11
12
12
12
13
14

19
21
24
24
24
24
25
25
26
28
29

-~

Viditiviolipiiniary Aridlyoio

4.1 Introduction L e e e e e e 59
4.1.1 Currentneedsof MDO techniques 60
4.1.2 MDO architectures e e 61

4.2 Available tools for MDO problems 70
4.2.1 Drawbacks ofthecurrentPIDOtools 72

4.3 OpenMDAO Framework o e e e e e e e e e 73
4.3.1 MISSION . . . o e e e e e e e e e e e e e e e e e e e 73
4.3.2 Elementsandtheirfunctions o L. 73
433 BrowserGUI(WebBased) e 76

4.4 DAKOTA . . . e e 76
4.4.1 Sensitivity Analysis capabilities L o 77
4.4.2 Parameter Study capabilities L o 77
4.4.3 Design of Experiments capabilities 78
4.4.4 Uncertainty Quantification capabilities 79
4.4.5 Optimization capabilities o 85
4.4.6 Optimization usage o i i e e e e e e e e e e e e e e e e 87
4.4.7 Models-DAKOTA e e e e e e e 87
4.4.8 \Variables-DAKOTA o e e e e 91
4.49 Interfaces-DAKOTA e e e 93
4.4.10 Responses- DAKOTA i i i e e e e e e 96
4.4.11 Outputs from DAKOTA e e e e e e 97
4.4.12 Examples applications of DAKOTA framework 97

State of the Art 99

5.1 Main problems and characteristics e 99
5.1.1 Management of complexsystem 99
5.1.2 Communication between domain-specific disciplines 100

5.2 Possiblesolutions e e 100

5.3 Examples of researchinitiatives L o 101
5.3.1 Jet Propulsion Laboratory-JPLo 102
5.3.2 TUDelft e e e 109
5.3.3 University of Michigan o 112

Conceptual Infrastructure 115

6.1 Introduction e e e 115
6.1.1 Currentissues i i i e e e e e e e e e e e e e 116

6.2 Taxonomy e e e e e e e 118
6.2.1 Topological definitions e 125

6.3 Conceptual framework philosophy o 127
6.3.1 Conceptual meta-model of the proposed methodology 128
6.3.2 Analysis and simulation meta-modelconcepts 130
6.3.3 Design Variables main conceptual definition 131
6.3.4 Constraints and formulas management 134
6.3.5 Options and alternatives management 139
6.3.6 Scenariotypes. oo e e 143
6.3.7 Userconceptualmodel o 147
6.3.8 Quantity, units and properties conceptual model 149
6.3.9 Productmodelconcept 150

6.4 Workflow for the proposedapproach e 151
6.4.1 Agiledevelopmentlifecycle 151

6.5 Dataexchange e e e e 153

V.J.41 CHSIITCHNE UToIlgll TTOUCH Ul Udld CALTIAIIECE . .« o v v v v v v v v v 0 e 0 0 0 0 0 e
6.6 Collaboration mechanisms e
Analysis, Design and Implementation
7.1 Methodology followed e
7.2 Proposedframework
7.2.1 Introduction on DEVICE infrastructure
7.3 Analysis . .. e e e e
7.3.1 Scenarios definition and functionalanalysis
7.3.2 Assumptions and development considerations L.
7.4 Designandimplementation e e
7.4.1 Introduction e e e e
7.4.2 Conceptualoverview e e e
7.4.3 Requirements management e e e e e e e
7.4.4 Baseline and databaseintegration L. Lo
7.4.5 Diagram generationand management
7.4.6 Tools, languages and development platforms
7.4.7 Description on the benefits and advantages of open-source tools.
7.4.8 Design manager framework L o
7.4.9 Currentimplementation e
7.4.10 Main features and realizationaspects
7.4.11 Proposed approach for the integration of MDO techniques
7.4.12 Web applicationand networking oo
7.4.13 Web application integration alternatives
7.5 Expected results, their significance and application
Reference Case
8.1 Introduction e e e e e
8.2 Problemdescription e e e
8.2.1 MainissUES v i e
8.2.2 Analysisoftheproblem
8.2.3 Description of the involved disciplines
8.3 Problemformalization e
8.3.1 Simulationmodels
8.3.2 Designvariables e
8.3.3 Objectivefunctions e
8.3.4 Constraints L e e e e e e e e e e e e e e e e e
8.3.5 Solvingmethods e
8.3.6 Explicitformulation e
8.4 Results e e e
8.4.1 Subcasel e e e
8.4.2 Subcase2 e e e
8.4.3 Subcase 3 e e
8.4.4 Subcased e e e
8.4.5 Subcase5 e e e e
8.5 Considerationsabouttheresults o
Critical Assessment, Further Work and Summary Conclusions
9.1 Criticalassessment e e e e e e e e
9.1.1 Contributionsandbenefits
9.1.2 Drawbacks e
9.2 Furtherwork. e e e e e e
9.2.1 Ongoingfeatures e e e e

165
165
168
168
169
170
172
176
176
178
185
185
186
186
186
190
191
194
195
199
200
201

J.L.L FULUIC UCVCIVPIHICTHILS o v v v v v v v o e e e e e e e 0 0 0 0 e 0 o s s s s s 0 0 0 0 0
9.2.3 Conceptual infrastructure improvements
9.2.4 External environmentintegration.

9.3 Summary conclusions

List of Figures

1.1

2.1
2.2
2.3
2.4
2.5
2.6

2.7
2.8
2.9
2.10

3.1
3.2

3.3
3.4
3.5

3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

4.1
4.2

4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13

Example of the aspects that can potentially affect the definition of a Problem Solving Envi-
FONMENT. . . o o e

Development process from customer needs to system solution.
Royce’s WaterfallModel. e
Boehm’s Spiral Model. e
Forsberg and Moog’s “Vee” Model. e
Conceptual overview of the possible ways to study asystem [5].
High-level representation of the main conceptual processes involved in a space system def-
iNitoN [7]. . . . o o e e e e e e
Department of Defense (DoD) Product Life-cycle Management process [8].
NASA Product Life-cycle Management process [8].
ECSS Product Life-cycle Management process. oo
ECSS disciplines and domains decomposition[9].

Relationships between different kinds of models [11].
Process, Methods, Tools and Environment elements and relationships with technology and
people. . . . e
INCOSE MBSE Roadmap [14]. o o e e e e e e e e e e
Pillars of SysML language [102]. L e e
Notation for the main relations used to define the object belonging to the overall meta-
model. . . L e e e e e e
Convergence process between INCOSE and NAFEMS [17].
FUSED Framework: control and data flows between models [105].
Open Concurrent Design Tool (OCDT) architecture overview.
Engineering domains considered within the VSD project [21].
VSEE high level architecture. e
VSEE functions provided [21]. e
Simplified representation of CIC infrastructure (CNES).
Conceptual overview of a collaborative environment infrastructure.

N2 chart example [33]. . . . o o o e e
Examples of DSM concerning Product Architecture, Organization Architecture, Process Ar-
chitecture and Multidomain matrix[36].,
Simple example of gradient-based optimization process[35].
Gauss-Seidel MDA architecture for three coupled analyses[35].
MDF architecture with Gauss-Seidel MDA integration for three coupled analyses [35].

IDF architecture [35]. e e e e e e e
AAO architecture [35]. e e e e
CO architecture [35].
BLISS-2000 architecture [35]. e e e e e e e
Overview of an example iteration hierarchy with few drivers [45].
Data flow among components of the same assembly [45].
Interaction among different assemblies placed on different levels [45].
Components of the simulation interface [98].

29

.45 oldlliUdiU PdidilITLTIO THC 1ONTTdUL |JO. o v v o v v 0 0 0 v 0 0 0 0 0 v 0 v 0 o 0 0 0 0 0 0 0 e

4.15 Resultsfiledataformat[98].

5.1 Design optimization capability highlighted on MBSE roadmap for the near future [14].
5.2 Conceptual meta-model of JPL research initiativeon MBSE [50].
5.3 Conceptual overview of the lifecycle of an aerospace system and the phases that can be
covered with the proposed Virtual Space Construction Process (VSC) [119].
5.4 Overview of the main limitations of the concurrent engineering for space.
5.5 Main features and common aspects of MDO and System Engineering.
5.6 Main areas directly involved in the integration process of MDO techniques.
5.7 Overview of the main challenges for the integration between MBSE environments and MDO
capabilities. L e e e e
5.8 High level representation of the infrastructure considered for the design problem of CubSat
example. e

6.1 Summary of the elements conceptual classes and related modeling context.
6.2 Conceptual relationships between the modeling activity for desired and actual system de-
L 1= o
6.3 Conceptual view of an example definition process related to design variables.
6.4 Metamodel association related to the Design Variableclass.
6.5 Conceptual view of properties estimation approaches.
6.6 Conceptual overview of the meta-model main relationships related to the Design Option
Class. . . e e e
6.7 Example instantiation of Engineering Data Item, Options Group and Design Option objects.
6.8 Conceptual representation of a scenario representing the definition of optional/alternative
objects of other optional/alternative elements.
6.9 Simplified example of the alternatives/options representation on different nested levels.
6.10 One of the reference cases considered for properties/options management.
6.11 One of the reference cases considered for properties/options management.
6.12 One of the reference cases considered for properties/options management.
6.13 One of the reference cases considered for properties/options management.
6.14 One of the reference cases considered for properties/options management.
6.15 One of the reference cases considered for properties/options management.
6.16 One of the reference cases considered for properties/options management.
6.17 Example of Agile development lifecycle applied to software design.
6.18 Alternative data exchange architectures.
6.19 Data exchange mechanism. L e e
6.20 Top level view of the SEIM (UML package diagram), [61].
6.21 SEIM main information object types and relationships (informal UML class diagram), [61].
6.22 SEIM system decomposition and associated modes (UML class diagram), [61].

7.1 How scenarios define and process the system under evaluation [64].
7.2 Example of conceptual allocation between functions and physical systems.
7.3 Options management and design variables integration.
7.4 Management example of slight different topological architecture.
7.5 Conceptual overview of the layered representation for alternative element Usages and their
connections. L L L L e e e e e e
7.6 Conceptual example related to the management of alternative design solutions.
7.7 Conceptual example related to the management of optional designitems.
7.8 Combination of the optional design solutions that come out from the previous example.
7.9 Example storing strategy for the management of projectdata.
7.10 Example representation of the possible solution for the management of data among system
engineers and domain specialists. L. L L o

Vi

110

132

/.11 LONLCPLUdI UVCTVICW Ul UIC ITHTrgastiuciulc 101 Uic LONHNabOIduve 1Tditicworn.
7.12 Conceptual overview of the infrastructure for the collaborative framework.
7.13 Conceptual overview of the infrastructure for the collaborative framework.
7.14 Example storing strategy for the proposed architecture.
7.15 Engineering model overview, [61]. e
7.16 Overview of the conceptual infrastructure and related actual implementation.
7.17 Conceptual representation about the considered architecture.
7.18 Example architecture for the considered approach.
7.19 Example implementation of pythonwrapper. oL,

8.1 Conceptual representation of the project Exploration Gateway Platform [97].
8.2 Example of payload capability expressing the mass as function of the altitude.
8.3 Simplified representation of the primary structure considered in the reference case.
8.4 Simplified representation of the thermal model considered in the reference case.
8.5 Objective functions. e e e
8.6 Constraints. L e e e e e e e e e e e e e e e e e e
8.7 Pareto front correspondingto 65 MS launchcost.
8.8 Pareto front correspondingto 75 MS launchcost.
8.9 Pareto front correspondingto 85 MS launchcost.
8.10 Pareto front correspondingto 90 MS launchcost.
8.11 Pareto front corresponding to 120 MS launchcost.
8.12 Objective functions. e e e e e e
8.13 Constraints. e
8.14 Pareto front correspondingto 75 MS launchcost.
8.15 Pareto front correspondingto 85 MS$ launchcost.
8.16 Pareto front correspondingto 90 MS launchcost.
8.17 Pareto front corresponding to 120 MS launchcost.
8.18 Objective functions. L e e e e
8.19 Constraints. e
8.20 Pareto front correspondingto 75 MS launchcost.
8.21 Pareto front correspondingto 85 MS launchcost.
8.22 Pareto front correspondingto 90 MS launchcost.
8.23 Pareto front corresponding to 120 MS launchcost.
8.24 Objective functions. L e e e e
8.25 Constraints. L e e e e e e e e e e e e e e e
8.26 Pareto front correspondingto 75 MS launchcost.
8.27 Pareto front correspondingto 85 MS launchcost.
8.28 Pareto front correspondingto 90 MS launchcost.
8.29 Pareto front corresponding to 120 MS launchcost.
8.30 Objective functions. e e e e e e
8.31 Constraints. e e e e e e e e e e e e e e e
8.32 Pareto front correspondingto 75 MS launchcost.
8.33 Pareto front correspondingto 80 MS launchcost.
8.34 Pareto front correspondingto 85 MS launchcost.
8.35 Pareto front correspondingto 90 MS launchcost.
8.36 Pareto front correspondingto 120 MS launchcost.

9.1 Modular structure of Open CASCADE platform [94].

Vii

210

252

List of Tables

4.1
4.2
4.3

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15

Mathematical notation for MDO problems.
Methods classification and applicable algorithms [98].
Active set vectorintegercodes. e

Parameters of the MOGA method used for the iterations cycle of subcase 1.
Some of the non-dominated design points: design variables (subcase1).

Some of the non-dominated design points: objective functions and constraints (subcase 1).

Parameters of the MOGA method used for the iterations cycle of subcase 2.
Some of the non-dominated design points: design variables (subcase2).

Some of the non-dominated design points: objective functions and constraints (subcase 2).

Parameters of the MOGA method used for the iterations cycle of subcase 3.
Some of the non-dominated design points: design variables (subcase3).

Some of the non-dominated design points: objective functions and constraints (subcase 3).

Parameters of the MOGA method used for the iterations cycle of subcase 4.
Some of the non-dominated design points: design variables (subcase4).

Some of the non-dominated design points: objective functions and constraints (subcase 4).

Parameters of the MOGA method used for the iterations cycle of subcase 5.
Some of the non-dominated design points: design variables (subcase5).

Some of the non-dominated design points: objective functions and constraints (subcase 5).

viii

Abstract

The main topic of the present work is addressed to the evaluation of the possible improvements that
can be achieved with the integration of Model Based System Engineering Methodologies in the advanced
phases of space project. In particular a model based approach will be proposed for two main aspects di-
rectly affecting the design phases of complex systems. The first one is represented by the management of
design options that becomes difficult to monitor as the project proceeds, increasing the amount of data
to take into consideration. The other one is represented by the integration between Multidisciplinary De-
sign Optimization (MDO) techniques and a Model Based System Engineering (MBSE) environment. The
aim of the research activity concerns the feasibility of such connection in order to assess actual advan-
tages and possible drawbacks. In this last case the objective is to show how the Multidisciplinary Design
Optimization (MDO) methods may be managed in the context of a MBSE environment with respect to the
traditional design approach. In particular this analysis is addressed to the demonstration of the benefits
of MBSE methodology and MDO techniques considering a space system reference case. In the first part of
the thesis a briefly description of the problem statement is introduced to better explain the subjects of the
following chapters. In particular the reasons and the related purposes that have animated this work are
considered. In the next section the state of the art about the considered approach is presented, providing a
background for the following activities. In this context a wider analysis of the motivations and thesis objec-
tives is considered. The following chapters deals with the survey and critical assessment of the main work
related to this thesis. The analysis, design and implementation of the proposed framework are considered
in the next sections. At the end of this part the results obtained are presented without arguing about the
related benefits or drawbacks, which are considered in the following. A critical assessment of the results
is then presented, analyzing the main contributions and related disadvantages with respect to the current
approaches. In the next section the incoming activities and further developments are presented. The final
part concerns at last the summary conclusions of the work done.

Acknowledgments

"I'don't like honors. I'm appreciated for the work that | did, and for people who appreciate it, and | notice
that other physicists use my work. | don't need anything else. | don't think there's any sense to anything
else. | don't see that it makes any point that someone in the Swedish Academy decides that this work is
noble enough to receive a prize. I've already got the prize. The prize is the pleasure of finding the thing out,
the kick in the discovery, the observation that other people use it. Those are the real things. The honors
are unreal to me. | don't believe in honors. It bothers me, honors. Honors is epilets, honors is uniforms"

Richard Phillips Feynman

With these few lines | thank all the people who were close to me, encouraged my efforts and supported
my decisions. A special thanks goes also to Thales Alenia Space Italy for the opportunity, the advice and
the expertise demonstrated during my PhD studentship.

All cited product named are trademarks or registered trademarks of their respective companies.

Acronyms

AAO
AFT
AIT
AMPL
ANN
AR
ASV
ATDD
BDD
BIM
BLISS
CAD
CAE
CAM
CAO
CcCB
CDF
CDR
CRR
CE
CER
Cl

CcM
CNES
Cco
COSE

All At Once

Architecture Framework Tool
Assembly Integration and Test

A Mathematical Programming Language
Artificial Neural Network
Acceptance Review

Active Set Vector

Acceptance Test Driven Development
Block Definition Diagram

Building Information Model

Bilevel Integrated System Synthesis
Computer Aided Design

Computer Aided Engineering
Computer Aided Manufacturing
Computer Aided Optimization
Configuration Control Board
Concurrent Design Facility

Critical Design Review
Commissioning Result Review
Concurrent Engineering

Cost Estimating Relationship
Continuous Integration
Configuration Management

Centre National d’Etudes Spatiales
Collaborative Optimization

COllaborative System Engineering

v
CSA
CWE
DA
DACE
DAKOTA
DEVICE
DM
DoD
DOD
DOE
DOORS
DSL
DSM
DST
DSTE
DVV
DXF
DXL

EA

ECF
ECSS
EFFBD
EGO
EIF
ELR
EPS

FAI
FCGI
FDD
FIDO

COUINITNON FIcoouilc veooll
Configuration Status Accounting
Collaborative Working Environment
Discipline Analysis

Design/Analysis of Computer Experiments

Design and Analysis toolKit for Optimization and Terascale Applications

Distributed Environment for Virtual Integrated Collaborative

Data Management

Department of Defense

Depth Of Discharge

Design of Experiments

Dynamic Object Oriented Requirements System
Domain Specific Language

Design Structure Matrix

Domain Specific Tool

Dempster-Shafer Theory of Evidence
Derivative Variables Vector

Drawing Interchange Format

DOORS eXtension Language

Evolutionary Algorithms

Concurrent Engineering Facility
European Cooperation for Space Standardization
Enhanced Functional Flow Block Diagram
Efficient Global Optimization

Efficient Improvement Function

End of Life Review

Electrical Power Subsystem

Field Aligned Plasma Irregularities

Fast Common Getaway Interface

Feature Driven Development

Framework for Interdisciplinary Design and Optimization

6

ik

FMECA
FRR
GA
GLOW
GP
GMM
GSE
HLA
IBD
ICT
ICME
IDF
IDM
IGES
INCOSE
IPC
IPG
IPV
ISO
ISR
ISS
ITA
1&T
IVP
JDBC
JEO
JNI
JSON
KSA
LHS

raliuic iviouc 4diiua LIHICLLs Alldlyolo

Failure Mode Effects and Criticality Analysis
Flight Readiness Review

Genetic Algorithm

Gross Lift Off Weight

Gaussian Process

Geometrical Mathematical Model

Ground Support Equipment

High Level Architecture

Internal Block Diagram

Information and Communication Technology
Integrated Model Centric Engineering
Individual Discipline Feasible

Integrated Design Model

Initial Graphics Exchange Specification
International Council on System Engineering
Inter Process Communication

Information Power Grids

Individual Pressure Vessel

International Standard Organization
Incoherent Scatter Radar

International Space Station

lon Thruster Assembly

Integration and Test

Interval-valued Probability

Java DataBase Connectivity

Jupiter Europa Orbiter

Java Native Interface

JavaScript Object Notation

Knowledge Skills Abilities

Latin Hypercube Sampling

LININ

MARS
MBED
MBSE
MCR
MDA
MDA
MDAO
MDE
MDF
MDO
MDR
MEL
MEMS
MOE
MOP
MLS
MOGA
MPMD
OCCT
OCDS
OCL
OOSEM
ORR
ouu
OWL
PBS
PDES
PDM
PDR
PIDO

Lautitil RE4dUllicss KeEvieWw
Multivariate Adaptive Regression Splines

Model Based Engineering Design

Model Based System Engineering

Mission Close-out Review

Model Driven Architecture

Multidisciplinary Design Analysis

Multidisciplinary Design Analysis and Optimization
Model Driven Engineering

Multidisciplinary Feasible

Multidisciplinary Design Optimization

Mission Definition Review

Mass Element List

Micro-Electro-Mechanical System

Measure Of Effectiveness

Measure Of Performance

Moving Least Squares

Multi Objective Genetic Algorithms

Multiple Program Multiple Data

Open CASCADE Technology

Open Concurrent Design Server

Object Constraint Language

Object Oriented Systems Engineering Methodology
Operational Readiness Review

Optimization Under Uncertainty

Ontology Web Language

Product Breakdown Structure

Product Design Exchange Specification

Product Data Management

Preliminary Design Review

Process Integration and Design Optimization

8

LVl
POD
PoF
PRA
PRR
PSE
PSS
QMU
QR
QUDT
QuUDV
RAM
RBDO
RBF
REMS
RIF
ROM
RoR
RMI
RSDO
RTI
SBO
SBOUU
S/C
SE
SEA
SEIM
SERDL
SME
SMM
SMSWG

rroguct Lice=LytLic iviallagcliliclit
Proper Orthogonal Decomposition
Probability of Frequency

Probabilistic Risk Analysis

Preliminary Requirements Review

Problem Solving Environment

Product Specifications and Standards
Quantification of Margins and Uncertainties
Qualification Review
Quantities, Units, Dimensions and Types
Quantities, Units, Dimension and Values
Reliability, Availability and Maintainability
Reliability-Based Design Optimization
Radial Basis Functions

Reconfigurable Multidisciplinary Synthesis
Requirements Interchange Format
Reduced Order Models

Ruby on Rails

Remote Method Invocation

Rapid Spacecraft Development Office

Run Time Infrastructure

Surrogate Based Optimization
Surrogate-Based Optimization Under Uncertainty
Spacecraft

System Engineering

Systems Engineering Advancement

Space Engineering Information Model
Space Engineering Reference Data Library
Small Medium Enterprise

Science Margin Model

Systems Modeling & Simulation Working Group

S ININ Qiglidl LU INUIST RNdadllv

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol
SOGA Single Objective Genetic Algorithm
SOP Second Order Probability

SoS System of Systems

SPMD Single Program Multiple Data
SSRDB Space System Reference DataBase
SRR System Requirements Review

STEP Standard for The Exchange of Product Model Data
SysML System Modeling Language

SVD Singular Value Decomposition

TAS Thales Alenia Space

TDD Test Driven Development

TMM Thermal Mathematical Model

TOR Terms Of Reference

TPM Technical Performance Measurement
TRL Technology Readiness Level

TR-SBOUU Trust-Region Surrogate Based Optimization

UAV Unmanned Aerial Vehicle
UML Unified Modeling Language
uQ Uncertainty Quantification
VSD Virtual Spacecraft Design
XDE Extended Data Exchange
WOA Web Oriented Architecture
XMl XML Metadata Interchange
XML eXtensible Markup Language
WAN Wide Area Network

WBS Work Breakdown Structure

10

Chapter 1

Introduction

1.1 Definition of the problem statement

This work was mainly animated by the need to proper manage the high number of variables and data

that characterize the advanced phases of a project. Nowadays the increasing number of system complexity,
considering the high number of people involved, procedures and tools, make the product lifecycle difficult
to control. The effective monitoring of all the features that span from the development phase until the dis-
missal one play a key role within the context of the current market conditions. An efficient management of
the available resources and a clear overall perspective provide the basis for the generation of product that
potentially shows better behaviour. For this reason different methodologies have been recently consid-
ered to improve the systems performances, reducing both the costs and the time required to be delivered
to the customer. In particular new system lifecycle methodologies have been analyzed in contrast with the
traditional ones with the final aim to better manage system complexity. The correct evaluation of system
complexity is in fact one of the most difficult activities that must be properly managed to avoid wrong es-
timation of performances and product behavior ([134]).
The Model Based System Engineering (MBSE) paradigm recently seems to be the right choice for an efficient
management of all the phases that characterize a system, considering also the people and the procedures
that are involved on different levels. This work considers the integration of such model philosophy with
a multidisciplinary design optimization framework. In particular a space system reference case has been
chosen among all the possible ones that with this methodology may be however faced.

1.2 Motivation of the choice

First of all the choice of the MBSE philosophy for the management of a complex engineering problems
is strictly related to the capabilities that the related methodology allows to exploit. The overall infrastruc-
ture has been conceived following the main guidelines for the definition of a model based architecture.
The object oriented approach enhances both the modeling and the analysis activities basically performed
during the development of complex systems. In this context the integration with Multidisciplinary Design
Optimization (MDO) techniques has been investigated to understand the current issues that prevent the
application within a model based environment. The potential benefits that can be achieved through such
integration are the main reason for the assessment proposed in this work. Such topic is currently not well
investigated and different research initiatives are working on different directions. The correct formalization
of the approach used as well as a report activity of the main involved concepts can help to paint a cleaner
overview. Such information can ideally be used for future developments, paving the way for an innovative
methodology for the management of complex engineering problems. The choice also of a space system
was animated by the need to well represent a scenario that shows an high level of complexity, involving
a great number of people, procedures and disciplines. In this way the main scope was to understand the
actual benefits and to show the deficiencies that may be improved for such an approach. The reference
case chosen as other similar complex systems allows to test all the functionalities and data flows that are

11

CONLIUCITU VWILTHTT LS WUIT K.

The effective investigation of system performances is in fact one of the most challenging research activities
that characterize the development of complex products and the design process of aircraft systems repre-
sents an example of such situations, where innovative solutions and approaches are continuously assessed
to further improve the current methodologies ([130] and [131]).

1.3 Purpose of the proposed analysis

The purposes of the proposed analysis is to demonstrate how design variables can be monitored in a
clearer way with respect to the traditional design approaches, reducing the possibility to neglect some de-
sign configurations that enhance better behaviour. This study is addressed mainly towards to evaluation of
the system model methodology and data exchange between different domain-specific environments. This
last feature is particularly related to the definition of a multidisciplinary design context where the close
interaction between different modeling philosophies strongly affects the overall system performances.
In this way a well-defined system model architecture allow to improve the whole design processes with
interesting results on final product. MDO methodologies integration within the proposed system model
framework is evaluated to show the feasibility and the benefits of this MBSE approach. In the last few years
MDO methods have been widely used for the evaluation of conceptual configurations and system archi-
tectures. A large number of research projects is currently addressed towards the evaluation of aerospace
systems performances, considering the interactions between different engineering domains and exploiting
different approaches for the optimization of aircraft products (example like [80] can be found in literature
for a wide range of engineering problems).

1.4 Background

Conceptually speaking the definition process that affect the product development and realization is
briefly expressed through characteristic phases that historically have covered important roles. Neglecting
the complexity related to the process details and all the different approaches that can be taken, the design
phase can summarized with few steps. After an initial phase of requirements definition we can find the
step associated to the concept creation and selection. This phase is characterized by a more deep involve-
ment of creative skills than any other following activities. Once the conceptual design has been defined
(obtaining for example multiple conceptual baselines) is possible to perform the preliminary design cre-
ation with the final aim to select one particular baseline. The following target is to reach a detailed design
before the implementation of the production baseline. All the presented phases require the definition of
analysis activities that allow verifying if the system design meets the requirements initially established. Pro-
ceeding through the design process the methodologies applied to deal with the problem statement is the
same from a high-level perspective. The main difference is related to the level of detail that is addressed
in the analysis models and the degree of interaction between the disciplines involved. One of the most
important activities is represented by the problem decomposition. The models interactions and the close
coupling between simulations that traditionally belong to different domain-specific disciplines demands
more efforts as the project proceeds. The phases are less set in sequential way but increasingly carried out
concurrently to reduce the development time. An example can be represented by a spiral product design
process. In this case the concept design, system-level definition, detailed representation, integration, test
and planning are all activities accomplished with an higher level of concurrence than in the past (where
the traditional approach is pointed out as phased, staged or waterfall product process).

1.4.1 Engineering Design Process

Conceptually speaking the engineering design process is the set of steps that a designer takes to go
from first, identifying a problem or need to, at the end, creating and developing a solution that solves the
problem or meets the need. These steps can be summarized in the following list:

12

4. FIronicii yuchriuori

2. Background research activity
3. Requirements specification
4. Alternative solutions creation
5. Best solution identification

6. Development work activity

7. Prototype building

8. Test and Redesign

The current design practice is characterized often not by a sequential proceeding through these steps.
Solving an engineering problem requires generally back and forth transitions between the various phases.
The complexity of design process is difficult to manage in a sequential manner as system details increase
and it is a common situation to return back to earlier states. Such an iterative way to work is currently well
rooted in the current engineering development process. Whatever is the result of such work the creativity
plays a key role within such context. The first three steps are mainly related to the modeling framework
where the representative model of the system under development is defined. The alternative solutions
creation is another important phase of the overall process and their role is also strictly linked with the
modeling activities. The interesting element of such step is represented in particular by the relationships
between the various alternative solutions with the nominal one and by their management. It is assumed
also that generally a nominal configuration represents the current chosen solutions over the available ones.
These are already considered and not ruled out a priori since the system is however under development
and some solutions may be under evaluation, for example because the related analysis are running. A
well-defined process for the management of all these features is currently one of the most challenging re-
search activities. The potential capabilities of a well-organized and consistent procedure can help to better
monitor and support the product development, providing the base for an effective way to manage the in-
formation. The present work is addressed to the conceptual definition of such phase since the alternative
definition at this stage lays the foundation for the activity that characterizes the following step. The other
interesting process that often plays a key role is the identification of the best design solution. The improve-
ment of the overall system performances depends strictly on this phase. This phase is the other element
that is considered in the current work. In particular a model based methodology has been proposed for
the management of all the activities that orbit around such fundamental step. All the remaining items of
the list are equivalently fundamental for the development of an efficient product but they are not directly
covered in this work.

1.4.2 Engineering Analysis Process

The main features that are generally considered for the overall product evaluation are represented
briefly by performances, costs, schedules and risks. Performances measure how well the system is able to
accomplish to the primary target (mission statement for example in the aerospace industry). Costs include
the development and operation life cycle resources. Schedules are instead related to the time required
to implement the first unit, production rate and also all the possible activities needed to make the system
ready to work. Finally the risks deal with the technical and financial failures that may be encountered. One
of the first main important phases related to the product definition process is covered by the Computer
Aided Design (CAD). After the initial work of conceptual identification of the possible solutions, CAD helps
the designers to create a well-defined system representation. In this way we are able to clarify any doubts
avoiding misunderstandings just during these preliminary activities. CAD tools assist the product devel-
opment also during the following detailed process when it is used as one of the principal instruments for
the configuration management, exchange of information and reference for the simulation analysis. This

13

CITHICTHIL Pidyo dlil 1THpotudiit TOIC alid 101 LS 1S4doUlnT d TTdiudioCipiiiidaly appiodlll UL HILEsdlco 1L, All=
other important step that characterizes the system definition is represented by the group of activities that
involve Computer Aided Engineering (CAE) analysis processes. Within this category we include method-
ologies like FEM for solid mechanics or CFD for fluid dynamics. Other simulations that allow evaluating
system behavior are also contained within this subdivision (as for instance electromagnetic simulations).
Generally speaking these methods help to understand if there are design errors before the physical real-
ization, evaluating also different alternatives through numerical simulations (some of which are listed in
the following lines):

e Finite Element Method

e Boundary Element Method
e Finite Difference Method
 Finite Volume Method

e Mesh-less Method

Many engineering problems are represented with governing equations and boundary conditions. From
these ones can be set and solved problems linked to mechanical or thermal field, allowing addressing also
electromagnetic and fluid flow phenomena. The results generated during these phases are the key-points
for the following design possible reconfiguration, representing the starting point for product optimization.
Particular attention must be placed in the problems set-up in order to ensure the correctness of the data
generated by the computer.

1.5 Problem Solving Environments (PSE)

The management of complex problems becomes particularly difficult when a wide range of engineer-
ing domains are involved within the design process. The solving tools, methods and process are often not
so easy to handle for different reasons. The codes or models could be written few years ago by people
that are no longer working on the same subject for example. The use and maintenance of the available
resources (as those coming from company knowledge) becomes difficult and in such cases a Problem Solv-
ing Environment (PSE) represents a well suited solution. A PSE is basically specialized computer software
that is mainly used to solve one or more class of problems. Such objective is obtained through the combi-
nation of automated problem-solving techniques with user-oriented tools conceived to guide the problem
resolution. The first examples of PSE were born in the 1990s and initially they were built with the same
language of the related field, employing often a graphical user interface with the solving code. The pur-
pose is the definition of an interface that enables other users to manage a domain specific-software. The
first prototype was generically used above all for data visualization or representation of large systems of
equations. In the next years they were improved to be also used in the management of narrow field of
science or engineering. In this way a gas-turbine design code could be implemented to simplify the access
and use of the available resource for example.

A PSE generally provides all the computational facilities that are needed to approach a target class of prob-
lems. In particular these features include advanced solution methods, automatic and semiautomatic se-
lection of solution methods and also ways to easily integrate new solving techniques. Moreover, PSEs use
the language of the target class of problems, so users can run them without specialized knowledge of the
underlying computer hardware and software. By exploiting modern technologies such as interactive color
graphics, powerful processors and networks of specialized services, PSEs can track extended problem solv-
ing tasks and allow users to review them easily. Overall, they create a framework that is all things to all
people: they solve simple or complex problems, support rapid prototyping or detailed analysis and can be
used in introductory education or at the frontiers of science ([28]).

PSEs can basically be considered all the computing systems and infrastructures that are conceived to help

14

COMPULatioridl SCITlhILtiow 5CL LTI WUOITR QUOTIC 1T a 1TTIOTC THTLLUIVE Wwdy. oulll THVITONTICHLL 1hciuuc sClici=
ally all the features needed to support the problem-solving activity, from problem formulation, algorithm
selection, numerical simulation and solution visualization. They are also defined to provide useful capa-
bilities to improve the collaboration among people separated in space and time, often using different set
of codes and machines. Computer Aided Engineering (CAE) is one of the most important Engineering field
and some quite sophisticated PSEs have been developed to support the related activities. All the current
PSEs follow basically the conceptual guidelines previously introduced and the related implementations are
based on the specific needs of the developed framework. The same solving approach can in fact be ac-
tually implemented through different architectures, as a desktop or web-based solution for example. The
choice between the various alternative solutions depends strictly on the primary goal of the research ac-
tivity where the subject has been defined. In literature different PSEs research activities a prototype can
be identified, each one addressed to a particular class of problems or conceived and customized on the
basis of the required capabilities. In the following lines some example will be briefly introduced.

W-DPSE represents one of the prototypes that have been developed to assess the capabilities of a PSE
as useful framework to support CAE technologies. The W-DPSE name stands for web-based distributed
problem-solving environment and has been conceived to provide an effective approach to distributed mod-
eling and simulation, paving also the way for networked collaboration. The main objective is to provide a
tool that can be interactively used to explore and visualize the design work activities. This system is built as
a three-tiered architecture represented by three main layers: a web client presentation interface (WCPI),
computing solver servers (CSS) and a system management server (SMS). All the related components of this
infrastructure are implemented with an object-oriented approach using Java as programming language
while the remote method invocation (RMI) technology is used to communicate across the layers. In par-
ticular the developed framework includes efficient interface for wrapping legacy computation codes or
interdisciplinary and diversified applications defined for example in C, FORTRAN or other languages. Such
objects are wrapped and provided as Java component through the implemented framework. The commu-
nication mechanisms between Java component and legacy codes are defined through java native interface
(JNI) and UNIX inter-process communication (IPC) by the way of operating system. A more detailed descrip-
tion of such PSE framework is available on [29]. In this case the PSE framework has been mainly conceived
to provide useful interface for already valuated and tested solving codes. A well-defined interface, not
only solvers are, respectively independent from the both servers and clients but also clients and servers
are isolated. In this way clients can use the capabilities of the servers without a specific knowledge of the
server architecture and communication protocol. In particular users can create their own models (for the
available solver implemented) through the use of a registered model generator. The user can also perform
remodeling once for example the analysis responses have highlighted any strange or unexpected behavior.
In this case a new input model can be created and submitted to the system for new analysis, paving the
way to re-design activities and iterative development processes. Interesting results are also provided in [30]
where a research activity has been addressed to the evaluation of a PSE portal for Multidisciplinary Design
Optimization. This PSE infrastructure has been conceived to face one of the main problems that character-
ize the application of MDO techniques in the context of a complex project. Applying MDO methodologies
in real engineering problems requires the user to spend a lot of time arranging and interfacing resources
used in the process. In this case a web portal provides useful utilities for the management of models and
resources within a shared environment. The actual implementation is based on Globus toolkit version 4
(GT4) web service-based technologies for distributed middleware, mainly used for the transmission of a
large amount of data. This toolkit is basically constituted by a series of libraries and programs that handle
the general problems regarding the definition and implementation of grids and distributed systems. In par-
ticular three containers can be identified in GT4 and they are represented by a Java container, a C container
and a Python container, using the services developed respectively by these ones. The standard protocol
technique used is based on eXtensible Markup Language (XML), ensuring the independence of the portal
from the platform and the programming language. In this case the user can define the overall process
through a process definition service provided by web interface, editing, storing ad correcting the related
process resources. The created process is managed in background as XML format, becoming also read
to be executed. The user interface provides basically five different capabilities summarized as: problem

15

Input/Output Management
-~ A 4
Initial and Boundary . _ . .
Conditions Manager Problem Solving Environment Algorithm Modularity

Parallel Program
Archetypes

Database

Management

Analysisand
Visualization

Figure 1.1: Example of the aspects that can potentially affect the definition of a Problem Solving Environ-
ment.

description management, security management, data management, resource management and workflow
management. Globus toolkit functionalities allow providing such web services through a Simple Object Ac-
cess Protocol (SOAP) web service technique while the connection with the database is realized through Java
Database Connectivity (JDBC) technology. The design resources provided by the implemented framework
are represented by analysis codes, optimization codes and CAD objects. The process flow for the develop-
ment of MDO framework as provided by the portal can be summarized in the following sequential steps.
First the design object must be selected and then the related design resources must be identified. These
ones can be chose among the object stored in a resource repository where the elements can be saved after
a proper registration. Once the resources have been selected the next step is represented by the workflow
process definition followed by the input-output variables linkage. This activity is done through the utilities
provided for the management of data connections, allowing the correct associations between the available
variables. Once these phases have been accomplished the database is created and an MDO framework is
created, potentially ready for design phase. The implemented environment provides all the elements re-
quired for the definition of a Multidisciplinary Feasible (MDF) method on a specific problem. The MDF is
an optimization method that integrates the design resources as a single design process (conceptually al the
solving codes and models are linked sequentially).

An example of the aspect that cab be related to the definition of a problem solving environment are re-
ported in figure 1.1.

PSEs frameworks have gained increasing importance in the field of aerospace design process, above all
in the last few years. The developments of new software methodologies, advanced approximation meth-
ods, data storage and fusion techniques as also the improvements in computational hardware have driven
a deeper integration of such technologies within the development process with respect to the traditional
design approach. Such improvements have lead in fact to conceive new ways of manage the design pro-
cess of complex systems, all the related features and organizations. A well-documented evaluation about
the traditional design approach in aerospace field and the increasing needs are available in [31]. The same
article provides a clear list of the improvements that can be identified in the design process and the related
technologies:

e Improvement of the quality control

e Support of the team decision making process

¢ Improvement of the design environments

* Creation of a seamless integration between design and analysis
e Understanding of the product realization process

e Storage and re-use of design history

16

T pcLchiiigauion Ol utic ipdet O dceisiolio

* Promotion of continuous learning

* Integration between analysis tools

¢ Enhancement of creativity and innovation

e Reduction of the development time by increasing parallelism
¢ Improvement of the information infrastructure

* Production of globally optimized designs

e Management of complexity and risk

e Enhancement of the critical thinking and evaluation methods
¢ Integration of product design data

¢ Improvement of communication of design specifications to remote sites and companies
¢ Integration of product manufacturing process development

* Integration of large-scale systems

The enhancement of creativity and innovation is one of the main interesting and challenging feature
related to the proposed ones since it is directly related to the development of new solution and technolo-
gies for the market.

The traditional software environment is based on the functionalities provided by a corporate intranet at
which the user workstation is connected. Corporate CAD systems (as commercial solutions and Product
Life-cycle Management (PLM) infrastructures, including in this one also the Product Data Management
(PDM) system), analysis software (for structural, costing or performance computations) and computing
node are all connected to the same corporate network. This environment can be improved integrating
more infrastructures with the final aim to paving the way for the definition of a PSE framework. Different
user’s workstations cab be connected with a team leader workstation and all ones can be linked a multime-
dia and virtual reality system. A corporate network as a can be used to connect such workstations with a
data-base master, a design process monitor, computing grid and an optimization system. Database master
can be configured to manage both the design data-bases (containing the current project information) and
a design archive (storing all the available and accessible data coming from previous project) for example.
This example represents one possible conceptual solution for PSE architecture but other different config-
urations can equivalently be chosen. The PSE architecture considered in [31] is basically represented by
a Wide Area Network (WAN), which represents the corporate network on which graphical user interface
is used to manage for example the computation nodes. CORBA wrappers are instead used to integrate
the computational software and resources on the same network, providing all the required utilities for the
management of system design.

These examples show how the application of web-based technologies can help and support the analysis
activities. In particular the developed frameworks have been mainly addressed to the execution of simu-
lation scenarios providing a graphical user interface for the management of the available resources. The
user interface has been conceived to handle already defined models and simulation codes in the large part
of the considered cases. The management of analysis resources not already registered in the same system
make the overall framework difficult to realize. This situation represents a challenging problem and differ-
ent solutions can be considered for the right evaluation of the possible approach. In particular one of the
current integration issues that limits the capabilities of PSEs frameworks is represented by a correct inte-
gration between a system modeling environment and analysis ones. The objective of this work is mainly
addressed to the assessment of the possible connection between a modeling environment and analysis

17

rastrdcidrc. I pdruculial il intcsiadlon wil v UdoTU Ul WED=UdoTU LCUINTIVIVUEICS SITILT SUlll CHUILC
has highlighted interesting results in the case for example of already developed PSEs, as briefly introduced
in the previous lines.

18

Chapter 2

System Engineering

System engineering is currently gaining an increasing key-role within the design process of complex
products. Generally speaking it represents a multidisciplinary approach addressed to the development of
balanced system solutions with respect to different stakeholders needs. This balance involves both the
management and technical processes with the main aim to reduce the possible risks that can affect the
success of a certain project. Management activities are mainly addressed to the monitoring of develop-
ment costs, schedules and technical performances, ensuring that the project objectives are met. All this
processes are deeply related to the managing risk and decision making activities. On the other side the
technical process are mainly related to the specification, design and verification of the system to be build.
Technical processes can be summarized with the following conceptual activities: the system specification
and design, the system integration and test, and finally the component design, implementation and test.
All these simplified class are strictly interrelated and iteratively applied during the development of the sys-
tem. Some of the most important activities that cover a fundamental role are reported in the following
list:

Elicit and analyze stakeholder needs

Specify system

Synthesize alternative system solutions

Perform trade-off analysis
e Maintain traceability

Two of the most interesting and challenging phases are represented by the capability to synthesize al-
ternative solutions and perform trade-off analysis which are also mainly discussed within the present work.
A clear understanding of the stakeholders needs is one of the complex phases since the decisions made
during this early definition process can heavily affect the effectiveness of the final product. It is extremely
important to understand how the external systems, users and physical environments are interfaced with
the system itself to clearly demarcate the boundary of the system and the associated interfaces. This
process may also be characterized by a well definition of the functions that have to be considered to be
compliant with the consumer requirements (functional analysis), specifying their sequence and ordering.
Once certain specifications are made the following phase regards the design of components and their test,
providing the right feedbacks to the system specification process. In this way the design evolves iteratively
towards the definition of the final system solution. It is important during this process to well define the
information flow that starts from the stakeholder needs down to the components requirements. System
representation often includes a wide set of stakeholder perspectives, involving the participation of many
engineering and non-engineering disciplines. A typical multidisciplinary system engineering team should
include viewpoints from each of these perspectives and people coming from different domain-specific
fields that have to work together within a system that is increasingly complex and where all the various
disciplines are deeply integrated. The complexity of the systems considered often drives towards the defi-
nition of a System of Systems (SoS) structure. This viewpoint is based on the identification of an element as

19

LT Pdi L U dTTOLUTICT SYoLTIT Ol a HHgHCh 1TVl U UTHiitdorn. 111 Nccu 101 LT COTTCLL HididgClnichit O SyosLTihi
complexity has lead to the definition of a various standards as support for the different perspectives that
characterize a certain project. In particular different systems engineering standards are matured over the
last several years with the main purpose to reduce as much as possible the errors related to the data ex-
change between different environments. Some of the possible system engineering standards are reported
in the following list [1]. Process standards:

EIA 632

ISO 15288

IEEE 1220

CMMI

Architecture framework:

FEAF

DoDAF

MODAF

Zachman FW

Modeling methods:

e HP

e OOSE

e SADT

System modeling standards:
e IDEFO

e SysML

e UPDM
System simulation and analysis standards:

e HLA

e MathML
Interchange and metamodeling standards:

e MOF
e XMl

e STEP/AP233

20

L HHpotriatic Wit il CONILEAL LU PTOVIUC USTIULl UTHTHUOTNS 101 LT COTILTP L Lidl 4l WIUCHY LOTI=
sidered in the present work, highlighting in particular the terms of engineering processes and methods.
Generally speaking the term system engineering process identifies what activities are performed during
the project but not give details about the ways they are performed. The system engineering method de-
fines instead how the various activities are performed, describing the types of product that have to be
obtained and how they are designed and developed. Another important feature is represented by the
concept of operations which defines how the system interacts with the external environments and how it
has to behave from the stakeholders’ perspectives. The main objective of the modeling standards is rep-
resented by the identification of a common language for the description of system physical architecture,
behavioural models and functional flow. Model and data exchange is one of the most challenging and
critical activity during the development process, above all when different domain specific tools have to in-
terface for the data sharing. The XML Metadata Interchange (XMl) specification has been conceived within
the context of OMG and has the purpose to support and make easy the model data exchange when MOF-
based languages are used (such as SysML or UML). In the same way the Model Driven Architecture (MDA)
paradigm is addressed to the definition of further standards, ideally enabling the transformation between
the models and different modeling language. All these efforts are addressed towards an improvement of
tool interoperability, modular modeling process and reuse of system design product, reducing the time
and costs related to the implementation of already defined objects.

2.1 Lifecycle management

In industry, lifecycle management stands basically for product lifecycle management (PLM) and all the
related concepts must take into account such definition. PLM can be defined as the process of manag-
ing the entire lifecycle of a product from the initial idea to the following phases of design, manufacturing,
operative service and final disposal. Product lifecycle management basically integrates people, data, pro-
cesses and business infrastructures, building up the product information backbone for companies and their
enterprise. Lifecycle management processes can be characterized by slightly different phases that show
different time extensions and conventions but they are all conceived to organize the work from the pre-
liminary steps to the more detailed ones. The brief introduction about the current lifecycle management
process descriptions allows better understanding the context for the following work. The present research
activities is developed starting from the actual lifecycle management process strategies with the final aim
to propose and evaluate a model based modeling and analysis infrastructure. This concept requires a well
clear view of the system engineering methodologies for the management of product development from
the early phases to the more advanced ones, until the final disposal. Figure 2.1 conceptually reproduces
the activities and related relationships that generally characterize the overall process from customer needs
to the final system solution.

Such concepts and their correlations can however better explain through other diagrams and repre-
sentation models. In the last few years large-scale system projects have been created through the use of
different lifecycle development models. There are no particular constraints on the development model
that must be used and organizations, academia and industry often use their lifecycle patterns also if three
main typologies can be identified. At the moment such lifecycle development models are summarized
by Royce’s Waterfall Model [2], Boehm'’s Spiral Model [3], and Forsberg and Moog’s “Vee” Model [4]. All
such models approach the definition of lifecycle in different manners as shown in their related conceptual
representations in figure 2.2, 2.3 and 2.4. Such lifecycle model representations are partially derived from
the patterns used also to implement software product and the same approach can also be applied and
extended to the development of complex systems.

The definition of lifecycle development process through V-diagram allows to graphically describing the
overall process of system design and manufacturing. This representation can be used to equivalently re-
produce the same conceptual process at different details levels since the same structure can be adopted to
define the whole system as also a single subsystem or component. The same diagram can in fact be applied
at different detail levels to show the process of design and manufacturing, providing a visual organization

21

Stakeholder

Needs

System

System Specification

requirements

System Integration

v _ VY

and Design

[)
Components

requirements

A 4

and Test

System
Solution

Verified
components

Design feedback

Component Design,
Implementation
and Test

Integration and test feedback

Figure 2.1: Development process from customer needs to system solution.

C

Requirements
definition '

System and software

analysis and design

2

‘ Implementation and
unit testing

C

Integration and
system testing

' Operation and
maintenance

Figure 2.2: Royce’s Waterfall Model.

22

I Cumulative cost I

Determine
objectives,
alternatives and
constraints

)

(1

<

Risk analyses

Evaluate
alternatives

start

I Development plan I

Plan the next
iteration

User need

Integration
and Test plan

/
/
/
/
/
~
~

.

|
Simulations ’
-

S
/ V4
\

S~

I Integration and test I

Acceptance test

Release

Figure 2.3: Boehm’s Spiral Model.

User

requirements

Partitioning
and design

Integration tests

Subsystem tests

validation

verification

System verification

requirements
Architectural verification
design
Subsystem
development

S~

Benchmarks

-

User satisfaction

System tests

—

Time

Figure 2.4: Forsberg and Moog’s “Vee” Model.

Acceptance tests

Integration

Ul dULUIVILICS do LT IS aliVln, LCoLlllg, VETHILALUUN alll vdiidd vl 101 TAAITIPIC.

2.2 System Analysis concepts, methodologies and activities

Models creation from mathematical relationships and physics-based rules is now one of the most inter-
esting research topics. In particular the information gathered within the system data model may be used
to properly define its virtual representation. The development of this relation can be realized under differ-
ent approach, depending on the required information. In particular in the last few years some modeling
infrastructures and languages have been developed. An example of a promising modeling languages that
has started to spread across different engineering domain is represented by Modelica. In particular it is a
well suited language for the characterization of the system behavior, providing useful capabilities over a
wide range of applications in the field of system analysis. The equations related to a particular element of
the system could be used for example to set the physical laws that are successively used to build up and
manage virtual simulations. The main issue concerns about the translation of the involved equations into
useful codes that may be processed in the right way.

In the following subsections some example of the most widespread analysis activities and other associated
concepts are reported to better describe the analysis process that characterizes the overall system.

2.2.1 Uses cases and Scenarios

Analysis activities are often characterized by the clear understanding of product use cases as well as
the correct identification of the related scenarios. Such concepts must not be confused and a much more
detailed description of these terms will be provided in the following sections. These words have two dif-
ferent meanings in the context of System Engineering and they must be understood to avoid future mis-
understandings.

Use case is defined as a group of scenarios linked together by a common user goal while a scenario can be
defined as sequence of steps that describe the interaction between an actor and a system.

2.2.2 Requirements Analysis

One interesting aspect that is strictly related to the methodologies of System Engineering is repre-
sented by the requirements analysis. In the preliminary phases a clear understanding of requirements,
their significance and relationships are fundamental step for the right start of the development process.
Customer needs provide the information from which the project requirements are built, ensuring the def-
inition of such guidelines that drive the design. The correct capture and analysis of system requirements
cover a basic role and different methodologies can be considered for such activities. System requirements
can basically be distinguished between functional requirements and non functional ones. In the first case
the requirements refer directly to those functions that system must perform, such as doing particular ac-
tions and activity or showing certain capabilities. These requirements are generally not linked to numerical
guantifiable properties. Non functional requirements are instead represented by those specifications that
can be expressed or traced to numerical values. Performances requirements belong to this second cate-
gory for example. This classification can be further detailed but such distinction provides enough details
for the main purposes of the present work.

2.2.3 Functional Analysis

Functional analysis covers a key-role for an effective development of complex products and represents
one of the main pillars of System Engineering discipline. Such activity is mainly addressed towards the
identification of all the functions that the product must perform during its operative lifetime. The right
definition of these functions and their relationships with the product elements is particularly important to
allocate the resources that will be provided by the system. This analysis do not involve all the engineering

24

Uuollidilis dt UITC Sdlilic 1ICvEl U Uullillg LHC odlliT HITLYLIT PlhidoTo. OUINTIT UISLIPITITS TAPIOIL TUTICLIOTdl dlidlyolo
to mainly support the preliminary development phases while other ones are characterized by this activ-
ity much more extensively during their processes. For example Mission Operations discipline is basically
affected by the results coming from functional analysis which plays a fundamental role for the correct iden-
tification of the interactions between actors and product components (procedures definition). The main
aim of functional analysis can be summarized by the collection of all the activities that are animated to-
wards the clearly characterization of what the product is able to do. It is important not to confuse such
concept with that related to the Operational Analysis which can be slightly similar with respect to some
activities but are basically conceived with two different purposes.

2.2.4 Operational Analysis

The Operational Analysis is another important activity of System Engineering domain that generally
characterizes the development process of complex products. The main purpose of such analysis can be
summarized with the identification of how the system behaves mainly during its operational lifetime. In
this case the main emphasis is not on the functions that the system is able to perform (aspects handled
with functional analysis) but mainly on its states during one of the possible operational scenarios. This
analysis includes for example the activities directly regarding state machine modeling for the system under
development. In this case it is more important to understand the relationships between the possible states
in which the system can be as well as the events that regulate the transitions among these ones. This activity
can help to get a clear vision of system behaviour, providing the instruments to support the investigation
of the possible combinations of a complex situation. Operational analysis covers a fundamental role for
Mission Operation domain as well as the functional analysis. The correct identification of system states
supports the proper scheduling for the activities that can be performed by the product. The procedures
that the users must follow to rightly operate the system are directly made from the output coming from the
operational analysis. Power budget represents an example of the possible evaluations that can be basically
performed starting from the data provided by operational analysis.

2.2.5 Cost Analysis and Estimation

An important definition that mainly covers a key role in the evaluation of system costs is represented
by the Work Breakdown Structure (WBS). Such term refers to the hierarchical decomposition of the work
necessary to complete a project/program. Such breakdown structure can also contain the Product Break-
down Structure (PBS), which can be identified with the term System Breakdown Structure with US DoD
notation. Cost estimation methods can be summarized in the following ones:

e Parametric cost models: the estimation of project costs is achieved on the basis of equation based
approach. In particular some system key parameters are used as independent variables to compute
costs. Such driving variables can be represented by weight or performances indexes, ensuring the
repeatability of the achieved results but at the same time the accuracy of the obtained responses is
not well pursued. This method is basically used during the trade studies or however the preliminary
design phases.

e Analogy: this method is applied when the system under development shows some similar character-
istics with respect to another one that has already been developed and built. In this case the current
estimation is obtained through the evaluation of the costs already known about the similar product
and some correction can be introduced to take into account for little differences.

e Grassroots: cost estimation is evaluated through a bottom-up approach where a particularly detailed
data about the project is required. Such an approach is used mainly during the advanced phases of

the program.

25

om0 P SITTTUWIGLIVIL TVIVUGLGEL IvVIGLIIGTITTIdGuivar Tvivviidg

The main aim of simulation modeling is basically represented by the analysis of the nature and be-

havior of a particular system. Generally speaking system can be identified as a facility or process that is
under consideration due to different reasons. In order to analyze the behavior of a particular system one
of the most important process is represented by the making of a set of assumptions about its response
to external input. The whole set of assumptions that are made to define the nature of the system can
be expressed in the form of mathematical or logical relationships and all contribute to define the model
characteristics and how it behaves. In this way the final objective is to build instruments that can be used
to imitate or simulate the responses that we want to study. When the previously introduced relationships
can be defined through the use of mathematical methods to obtain exact function about the information
of interest, we are in the case of analytic solution. With the mathematical methods are referred algebra,
calculus and probability theory. Real-world system often cannot be defined analytically and in these cases
the simulation represents the unique feasible solution. The system behavior is evaluated through the use
of numerical model in order to estimate the desired response. The same system may be modeled with
different approach depending on the features that want to be studied and also from which viewpoints.
Considering these characteristics the simulation methodology became one of the most import aspects of
the model building phase. In the following sections a brief introduction on the main features of system
modeling is described and a clear definition of the terms system, model and simulation can help to bet-
ter understand the studied methodology [5]. System identifies the collection of entities, such as people
and machines that interact together for the accomplishment of some final objective [this definition was
proposed by Schmidt and Taylor (1970). What the term system refers to depends often on the particular
objectives that were faced within a certain study. For example what is defined as a subset model for a
particular system can represents the whole system under different simulation conditions. The term model
is usually used for a structure which has been built purposely to highlight some particular features and
characteristics of some other components [6].
Another important definition is represented by the state term. The state of a system refers to the collection
of variables that must be defined to completely describe the model at a particular time. Systems can be
categorized as discrete or continuous. A discrete system is characterized by state variables that change
their values instantaneously at different points during temporal evolution. In the case of continuous sys-
tem instead the state variables change in continuous manner during model simulation. In the real-world
representation it is difficult to find systems that are wholly discrete or wholly continuous but is however
possible to classify their belonging on the fact that one of the two types of state variables predominates
over the other. During system analysis the need to study the relationships between some components as
the possibility to face different boundary conditions drives to different ways under which system can be
represented. On the basis of the features to be analyzed (for example considering the need to evaluate the
performances under changed conditions) there are different ways to study a system as reported in figure
2.5.

System can basically studied starting with the distinction between experiment realized with the actual
system and experiments with a model of the system. In this last category are included the physical model
and the mathematical model. Another distinction can be based on the resolution approach that can be
applied on the mathematical model, distinguishing between the analytical solution and simulation. The
term simulation refers mainly to the numerical solution of a mathematical model. The first main distinc-
tion between experiment with actual systems and experiment with a model of the system depends strongly
on the available resources. The better solution is always to experiment over the actual system to obtain
more reliable information on responses to the input parameters but often this condition is not possible
to realize. This situation is desirable but often the experiments over the whole system become a costly
operation or in other cases the tests to be done are disruptive for the system (as for example in the case of
thermal or structural tests). In other situations, at the time the experiments are needed, the system is not
present or however is not possible to realize such experiments for security problems or not-repeatability of
operations (such in the case of system involving nuclear applications). These reasons animated the build-
ing of a model as a representation of the system to be studied as a surrogate for the actual system. One

26

7/ \

Experiment Experiment
with the actual with a model of
system the system
Physical Mathematical
Model Model
Analytical
ﬁlca Simulation
solution

Figure 2.5: Conceptual overview of the possible ways to study a system [5].

of the problems that the modeling activities involve is represented by the need to well understand the
validity of the model (referring to the capability to well model the responses that the model is defined for).
The other two categories refer to the distinction between the physical and mathematical model. Physical
models are represented by actual models that reflect some particular system characteristics (for example
they refer to the model used in the case of wind-tunnel simulations), depending on the output that have
to be monitored in that particular case. In other context the term physical model is equivalently expressed
as iconic model. These models are not cost-effective for the main analysis purposes so they are often
overwhelmed by the definition of mathematical models that are currently the main approach for predict
system responses. These models define the logical and quantitative relationships that are manipulated
to evaluate system reactions and that can be used to understand which would be the actual responses.
The same classification is defined as concrete versus abstract models according to other references. The
essential feature of mathematical model can be identified in the involvement of a set of mathematical
relationships, such as equations, inequalities, logical dependencies, etc. The other main subdivision that
characterizes the mathematical model class is represented by the distinction between the analytical solu-
tion and simulation. In the case the model is simple enough to be managed through the implementation
of exact relationships between the quantities involved in the problem the solution can be defined analyt-
ically. When the relationships and equations that are directly bounded to the problem are complex, the
solution of the problem can generally be obtained through numerical approaches. In this case the analysis
of the response functions on the basis of the chosen input parameters are studied by means of simulation.
Once what is defined as simulation model is implemented it is possible to introduce other classifications
that allow characterizing other different ways of representation. In particular these classifications are rep-
resented by the following couples, generating all the possible combinations between each other.

e Static and Dynamic Simulation Models
e Deterministic and Stochastic Simulation Models

e Continuous and Discrete Simulation Models

Static simulation models are represented by those cases where the problem is defined at a certain time
or in the cases where the time does not cover an important role. On the other side dynamic simulation

27

Mouc] 1cicl LO LHC propicinigs WIHHCTC UNTIC pPpdidlificilcl COVETS d TTUL TICEIEgINIC TUIC. olalll SiTiuiatiVlis CLall DT
represented for example by some Monte Carlo models. Deterministic simulations are those characterized
by the absence of any probabilistic quantities. In particular the output functions are determined once the
input values and their relationships are uniquely specified, not depending on how much time the simu-
lation lasts. When the simulation models include at least one random variable the simulation is defined
as stochastic and output quantities must be analyzed through probability theory. Roughly speaking deter-
ministic models are a special case of stochastic models as demonstration of the close correlation between
the elements of this class of simulations. Discrete models are represented by the case where system under
study is analyzed as discrete simulation while continuous models can be represented by the definition of
variables belonging to a continuous domain. The choice between discrete or continuous modeling for the
same phenomena depends strictly on the needs and the objectives that are desired or required. Another
important concept that is recurring in the field of models simulation it is represented by event. This term
stands in particular for the instantaneous occurrence that may change the state of the system. Mathe-
matical programming as defined does not refer to computer programming concept while it expresses the
planning activities behind the problem formulation. Most of engineering applications that involve math-
ematical programming are generally addressed to the resolution of optimization problems also if that is
not the only activity that characterizes its implementation. Mathematical programming can be applied on
different models categories as expressed in the following list.

Linear Programming Models

Non-linear Programming Models

Integer Programming Models

Stochastic Programming Models

2.4 Space System Engineering

The integration of MBSE methodology within the project of complex system has found a productive
environment in the context of Space Engineering. This field has always been characterized by a high level
of complexity with respect to other engineering applications. The wide number of products, people, do-
mains and processes involved favours the creation of an environment difficult to manage and control. The
developments of methodologies that can help to better organize such context are seen as extremely in-
teresting and strategic for the right design of a correct system. The product life-cycle management (PLM)
process covers a key-role for the definition of a complex space system. A comprehensive work about the
formalization and definition of the PLM guidelines mainly addressed to the definition of space systems is
available in [7]. Some of the main important concepts on which is based the present work are derived from
the definitions and information provided by this handbook. In particular the high-level perspective on the
integration between the modeling and analysis environments has been selected as primary element for the
implementation of the proposed framework. In this way the developed infrastructure is consistent with the
concepts already available from the system engineering practice and knowledge coming from space field.
The system design main process can be conceptually represented as in figure 2.6. The schema provides a
clear pattern of all the relationships that characterize the design activity of a space system. The high-level
design phases can be summarized in the block representation where the product breakdown structure is
identified after the requirements analysis and the functional decomposition, clearly separating activities
that involve procedures, people, tools and methods different from each other. The main processes of de-
sign and product breakdown structure, functional and logical decomposition as also requirements analysis
and allocation are all include within the modeling infrastructure of the proposed methodology and frame-
work. The processes of functional and performances analysis are instead approached within the analysis
infrastructure of the same environment. In this way the main idea is to clearly keeping separated the mod-
eling activity (including processes, people, tools and methods) from the analysis one, which refers mainly
to the evaluation of the design baseline already modeled.

28

Stakeholder
Expectations
Mission Trade Studies and Iterative Design Loop
Objectives &
Mission |EJEIgs Constraints
Authority Derived and
* h 4 Design and Allocated
Functional Product Requirements
i High-Level ~
i Ope‘ratl'onal ~—IRe ?xirements+ and Logical —» Breakdown | |= Functional
Objectives B Decomposition Structura * Performance
= Interface
; A = Operational
= “llities”
Mission
Success

No — Next Level

Legend:

No
D Stakeholder Expectations Definition

Select
Baseline

Rebaseline

D Tachnical Requirements Definition equirements?

Yes
|:| Logical Decompaosition

B Design Solution Definition

D Decision Analysis

Figure 2.6: High-level representation of the main conceptual processes involved in a space system definition

[7].

The product life-cycle management can be approached considering different phases interspersed with
different key decision points. Their definition is strictly dependent on the knowledge matured throughout
the years and for this reason different aerospace agencies have often their own lifecycle management
procedures, milestones and acronyms. Some examples of such management process are briefly reported in
the following, providing a high level perspective of how space systems development activities are organized
[8]. The main phases are often identified with the most important key decision points and the related
milestones are followed by the delivery of document and reports on the project status. All these documents
contain the description of the current development level of the system, the results coming from analyses
of its performances and currently opened issues. The considered timelines are used to properly allocate
the available resources on the basis of the related phase, providing both the time slots for the organization
of workload and useful indications for activities coordination. In figures 2.7, 2.8 and 2.9s are reported the
time allocations for the various lifecycle phases.

2.4.1 European Cooperation for Space Standardization - ECSS

Some of the topics introduced in the current work have also been developed and extended from the
concepts and definitions provided by the European Cooperation for Space Standardization (ECSS) organi-
zation. Such institution is mainly devoted to the coordination of standardization activities with particular
emphasis on space systems. It is supported by several agencies and companies that are interested in the
definition of a common set of elements, definitions and guidelines that can be shared among them. More
details are available on the related web portal [9].

Until few years ago there is no uniform system of space standards and requirements in Europe. Although
the presently used standards and requirements are quite similar, the remaining differences result in higher
costs, lower effectiveness and in a less competitive industry.

At the beginning of 1993 the European space community realized that a solution had to be found to over-
come these problems, and expressed their will to develop a new coherent system of European space stan-

29

User Needs & Technology Opportunities

Jlﬂ\ I \ I‘.\\
A\ 8\ /& oc FOC
System System LRIP Full-Rate Sustainment Disposal
Integration Demonstration Production
& Deployment
Desi FRP
< gz:ic;gtn <> R::'Idgigess <> De-c!'sion
Review Rewview
Concept Technology | System Development Production Operations &
Refinement | Development & Demonstration & Deployment Support
Pre-Systems Acquisition Systems Acquisition Sustainment
Initial Capabilities Capability Development | Capability Production
Document (ICD) | Document (CDD) | Document (CPD)

Figure 2.7: Department of Defense (DoD) Product Life-cycle Management process [8].

Relationship to Requirements Process

Formulation

Implementation

Pre-Phase A
Concept
studies
Management Decision Reviews
‘ Pre-NAR = Preliminary Non-Advocate Review
’ NAR = Non-Advocate Review
Figure 2.8: NASA Product Life-cycle Management process [8].
Activities Phases
Phase 0 Phase A Phase B Phase C Phase D Phase E Phase F
MDR PRR
Mission/Function ‘ ‘
Reguirements ‘SRR ‘ PDR
Definition 'CDR
Verification ‘ ar
AR
Production i ORR
CRR
Utilization FRR .' ‘ " ELR
Disposal LRR

Figure 2.9: ECSS Product Life-cycle Management process.

30

‘ MCR

The European Cooperation for Space Standardization (ECSS) was started officially in the autumn 1993,
when the partners signed the ECSS terms of reference (TOR), which defined the framework and basic rules
of the system. At this point, the partners jointly undertook the development of the system, designed to
meet the main objective of providing a single coherent set of standards for use in all European space activi-
ties and particularly projects. The European space industry was fully associated with ECSS from the outset.
The first task of the ECSS was to draw up a policy document. A dedicated working group was set up in
late 1993, leading to the publication of a document entitled "Standardization Policy" under the number
ECSS-P-00. This document reports the different aspects of the system, including scopes, objectives, imple-
mentation, authority, organization and documentation.

ECSS policy dictates, that ECSS standards shall promote the continuous improvement of methods and tech-
niques, and the avoidance of unnecessary work. Experience from past projects and other appropriate
sources shall be systematically incorporated into the ECSS system. ECSS standards must satisfy all Euro-
pean and international clients, and shall encourage industrial efficiency and competitiveness by limiting
the variety of products and processes. Existing standards like ESA's Product Specifications and Standards
(PSS) line of documents stated exact details of functions and its quality, together with the means required
to produce the wanted products or services. ECSS standards shall be harmonised with international stan-
dards or working practices where these have been, or are in the course of being, generally adopted by
the European space industry. One of the key element of ECSS is represented by the documentation archi-
tecture, which is designed to help the organisation and retrieval of information within the ECSS standards
system.

The documentation (ECSS documents as Standards, Handbooks and Technical Memoranda) is basically or-
ganized in four main branches that are listed below:

e Space engineering
e Space project management
e Space product assurance

e Space sustainability

The branches are in turn decomposed in several disciplines and domains, as reported in figure 2.10.

The purpose of a space project [92] is to deliver to a customer (and subsequently support or operate if
required) a system which includes one or more elements intended for operation in outer space. The activ-
ities carried out by the system supplier are conveniently and conventionally categorised into five domains,
briefly reported in the following list:

* Project management, responsible for achievement of the totality of the project objectives, and
specifically for organisation of the project, and its timely and cost-effective execution.

¢ Engineering, responsible for definition of the system, verification that the customer's technical re-
guirements are achieved, and compliance with the applicable project constraints.

* Production, responsible for manufacture, assembly and integration of the system, in accordance with
the design defined by engineering.

e Operations, responsible for exercising and supporting the system in order to achieve the customer's
objectives during the operational phases (note; operations may be carried out by the customer, by
the supplier or a third party on the customer's behalf, or by a combination of these)

¢ Product assurance, responsible for the implementation of the quality assurance element of the
project and also for certain other specialist activities.

The boundaries between such activities are not always clearly defined and formalized since for example:

31

ECSS-5-ST-00C
System description

ECSS-S-5T-00-01C

Glossary of terms

M-10 discipline
Project planning and
implementation

Q-10 discipline
Product assurance
management

M-40 discipline
Configuration and
information management

Q-20 discipline
Quality assurance

M-60 discipline
Cost and schedule
management

Q-30 discipline
Depeandability

M-70 discipline
Integrated logistic support

Q-40 discipline
Safety

M-80 discipline
Risk management

LEGEND

Ongoing update of an
existing document u

Q-60 discipline
EEE components

Q-70 discipline
Materials, mechanical parts
and processes

e

E-20 discipline
[——Electrical

E-30 dluiplln-
E-40 dlscipllni-

E-50 disciplin

| |E-60 dlmiplln-

E-70 discipline

Q-80 discipline
Software product
assurance

—— Ground

Figure 2.10: ECSS disciplines and domains decomposition [9].

32

E-10 dlsclplln- -

| |U-20 discipl

Space susta

U-10 disci

(as of 1 October 2012)

T THEITCTT g, PTOUUCLIVnN, UPCiduUUls diiud prouuct asoulidliictc Uulliditis ©4dlll 1civuducs dil CITIiChiL
of management which overlaps with the project management domain proper.

* Production and operations include preparatory and supportive engineering activities, which may also
be considered as part of the engineering domain.

* Product assurance includes reliability, availability, maintainability and safety activities, which form
an essential part of the design process in the engineering domain.

Harmonization between the three branches of the ECSS system - Management, Product Assurance and

Engineering - was initially the activity of a coordination group including the Secretariat and the Technical
Panel Chairman. ECSS standards are publicly available documents agreed as a result of consultation and
coordination with space agencies in Europe and with industry, and are designed to secure acceptance by
users and customers.
Participants in the ECSS incorporate participating member agencies and the European Space Agency (ESA),
industry and associates. Associates are those governmental and scientific organizations desiring a formal
connection with the ECSS, through which they can monitor the development process of technical docu-
mentation and contribute to the ECSS System.

33

34

Chapter 3

Model Based System Engineering Methodology

3.1 Introduction

Nowadays the Model Based System Engineering (MBSE) philosophy has started to play an important
role for the definition of system model characteristics. The increasing number of variables involved as
also the presence of stakeholders often coming from different backgrounds make very difficult to proper
manage a complex product. MBSE with respect to the traditional approach provides the basis for a ratio-
nal organization of work. Some of the features that contribute to make MBSE one of the most spreading
modeling philosophies are introduced in the following sections. A particularly comprehensive and clear
definition of MBSE is reported in the following lines: “Model-based systems engineering (MBSE) is the
formalized application of modeling to support system requirements, design, analysis, verification and val-
idation activities beginning in the conceptual design phase and continuing through-out development and
later life cycle phases” and it was available within [10]. One of the main important concept related to the
MBSE approach is represented by the term Architecting. This definition is strictly related to the process that
drives the identification of certain design solutions starting from system objectives. This process is charac-
terized by the analysis of the objects and their relationships for the investigation of the better configuration
for the system under evaluation. The main objective is represented by the generation of a balanced ar-
chitecture where all the elements are harmoniously connected as much as possible. During this phase
the system engineering work is also affected by the presence of policies, principles, procedures, budgets,
reviews and other activities. Under these conditions the system design process can be characterized by
the appearance of omissions, misinterpretations and inconsistencies that later in the development phases
can be the sources for a wide range of problems. The main target of MBSE methodology is the reduction
of such problems that can considerably affect the system performances or delay foreseen time to market.
The generation of a system model in a structured form with a well-defined modelling formalism is one of
the most challenging features of the current research topic. In this way it is possible to follow the design
during the development process in a more structured manner with respect to the traditional approach as
the project matures.

A model based approach shows also the characteristics for a seamlessly integration with object-oriented
infrastructures and methodologies. Object-oriented philosophy is currently evaluated for a deeper integra-
tion within simulation environments as can be seen for example in [86]. The benefits that can be achieved
are reflected in a more effective management of the overall lifecycle of a system.

Traditionally large projects have employed a document-based (also known as document-centric) systems
engineering approach. All the information related to the system design and the data exchanged are mainly
managed through documents. The generation of textual specifications and design documents character-
izes the process of information exchange between all the stakeholders that are involved within the project
(customers, users, developers and testers). This approach often lead to a time consuming activities that
are not directly related to the project itself, since documents generation, consistencies check and pro-
duced drawings validation cover a large amount of time. This approach has deeply influenced the system
engineering activity of the last years but when the system begins to increase its complexity this methodol-
ogy becomes difficult to control and manage. For example requirements traceability becomes even more

35

ClhidaliCligiily WICT LT UTVCIOPITICHIL PIOLCos PIOLCCUS. TTHS applUdlll O YOCUITICTTHILzEUdoCU TALTIATIETE Ul =
formation and specifications is difficult to update and often results in a poor synchronization between the
involved resources. These and other problems can result in an ineffective product development and po-
tential quality issues come out during integration and testing activities. In the worst scenario system faults
are discovered once the product has been delivered to the customer. Model-based approach has shown
the capability to reduce these problems with an improved management methodology. A mathematical for-
malism of this methodology has been introduced in the 1993 and electrical and mechanical domains were
the first to be characterized. This standard practise has started to spread over other disciplines, showing
the benefits of a better structured approach.

System model generally is defined with the support of a modeling tool and all the information is gathered
within a model repository and includes data related to specifications, design, analysis and verification. Sys-
tem model is traditionally created from a document-centric vision and all the information are exchanged
through documents that often are not well synchronized with the data available for a particular design
phase. This situation leads generally to a difficult management of all the information above all when the
product complexity increases. In this context the SysML language can provide some interesting capabil-
ities for a correct development of system features. Within the MBSE perspective system model can also
be characterized by the integration with engineering analysis and simulation with the final aim to provide
useful computation functionality. The other fundamental element of MBSE paradigm is represented by
the model repository, highlighting the same importance of the system model itself. This element allow
to proper store all the diagrams and information associated to the system model, reporting all the data
involved up to a particular phase of system development. In this way it is possible to generate the docu-
mentation directly from the model, reducing the time required for the creation of the proper report as in
the traditional design methodology. In this case in fact the modeling environment is not directly linked to
the tool used for the generation of report and documents. MBSE methodology is instead centred on the
formalization of all the system model information within the same modeling tool, allowing for an automatic
or semiautomatic generation of reports. In this way the same elements on different diagrams represent
the same things and the problems related to consistency check are reduced. This approach limits also the
definition of wrong objects since the semantic architecture of the modelled system can be implemented
only following certain rules and specifications. In this way is possible to guide the characterization of the
data introduced. In the same manner it is possible to better control the possible violations of constrains,
reporting the elements affected and providing the instruments for the correction of such situations. The
potential benefits, current issues and open points are available from different research initiatives and an
interesting description can be found in [70].

The current transition towards a model-based approach is animated by different reasons and a few of them
are summarized in the following list.

* Enhancement of communications between all involved stakeholders
e Reduction of development risk

e Quality improvement

* Productivity increase

¢ Enhancement of the knowledge transfer

Clear definitions of Method and Model term may be useful for the analysis provided in the following
sections. Model term represents one or more concepts that are used for the description and evaluation of
something in the physical world. Generally the model is an abstract definition referred to a certain domain
of interest and does not contain all the required details for the description of the whole system. Models can
be generated within different contexts depending on the particular needs for a certain situation. Graphical,
mathematical or logical models are all different manners to represent the same system under various per-
spectives. Also a physical prototype represents a particular form of model that allows representing some
particular aspect of the product under evaluation. The model taxonomy of this work follows the definition

36

bdd [Package] MBSE Models and Interelations [|ﬂ‘;'£| Model Classification and Interelation] |

defines input and output
data structure

==hlock== ==hlock=>=
Process Model defines what data Data Meta-Model
o is used in process steps P
) S -
mnsdneﬁil:r:gﬁg ggm e S _~"specifies data required
s K/” to capture process
==hlock==
Modeling Infrastructure Model
: — -
defines tools and interfaces - . defines tools and interfaces
for static modeling -~ “~.__ for dynamic modeling
L S
e defines structure Sy
=«blocks= far dynamic modeling =ehlock==
Static or Structure Model _'llyrm'nil: or Behavior Model
' o P
defines requiremenfs'“- o
architecture L f,«hmr?aels d}man&m t
. ' - - enavior of produc
design, .Y el P
procedures for product aahlockss

Product Instance Model

Figure 3.1: Relationships between different kinds of models [11].

introduced by Eisenmann, Miro and De Koning [11] and formally expressed in figure 3.1 where the main
six model objects are reported.

The term Method refers generally to a group of activities, techniques and conventions that are used
to define one or more processes through the support of tools. This element is fundamental to organize
the workflow and to proper define the data exchanges between the stakeholders involved within a certain
project. The main objectives of system modeling can be summarized in the following ones.

e Characterization of an existing system
e Specification and design of a new or modified system
e Evaluation of system features/performances

¢ Training of the users/stakeholders on how to operate and maintain the system

One important distinction must be introduced when considering the model and design terms. A model

is defined on the basis of its intended purposes, considering a certain context of applicability. Design refers
instead to how well a certain system solution is capable to satisfy customer requirements. The same physi-
cal element can be represented with different models on the basis of a certain particular needs. The scope
of the model affects significantly the level of resources employed for its implementation and can be for-
malized through the definition of model breadth, depth and fidelity. Model breadth represents how many
elements are needed in the definition of system model for a certain level of implementation. Model depth
refers instead to the hierarchical depth of the considered objects. For example the model depth increases
as the project proceeds through the development. The same thing is represented on different levels as the
object complexity increases as the project becomes more detailed. Finally model fidelity is related to the
capability to generate responses that are equal to real results as much as possible.
The consistency of model constraints can be checked through the use of different approaches supported
by various instruments, ensuring the correctness of implemented elements. For example object constraint
language (OCL) is one of the ways used to formalize the relationships between some system parameters,
allowing for a better control of potential requirements violation.

37

IVIOUCT Uciinnuion 1o g proCLcoos Liidlt 1TyUIl TS Paltitulal dllTiition Wil pTOpIic Wil Ui it oitialii=opceliic
education have to interface with each other on the same framework. It is important in this sense to under-
stand how the model is understandable since information not directly needed by the single stakeholder is
all presented together. Information overload is in this case one of the problems that may arise during the
process of data exchange and visualization. Modeling tools can offer different functionality for the man-
agement of such information since all data are formalized following a particular pattern. In this manner
the information can be filtered on the basis of the specific needs of the related stakeholder. For exam-
ple thermal engineers can filter and manage only the information directly related to their thermal domain
environment. Model based approach offers also interesting instruments for the investigation of design
quality. The availability of formalized data within the system model allows building specific metrics regard-
ing design features for example and these one can be used to evaluate design performance and satisfaction
level for the implemented requirements. Different techniques can also be used to monitor the progresses
of project development once the system model is defined in the proper way (for example properties man-
aged through standard technical performance measurement - TPM).

In the same manner the progresses and development efforts required to reach a certain degree of com-
pleteness of the system project can be monitored, ensuring a better control of the available resources. An
estimation of the efforts and costs to complete the design can be foreseen with the use of proper model of
investigation in the context of model based approach. This last feature represents surely one of the main
advantages with respect to the traditional design methodology.

In order to better explain the concepts that will be introduced in the following sections should be useful to
properly define the terminology that will be used. A brief explanation of the terms used will help to avoid
the possible misunderstandings about the topics and features that will faced. The definitions used for the
explanation of the current concepts come from the work [12], where a clear distinction among words often
used as synonymous is provided. The word methodology is often expressed as synonymous of the word
process while they should refer to different concepts. To better understand the differences between such
two words the definitions of process, method, tool and environment are considered:

e A Process is a logical sequence of tasks performed to achieve a particular objective. Such term basi-
cally defines “WHAT” is to be done, independently from the way such tasks are done.

e A Method includes the techniques that are used to perform a certain task, defining “HOW” each
task must be done. The word method can be alternatively interchanged with the term technique,
practise and procedure. The process tasks are basically performed using methods and such pattern
is repeated for different detail levels. In particular each method can also be seen as a process itself
since the “HOW” of one level becomes the “WHAT” for the next lower level.

e AToolis an instrument that is applied in the context of a particular method to improve the efficiency
of a specific task. The application of a specific tool is often realized through somebody with proper
skills and training. Referring to the previous definition a tool can be considered as the element that
enhances both the “HOW” and the “WHAT”. Computer Aided Engineering (CAE) tools fall within
such class since they are conceived mainly to support the design and analysis phases for system
development.

e An Environment represents the surroundings, the external elements, conditions, or factors that af-
fect the actions and/or responses of an object, individual person or group. The cited conditions can
be represented by social, cultural, personal, functional, organizational or physical events.

Once these concepts have been clarified through the proper definition of the related terminology the
word methodology can be better understood. In particular a methodology can be defined as a collection of
related processes, methods and tools that are conceived and integrated to approach a certain class of prob-
lems that share some common element (as expressed in [13]). The main focus of a project environment is
to provide the proper support for the integration and application of tools and methods used in the related
project. The relationships between all the just introduced concepts can be graphically represented in figure
3.2, where the correlations with technology and people are also reported [12]. Technology capabilities and

38

PROCESS
defines “WHAT"

supported by l] support

Capabilities and Knowledge, skills

limitations METHODS and abilities
defines "HOW"
supported by Support
TECHNOLOGY PEOPLE
TOOLS

enhance “WHAT" & "HOW"

supparted by l l support

ENVIRONMENT
enables/disables “WHAT" & “HOW"

Figure 3.2: Process, Methods, Tools and Environment elements and relationships with technology and
people.

limitations must be well understood before the definition of a methodology and related infrastructure. In
fact the correct development of a project will be affected in the way the technology is exploited since it
can help or slowdown system engineering efforts. The definition of methodology infrastructure requires a
balanced partitioning of Process, Methods, Tools, and Environment, considering also the knowledge, skills
and abilities (KSA) of the people involved.

3.2 INCOSE initiative

The International Council of System Engineering (INCOSE) represents the organization that covers a
key-role in the definition of MBSE ontology and its spreading all over different engineering fields both
in academic and industry. Regular workshops and conferences are organized by INCOSE to support the
integration of such methodologies within the current system engineering strategies. A well-defined MBSE
roadmap has been identified to schedule the main objectives and improvements that might be reached in
future developments. The desired maturity levels with respect to the temporal evolution are reported in
figure 3.3 as presented in [14].

The conceptual pattern refers to the areas reported in the lower-right corner and they are also briefly
repeated in the following list:

* Planning and support

Research

Standards development

® Processes, practices and methods

Tools and technology enhancements

Outreach, training and education

The main topic of the current work can be related with the concepts presented in the just introduced
diagram. In particular the capabilities | refer to are both represented by design optimization across broad
trade space and cross domain effects based analysis.

39

I MBSE Ca pal:lilit\r Reduced cycle times System of systems Dﬁ'ﬂ::ﬁ:’mﬂm a;amxdm“ 'F;':'ﬂ'ﬂ e

Institutionalized /
MEBSE across Distributed & secure model repositories
Academia/Industry crossing multiple domains
=
I Defined MBSE theory, ontelogy, and formalisms I
il £ .
Wel =
-] Architecture model integrated
a;ﬂg'?d - with Simulation, Analysis, and Visualization
s e *Planning & Support
Matured MBSE methods and metrics, g PP
Integrated System/HW/SW models | *Research
- «Standards Development
e i I *Processes, Practices, & Methods
Ad Hoc MBSE e *Tools & Technology Enhancements
Document Centric 1 «Qutreach, Training & Education

2010 2020 2025
Figure 3.3: INCOSE MBSE Roadmap [14].

The primary efforts are addressed towards the improvement of MBSE architecture and their maturity level.
In particular the main direction is represented by the passage from the emerging MBSE standards to dis-
tributed and secure model repositories crossing multiple domains. The extension of maturity level is con-
currently characterized also by the improvement of MBSE capabilities. In this context the reduced cycle
times turns into system of systems interoperability and finally introducing design optimization across broad
trade space. In this utopian vision the MBSE paradigm provides a clear environment for analyses based on
cross domain effects. Interesting challenge teams and research groups have been involved within the IN-
COSE initiative and space applications have been approached with such methodology. The INCOSE Space
System Working Group (SSWG) is one of such teams and their reference case to assess the benefits of
such modeling technique has been identified with the FireSat mission, available from the literature (Space
Mission Analysis and Design [15]).

3.2.1 System modeling language - SysML

Currently one of the most widespread modeling languages that has been used for the definition of
system characteristics from different viewpoints is represented by System Modeling Language (SysML). In
particular this language is now drawing the attention in the context of system engineering due to the well
suited advantage to model a high number of system features, starting from the topological ones but also
covering other fields as the operational and functional characteristics for example. Its capability to repre-
sents the main features in a flexible way and covering different domain- specific modeling techniques is
one of the most interesting key-role. Currently different research groups are involved in the assessment
of the feasibility of aerospace system modeling. The main aim is the evaluation of the potential benefits
and drawbacks related to the modeling of complex system (such as product related to space application),
where a wide range of people with different skills and backgrounds are involved on the same project. In
particular study research topics are addressed towards the understanding of the actual scalability of SysML
to system with a high level of details and the possible integration of such language with automated code
generation. This last feature is directly related to the possibility to run simulations starting from the “rep-
resentative” model definition. With this last term we identify the model that contains all the information
related to the model characteristics but it does not contain codes or similar runnable simulation model. In
this way the evaluation of system performances can be realized already in the early phase of the project. In
this case one of the main challenging topics is represented by the integration between the representative
system model and external (or SysML embedded) simulation solver (as for example external simulation
proprietary tools). Currently an increasing number of commercial tools offer the capability to support and

40

UCTVCIVUP IVIDOLE LUTILTPLO WILTHTE LHIT SYSLTITI PIOJTLL. 1T Pal titUldl do OYoIVIL/ UIVIL LOUIS OHICT LHNC HTIPICHNCHW A=
tion of simulation capabilities through the installation of proper plug-ins also multidisciplinary simulation
tools offer the functionality to implement some of the MBSE project methodologies. In the first case SysML
tools allow to build simulation codes starting from the available information provided through particular
classes of diagrams. For example the parametric diagrams are defined within SysML environment and
they are mainly used with this purpose. They allow formalizing the physical and constraint relationships
between the model classes and objects introduced within the project. Numerical values and parameters
can be related to the object in a more effective way with respect to the traditional approach, reducing the
possibility to introduce consistence errors between the modeled elements. This information can then be
used to build simulation codes that are sent for example to external solvers. The results coming from these
simulations can then be post-processed in the same modeling environment with the proper instruments.
In this way is possible to manage and check the possible inconsistency between the elements involved
within the product development.

For this reasons some projects are currently evaluating the SysML for the architecture design, simulation
and visualization as reported in [83].

From the previous consideration SysML seems to be an interesting language for the modeling of system
features from different point of view, above all considering the different disciplines that have to deeply in-
teract during the development. One of the main benefit related to SysML modeling tools are represented
by the flexibility to manage different aspects of the same project. This modeling approach is addressed to
system engineering that have to monitor and check a wide range of variables and parameters during the
project. In this case the system engineers have to learn a new modeling instrument for their space appli-
cation purposes. This last aspect seems to be one of the drawbacks related to the use of SysML language.
This language is however designed to unify the diverse modeling language currently used by system en-
gineers as Unified Modeling Language (UML) is conceived to standardize the modeling languages used by
software engineers. As previously introduced SysML allows supporting the specifications, analysis, designs,
verifications and validations of a wide range of complex systems. The diagrams used for such a purpose
are represented by the Block Definition diagram, Internal Block diagram, Package diagram, Parametric di-
agram, Requirements diagram, Activity diagram and Use Case diagram. Nowadays different commercial
software-houses offer SysML plug-in as complementary elements for their UML software suites.

The SysML specification includes the definition of the previously set of diagrams that allow to manage all
the system information in a consistent way. Each diagram is related to a particular aspect of the system
architecture and offers a wide range of features for the particular element to be modeled. These diagrams
can be associated to four main groups which are often denoted as the four pillars of SysML language. A
conceptual overview of these four pillars is represented in figure 3.4.

SysML Block Definition Diagrams (BDD)

This class of diagrams is used to define the features of a block and any other relationships between
blocks such as associations, generalizations and dependencies, characterizing properties, operations and
attributes. This kind of diagrams is generally used to model the system hierarchy or a system classification
tree. They are used to clearly define structural composition, interconnection and classification of the in-
volved technologies. Function-based representations are also integrated and allow to model state-based
behavior of the system. In particular this diagram is used to represent structural elements (also defined
as blocks), their relationships, compositions and classifications. SysML BDD is derived from UML class dia-
gram with some modifications.

SysML Internal Block Diagram (IBD)

SysML Internal Block Diagram (IBD) is typically used to model the restrictions and extensions that char-
acterize the represented element. An IBD captures the internal structure of a Block in terms of properties
and connections among the properties. In this case the ports, the connectors and the linked parts are rep-
resented with the final aim to highlight how the objects are internally defined. SysML IBD has been derived

41

1. Structure 2. Behavior

3 A sl ABE_AciivationSequence [Saquence Diagram]
bdd [package] VehicleSucure [ABS-Biock Defngion Disgram] I interaction)
A definition
=hincks =hilack a1 Tiactns m1:Brake
el N L] (oo]
Electonk: = iyl r vl it T oTracteon [S1a0s Machird Diagram]
Fracemuse Conirolies Vava state :
machine
a1 = |‘ LossOdTaoan i.-
- aGﬁuit‘,‘f act PraveriLockup [Actvity Diagram|))
5 function
K
o
€1 mod lak use Detncnl oss 4
LT Tiacton
= Brake sendick)
-
req[package] VehicleSpe ciications
[Requinements Disgram-Braking Requirame nis|
par|cordin i Elock] StaghilneahickDym smes [Paramed :D-.J-J-..:)
Vil kb Syutens Braking Ssbaystem L3S bk ¢
Specificatien Specification
Hiakinghsice + el stion
[——— P E— Equation ul Equation
Sazppinglisasta Astl-LockPeteimance ¥ = rulilan IF = rrua}

ubsyram sha
backig reder ol

‘DEtancel guaion
[v = dwidt}

Meloci iatian
Eh e

aderwveFegts

3. Requirements 4. Parametrics

Figure 3.4: Pillars of SysML language [102].

from UML composite structure diagram with little modifications.
SysML Package Diagram

Another class of diagrams is represented by the SysML package diagrams. They are typically introduced
to organize models by partitioning model elements into groups and establishing also the dependencies be-
tween other packages or model elements. The project can be effectively organized in a more suited way
with the package elements since also the view object are organized within such representation. UML lan-
guage also implements the same kind of diagrams with no differences.

SysML Parametric Diagram

SysML Parametric Diagram can be considered as a special case of the IBD class. They are quite similar
with the only difference represented by the fact that the connectors allowed are the binding connectors.
Such diagrams are mainly used to model the constraints that affect the properties of a particular block.
They will contain both constraint properties and constraint parameters, defining the relationships that
bound certain parameters to other one. In this way it is possible to model physical relationships, con-
straints and similar associations between the parameters modeled. This kind of diagram is generally used
to build trade-off analysis for the configurations modeled in the same project. A constraint block can be
used for example to define an objective function to compare all the available and alternative solutions.
This kind of diagram is not present in UML modeling environment.

SysML Requirements Diagram

SysML Requirements Diagram is one of the most interesting elements introduced within the SysML
formalism since UML does not include such representation types. Text-based requirements can be stored
properly and it is also possible to clearly define relationships with other requirements, design objects and
also test cases. In this manner it is possible to ensure a well-organized traceability between the various
elements involved in the design process.

42

SysML Activity Diagram

SysML Activity Diagram has been derived from UML with little modifications. This type of representa-
tion is used mainly to model the behavior of the system with respect to the input and output flows that
characterize the interconnections between objects. In particular it is possible to order actions that interact
between each other on the availability of inputs and outputs, defining how the actions themselves trans-
form these ones.

SysML Use Case Diagram

SysML Use Case Diagram is used to represent the functionalities that the system is able to accomplish,
considering in particular how the involved entities are used or managed by external users or other ele-
ments. The main aim of this visualization is to clearly define the relationships of the involved entities in
reaching some targets. This type of diagram is also present within the UML language specification.

SysML Sequence Diagram

SysML Sequence Diagram has a corresponding representation within the UML language. This type of
diagram equivalently has been conceived to report the behavior of the system of interest as a temporal se-
quence of the information exchanged (physical quantities, electrical signals, messages, etc. for example).
This kind of representation is quite similar to the one considered in the activity diagrams but in this case the
focusis on the temporal evolution of the involved actions rather than the entity involved within the process.

SysML State Machine Diagram

SysML State Machine Diagram is generally used to model the behavior of a system in terms of the tran-
sitions between the different stages that characterize how the system model responds to commands or
external inputs. These events can trigger the transition from one stage to another for the system under
evaluation and this aspect is captured within state machine diagrams.

The diagram type chosen for the modeling of a certain system feature constrains the elements that can be
modeled within such diagram and this characteristic reduces the possibility to introduce errors within the
modeled context.

SysML represents a valid alternative for the management of complex system from its early development
phases and its main use is related to the support of activities in the context of MBSE methodology. SysML
does not impose a specific method to model system information starting from the requirements. The
method chosen is strictly related to the industry knowledge and development process pattern which de-
termine what activities are performed first and the artifact that have to be delivered before pass to the
following action. One method is represented by the decomposition of system function from the require-
ments specification. The identified functions are then allocated to components and then system perfor-
mances are evaluated before starting another decomposition for a more detailed level. Alternatively the
use case driven approach starts from the scenarios that the system has to face. The functionalities that the
system must show are derived from the operational scenarios and all the functions are then derived and
allocated to the various elements. The interactions among parts are then investigated and better defined
before proceeds to the next phases. In both case the illustrated processes are iteratively performed until a
satisfactory design has been obtained (consistently with the customer needs). The two methods can pro-
duce different diagrams and information in various manners to represent system design but in both cases
SysML can be used to support and formalize the modeling activities.

SysML language can be used iteratively to proper obtain the final design and some of the main involved
activities are summarized conceptually in the following list.

e Capture, analyze and formalize system requirements

43

- uCiic diiu Ucvciop O1IC U THOUTC UCOSIETT SUTULIUTIS LO Sdlioly CUSLUITICT T1ITCUS

Perform engineering and trade-off surveys to investigate and identify/select a valid architecture

Specify and allocate requirements to components, ensuring traceability to system requirements

Verify that the design satisfy the requirements performing system-level test cases

One of the main advantages of SysML semantics is the development of an integrated and consistent
model where the model objects defined on one diagram can be related to model objects on other diagram
(representing however the same entity), avoiding the need to redefine the same element just created
and automatically ensure that the element is consistent with the other representations of itself (on other
diagrams for example).

3.2.2 Taxonomy and definitions

The notation used to describe the features of the proposed infrastructure is based on the UML/SysML
notation. In this way it has been possible to formalize all the concepts used for the definition of the concep-
tual framework. The related notation includes in fact all the elements needed to clearly define the objects
and conceptual data. The definition of model and meta-model terms is strictly related to the following con-
ceptual activities and a first explanation of such concepts is provided in the following lines. In this context
they are used to better describe SysML/UML notation but a more extended description is provided for the
definition of the overall conceptual infrastructure (in the following chapters).

A model can basically be defined as an abstract and conceptual representation of a system (or generally of
any conceivable entity) that emphasizes both the "sub-objects" (or sub-entities) which compose the over-
all system and the relationships between them and their properties and behaviours.

On the other side a meta-model generally defines all the "rules" regarding how a model must be done. It
highlights in particular what kind of objects, properties, and relationships the model could envisage, and
how properties and objects contain or are associated to others.

A more explanatory definition for the meta-model term is available from [91] and is provided in the follow-
ing lines for the sake of clarity.

"A view of the real world (i.e. human--oriented concepts) in terms of object types, their characteristics
and relations between object types. Knowledge about the real world is expressed in terms of elementary
facts, constraints and derivation rules. Different terminology is used for the same concepts within different
modelling methodologies. [...] A conceptual model can be seen as a network of object types and relations,
further refined by constraints and rules that shall or should be satisfied. Some of these relations are of part
of nature and of special interest for determining the user views of the model, i.e. a conceptual model is not
just a network of definitions but organized into hierarchical sets of definitions that represent the user views"

Meta-model notation is derived from the SysML one, referring to the Unified Modeling Language(UML)
specification, the conceptual model is defined using the standard UML class diagram notation. To compre-
hend the meta-model diagram it is first necessary to describe the typology of existing relations between
the different Engineering Data Item (EDI) Classes which compose the model database (EDI classes concepts
are detailed in the appendices). Conceptual data are represented by rectangles in the diagrams, and rela-
tions are represented by arrows with different ends, depending on their role, which link the rectangles. A
conceptual data represents a concept whose instantiation is a specific data item, related to definition of a
class. There are four main kind of relation:

e Association is a relationship where all object have their own lifecycle and there is no owner. Let’s
take an example of Teacher and Student. Multiple students can associate with single teacher and
single student can associate with multiple teachers but there is no ownership between the objects
and both have their own lifecycle. Both can create and delete independently.

44

AT CHAlIVIl |15 a SpPCLlidllZT TOTTT U1 ASS0LIALIVUNT WIITTC dll ODJTLL T1dve LHICTIT OWI HTCLYCIC DUL LHCIC 1o
ownership and child object cannot belongs to another parent object. Let’s take an example of De-
partment and teacher. A single teacher cannot belong to multiple departments, but if we delete the
department teacher object will not destroy. We can think about “has-a” relationship.

Aggregation differs from ordinary composition in that it does not imply ownership. In composition,
when the owning object is destroyed, so are the contained objects. In aggregation, this is not neces-
sarily true. For example, a university owns various departments (e.g., chemistry), and each depart-
ment has a number of professors. If the university closes, the departments will no longer exist, but
the professors in those departments will continue to exist. Therefore, a University can be seen as a
composition of departments, whereas departments have an aggregation of professors. In addition,
a Professor could work in more than one department, but a department could not be part of more
than one university.

Composition is again specialize form of Aggregation and we can call this as a “death” relationship.
It is a strong type of Aggregation. Child object does not have their lifecycle and if parent object
deletes all child objects will also be deleted. Let’s take again an example of relationship between
House and rooms. House can contain multiple rooms there is no independent life of room and any
room cannot belongs to two different house if we delete the house room will automatically delete.
Let’s take another example relationship between Questions and options. Single questions can have
multiple options and option cannot belong to multiple questions. If we delete questions options will
automatically delete.

Both are ways of designating or grouping items by relationship. In the case of composition, if the
links that bind the objects are broken, then all objects are destroyed. In aggregation, it's a looser
grouping, and if the links are broken the original objects still exist.

Generalization is not an Association, because it is not defined at instance level, but at class level.
It indicates that a concept is a subtype with respect to a second concept, in the sense that the last
one comprises the first one. It is indicated with a hollow triangle in the side of the general concept.
It is basically used to define the relationship between two classes where one of them inherits the
attributes and functions from the more general one. In this way it is possible to group the properties
and methods that are common across different classes while the specialized class can include specific
attributes and functions.

Multiplicity defines the number of instances of one class which may be linked to one instance of the
other class. They indicate the maximum and the minimum allowed value of this number. Relations de-
scribed above are represented (perhaps even more clearly) in figure 3.5:

3.2.3 SysML tools

Different solutions following SysML specification are currently available both commercial and open-
source. A brief list of SysML commercial tools is represented in the following.

Enterprise Architect + MDG Technology for SysML (vendor: Sparx Systems)
UModel Enterprise Edition (vendor: Altova)

MagicDraw + SysML plugin (vendor: No Magic)

Rational Rhapsody Developer (vendor: IBM)

Artisan Studio (vendor: Atego)

The following list reports instead some of the open-source SysML modeling tools and plugins, which are
typically free to use for personal use and their utilization is regulated by open-source licensing conditions.

45

«ConceptualData» . : «ConceptualData»
Ttaim association E o

1 1

«Lon u a»
< composition ConceptualData

Contained Item

«Conceptual Data»
Container

«ConceptualData» «ConceptualData»

aggregation

Collection Item
«ConceptualData»] «ConceptualData»
General Concept Specific Concept

Indicator Meaning

0.1 Zero or ane

1 Cne only

0..* 0 or more

1..%| * |1 or more

n Only n (wheren > 1)
0.n Zero to n (where n >1)
1.n One to n (wheren > 1)

Figure 3.5: Notation for the main relations used to define the object belonging to the overall meta-model.

* Modelio Free Edition + Modelio SysML Designer module (source: Modelio Open Project)
e TOPCASED-SysML (source: TOPCASED Modeling Framework Open Source Project)

e Papyrus for SysML (source: Papyrus Open Source Project)

3.2.4 Semantically-Rigorous System Engineering using SysML and OWL

SysML language is currently one of the most widespread and accepted graphical modeling solution for

system engineering. OMG specifications are supporting such modeling language, providing useful help
for the management of system engineering activities. OWL language (which stands for Ontology Web Lan-
guage) is currently widespread as knowledge representation language. The specifications of such language
are defined by the W3 industry consensus and the main strength is represented by the logical formalism
and general applicability. Currently different research activities are addressed to the integration of both
this formal modeling language ([16]). One of the most important features related to system design is strictly
related to the definition of logical reasoning formalism. This element can be involved in the requirements
tracing process, allowing for a better management of the specifications themselves. The interface compat-
ibility can also be better checked through the formalism defined within this context. Another important
aspect is also related to the control of viewpoint consistency between different system perspectives.
The main activity relate to the integration of OWL and SysML languages are represented by the definition of
a well based set of OWL ontologies for the formalization of general concept and properties in a hierarchical
context. These categories can be represented for example by discipline, application, mission and project.
The main idea is represented by the development of OWL ontologies for SysML. These are then used to
formalize and capture the object properties with the main aim to allow for SysML to OWL transformation.
One of the other interesting features is represented by the extraction and transformation for specialized
analysis tools (through a clear formal representation of the exchanged data — Maple and Mathematica for
example). Future developments regard mainly the possibility to simplify the profile generation code.

46

Co:itrol
Eiectronics

Electronic

Systems

Mechanical
Systems

Figure 3.6: Convergence process between INCOSE and NAFEMS [17].

3.2.5 Systems Modeling & Simulation Working Group (SMSWG)

The integration of simulation and analysis capabilities within a model based infrastructure is one of the
most challenging and promising research activities. Such interest is also highlighted by the recent creation
of a joint working group between the International Council on Systems Engineering (INCOSE) and the In-
ternational Association of the Engineering Modelling, Analysis and Simulation Community (NAFEMS). Such
joint initiative is addressed towards the mutual participation and collaboration for the advancement of en-
gineering simulation and model based systems engineering. One of the main objectives is represented by
the promotion of a deeper understanding of the integration strategies for mechanical analysis and simula-
tion within a model based system engineering environment. Nowadays the successful evolution of MBSE
methodologies with the supervision of INCOSE has shown the significant opportunities which come out
from a stronger cooperation with key engineering disciplines such as software and CAE. More details about
such cooperation can be found in the presentation concerning the NAFEMS — INCOSE Collaboration Kick
Off during the INCOSE International Workshop 2013 [17]. This recent joint relationships highlights how the
integration between a model-based system modeling environment and analysis framework is currently
one of the most investigated area of research. The purpose of such initiative can be summarized in figure
3.6where the convergence between the corresponding project is highlighted.

3.3 Collaborative environments

Collaborative Working Environments (CWE) have been conceived to support people work both individ-
ually as well as from a cooperative perspective. The main objective of such environments is addressed
towards the definition of infrastructures that ideally involve people not directly working within the same
geographical place. The capability to enhance the overall effectiveness with respect to a particular project
is strictly related to different aspects that range from support facilities to conceptual organization of the
work. Application sharing, document management, collaborative workspace or workflow organization are
some of the elements that generally make the difference in the development process of a certain product.
In the last few years the development of increasingly complex system has lead towards the definition and
investigation of a wide range of collaborative architectures and related processes. The main aim of such
research activities has been addressed to the identification of the best solution for the management of
all the available resources. Different collaborative infrastructures have been conceived with such purpose
and they are mainly applied during the preliminary design phases. Such infrastructures become difficult to
manage and properly exploit as the development process move towards more detailed steps. One of the

47

Malll VUJCLLIVES Ul LHNC PICOCTIL WUOITR 15 dISU TTPTTOCTILCU DY LT HIVESLISALIVIT Ul LT POSSIVIC HTTTPTOVEITITIHIL
that a MBSE methodology can introduce in the design of space systems during the advanced stages of the
project (phases B-C for example). Currently some research efforts are also addressed towards the analysis
of the possible alternative solutions that can be chosen for the integration of a distributed environment
and web-services capabilities.

Some of the most interesting research activities performed few years ago have led to the development
of a collaborative environment which is known as Concurrent Design Facility (CDF). CDF has been mainly
conceived for the preliminary phases of space systems and it is basically a state-of-the-art facility equipped
with a network of computers, multimedia devices and software tools, which allows a team of experts from
several disciplines to apply the concurrent engineering methods to the design of future space missions
[18]. The main focus of such infrastructure can be identified with the capability to perform the assessment
studies of future missions with fast and effective interaction of all disciplines involved, ensuring consistent
and high-quality results in a much shorter time. The activities that can be performed within such environ-
ment can be summarized in the following ones: conceptual design, mission trade-offs, reviews of industrial
phase A studies, scientific requirements definition and consolidation, options evaluation, new technology
validation, anomaly investigation, education and training [19].

The Concurrent Design Facility was established at ESTEC in November 1998 within the framework of the
General Studies Programme and has been directly involved on different European scientific missions.
Collaborative environments basically built on the basis of the CDF architecture can be found within differ-
ent scientific organization or industrial companies. They are mainly used in the field of space systems to
support the preliminary development phases. Such environments are currently not conceived to be used
in the advanced phases of the project where a collaborative process is strictly affected by each company
expertise or project settings. CDF shows some interesting advantages with respect to the traditional ap-
proach in the management of a collaborative workflow. In this case a more effective improvement may
be achieved with an extension of the related philosophy also to the more detailed phases of the design.
The related concepts can in fact also applied in the case of more advanced phases but such integration re-
quires the redefinition of the overall infrastructure. The main ideas are still valid but the constraints linked
to the resources involved during the overall process need to be properly managed. CDFs are generally rep-
resented by open-space workplace where around twenty persons work together, involving basically differ-
ent specialists coming from various domains. The same approach is not practically applicable in the more
advanced phases and the overall architecture must be rethought. In this case a distributed environment
seems to show some promising features with respect to previous concept of a collaborative environment
located in the same place, corresponding also to the same room in the case of CDF.

Working environments based on distributed approach can enhance the multidisciplinary integration across
the advanced phases of the project, easing the coordination and collaboration between different engineer-
ing teams often located in different places (not necessarily in the same room). Such situation generally
characterizes the advanced phases of system design where groups of different domains start to grow with
respect the preliminary phases. During the later phases the number of people and resources involved be-
comes difficult to manage through an infrastructure similar to CDF and alternative solutions are then con-
sidered. New model-based methodologies have been developed to manage the next-generation complex
systems and they are mainly conceived in the context of collaborative environments. Interesting results
are provided by different research initiatives and [103], [104] and [105] are examples of these projects (a
conceptual representation of the environment proposed in [104] is provided in figure 3.7).

One of the main important aspects in the context of Collaborative Environments is represented by the
data exchange and such element must be taken into account with particular attention. The correct defini-
tion of such process makes the difference between an effective and an ineffective collaborative workplace.
The right definition of data exchange process must be built from a conceptual model of data classes and
their relationships. A more detailed description about data model will be introduced in the following.

48

Bl i WAL Wio EXCcel
TSV TOPCASED "
; _ SysML =

ECIliPSe - 3
MiniZinc il

PTC ProE

FUSED
Framework

(with abstract types)

= | *\ L ===

OSATE AADL '~ mf OpenModelica
FUSED

Figure 3.7: FUSED Framework: control and data flows between models [105].

3.4 Examples of MBSE initiatives and Collaborative Engineering envi-
ronments

Currently there are different research initiatives focused on the evaluation of MBSE methodology as
a useful infrastructure for the management of complex systems. In particular such activities have mainly
involved companies and organizations that work on aerospace systems which have started first to inves-
tigate the potential benefits of such approach with respect to the traditional one. An interesting survey
on the advancing of System Engineering methodologies and on the early phases of integration of MBSE
methods is provided in [88]. In particular the main focus of such activity is represented by experience ma-
tured through the Systems Engineering Advancement (SEA) Project. The SEA Project developed products,
services, and training to support managers and practitioners throughout the entire system life-cycle. In
particular the main efforts were addressed towards the investigation for the possible improvements of the
following functions and activities:

e Systems architecture

e Requirements management

e Interface definition

e Technical resource management
e System design and analysis

e System verification and validation
e Risk management

e Technical peer reviews

* Design process management

e Systems engineering task management

49

NS dlidlyolo STHHOWS TTOVY LT TITCTU TUT a WTIH=UCHTNTU TTCTLiouLiVsy 101 LHC TidTdsgCTHTITHL U1 SULTT aopPCllo 1o
of great interests several years ago.

The design and analysis of complex aerospace products have been characterized earlier by such innovative
methodologies but the same concepts can likewise be applied in other engineering domains (mechanical,
biomedical, etc.). The basic concepts and the related formal infrastructure can in fact be exploited to
manage other kind of systems.

In the following sections some examples about the assessment of MBSE methodology are reported. In
particular they refer mainly to the the application of such methods to space systems.

3.4.1 Responsive Engineering

The actual development processes related to the implementation of the design engineering tools are

all animated by the same concepts. Some of the main conceptual elements that will affect the future de-
velopment are represented by parallelization of tasks, building block modular approach, standardization
of interfaces, standardization of requirements and acceptance of higher risk and possibly of lower quality.
Some other interesting aspects are the integration of design tool, test by simulator, fast AlT, avoidance of
just in time procurement and finally a responsive procurement method [20].
Interesting activities are represented in this direction by different research evaluation project. Other in-
teresting initiatives are directly involved within the evaluation of space system project as for example the
NASA RSDO. The Rapid Spacecraft Development Office (RSDO) is responsible for example for the manage-
ment and direction of a dynamic and versatile program directing the definition, competition, and acquisi-
tion of multiple fixed-price Indefinite Delivery/Indefinite Quantity (IDIQ) contracts. These contracts offer
NASA and other Federal Government Agencies fast and flexible procurement of spacecraft and spacecraft
components for future missions.

3.4.2 ESA-ESTEC initiative

Concurrent Engineering activities at ESA can be basically identified with the development of the Open
Concurrent Design Tool (OCDT) initiative. The main efforts are addressed in the application of such method-
ologies as support instrument for feasibility studies. The other primary activities are strictly related to the
formalization and standardization of the conceptual data model. An upgrade of collaborative environment
is under development and highly secure connection for external resources as also the authentication proce-
dures are under implementation. The same environment has been conceived for future distributed design
sessions, review support procedures and anomalies investigations. Such activities are all considered as
new applications of Concurrent Design Facility (CDF).

The OCDT architecture can be briefly represented in the following overview (figure 3.8).

A central persistent data repository is used to store and synchronize the information related to the sys-
tem model while HTTP(S) protocol allows consistent connections with ConCORDE framework (Excel based).
The single domain uses the domain specific tools while ConCORDE ensures data exchange with the other
disciplines. It is basically an Add-In on top of Microsoft Excel 2010 with the main aim to reduce as much
as possible the learning curve (since Excel environment is one of the most used tool in some engineering
fields). In this way the transition from existing CDF IDM architecture is not so critical and at the same time
Excel shows some flexible features. Excel provides in fact the capability to rapid create interfaces with any
kind of external tool as the generation or modification of worksheet for computation purposes. ConCORDE
provides reference data library (parameter types, units and scales, rules, etc...), engineering model cata-
logue (Options, Element Definition, etc...) or other utilities as support to design activities. IDM and OCDT
architecture show some differences. The main differences are related to the information exchange pro-
cess, data ownership, decomposition level and options management. It is interesting to note above all the
management of system options since this topic will be deeper investigated in the current work. IDM ap-
proach supports an option specific architecture basically builds by copy and paste. In this case there is one
workbook for option. OCDT approach instead is based on different philosophy. The options are defined
singularly and the various architectures are generated through an automated process staring from the re-

50

Persistent Data Store
(PostgreSaL)
QcoT

Server - I PostgreSQL Protocol over TCPIP

Web Services Processor
(nodejs on Google VE)

HTTP{S) REST Protocol, JSON content

ocoT
Clients

Demain Specific Tool

Figure 3.8: Open Concurrent Design Tool (OCDT) architecture overview.

51

=

Figure 3.9: Engineering domains considered within the VSD project [21].

quired information. In this manner one worksheet per options is created and managed. Virtual Spacecraft
Design (VSD) project represents another interesting research activity developed under the coordination
of ESA [21]. This project has been conceived to define a model based methodology and a related envi-
ronment, developed with the main purpose to improve the organization of engineering data at system
level. The developed framework has been conceived to allow a more effective exchange of design param-
eters between different domains and their respective models through an object oriented approach [22].
This asset belongs to a larger project aimed to assess the application of MBSE philosophy within System
Engineering, evaluating the benefits of a multi-disciplinary approach applied to the industrial phases of
aerospace products [23]. The related activities have been thought from the fact that almost every project
faces the problem of handling a wide quantity of data and information available at system and sub-system
level and maintaining its coherence and consistency over all the development process. The effectiveness
of System Engineering process is often limited by the presence of unstructured data and information not
properly interlinked among all the disciplines involved in a project. The engineering domains considered
within the proposed model-based methodology are briefly summarized in figure 3.9 [21].

Each domain often formalizes only some of the overall aspects of a system, focusing on the elements
that mainly affect the related discipline. In this case the discipline models are defined for a specific sim-
ulation scenario and ensuring the consistency across such models is a challenging problem. The demon-
stration of the advantages achievable by such model based approach VSD project focused on three main
key-points: engineering data representation, data exchange interfaces and process consideration. All the
conceptual definitions and associations made within such project have been used to implement a software
prototype to assess the actual effectiveness of the proposed environment. The overall software infrastruc-
ture is also called Virtual Spacecraft Engineering Environment (VSEE) and it is partitioned in three main
building blocks: a reference database (Space System Reference Database - SSRDB), a design tool (Space
Systems Design Editor - SSDE) and a visualization tool (Space Systems Visualization Tool - SSVT). An high
level representation of such scheme is provided in figure 3.10. The functions provided by the developed
framework are briefly represented in figure 3.11. In particular they are grouped with respect to the related
capabilities associated with the Design Editor, the Visualization Tool and the Reference Database.

All the three building blocks provide different functionalities and capabilities that drive the project
modeling activities, supporting the system engineering process. A more detailed description is however
available from the project site [21].

VSD project basically involved the main European companies that work on space systems. They have joined
such activities at different level and with various roles. The important aspect is that the conceptual data
model that lays the foundation of the overall infrastructure has been defined through the contribution
of the companies directly involved in the design and manufacturing of space products. In this way it was

52

Virtual Spacecraft Design
vsD

Virtual Spacecraft Engineering Environment

WSEE
Space System Reference Database Space Systems Visualization Tool
SSRD SEVT
w
Space Systems Design Editor -
SSDE

\

Figure 3.10: VSEE high level architecture.

Design Editor

Diagram
Editinc

Table Category
Editing Definition J

Model Data Set [

Annotation System Model
Checking Representation

Compare
Consistency

Data Set
Merge
Data Retrieval & Data Set scific Too
ot | B
History Branching Import / Export aqrati
Versionin File Modeil Ownership
' 9 Management Transformation Tracking

Reference Database

Figure 3.11: VSEE functions provided [21].

53

MUSOIVIC LU oSdiL a LOTHTUOUNLAUOT U THOUCT=UdoCU TTITLNHOUUUIVUEICS, PYdaVvilig LT vwdy 101 TULUic LOldboliaulvli
and definition of a common standard approach for the management of project data. Such topic draws the
attention of the involved aerospace companies since the developed design and modeling methodologies
will strictly affect future collaborations. It is not uncommon in fact that they work on the same space pro-
gram due to the complexity of the related product and to the specific knowledge that each one possesses.
A shared data model for the representation of system data and information will cover a key role in the next
few years. For this reason both Astrium and Thales Alenia Space are currently interested in such topic and
their attention has been highlighted by the contribution on Virtual Spacecraft Design project.

3.4.3 Centre National d’Etudes Spatiales — CNES

A concurrent design approach that follows the characteristics of the model based system engineering
paradigm can also be identified in the research activities of CNES. In particular the developed architecture
has been conceived mainly to design mission feasibility studies [24]. All the functionalities are provided
through what can be defined as a Concurrent Design Facility (CIC - Centre d’Ingénierie Concourante). The
focus of the related architecture and all the involved design process is represented by the assessment about
the feasibility of space mission candidates, supporting the decision making activity. Such environment al-
lows also investigating new technology concepts providing the basis for future developments and improve-
ments. The architecture follows the standards defined within ECSS-ETM-10-25A, regarding the conceptual
of engineering design models for data exchange. The system engineering information model has been con-
ceived on the basis of the same standards (SEIM) which also provide useful guidelines for the definition of
a reference data library (SERDL). All system information are managed through Excel worksheet description
(equipments, sub-systems, payload, satellite, mission phases, etc.) while preliminary analysis and compu-
tations (as for example mass budget or power budget) are performed within the same Excel environment
(for example through the proper execution of a macro/visual basic scripts). The various information and
data are edited and monitored by different system level designers interacting with Excel worksheet. The
same approach is used by the various disciplines (thermal, configuration, data-handling, AOCS, etc.) while
concurrently the data are synchronized within such collaborative environment. Import/export functions
are for example employed to proper manage the data flow between the central IDM-CIC workbook (Excel
based repository) with domain specific tools. In this way CATIA files are managed through STEP files to ex-
tract the required information that are then stored within the workbook. Such example shows in particular
the process through which the geometrical information are stored and managed. Visualization capabilities
are also provided within such environment, allowing the plot of the data stored within the main central
model. A structured XML file is build from the information available for the system model and such data
are properly managed from a desktop application for example to help configuration analysis. This same en-
vironment is also used to highlight operational modes and power consumptions of the elements reported
in the model. Concurrently to such application, the IDM-CIC workbook provides also some interesting util-
ities for a simple visualization through Google Sketch-Up tool.

Such a collaborative platform has been mainly conceived to support the early design phases providing
technical instruments for the establishment of system budgets above all in the context of feasibility stud-
ies about mission design. The same approach is now under further developments and IDM-CIC roadmap
is characterized by the investigation of a new architecture paving the way from the IDM-CIC version 2 to
IDM-CIC version 3. The IDM-CIC V2 data exchange between subsystem and system models (both consid-
ering the definition of the related properties on an EXCEL workbook) is based on VBA API. The information
collected within the single workbook is then interfaced with the STEP export and Google Sketch-Up through
XML files. This approach is shared with all the disciplines involved within the project (data handling, ther-
mal, AOCS, payload, configuration, system, etc...). IDM-CIC V3 is however based on the SERDL ECSS model
with some adaptations with respect to geometrical descriptions with articulations, management of op-
tions and subsystem modes. This new approach foresees the definition of a shared folder location that
contains the data exchange model as XML file. The single user computer accesses such data through API
based on Microsoft .NET framework while an EXCEL GUI (also this based on Microsoft .NET framework)
is used to manage and edit information, working on a related Workbook. The same EXCEL GUI is used to

54

Data-handling

Payload X -{ I X = ADCS
= B ~_ N
" L K -
'_' [— oL / ""'"-'_r ¥y
L 4
. / Data Exchange
Configuration HT (XML, STEP, txt) ¥4 Thermal
o ! &L —
¥ . -
— 1‘—_ Y e "?‘
?ﬁ £ S?StEI'T'I —ex (-

i n

et

[e
==y

-:l"_..qi_"!.-'.f!

Figure 3.12: Simplified representation of CIC infrastructure (CNES).

export files through XML format as also manage the interfacing with external tools (STEP export, Google
Sketch-Up, etc...). The current elements under developments regard tests, import/export units and STEP
interface improving. Possible evolutions that are under investigation are represented by HTTP web ser-
vices implementation (Web GUI and External tool) for the communication of the shared data repository
(currently represented by XML file) and external environments. The user computer data exchange pattern
is basically the same of IDM-CIC V2 while the main difference is represented by the definition of a server-
client architecture for the management of the data contained within the XML file.

A simplified representation of the IDM-CIC architecture is reported in figure 3.12.

3.4.4 Thales Alenia Space

Thales Alenia Space (TAS) interest towards System Engineering is highlighted by the various research
initiatives promoted in this direction. Main efforts are addressed to the definition of a concurrent engi-
neering meta-data model and a formalization of multi-domain representation [25].

In this case a discrete amount of research efforts are addressed towards the investigation of MBSE method-
ologies and their integration within company processes. Such activities are also conceived to understand
the possible enhancements that can be achieved with respect to collaborative environments. Different
solutions are currently under evaluation to identify the better choice from a methodological viewpoint,
considering also the possible infrastructural alternatives [26].

In particular TAS is introducing a tool for complex architectures modeling and functional representations
(lacking in some of the tools currently used) called Melody Advance. Such tool has been developed on
the basis of Thales Group company expertise about system architecture. Basically it is implemented as
a variance of SysML language with the main purpose to improve its usage across system engineering. In
the same way TAS is also introducing a tool for performances evaluation and verification called Arcadia, a
Thales Group tool developed in Aerospace division.

Melody Advance tool is conceived for system and software architecture modeling and belongs more gen-
erally to System and Software development environment. Along with other tool Melody Advance is part of
a more extended frame with the main idea to better control and support the design process from system
perspective. For this reason a high level framework called Orchestra has been developed. Some of the
principal objectives of such approach are reported in the following list:

e Automate routine activities

55

Concurrent
< > . ¥ | Design Facility

System Team 'F DB
A
. A
e I Adapter
4 v
Simulation Engine .
Adapter Collabcllratwe
€ -=-5 Services S~
.
;ﬂ 1 1‘ F\F\ Adapters | ™™ o
Az LS ~ -~
L{ k'-:F'I.'E'r Ad.fptur '\\ 2 Y a ~a ~ -
T €—-— v Y ccili
Visualization | < Disciplines

Environment E M_Dd els and
— Simulators

Virtual Reality . .
Engine Analysts \FE J

Figure 3.13: Conceptual overview of a collaborative environment infrastructure.

¢ Improve and ensure quality
¢ Interface legacy methods, products and services

¢ Provide and an effective set of services

In this context Melody Advance has the primary purpose to foster new system/software engineering

methodologies, ensuring a support for Model Driven Engineering (MDE) approach (involving for example
processes, activities, data and milestones). Currently Melody Advance is a user friendly tool that guaran-
tees traceability and consistency between models and implements rules checking.
A conceptual representation of a possible infrastructure of a collaborative environment is reported in fig-
ure 3.13. In particular the features of such architecture are currently investigated within a research project
led by Thales Alenia Space Italy. The name of the environment related to such project is DEVICE and more
information about such initiative are provided in the following sections. A well-defined investigation of the
capabilities that can be achieved with a model-based approach is represented by [107]. In this case the
main advantages of such kind of infrastructures are evaluated, taking into account the potential integration
between system data and complexity indices.

3.5 Benefits of MBSE

One of the main purposes animating the spreading of MBSE methodologies is represented basically by
the capability to accelerate product design and manufacturing process. The same philosophy can also help
the knowledge exchange among individuals and organizations but can and should improve the knowledge
creation and externalization (as for example in the case of distributed cognition).

Another important benefit of MBSE methodology can be recognized in the document generation capabil-
ity. This feature is directly related to the availability of system information within a central system model.
This data can be directly queried to get the information needed and processed to generate documents
and report without the effort that characterizes the traditional approach. Starting from the MBSE archi-
tecture it is possible to consider different strategies for the creation of the required document resources.
In particular different system modeling tools are now providing various instruments and plug-ins for the
support and definition of documents template. In this manner the information contained within the model

56

Cdll DT USCTU LU PIropcl T UIC SthulLuil© Uciincu withi Lhc LCifnpialc, Ouudliliillg pOLClItially Unicicliit 1IcpoltL
resources, from html to pdf formats. In this way engineers can spend less time in document generation
activities, allowing the use of more efforts on modeling.

The document generation from system model information can be obtained through the implementation of
proper defined scripts that process the data following the structure defined a priori in a certain template.
Some evaluations of this capability have been done as for example in [27]. In this case the capability to
generate documents has been analysed in the context of space mission application. In particular SysML
modeling environment has been considered for this process and a conceptual architecture has been devel-
oped to build a document profile. The information is elaborated generating XML resources that are then
further processed to obtain an html or pdf file. Internal generation scripts have been used to parse the
SysML information to prepare the following creation of documents on the basis of defined template and
style sheets. This approach has been used on different applications to evaluate the actual advantages. JPL
Ops Revitalization project has used such generation capability as the JPL Integrated Model Centric Engineer-
ing for the document and reports creation (in this last case in the context of collaborative environment).
Another application example is represented by the Mars Science Laboratory where this feature has been
used to elaborate specific portions of operations processes and ground data system management.

3.6 Drawbacks and main needs of MBSE

A brief description of the main benefits that can be achieved through the application of MBSE method-
ology is presented in the section above but other advantages can also be found in the rest of the work.
Despite all the positive considerations about model based approaches some drawbacks can arise from the
integration and spreading of such methodology in the context of already consolidated processes and meth-
ods. In particular the use of such innovative approaches need to be tested on actual problems to avoid a
worse result with respect to the traditional procedures. The integration of such methodology within engi-
neering procedures established over the years requires for example the acceptance from those users that
have matured a certain experience in a specific domain. From this viewpoint the training aspect must not
underestimated to allow the integration within the current design methodologies. The overall infrastruc-
ture must also be properly defined to effectively manage an environment based on MBSE methods. One of
the main problems is also represented by the efforts required in the definition of a well formalized infras-
tructure for modeling and data exchange. In particular the application of the concepts related to the MBSE
philosophy often requires a wide conceptual work for the definition of the features and relationships of the
objects that characterize system lifecycle. The use of a model based infrastructure requires the correct in-
tegration with system model information to provide useful capabilities to support the actors. Such aspect
must be taken into account to properly manage user interactions with a model based platform, feature
that basically does not affects the traditional modeling approaches and that may be the cause for some
implementation issues that otherwise would not be occurred. The integration of MBSE methodologies
within the design process can widely enhance the current development process but at the moment the
application of such philosophy can not rely on a well defined set of tools, languages and platforms. Such
aspects are fundamental for the actual integration of the related methodology with the current design
processes. The availability of already defined instruments for the development of products strictly affects
the spread of MBSE itself. Different solutions have been proposed by the organizations and industrial con-
sortium to address this lack. SysML for example represents one of the possible solutions to face such kind
of issues but other options can also be taken into account. In particular the main benefits and drawbacks
of such language are considered in the following sections. A critical assessment of the main features about
this approach and related application is provided in the following, proposing also alternative perspective
for the development of strategies with respect to MBSE spreading. Also in this case the main benefits and
drawbacks of the proposed approach and related technologies are highlighted, always keeping in mind that
each possible solution has its own advantages and disadvantages. The final answer to all problems is in
fact difficult to obtain with an unique tool but the identification of the limits of one approach with respect
to another one can help to understand the direction to follow.

57

58

Chapter 4

Multidisciplinary Analysis

4.1 Introduction

As previously introduced this work proposes to investigate the integration of MDO methodologies
within the context of a MBSE system model framework. In particular the issues that can arise from the
considered approach are highlighted to better understand the possible improvements for the proposed
infrastructure as well as also completely different solutions must be taken.

During the last few years the multidisciplinary integration between different engineering domains has
started to be one of the most interesting and challenging research topics. Mathematical algorithms im-
provement and the concurrent implementation of object oriented software solutions seems to be increas-
ingly well suited for the identification of optimal system configurations.

Multidisciplinary Design Optimization (MDO) is a methodology that includes all the activities related to
the design of systems where strong influences characterize the interactions between disciplines. In these
situations, now much more widespread in the development process than in the previous years, the design-
ers are motivated to manage at the same time variables within several disciplines. For this reason MDO
involves the coordination of different domain-specific analysis with the final aim to obtain more effective
solutions, optimizing the configurations of complex systems.

The increasing complexity of space systems and the necessity to optimize the available resources have led
to a deeper introduction of MDO methodologies within the product design and management process. In
recent years these philosophy of design and implementation has gained increasing interest. The latter
one is related above all to the possible advantages and future applications that this approach will allow to
reach. Nowadays large amounts of systems, not only related to the aerospace area, are characterized by a
close relationship of various disciplines. In this context the proper definition and setting up of the problem
covers a key-role for a product successful realization. The suited management of the data involved, the
correct analysis and good interpretation of simulation results contributes to the choice of the right direc-
tion. In particular we have often to deal with the definition of complex systems, facing in some cases the
possible connections between various disciplines involved at different levels. It is in situations like this that
the MDO provides useful instruments and methodologies to deal with complex design problems. Current
engineering problems are increasingly characterized by a wide set of conflicting objectives that must be
properly approached to avoid solutions that are less effective among the possible ones. Different meth-
ods can be used to employ multi-objective optimizations, and interesting applications can be found for the
identification of concept alternatives, as reported in [114].

Systems projects currently involve an increasing number of design variables, constraints and objectives.
Furthermore a group of design variables could be generally shared between different disciplines in this
way. They are traditionally associated with consolidate dimensioning processes and such approach can
help to improve the effectiveness of the overall process. For this reason their studies and analysis process
become difficult to monitor, demanding a greater effort than the approach used traditionally in the past.
The advantages of the considered methodology are mainly linked to the reduction of development time,
allowing a more extensive evaluation of the design variables space. Closely related to this issue it is also
possible to observe even a reduction of the costs of project activities. The automated process to properly

59

CANIUIC LT UCOIETHT opdLT WILIT d STTICS U W SUILEU digUTILTIITTIS allOVWS PITVCTILTE LT PUSOSIVILY LU TICHICLL
certain system configurations. The latter ones could instead potentially represent the optimal solutions
for the scenarios considered. An integrated design is then required to link up all the possible disciplines
involved in system design, ensuring the access to the same data information and models.

The use of MDO is characterized by the following feature:

e Decomposition activities from the system model to multiple subsystems or discipline analysis.

* Development activities related to the generation of mathematical model and analysis. In this fea-
ture are included all the process that link “parent” system model with the “child” models and their
interactions.

e Selection of the proper MDO formulation and algorithms on the base of the problem considered.

e Resolution of the MDO problem to finally generate the solutions on the base of the set-up considered.

The main distinction about the feasibility of the solutions explored depends on the number of disci-
plines considered. One possibility is to manage multiple disciplines concurrently, trying to move towards a
better design and re-establishing feasibility. The other approach is to consider instead individual discipline
feasibility. In the previous MDO approaches the collaborative optimization techniques define the decom-
position of system into smaller units that can be individually optimized and then linked to the system. The
system level optimizer sets the design objective, generating the interdisciplinary compatibility constraints
that are then submitted to the various subspace optimizers. These ones are generally grouped according to
the different domain-specific disciplines. Therefore the single subspace optimizer must satisfy the assigned
objectives ensuring the interdisciplinary compatibility, considering the analysis results that are generated.
This approach reflects one of the initial framework that employs MDO methodology and an example can
be found in [32] where it was analyzed an underwater exploratory vehicle.

Approaches similar to the one presented can be often found in the literature, with only slight differences
between each other. The main management process is basically the same. Namely there is a set of design
alternatives that require to be analyzed and the same variable potentially can affect several domain-specific
models and tools. In this situation often different iterative cycles are required to reach the convergence
of the specific-field models for a particular configuration of the variables set. Once the models physical
meaning is ensured (through the required convergence and assuming the correctness of the mathematical
formulation considered) is then extracted the results that allow to generate the indexes and the quantities
for the evaluation of system performances. In literature different researches are addressed towards the
investigation of a wide set of topics that are strictly related to the improvement of the actual multidisci-
plinary analysis techniques applied to complex systems (interesting examples can be found in [115], [116],
[117] and [118]).

One of the active research fields related to the MDO and considered in the previous study concerns the cre-
ation of surrogate models. Reduction of the computational time represents one of the interesting features
for the future applications.

4.1.1 Current needs of MDO techniques

Solving techniques are often chosen on the basis of the specific needs and the available resources.
Models with different fidelity levels are used to face engineering problems in different manners. Low fi-
delity models can be represented for example by aerodynamic panel codes or equivalent-plate structures
codes while medium fidelity ones can be identified with Euler CFD models, FEM structural models or ax-
isymmetric propulsion codes. High fidelity models concern instead Navier-Stokes CFD codes, adaptive FEM
models or 3D propulsion models for example. They are used differently depending in particular on the level
of details required by the current design phase and their integration within the same collaborative envi-
ronment represents a challenging research topic. In the past the management of multidisciplinary design
analyses has been done through system-level coordination, partitioning the original problem into different
sub-problems (not necessarily disjoint). Each sub-problem had its constraints and objective function. A

60

LONADUIallvVC OpPLuimtiZdiiorn dppiudlll THOUI TS d Pal dlicl dllu aUlUTOUINTTOUS PIOCCOSITTE UL LHIT UILSCIPHTITS. 1L dl=
lows also managing the various elements more consistently in the design environment and organizational
structures. The drawbacks of such methodologies are related to the poor robustness and convergence
characteristics about the evaluation of overall system performances.

A deeper integration between systems analysis and MDAO (Multidisciplinary Design Analysis and Optimiza-
tion) processes/methods covers a key role with respect to the achievement of an effective product ([109]).
Such need is widely underlined by various research initiatives available from the literature, as can be found
in [112] and [113]. In the last years some efforts have been addressed towards a clearer representation of
MDAO infrastructures with the final objective to achieve a formal representation ([132], [133]).

4.1.2 MDO architectures

The integration of MDO methods requires a well understanding of the architecture that must be se-
lected for the implementation of analysis process. The term MDO architecture identifies how the simula-
tion blocks, analysis elements and overall process flows are related between each other. Such definition
refers both to problem formulation and the organizational and algorithmic strategy to solve the problem.
Different MDO architectures are available from the literature but each one is often presented within a spe-
cific research context while a common and shared standard for the description of such patterns could be
very useful. An interesting survey is provided in [33] where clear definitions and a standard representation
are proposed to basically describe MDO architectures. In particular the considered work presents a uni-
fied description about MDO architectures, providing a set of mathematical concepts and notations both
for problem formulation and solution strategy. This approach has been introduced since the same notation
will be considered for the presentation of the most common MDO architectures in the following section. A
brief description of the main characteristics of such a unified representation is introduced to better under-
stand the following diagrams. Other studies have faced the problem of providing a unified description of
MDO architectures such as [34] where a linguistic approach called Reconfigurable Multidisciplinary Synthe-
sis (REMS) has been proposed. This work provides useful guidelines above all for implementation within
the computational environment but does not employ visual references on how the input problems are
managed.

Often the choice of the MDO architecture depends on many parameters such the problem characteristics,
design environment and available software tools. These elements strongly influence the problem formula-
tion and the solution strategy employed which on the other side affect the resources employed to identify
a design solution. Two important concepts must be clearly understood before the visual representation of
diagramsis reported. The first one is represented by the data flow among the various problem components
while the second one is the sequence of operations that must be accomplished to find the design solution.
Often the description of both these different concepts is done through the use of same block diagrams,
flowcharts and algorithms representation, reducing the capability to clearly understand of the considered
MDO methodology.

The considered framework includes a common mathematical notation for the formulation of problems
and diagrams that describe the solving process. The same approach will be used in the current work when
needed. Some useful definitions are introduced in the following lines with the main purpose to well clarify
the terms and concepts that will be used in the current work.

A design variable represents a variable that in the context of MDO problem is always under the control of
the designer. In particular the design variables can belong to a specific discipline or to multiple ones that
share some common features. This aspect is taken into account in the definition of the design variables
vectors since different arrays are defined for the single discipline with its specific variables. A common
design variable vector is instead used for the shared variables among the various disciplines. The vector
that contains the design variables belonging to discipline i is represented by x; while the vector that stores
all the design variables share with at least two disciplines is denoted as z.

A Discipline Analysis (DA) identifies a simulation addressed to study a particular aspect of a multidisciplinary
system. The execution of a discipline analysis involves the solving of a system of equations (often identi-
fied as the disciplinary equations) which are used to compute a set of disciplines responses. The last ones

61

Table 4.1: Mathematical notation for MDO problems.

Symbol Definition

x Vector of design variables

Y Vector of coupling variables (outputs from DA)

] Vector of state variables (variables used inside only one DA)

f Vector of objective functions

c Vector of design constraints

c* Vector of consistency constraints (between target and state variables)
R Governing equations of a DA in residual form (DA constraints)

N Number of disciplines

() Length of given variable vector

m() Length of given constraint vector

Functions or variables that are shared by more than one disciplines
Functions or variables that apply only to discipline ¢

Functions or variables at their optimal value

Sl aliele
oS e e
* S O

Approximation of a given function or vector of functions

)

—~
~—

Independent copies of variables distributed to other disciplines

are often called state variables and their management can be driven or not by the optimization process,
depending on the problem formulation. State variables referring to the discipline i are contained within
the vector y;. Basically some state variables that are computed in a single discipline are also required by
other discipline/disciplines in a multidisciplinary system. Such variables can be defined as coupling vari-
ables and they are represented in the same notation of state ones. The computational process often is
characterized by the possibility to run some codes in parallel with other simulations. In this case copies of
the vector containing the design and state variables are made to allow DA independent execution. These
copies are identified with the superscript A in this work since such elements are often called coupling tar-
gets. The target state variables vector of the discipline i is then represented by the notationg;. This object
is used to share the state variables provided by the discipline i among the disciplines that need at least one
of the state variables contained within the vector y;. The consistency between the state variable y; and
the related target one 7; must be ensured through the definition of proper constraints that are added to
the problem formulation. The mathematical notation used in the current work is reported in table 4.1 (all
definitions are exposed with more details in [35]).

MDO problems can be defined following the pattern of a particular formulation and on the basis of
the chosen one the related constraints, equations and relationships are formalized. All MDO architectures
solve optimization problems that can be derived from what is known as the All-at-Once (AAO) formulation
which includes all the analysis equations, design objectives, design constraint and consistency between
the inputs and outputs coming from the various DA. Such formulation can be expressed as in the following
lines.

All-at-Once formulation:

N
minimize: Jo(@,y) + 22 filxo, vi, i)
i=1
with respect to: x, Y, Y, Y
subject to: co(z,y) >0
Ci(ﬁo,xi,yi)zo fori:1,~~ ,N
;=1 —vy =0 fori=1,--- N
Ri(wo, i, Yjzi, Ui i) = 0 fori=1,---,N

62

Analysis 1 @ @

@ Analysis 2 @

Analysis 3

Figure 4.1: N? chart example [33].

Where N represents the total amount of the involved disciplines and the vectors x,y, 7 and are defined
as:

© v=[rg, a1, ay]”
cy=1[yl, -, unl"

« g=[G)")"
« =))"

The development of MDO strategies often starts from a clear understanding about the relationships
that characterize the information exchange between all the various elements defining a multidisciplinary
environment. In particular visual representations like N? charts allow clarifying the connections among all
the considered objects. An example of an N? is proposed in figure 4.1 where three coupled analysis are
conceptually considered.

This diagram has been conceived in the context of System Engineering to clearly identify in a bet-
ter way the dependencies of all the components that characterize our problem. In particular such di-
agram can be used both for the analysis of the relationships between topological/physical components
and activities/procedures. In particular the main aim of such representation is the identification of the
inputs/outputs needed/provided by the single element in the context of the overall architecture. Similar
diagrams are also represented by the Design Structure Matrix (DSM) which is a network modeling tool
used to represent the elements comprising a system and their interactions, thereby highlighting the sys-
tem architecture ([36]). In particular DSM diagrams can be classified in two ways: as static DSM, which
basically are equivalent to N2 charts, and time-based DSM. In the first case the representation does not
contains information related to the time dependencies of the involved elements while in the second case
the objects are disposed along the matrix structure taking into account for the temporal relationships that
realize through the design process. In time-based DSM the objects that are involved in the early phases
of a certain process are placed towards the upper left corner of the matrix while the following ones are
located in the lower right corner as time proceeds. Examples of DSM matrices are reported in figure 4.2.

In the specific context of MDO problems the components represented in DSM diagrams can be disci-
plines analyses, objective and constraint functions, optimizers, surrogate models or other computational
elements. The interactions between such elements are mainly represented by the exchange of data such
as design variables, function values or state variables. The matrix visualization is often characterized by
the fact that the interactions of a specific element with itself are meaningless and the diagonal cells of
the table are not characterized by any information since they not show any dependencies. In other cases
the same diagonal sub-matrix positions can be occupied by specific elements directly enhancing the re-
lationships with the other objects in the matrix through rows and columns information flows. The most
widespread convention considers the inputs for a certain element (represented on the diagonal) placed on

63

Components Pzople
)
1=
g o
2 =
E Q
8 &
Communications
Components
interaction
Product Architecture DSM Organization Architecture D5SM
Activities Components People Activities
b X X X § Mapping of Mapping of
XX 2 people to activities to
X XX § components components
3 I
X
2 X
k=4 2 X X
2 [|x X
=3 XX X . T
X XX = _ - Mapping of
X go Mapping of 1 activities to
% % components to i
people 1
X X X X i
Information x | | i8]
flows X X < xm T T =
X X X
[xIx 2 i Mapping of
Process Architecture DSM £ Mapping of apping ot e
] components to people to
= activities activities

Multidomain MDM

Figure 4.2: Examples of DSM concerning Product Architecture, Organization Architecture, Process Archi-
tecture and Multidomain matrix [36].

64

0,2—1:
Optimization

E:E_ Obji;tive

[2:c} v
—/ Constraints

1:
Gradients

/2: df/dz, de/ dx ff

Figure 4.3: Simple example of gradient-based optimization process [35].

the same column (data flowing towards the object itself) while the outputs are provided on the row. Terms
like feedback or feed-forward become meaningful when the interfaces are considered. Generally the in-
teractions that are highlighted in the lower triangular part of the matrix are identified as feedbacks while
those in the upper triangular region represent the feed-forward relationships. Such classification strictly
depends on the flow convention for inputs and outputs while the main concept to clearly understand is
how a certain element interacts with other objects, enhancing the data required and the information pro-
vided. The same system (or MDO problem) can be represented with different DSM only changing the order
and disposition of the various element on head row and column, maintaining however the dependencies
between the element themselves. Changing such disposition can be done to better manage the overall
process, reducing for example the time required to solve an MDO problem. In this case sequencing and
clustering algorithms are employed to obtain such result. Some research initiatives are currently evaluating
the extension of DSM for the description of multidisciplinary design, analysis and optimization processes
(an interesting study is available in [82]).

The diagram notation uses gray connection lines to show the dependencies related to the data exchanged
between the various elements. Such lines allow to understand which inputs and outputs are involved but
do not provide information about the order in which of object operations or analyses are executed. This
last aspect is managed through the introduction of a system of additional lines identified with black, thin
connections while the execution order is highlighted with a numbering schema. In this way it is possible
to understand the process order following the sequence steps while potential computational loops are
denoted with other indexes nesting from the root one. When certain components can be executed in par-
allel then the same number is used as entry for both the components. The main execution scheme can be
interfaced with external data as for example an initial design vector (starting point) in the case of an opti-
mization problem while at the same time the overall process produces output information like the optimal
solution identified. The same notation can also be used to clearly represent the process flows related to
an optimization strategy. A gradient-based optimization procedure can in fact represented as in diagram
4.3.

One of the most challenging processes in the context of system engineering and multidisciplinary anal-
ysis is represented by the determination of system full state. In particular such process is represented by
the identification of a complete system state that is consistent with all the disciplines and analysis involved.
This analysis becomes particularly complex when different variables are shared among various disciplines.
In this case the consistence between models coming from different disciplines and often also from different
simulation environments is not so easy to manage. An example of multidisciplinary analysis is represented
by the Gauss-Seidel MDA, where the main aim is basically addressed to the evaluation of overall system
state, trying to reach a whole consistent condition. Such analysis in the case of three disciplines is reported

65

('213}3;*
1:
{4:y1 Analysis 1 =2y 3:u1

1: ?}2=?§‘3

2
/ 4: 4 / Analysis 2 3 Yo

T 3:
4:9s Analysis 3

Figure 4.4: Gauss-Seidel MDA architecture for three coupled analyses [35].

in figure 4.4.

The same notation will be used in the following lines to describe some of the most famous MDO ar-
chitectures but the same approach can basically be adopted to represent other multidisciplinary patterns.
The description of the following architectures will be considered as preparatory to better understand the
integration of multidisciplinary design framework with the modeling environments. The MDO architec-
tures that we consider are reported in the following list but it is possible to find also other typologies in the
current literature.

Multidisciplinary Feasible (MDF) architecture

Individual Discipline Feasible (IDF) architecture

All At Once (AAO) architecture

Collaborative Optimization (CO) architecture

Bilevel Integrated System Synthesis (BLISS) architecture —in particular the BLISS-200 variant

The MDF architecture deals with the interaction between different disciplines all coupled together
where an MDA analysis (which characteristics are briefly introduced in the previously lines) is performed
to evaluate a consistent overall system state for a certain set of design variables. Each design set must be
properly evaluated through MDA since the optimization algorithm does not know a priori the feasibility of
such choice. In particular each design set must converge to a feasible state, if possible, before the opti-
mization techniques proceeds with the following iterations/function evaluations. The problem formulation
related to such architecture is expressed with the following relationships:

N

minimize: fo(l’>y($)) + Z fi($0>xi7yi(x07$ia yj;éi))
i=1
with respect to: T
subject to: co(x,y(z)) >0
Ci($07xi7yi(l‘07xi7yj¢i)) Z 0 fori = 17 7N

66

0, 7—1:
Optimization

/2::.‘:0,:.':1/ /3::1?0._:1?2/ /4:3:0,:1:3/

—2: i T P
DD_/Q"UZ’%/_/&Q‘”

2:
Analysis 1 3: 1 d:m E y1

]EJ

—_
w @ =
ac ot = o

5|
b3
L]
S
[3]
B

Analysis 2 2]

5 EE
B

Analysis 3 - U3

7:f-—'{ G:

Functions

Figure 4.5: MDF architecture with Gauss-Seidel MDA integration for three coupled analyses [35].

The analysis and consistency constraints involving all coupling variables have been removed from the
formulation since they are managed in the nested MDA block. In this manner they are automatically satis-
fied for each iteration while the optimizer deals only with the choice of the design variables set. It isimpor-
tant to underline the fact that the same architecture can be implemented using different solution strate-
gies since the diagram representation considered has generic visualization purposes. The main structure
of MDF process is reported in figure 4.5, where three analysis blocks have been considered in the example.

Another interesting scheme is represented by the IDF architecture which problem formulation can be
resumed in the following pattern.

minimize: folz,y(z, 7))
with respect to: x,y
subject to: co(x,y(z,9)) >0
Ci(x07$i)yi(x07xiagj7éi)) Z 0 fori = 17 aN
Cf:gz_yl(x07$mg];ﬁz):0 fori:17"' aN

The elimination of disciplines analysis constraints R;(zo, z;, Y, Ui, ¥;) = Ois allowed thanks to the use
of implicit function theorem since the 7; and y; are not managed independently but are now bounded to
each other. They in fact become functions of design variables and coupling variable copies. The same defi-
nition of such architecture can also be identified with distributed analysis optimization and optimizer-based
decomposition but all have the same theoretical problem formulation. Each iteration is characterized by
the exact resolution of disciplines analysis equations and this condition all the coupling variables are now
implicit functions of design variables and coupling variable copies. In particular in this case the individual
disciplines are not coupled together when the system has been analyzed. Coupling variable copies are how-
ever used to share information among disciplines while consistency constraints are checked to control the
correctness through the Coupling variables across the disciplines domains. Basically the IDF architecture is
characterized by the fact that the individual DA resolves the analysis constraints directly on their own. In

67

0,3—1: i : : // i
Optimization 1: mo:fﬁsyﬂﬂ / 2: 33'9'/

ﬁ Ana]l}isis i 2:yi
@/ Fun(?‘;ions

Figure 4.6: IDF architecture [35].

/ 20§50 4(©) 5O /

1
0, 2—1: : - '. : .’._—_%
Optimization 1:2,y.9 /_/ 1 : wo, xi, Yi, Yj#i, Yi
1:
2 g - cC
Ej ec Functions

Residual ¢

Figure 4.7: AAO architecture [35].

this way all the DA can be evaluated in parallel before the control will be passed again to the main algorithm
for the next high level iteration. Besides the actual parallel execution the DA is strictly dependent on the
hardware implementation for the overall cycle. The concept of parallel execution considered stands more
generally for the fact that all the DA involved are not necessarily dependent on each other. They can be
run parallel but also sequentially (on the basis of the available resources) but the main important things
to understand is the fact that they can be executed each iteration without particular needs from the other
elements (the consistency with the coupling variable copies is resolved internally).

A conceptual example of the IDF architecture is reported in figure 4.6.

Another well-known architecture is represented by the All-At-Once (AAO) scheme. The related formu-
lation has already been considered in the first part if this brief introduction. The corresponding diagram
can be seen in figure 4.7.

In this case the residual equations are not managed implicitly as in IDF architecture where such equa-
tions are used to resolve internally the dependence between state variables and copies of the coupling
variables. In AAO architecture the residuals of the governing equations are in fact managed as constraints
in the related problem formulation. The evaluation of residuals can be done in parallel or in sequential
manner (on the basis of the available resources) since each one is independent with respect to the other.
In AAO pattern the computations of objective and constraint function can be done concurrently with the
residuals evaluations since all the required data are available from the algorithm main driver at each iter-
ation. In the case of IDF architecture the evaluation of objective and constraint functions is done instead
after the computations of the various disciplines analyses. Such a situation limits the possibility to run

68

LICOC PIULEOLOTES LOTICUTTTHILY VWILTTE LHIT TUnCLOlNS ©Valudulvlio.

The Collaborative Optimization (CO) architecture is one of the other interesting pattern considered in this
section. In particular such scheme shows well-different characteristics with respect to the previous formu-
lations. Its main purpose is represented by the management of each discipline with a greater autonomy,
using decomposition and coordination patterns for such objective. Different sub-problems are defined for
each discipline in addition to the main system multidisciplinary problem. In literature two formulations
about CO architectures can be found and the second one is considered since it is the most frequently used.
The related formulation is expressed in the following lines:

minimize: folxo, T1,- -+ , N, 7)
with respect to: X0, T1, " TN, Y
subject to: co(zo, T1, -+ ,TN,y) >0
JE = 20 — woll3 + 2 — xill3 + 195 — vi(@oi, i, gj2i) |5 =0 fori=1,--- N

Once the overall system formulation has been define the discipline sub-problems are defined with the
following relationships (there is one sub-problem for the i considered discipline/analysis).

minimize: Ji(Zois T, Yi(Zois T4, Yjzi))
with respect to: Zoi, T;
subject to: ci(Zoi, @i, Yi(Zos, iy Uj2i)) > 0

The J; functions are introduced to ensure the consistency between the variables copies. Each discipline
sub-problem is addressed to the minimization of data inconsistency and any local objective. At the same
time the overall system algorithm deals with the minimization of system objective and the consistency
among the various singularly optimized discipline sub-problems. The main drawback related to such an
approach is represented by the fact that each domain sub-problem must be solved once to complete a
single iteration of the multidisciplinary system problem. This architecture can also be identified as a bi-
level optimization approach. A conceptual representation of CO architecture is reported in figure 4.8.

The last example of MDO schemes considered is represented by the Bilevel Integrated System Synthe-
sis (BLISS-2000 variant) architecture. Such example is quite similar to the CO typology since the overall
optimization problem is decomposed into system and single discipline sub-problems. The main difference
with respect to the CO architecture is related to the fact that the disciplinary sub-problems are managed
through the use of surrogate models. In particular such models are used to analyze the influence of the
coupling design variables on the optimality of the single sub-problem. The related formulation is:

minimize: fo(z,y(z,9))
with respect to: X0, Y, W
subject to: co(xo, y(z, g, w) >0

gi_gi(xmxz’,@j;ﬁi,wi) fori = 17... 7]\[

The sub-problems formulations follow instead the following relationships

minimize: w!'y;
with respect to: T
subject to: ci(wo, 24, yi(zo, T4, Yjri)) > 0

69

(0} (0} (0 ~(0) (0
/J'u -?f'g...,w'-lf{]/ :lE,I- G)

0, 2—1: , .J
System 1 :a'n,fl,,,x__-‘;}/— /1.1 :-;}j?g,-[/ /1.2: To, i, § ﬁ/
Optimization

2: f(E— System

Functions

1.0, 1.3—1.1:

\ Optimization i

1.1: -'f:[}:i-.-'-n:i ﬂl /']-2 H .'j’:m._;i’.'i j
i .

1.1:
Analysis i

3 4

1.2:
f‘il Discipline i

Functions

Figure 4.8: CO architecture [35].

Where w is the vector of weighting coefficients and it is chosen on the basis of the control preferences
over the state variables. These coefficients are in fact directly related to the global objective and they affect
how quickly the sub-problems optimal solution is found. The diagram of BLISS-2000 architecture can be
seen in figure 4.9.

One of the characteristic aspect of this architecture is represented by the fact that the various DA return
the data not directly to the system sub-problems since the information are first used to update surrogate
models.

The proposed unified notation is a well-defined instrument for a clear and formal representation of MDO
architectures as can be seen from the proposed example. The same terminology will be used in the current
work for the description of multidisciplinary problem setting and architecture.

4.2 Available tools for MDO problems

The management of multidisciplinary design problems has attracted the interest of a quite wide range
of software houses and commercial initiatives. In particular the current market provides different solu-
tions for the commercial Process Integration and Design Optimization (PIDO) software [30]. They offer the
capability to interface different kind of external solvers which are often based on heterogeneous analysis
environments. Optimization capabilities can be also provided within the individual analysis environment
but such embedded utility are often not properly conceived to handle complex multidisciplinary problems.
Different simulation environments are however addressing some of their efforts in this direction with the
final aim to provide robust functionalities in a unique framework.

Optimization toolkits that are embedded within the same modeling framework can be found within some
analysis suites. A short list of the available embedded tools for optimization analyses is reported in the
following only to provide actual references to the current approaches.

Optimization functionalities are available within SolidWorks (Design optimization study), Matlab/Simulink
(Optimization Toolkit), Altair Hyperworks (Optistruct, Hyperstudy), etc.

More interesting results can however be obtained through the integration of multiple external solvers.
In particular the connection with external analysis environments becomes fundamental when complex

70

20 5O J 2, 1%, wl® ﬁ

0,12—1:
Convergence
Check

8.11-9:
System
Optimization

/J'E‘,. u'*/ /12 txg _qui"l f 1 :xo, Pjzi, Wy E

10 : xp. §

10:
System
Functions

11 : fop,cp, ¢

6,9
Surrogate i

— -
6z, P8 Wy .'I::II] f 4: xg,w; 3 f 32 2g, By @
I 2,5—3: \\ } 1

Optimization i

Discipline i
Functions

=
3
Analysis ¢

Figure 4.9: BLISS-2000 architecture [35].

multidisciplinary design problems are faced. Some domain-specific analyses are often managed through
validate frameworks but their capabilities do not cover all the possible simulation scenarios. Commercial
tools properly behave when the specific analysis domain is approached but complex scenarios often need
to consider multiple physical aspect for the system under development. For this reason the tools used for
particular simulations become not suitable for other ones. Within this context the use of a PIDO software
can help to model and analyze more complex situations, allowing the interaction between proprietary tools
that often are not explicitly conceived to interface with other software. Some examples are reported in
the next lines.

The CONSOL-OPTCAD™ tandem is for example a tool for interactive optimization-based design of a large
class of systems and has been developed from the Institute for System Research (University of Maryland).
The essential requirements are that a simulator be available for evaluating the performance of instances of
the system under consideration and that the design variables to be optimally adjusted are allowed to take
on any real value in a given domain. To date, CONSOL-OPTCAD™ has been used on applications as different
as design of various circuits, design of controllers for a flexible arm, a high-performance aircraft (rotorcraft
control systems), a robotic manipulator, or determination of optimal flow rate and temperature profile for
a copolymerization reactor [38].

VisualDOC has been developed by Vanderplaats Research and Development (VRD), Inc. mainly for the
computer aided analysis community. A graphical user interface increases the flexibility of process integra-
tion, system automation, and design optimization. VisualDOC is a multidisciplinary design, optimization,
and process integration software which can be used to define, execute, and automate a design process.
It includes design modules such as Optimization, Design of Experiments, Response Surface Models, and
Probabilistic (Robust and Reliability-based) Analysis which it can add to almost any analysis program. Vi-
sualDOC’s graphical user interface allows the user to easily create a connected work-flow of components
and configure them. VisualDOC supports multi-level, cyclic, and conditional workflows. Its features include
comprehensive concurrent monitoring and visualization tools, storage and reuse of generated simulation
data for post-processing, full debugging support for model execution, and the ability to interactively in-
spect and monitor the design process. It also supports remote execution in a heterogeneous environment,
partial and batch-mode execution, and provides programmatic access to all the included design modules.
It can integrate with Excel, Matlab, various CAE software, and user-defined libraries and executables. Visu-
alDOC provides a useful and flexible Simulation Data Management (SDM) capability as can also be found

71

I OUICTh FIUU SUTLWAIC. IVidlly THSINITTIS dEU diildlyolo SPClIU dll CTALIAUTUINIAY allioulict U1 LT Tligagcu il
parametric studies of one or two parameters using one or more different simulation programs. As other
multidisciplinary tools, VisualDOC has been conceived to easily set up simulation(s) from user point of view,
providing the basis for an automatic run and search of the best design while varying many parameters sub-
ject to many constraints [39].

ModeFRONTIER® is another example of integration platform for multi-objective and multi-disciplinary op-
timization. Such tool has been developed by Esteco with the final aim to manage complex engineering
problems [40]. It provides a seamless coupling and interfacing with proprietary codes and third party anal-
ysis tools, enabling the automation of the design simulation process.

The final purpose of such tools can always be basically summarized with the capability to facilitate the pro-
cess of analytic decision making. Nexus represents another optimization suite that has been developed
by the iChrome Ltd. to provide useful capabilities in the context of multidisciplinary analyses. It allows
the integration of design process, distribution and scheduling analyses, inter-operation and exchange data
between applications, management, visualization and organization of results [41].

iSIGHT is one of the most widespread tools among the multidisciplinary analysis ones. It originated from
the computing system for Computer Aided Optimization of General Electric (GE) and employs MDO Lan-
guage (MDOL) as a unique operation script language. In this way the main objective is the capability to
provide a customized environment depending on the architecture of problems and user’s circumstances.
Such desktop tool allows the interaction with CAD/CAM/CAE/PDM environments across different plat-
form (Windows, LINUX or UNIX). Task Manager section of iSight is able to manage different optimization
methodologies, including gradient methods, genetic algorithms, approximate methodologies and quality
engineering methodologies. Parallel processing features are also available as well as the management of
data flow and design strategies.

ModelCenter from Phoenix Integration currently play a key role within the market of the PIDO software.
It mainly works on Windows O/S but it can construct heterogeneous distributed environments using the
network for the connection with multiple analysis servers. In this way is can control different programs
such as commercial CAD tools as well as analysis ones, supporting the JScript and VBScript to connect new
entities. This features makes ModelCenter particularly flexible in cooperating with internet/intranet envi-
ronments and databases. It relies both on a library of optimization methods and a large set of tool adapters
for external interfaces.

A couple of interesting works for the MDO framework coming from academic and NASA activities are rep-
resented by Framework for Interdisciplinary Design and Optimization (FIDO) [42] and Intelligent Multidis-
ciplinary Aircraft Generation Environment (IMAGE) [43]. In the first case the tool has been developed by
NASA Langley while in the second one the framework has been implemented at Georgia Tech Aircraft Sys-
tem Design Lab (ASDL).

All these tools represent commercial PIDO solutions currently present on the market but open-source ini-
tiatives are also available. DAKOTA and OpenMDAO projects are two of the most promising, interesting
and well known research initiatives. They provide useful functionalities for the management of multidisci-
plinary design problems without the cost limitations associated to commercial tools. The related benefits
and drawbacks will be covered more extensively in the following sections. OpenMDAO has been developed
more recently with respect to DAKOTA but has already highlighted some interesting capabilities as shown
in [79].

4.2.1 Drawbacks of the current PIDO tools

Despite all the features and main advantages of PIDO software they are not the ideal solution for MDO
environment. The PIDO tool concerns mainly optimization methods at the expense of data management
and collaboration between users. Scenarios built from such infrastructure allow the individual user to per-
form complex surveys but limit the interaction among different users above all when the number of people
involved in a project becomes large (i.e. in the advanced development phases of a system). In addition,
also if a PIDO tool can handle different engineering software (i.e. CAD, CAE, etc.), it is not particularly
effective and satisfactory environment for users from modeling perspective. A workflow management sys-

72

LTI TCPICOCTIL a 1Tulidaliiciitdl CITIHCTHLU TOT LHC HpPIcinciitativn O all THCLLUVE COHaDOTallva diiiiastiuciLuilc.
PIDO tools are currently not well suited for the sharing of a wide range of data and resources. Alternative
solutions implementing web-based technologies can better manage such kind of information. An infras-
tructure based on web services can more effectively combine analysis codes, optimization methods and
data-base management system, enhancing the collaboration and reducing data consistency issues. Current
PIDO tools are not as flexible as can be web-based application and often this feature makes the interface
difficult to understand and learn with respect to a web environment.

4.3 OpenMDAO Framework

One interesting initiative in the field of MDO is represented by OpenMDAO project. The acronym MDAO
in OpenMDAO definition stands for Multidisciplinary Design Analysis and Optimization, underlining as this
framework has been conceived to face the problems linked to complex system design. This open-source
framework has been written with Python code as this language offers many advantages in the context of
simulations integration. In the current work such tool has been considered for the possible integration with
the modeling framework since it shows some interesting features for the management and integration
of simulation code. In the following lines a brief description of this framework is reported to show the
promising capabilities that can be obtained through such infrastructure. More details are available from
[44] and [81].

4.3.1 Mission

The main purpose of OpenMDAO research initiative is basically represented by the capability to in-
tegrate analyses coming from different sources under the same environment. In particular it allows to
combine analysis tools (or simulation codes) from multiple disciplines, at different levels of fidelity, and to
handle the interaction between them. OpenMDAO is basically defined to manage the dataflow and the
workflow (that specifies which code is run and when in relation to the other ones) concurrently with op-
timization algorithms and other advanced solving methods. The current capabilities of OpenMDAO can
be summarized in the following ones. It allows the information exchange among multiple analysis codes
at various levels of fidelity to create simulations and models of complex systems. Such infrastructure pro-
vides also the state-of-the-art MDAO algorithms for solving highly coupled analyses. Such problems can
potentially arise when multiple tools are combined and integrated between each other. The object ori-
ented approach (enhanced also by the use of Python language) allows quick implementation of new tools
and methods for the management of increasingly complex situations. A recent and detailed report about
its usage is available from [78].

4.3.2 Elements and their functions

OpenMDAO is extremely flexible thanks to the separation between the flow of information (dataflow)
from the process in which analyses are executed (workflow). Such distinction is achieved through the use
of four specific constructs, represented by the following ones:

e Component

Assembly

e Driver

Workflow

The construction of the overall analysis scenario starts with wrapping or writing from scratch the var-
ious analysis codes. During such phase these elements are basically used to build the Components. They
are basically the building blocks for the construction of more complex system and related analysis. In

73

1
driver
L= =
[mmponentl} [driver2]_ driver3
_

Workflow for dri
orktiow Tor anver Workflow for driver3

—

component2
component2

component3 /—W
—_— driverd

—)
.
componentd components

|
Workflow for driver2 Workflow for driverd

Figure 4.10: Overview of an example iteration hierarchy with few drivers [45].

particular the Python cross-platform capabilities are used to wrap the analyses that we want to integrate
together, reducing in this way the efforts required to ensure data consistency, avoiding also the problems
of O/S dependencies. Once a set of Components are available they are integrated to define an Assembly.
In particular a group of Components is linked together within an Assembly to specify the dataflow between
them. The following step is the set up of the workflow once the dataflow has been defined. In particu-
lar the procedure that drives the problem solving is affected by the Driver elements chosen in this phase.
Drivers can be selected among optimizers, solvers, design of experiments, etc. Such information is used to
basically define how to problem will be solved, scheduling the execution of the various analysis objects. To
better explain the relationships between the dataflow definition and workflow definition it is possible to
say that multiple Driver/Workflow combinations may exist for the same dataflow. For example the same
dataflow can be used to run a straightforward optimization on the system, to develop a set of surrogate
models first and then perform an optimization on the models or to run a sensitivity analysis. In this case
the dataflow is the same but there are three different workflow with different purposes. An example of an
iteration hierarchy involving different drivers is reported in figure 4.10 ([45]).

OpenMDAO is able to provide a wide set of features that make such framework useful to build complex
analyses in the MDAO field. A much higher degree of code sharing, re-use and modularity is also achieved
through a common platform, enhancing the data exchange among the MDAO community. Algorithms and
solving methods can then be developed and distributed among users and communities, improving also
the validation and investigation of new techniques. The main features provided by OpenMDAO are repre-
sented by a library of built-in solvers and optimizers, tools for meta-modeling, data recording capabilities,
support for analytic derivatives, support for high-performance compute clusters and distributed comput-
ing, extensible plugin library. All such functionalities are available through an object oriented approach that
enhances the integration among different environments. In figures 4.11 and 4.12 are shown two examples
of the possible interactions among components within the same assembly as well as between assemblies
on different levels.

The development effort of such framework is driven by the NASA Glenn Research Center, with also
support of NASA Langley Research Center. NASA’s interest in the OpenMDAO project comes from the
evaluation of unconventional aircraft concepts like Turbo-Electric Distributed Propulsion. Although NASA’s
focus is on analyzing aerospace applications, the framework itself is extremely flexible and can used also
in other disciplines [45].

74

assembly
Parameters) Objective
driver ¥ ——

Constraints

» component2

* COIROnAN component4

»| compaonent3

Figure 4.11: Data flow among components of the same assembly [45].

assembly
Farameters ; Objective
driver 1 R
, Constraints
_-’l-
.').I
~
® component2
L
Al componentl componentd
assembly2
A
driver [,
component> —» componentt

Figure 4.12: Interaction among different assemblies placed on different levels [45].

75

Teded DIVIWOTI UUI VYTV Ddotv)

In addition to the advantages previously described (integration capabilities with analysis environments,
object oriented platform, open-source initiative, solving methods library, etc.) OpenMDAO has also started
the integration with the current web-based technologies. In particular the tool provides a graphical user
interface as a web-service running on locale machine. It is implemented basically as a local server lunched
from the command line window and it can be accessed from the browser and with no necessarily a network
connection (due to the fact that the server is launched on the same machine). Such interface can help to
set up the dataflow pattern, providing also the information needed for the specification of the workflow.
Such activities can be performed also thanks to the aid available of drop down menu and drag and drop
elements, reducing the possibility to erroneously design incorrect connections or instantiation for example.
The same approach can also be considered for future extension of the same framework, paving the way
for the possible integration within a more complex web-based infrastructure where the multidisciplinary
analyses are managed with the support of OpenMDAO (one of the possible services provided by such web-
based infrastructure).

4.4 DAKOTA

DAKOTA project represents one the most interesting initiative that involves the definition of powerful
open-source tool. In particular we have explored the feasibility to use this instrument for the management
of the development process related to system implementation. In the context of a multidisciplinary design
optimization study DAKOTA provides a series of useful instruments that allows controlling the simulation
data. Generally speaking under the same environment it is possible to process and to transfer the infor-
mation among different analysis tools. In this way we can consider the opportunity to automate some
of the pre-processing and post-processing operations that traditionally are performed manually. Within
an industrial perspective this allows to reduce the time to market feature, reducing consequently also the
costs involved in the development process. The evaluated tool comprehends different key capabilities that
we briefly present in the following lines (more details are available in [77]).

Historically DAKOTA born at Sandia National Laboratories as an instrument for the proper prediction, simu-
lation management and risk-informed design process. The main goal is to provide all the useful information
that may be necessary for the decision making phase that a system development generally requires. The
simulation credibility that is pursued relies on various activities as those related to validation, to verifica-
tion, to uncertainty qualification and finally to physics modeling fidelity. All this features depend in turn on
other sub-activities that concur in the generation of non-deterministic results on which simulation credi-
bility places its success.

DAKOTA includes a wide set of algorithm capabilities and utilities that allow to manage complex model
simulations, as acronym highlights (i.e. Design and Analysis toolKit for Optimization and Terascale Applica-
tions). Basically it helps to understand which the relevant parameters that affect product behavior are and
to establish how uncertainty influences the system responses. Other functionalities are related to optimiza-
tion analysis and to calibration of analytical functions with experimental data. All the tool operations are
based on interpretation of response metrics and generation of process parameters. In particular response
metrics come from computational model (simulation) as the introduced parameters are required to set the
simulations execution. The computational model may be black box or semi-intrusive software program. In
the first case are included any codes describing mechanics, circuits, high energy physics, biology, chemistry,
etc whereas in the second one we can find Matlab, ModelCenter, Python, SIERRA multi-physics, SALINAS,
Xyce, etc. All these features may be implemented within an automated iterative analysis, supporting for
example also experimental testing through computer models. In this way is possible to run many situations
not well understood and then physically test only a reduced number of worst case scenarios. We briefly
introduce also the main tool-kit features. It provides:

e Generic interface for external simulation.

76

= HITHE=LESLCU dllU aUvaliLTU digUlniLhims Lo 1Tidlidg€ UNTITHIL Ly pPpC Ul vdl IdDICo (NOUTT=STTTO0OLT, UISCOTIUTN=
uous, multi-modal, discrete and mixed).

e Strategies to combine methods and integrate different environment (advanced studies and surro-
gates generation).

e Capability to address mixed deterministic and probabilistic analysis.

* Possibility to address the execution of simulations cycle on clusters through scalable parallel compu-
tations.

e Advantages of an object oriented code.

4.4.1 Sensitivity Analysis capabilities

Sensitivity analysis is one of the main features that DAKOTA helps to manage. The final aim of this
analysis is to understand how code outputs vary depending on changes in code inputs. In particular the
variations on outputs are traced to the input perturbations through the use of automated process. Local
sensitivities are generally managed with numerical implementation of partial derivatives while global ones
are found via sampling methods and regression approaches. At the end of the activity the primary pur-
pose is to identify which variables have main influence on the simulation results, allowing a more efficient
running of the optimization or uncertainty quantification processes.

Generally these methods may be integrated within parameter study, design and analysis of computer ex-
periments. In more detail the general sampling techniques implemented are the following:

¢ Single and multi-parameter studies (grid, vector, centered).

e DDACE (grid, sampling, orthogonal arrays, Box-Behnken, CCD).
e FSUDACE (Quasi-MC, CVT).

e PSUADE (Morris designs).

e Monte Carlo, Latin hypercube sampling (with correlation or variance analysis, including variance-
based decomposition).

e Mean-value with importance factors.

The final responses related to sensitivity analysis are basic statistics, including mean standard deviation
and possible correlations between the considered input variables. All these information may be collected
in a tabular output that can be processed with an external third-party statistics tool.

The main effects and interactions between the variables are not generated through input distribution as-
sumption for this kind of analysis.

4.4.2 Parameter Study capabilities

One of the main features of DAKOTA is represented by the Parameter Study Capability. In this case
the effect of parametric changes through simulation models are shown on output responses. The input
selected points in the parameter space are used to evaluate this particular type of sensitivity analysis. The
input data sets can be selected in a deterministic way and structured with a particular pattern also if it is
possible to use user-specified data group. There is also the possibility to use four different parameter study
methods, introduced in the following list:

e \ector

e List

77

o Lecaricicu

e Multidimensional

These methods are different from each other on the basis of the techniques that are used to identify
the parameter space points. In the case of Vector method the parameter study is performed choosing the
input design points included on the vector line between two points of an n-dimensional space on the basis
of a selected number of intervals to be sampled. This approach encompasses both single-coordinate pa-
rameter studies as well as multiple coordinate vector studies. In the case of list methods the user supplies
the list of input parameter number to be used in the study. The centered approach considers an initial
point of n-dimensional space from which the other points are evaluated moving along the coordinates
axes in different possible manner. This capability could be used for post-optimality analysis verifying that
the identified solution is actually at a minimum or constraint boundary and also in analyzing the shape of
the stationary point under consideration. In the final methods a hypergrid in n-dimensional space is cre-
ated and the user has only to specify the number of interval to consider. This study generally is not used
to link the response data set to any specific results interpretation but may be used as starting point for
sensitivity analysis. In particular the response data set can be integrated with the evaluation of numerical
information related to the gradients or hessian quantities. The parameter study can also be used to evalu-
ate the nonsmoothness in the simulation response variations, refining model characteristics or setting the
step size for the computation of numerical gradients. This capability can also be used to investigate prob-
lem area in the parameter space as also to perform simulation code verification, identifying the possible
problem related to simulation robustness. The results coming from this analysis can be used as starting
point for minimization methods as either a pre-processor utility. The same approach is used in the case
of post-processing activities for example for post-optimality analysis. Parameter study settings require the
definition of initial point and bounds for the design variables (or equivalently the initial state and bounds
in the case of state variable) to proper manage the simulation run over the variables range. Parameter
studies, classical design of experiments activities (DOE), design/analysis of computer experiments (DACE)
and sampling methods have all the same main objective that is the proper exploration of parameter space.
In particular the parameter studies are generally used for simple studies with repetitive structure. Vec-
tor or centered methods are addressed to local sensitivity analysis or assessment of function smoothness.
Multidimensional technique is often used for the generation of grid points and plotting of the response
surfaces.

4.4.3 Design of Experiments capabilities

One of the other capabilities of DAKOTA toolkit is represented by the Design of Experiments feature
(DOE). In particular the classical DOE and the more recent design and analysis computer experiments
(DACE) methods are both techniques that try to extract as much information from a parameters space
as possible with a limited number of set points. DOE techniques are usually employed in the case of tech-
nical domains characterized by some randomness and nonrepeatibility of the experiments (for example in
agricultural or experimental chemistry fields). In this way the main aim is to distinguish between the simu-
lated (computer) experiments and physical experiments. The last one is characterized by a greater stochas-
tic component that drives to the consequences that the same treatment may results in different outcomes.
In computer simulation experiments instead there is quite often a deterministic code. Central Composite
Design, Box-Behnken Design, Full/Fractional Factorial Design are some of the techniques included within
the DOE classical approach. These ones allow extracting important information starting from set points
mainly placed at the extremes of the design space, since this location offer reliable behavior in the pres-
ence of nonrepeatibility. The nonrepeatibility component in the case of computer simulations is the main
characteristic that allows distinguishing between DOE techniques and DACE methods. Orthogonal Array
Sampling and Latin Hypercube Sampling are in the case of DACE approach the more commonly used for
the extraction of proper trend responses from simulation models. Other sampling techniques as Quasi-
Monte Carlo approach are employed in DACE methods to uniformly cover the unit hypercube of design
space. Generally speaking DOE/DACE techniques use only the results coming from the input parameters

78

POUNUS LO LOTISLTULL LTHIT STL U1 PUOITIL TOT LHT TALIALLION O TCyuirtcu inoritatiolt. rior LS VICWw POITIL LTHCEOoT
methods are substantially particular examples of the more general probabilistic sampling for uncertainty
guantification. They are used to investigate overall simulation results, identifying the main effect of input
parameters. This information is potentially employed to build the response function/surface for the fol-
lowing optimization/trade-off algorithm.

DAKOTA toolkit offers several packages for the management of activities linked to DOE/DACE processes.
Some of the main important ones are introduced in the following list:

¢ Latin Hypercube Sampling (LHS) package
e Distributed Design and Analysis for Computer Experiments (DDACE)
e Florida State University design and Analysis of Computer Experiments (FSUDACE)

e Problem Solving Environment for Uncertainty Analysis and Design Exploration (PSUADE)

Some of the mathematical methods implemented within the named package can be briefly summarized
in the following list:

e Orthogonal Array

e Box-Behnken Design

e Central Composite Design

e Random Design

e Quasi-Monte Carlo Sampling based on Halton or Hammersley sequences
e Centroidal Voronoi Tessellation

e Morris Screening

4.4.4 Uncertainty Quantification capabilities

One of the other important DAKOTA feature is represented by the Uncertainty Quantification. The
main purpose of this type of analysis is to understand how an assumed distribution for the input variables
is propagated on a distribution for the output response. In this case forward propagation is considered
with the aim to quantify the non-deterministic effects on model output. The related methodologies allow
managing probabilities of failure (reliability metrics), robust optima and also quantification of uncertainty
when calibrated models are used for behavior prediction. The uncertainty quantification methods can also
exploit the results coming from multifidelity modeling to drive complex analysis. On this topic a clear de-
scription is available in [76].

Dakota toolkit provides useful instruments for the evaluation and characterization of epistemic uncertain-
ties and aleatory uncertainties. Simulation models are often affected by the presence of phenomena that
do not show a deterministic behavior. In particular some simulation parameters such as material properties
or boundary elements (e.g. phenomena external to the system under consideration) are characterized by
uncertain values. These quantities are modeled through the use of probability distributions that describe
the element response over a particular range of values. The right evaluation of these values is fundamen-
tal for understanding the potential ranges of outputs or scenario implications. The capability to evaluate
the effect of uncertainty is particularly relevant in the decision making process. Uncertainty evaluation is
generally differentiated between two main categories: the epistemic uncertainty and aleatory uncertainty.

e Epistemic uncertainty

e Aleatory uncertainty

79

CPIOLTITHC UTICTT LAlTILy TTPTCOTIIL LHIC UTILTILdITILy TTIdLCU LO LTIT IdCR O RTIOWICUSC Ul d pPdal tiCuidl yudii=
tity and it is often expressed equivalently as state of knowledge uncertainty, subjective uncertainty, type
B uncertainty or reducible uncertainty [75]. Generally speaking this type refers to the cases where uncer-
tainty can be reduced through increased understanding or increased and more detailed data. Interesting
analyses about such topic are available from [73] and [74]. In particular epistemic quantities are referred
to that elements which have a fixed value in an analysis but we do not known that fixed value. For example,
the elastic modulus of a material in a specific component is generally fixed but unknown or poorly known.
On the other side the aleatory uncertainty is characterized by relative randomness which cannot be re-
duced by further data collection. For example the uncertainties related to weather cannot be reduced by
gathering further information. Aleatory uncertainty is also expressed as stochastic, variability, irreducible
and type A uncertainty. Aleatory quantities are usually defined with probability distributions when epis-
temic cannot be modeled in the same way. There are many ways of representing epistemic uncertainty as
for example the probability theory, fuzzy sets, possibility theory and imprecise probability. The right choice
between these alternatives represents a challenging research topic. Three of the most widespread way of
epistemic uncertainty evaluation are represented by the interval analysis, Dempster-Shafer evidence the-
ory and second order probability. The last solution is often used in the case of mixed aleatory/epistemic
uncertainties. In the case of interval analysis it is assumed that nothing is known about the uncertain
variables except that they lie within certain intervals. In this case the main aim is to identify the range
of values within which the output values will lie. In Dempster-Shafer evidence theory the choice of input
parameters is managed through the assignment of probability value to the different subranges with which
the overall variables range is divided (Basic Probability Assignment). Finally the second order probability
evaluation is based on the management of both the aleatory and epistemic uncertainty. An example of
such an application is represented by the case where the probability distribution type is known (e.g. that
it is distributed normally or lognormally) but the parameters governing the distribution is not well known.
This situation is faced through the use of an outer and an inner loop. The outer loop manages the choice
of epistemic values of the related governing parameters for the considered distribution while the inner
loop is characterized by the sampling. This last process is performed from the aleatory distribution with
distribution parameters set on the outer loop (on epistemic point of view).

Different techniques are used to propagate the aleatory behavior related to the probability distribution:

e Latin Hypercube Sampling

Local Reliability Method (mean value, MPP search, FORM, SORM)

Global reliability methods (EGRA)

Non-intrusive stochastic expansion methods (polynomial chaos and stochastic collocation)

The just considered methods are used to face aleatory uncertainty while the epistemic one is managed
with the following ones:

¢ Local/global interval estimation
¢ Local/global Dempster/Shafer evidence theory (belief/plausibility)

e “Second-order” probability

In particular DAKOTA can output probability of response thresholds, reliability metrics, response corre-
sponding to a metric, etc... In this case the so defined “Second-order” probability refers generally to the
nested sampling technique that are frequently used in Quantification of Margins and Uncertainties (QMU).
Uncertainty quantification (UQ) is one of the main instruments that allow a better understanding the be-
havior of a particular system. DAKOTA toolkit offers a wide range of uncertainty quantification instruments
for the management of information about the available data. Nondeterministic analysis is addressed to
the characterization of the uncertainties on model inputs and their influence on outputs through compu-
tational simulation. In DAKOTA the uncertainty quantification is mainly focused on the forward propagation

80

Ul LT PTOLCECSS, ITIVUIVITE LT SLALIoUIL sCTHCTAUIUN O DULPULS UILLHTDULIOVTN. U 1o Pdal LtitUidlly HTTRCU WiLll SCiil=
sitivity analysis since in both case the main aim is to understand how variations in the inputs values affect
outputs probabilistic distribution. Generally speaking the output stochastic distributions are inferred on
the basis of the assumed input ones. As previously introduced the uncertainty quantification can be dis-
tinguished between the aleatory and epistemic variability. The considered toolkit offers a series of func-
tionalities that allow managing both these uncertainty types. The main aleatory uncertainty quantification
methods used within DAKOTA are introduced in the following list:

e Sampling-based approaches

— Monte Carlo

— Latin Hypercube
* Local Reliability method
¢ Global Reliability method
e Stochastic Expansion

— Polynomial Chaos Expansions

— Stochastic Collocation
The epistemic uncertainty evaluation methods are instead listed in the following:

e Local Interval Analysis
* Global Interval Analysis

e Dempster-Shafer Evidence theory

In the case of mixed aleatory/epistemic uncertainty quantification DAKOTA supports the following meth-
ods:

e Interval-valued probability
e Second Order probability

e Dempster Shafer theory of evidence

The Latin Hypercube package provides both Monte Carlo random sampling method and the effec-
tive Latin hypercube approach. The probabilistic distributions that can be considered within the evalu-
ated toolkit are: normal, lognormal, uniform, loguniform, triangular, exponential, beta, gamma, gumbel,
frechet, weibull, poisson, binomial, negative binomial, geometric, hypergeometric and finally user-supplied
histograms. The uncertainty quantification process can be realized also with the possibility to use a user
provided correlation matrix. In this case the correlations between input and output variables are deduced
from the information available and not from the simulation results. The incremental Latin hypercube sam-
pling is sampling method based on the increase of the sampled points between two consecutive extraction
operations and carrying the information gathered from the previous one. The reliability methods imple-
mented in DAKOTA can be applied in some cases with different alternative modes on the basis of the type
of the level mappings. Some techniques solve local optimization problem to find the most probable point
for a particular quantities and then about this one the probabilities approximations are integrated. Some
of the techniques are reported in the following list:

¢ Mean Value (MV) method

— First order version (MVFOSM)

81

= QCLUNU OITUcth VvCIiolUI \IVIVOUOIVI)

e Most Probable Point (MPP) search method (forward Reliability Index Approach (RIA) mode or inverse
Performances Measure Approach (PMA) mode)

Advanced Mean Value method (AMV)
Iterated Advance Mean Value method (AMV+)

Two-point Adaptive Nonlinearity Approximation method (TANA)
First Order Reliability Method (FORM)
Second Order Reliability Method (SORM)

The stochastic expansion methods employ the use of projection, orthogonality and weak convergence
to evaluate the related statistics. Polynomial Chaos Expansion (PCS) uses multivariate orthogonal polyno-
mials which is particularly suited for the representation of a defined input probability distribution. Stochas-
tic collocation instead employs multivariate interpolation polynomials. The evaluation of expansion coef-
ficient in the case of PCE can be done with the following techniques for numerical integration:

e Spectral Projection approach

Sampling

Tensor-product Quadrature

Smolyak Sparse Grid

Cubature method

e Regression approach

— Least Squares

— Compressive Sensing
Stochastic collocation interpolants can be formed with the list reported in the following:

e Tensor-product

e Sparse Grid
The interpolants can be expressed under different combination:

e Local or Global
¢ Value-based or Gradient-enhanced

¢ Nodal or Hierarchical

The Importance Sampling method is more effective than Monte Carlo sampling and is generally used
for failure probabilities computation. In this case the sampled points are generated in preferential regions
of the parameter space often near the failure area for example or however defined by the user. Adaptive
sampling technique tries to build a surrogate model that allows reducing the computation loads related to
a more complex simulation. A first set of sampled pointsis chosen (for example with Latin hypercube meth-
ods) and then the related grid is adaptively modified and updated on the basis of selection criteria. Interval
analysis is mainly used in the context of epistemic uncertainty evaluation and the local or global techniques
implemented are addressed to the identification of the output bounds on the basis of input ones. In the
case of global approach optimization methods (based in particular on Gaussian process surrogate model)
or sampling techniques are used to assess bounds. The local methods use instead gradient information
through Sequential Quadratic Programming (SQP) or Non-linear Interior Point (NIP) to obtain bounds. The

82

UCTIHTTPOLTT=olalCl 1TICOTY Ul EVIUCTILC 15 TTdiTTy UoTU LOU THOUCH LHIT THCLL Ul TPISLTHTTHC UTILTT LAITILICS, Daosllly
its implementation with the definition of basic probability assignments (BPA) to each interval for the design
variables space. DAKOTA provides also other instruments as for example those related to the Bayesian Cal-
ibration. In this approach the uncertain parameters are defined through a previous distribution (assumed
on the basis of the known characteristics of the modeled phenomena). This first distribution is then up-
graded with experimental data and after the process of Bayesian Calibration a posterior distribution is
obtained. Reliability methods represent an alternative way to evaluate uncertainty quantification with the
aim to introduce a less computationally demanding with respect to sampling techniques. Starting from
specified uncertain variable distributions the response function statistics are computed. The response
statistics include mean, standard deviation, cumulative distribution functions (CDF) and complementary
distribution functions (CCDF). The probability calculations involve often multi-dimensional integral over
an irregularly shaped domain for the variables of interest. Under these conditions it may be very difficult
to proper manage the information gathered and also to process the data available. For this reason often
these techniques employ the definition of a variables transformation through the definition of mapping
functions between two equivalent variables spaces where the final one is easier to monitor. In DAKOTA
the implementation of this mapping is obtained through the use of Nataf transformation, which is similar
to Rosenblatt transformation in the case of independent random variables. The global reliability methods
are generally used to manage non-smooth and multimodal failure surfaces introducing a global approxi-
mations based on Gaussian process models. The technique implemented in DAKOTA is identified with the
Efficient Global Reliability Analysis (EGRA) which belongs the family of Efficient Global Optimization (EGO)
methods. In particular the approximation obtained is used to drive the search activity of the points that
maximize the Expected Improvement Function (EIF). The exploration of design variables space proceeds to
find the points that show a higher value of probability to represent better solution. Briefly speaking the
optimization methods that reflect the EGO approach are characterized by the following steps:

o Definition of the initial Gaussian process model for the objective function.

e Search of the point that maximizes the EIF evaluation, stopping for those points that show a small
EIF with respect to the previous evaluation.

e Evaluations of the objective function for those points that have highlighted an upper value of EIF.
From this information in new value of the objective function in these new points the Gaussian ap-
proximation of the objective function is updated.

* The process is then repeated from the second step.

The main methods included within the Stochastic Expansion approach are represented by the polyno-
mial chaos expansion and stochastic collocation. The polynomial chaos expansion is based on a multidi-
mensional orthogonal polynomial approximation while the stochastic collocation is based on a multidimen-
sional interpolation polynomial approximation. In both cases the approximation starts from the definition
of standardized random variables. The feature that characterizes these two methodologies is represented
by the fact that the final solution is expressed as a functional mapping and not only as a set of statistics
as in the case of other nondeterministic methodologies. In particular DAKOTA implements the generalized
PCE approach using the Wiener-Askey scheme where different orthogonal polynomials are used for the
modeling of the effect of continuous random variables described by various probability distributions. The
main difference between the stochastic expansion methods implemented (PCE and SC) is that, whereas PCE
estimates coefficients for known multivariate orthogonal polynomial basis functions, SC employs multivari-
ate interpolation polynomial bases for known coefficients. The interpolation polynomials can be local or
global and also value-based or gradient-enhanced. The related four combinations are referred to Hermite,
Lagrange, piecewise linear spline and piecewise cubic spline. In the case of global methods the sensitivity
of the variables is evaluated through the use of the Sobol indices. In the case of Stochastic Collocation it
is possible to follow different procedures to evaluate the orthogonal polynomials which can be generated
from Gauss-Wigert recursion coefficients in combination with the Golub-Welsch procedures for example.

83

HHCT 1TTidiTT 50dl Ul aUdpLuive SITTHUIdUOTT 15 LU DUIIU a SUllTUsdlLcT TTTOUCT Lidl Lall DT Uulius-cau il pialc Ul 4d 1110Ic
expensive simulation model. The adaptive simulation model can be implemented following the next step:

Evaluation of the expensive simulation (considered as the true model for the phenomena under anal-
ysis) at the initial sample points.

Fit/refit of a surrogate model.

Creation of a candidate set and score based on the information gathered from the surrogate.

Selection of new candidate points to evaluate again the true model (the more expensive one).

The evaluation of the score list for the selection of the candidate points is base on different types of
metrics. DAKOTA implements the following ones:

¢ Predicted Variance
e Distance

e Gradient

Once the score list has been defined the choice of the identified points can follow different approach on
the basis of various methodologies. In fact once the set of points has been ordered the choice of the points
to update the approximation can take count also of the position of this points along the design variables
space (for example of two point with high score but near each other in the design space it should be better
to select only one of them). On the basis of this consideration in DAKOTA different choice strategies has
been implemented:

e Naive Selection
e Distance Penalized Re-weighted Scoring
* Topological Maxima of Scoring Function

e Constant Liar

In Dempster-Shafer theory of evidence the ranges of variables are defined through the terms of belief
and plausibility. These functions allow evaluating the statistical functions related to a particular simulation
response. The cumulative belief function is the lower bound on a probability estimate that is consistent
with the evidence while the cumulative plausibility function is the upper limit that is consistent with the ev-
idence. Considering again the Bayesian Calibration methods DAKOTA introduces the Markov Chain Monte
Carlo (MCMC) as the standard technique used to compute the posterior parameter densities, starting from
the given experimental/observational data. In particular the variation algorithm used within this frame-
work is called DRAm which stands for Delayed Rejection and Adaptive Metropolis, also if other algorithms
typologies can be implemented and they are however current research area. The DAKOTA implementa-
tions of Bayesian calibration follow two alternatives, one called QUESO and the other one GPMSA. QUESO
stands for Quantification of Uncertainty for Estimation, Simulation and Optimization. The choice for the
uncertainty quantification method to use depends mainly on the characteristics of uncertainties of the in-
put parameters, the available computational budget and also on the objective accuracy to be obtained.
In particular the once the class of method has been selected (choosing among sampling, local reliability,
global reliability, etc.) the applicable methods (LHS, Monte Carlo, TANA, etc.) depends on the desired
problem features.

84

e TeJd UMUITHAAUIVIT vapaviiilico

The optimization capabilities provided by DAKOTA can be recognized in the set of advanced algorithms
available as for example those that allow managing multi-objective optimization as to perform surrogate-
based minimization. In The optimization problem formulation design variables and design parameters
stand for the same quantities. They belong to the design space also called parameter space while the
terms design point or sample point refer to a particular set of values within the parameter space. The ob-
jective function denotes the simulation response that is monitored to manage the design variables choice.
The constraints elements can be defined as linear or non-linear and also can be distinguished between
equality and inequality behavior. The feasible and infeasible design points are defined with respect to the
violation or not of the constraints spaces. The optimization capabilities can be analyzed on the basis of
optimization problem type, search goal and search method. The optimization problem type categorization
is based on the level of complexity that arises from the constraints and objective functions. From a hierar-
chical point of view the constraint categorization can follow the increasing complexity order, starting from
simple bound constraints through linear constraints to full nonlinear constraints. In particular this division
can be reported in the following list with increasing complexity order referred to the constraints type:

e Unconstrained problem: problem with no constraints
e Bound-constrained problem: problem has only lower and upper bounds on the design parameters.
e Linearly-constrained problem: problem has both linear and bound constraints.

¢ Nonlinearly-constrained problem: this problem can include the complete range of nonlinear, linear
and bound constraints.

e Equality-constrained problem: when all the linear and nonlinear constraints are equality constraints.

e Inequality-constrained problem: when all the linear and nonlinear constraints are inequality con-
straints.

Another categorization can be made on the basis of the linearity of the objective and constraints func-
tions:

e Linear Programming Problem (LP): a problem where objective function and all the constraints are
linear.

e Nonlinear Programming Problem (NLP): a problem where at least some of the objective and con-
straint functions are nonlinear.

The search goal refers to the main aim of the optimization algorithm. In particular two different ap-
proaches can be considered:

* Global Optimization
e Local Optimization

In the case of global optimization approach the goal is to find the optimal solution over the all design
space. In the case of local optimization the goal is instead to find the optimal value in a limited/restricted
region of the design space. The choice between these two alternatives depends on the available computa-
tional budget as on the complexity of the simulation code considered. The search method topic refer to the
implementation of the strategies used to find the new design point with improved objective function on
the basis of the previous computation. In particular the search method can consider two main distinctions:

e Gradient-based method

¢ Nongradient-based method

85

i Uuic gihduiciitzzudocU 1ITICLioud Lic s1aUiclhit mHHorimativult 1cidicU L0 LNHC TSopPUTLT TUlCLvrns dic Uuscdu
to locate the direction of improvement for the next design point. In this case the computation of the
gradient information can be expensive and often not particularly accurate. In this situation and also in
those cases that show nonlinear behavior the nongradient-based algorithms represent the better choice.
The nongradient-based optimization includes numerous approaches and some of the most widespread are
reported in the following list:

e Pattern Search methods: methods that belong to nongradient-based local techniques.

* Genetic Algorithms: methods that belong to nongradient-based global techniques.

Another class of optimization methods refers to the Surrogate-based optimization (SBO) family. The
main target of these techniques is to reduce the number of actual simulation runs through the construction
of a surrogate model on a limited set of function evaluation. Surrogates models can be managed in different
manner:

e Local surrogates
e Multipoint surrogates
* Global surrogates

e Hierarchical surrogates

On the basis of the optimization problem different types of methods can be used. A list of the possible
optimization methods categorized about the various families is reported in the following:

e Gradient-Based Local Methods:

Conjugate Gradient

* Fletcher-Reeves Conjugate Gradient variant
* Polak-Ribiere Conjugate Gradient variant

Sequential Quadratic Programming (SQP)
Newton Methods
Method of Feasible Directions (MFD)

e Derivative-Free Local Methods:

— Pattern Search

* Asynchronous Parallel Pattern Search (APPS) variant
* Coliny Pattern Search variant

— Simplex

* Parallel Direct Search Method

* Constrained Optimization BY Linear Approximations (COBYLA)
— Greedy Search Heuristic

* Solis-Wets method
e Derivative-Free Global Methods:

— Evolutionary Algorithm (EA)
— Division Rectangles (DIRECT)

86

FHHOS CidooILdUOUN TTPITOTHIL LHCT THIdIT SUDUIVISION U1 LHT dvdllidDIC OPUiTHZallon icLiious ClidooTo. ULIICH
additional optimization capabilities are represented by the multiobjective optimization, scaling and solvers
in shared libraries. Recent optimization approaches are represented by the following ones:

e Multilevel Hybrid Optimization
e Multistart Local Optimization

e Pareto-Set Optimization

4.4.6 Optimization usage

The selection of the optimization methods available from DAKOTA must follow some considerations

about the problem features. In particular the usage guidelines depend mainly on the type of variables
in the problem (continuous, discrete and mixed), the search typologies (it is important to understand if
the global search is needed or if the local is sufficient) and the constraints characteristics (unconstrained,
bound constrained or generally constrained). In the same manner other important evaluations depend
on the efficiency of convergence to an optimum (for example defined by the convergence rate) and the
robustness of the method in the case of the design space (as expressed by the nonsmoothness).
The main distinction that can be done about the choice of the methods can be addressed on Gradient-
based, Nongradient-based and Surrogate-based. The Gradient-based methods are highly efficient opti-
mization methods with the best convergence among the other techniques. In the case where the simula-
tion code provides the analytic gradient and hessian information the application of Newton method can
allow reaching the quadratic convergence near the solution. In the case where the only gradient infor-
mation are provided the hessian ones are computed from the storing of gradient data over the simula-
tion output and superlinear rate of convergence can be obtained. This method is particularly suited for
smooth, unimodal and well-behaved problems. In other case this method may however be applied but
with more accuracy in the gradient search direction and bad results can be reached. Under these condi-
tions multiple minima will be missed. For the management of gradient accuracy the analytical functions
often are not available and in this case the numerical implementation is introduced. Forward differences
or central-differences algorithms can be chosen on the basis of computational budget and gradient accu-
racy required (forward differencing generate more reliable data but with twice the expense with respect
to central differencing). Nongradient-based optimization techniques are mainly introduced in the case of
nonsmooth, multimodal and poorly behaved problems. The convergence rates that can be obtained in
the search activity of the optimal design point are slower than those reachable with gradient-based algo-
rithms. The computational cost of the implemented algorithms is greater than gradient-based methods
since the number of function evaluations is generally very high. Nongradient-base approaches are often
more robust with respect to the previously introduced category and can be easily integrated in a parallel
computation schemes (exploiting the possibility to implement multi-core computations). Surrogate-base
methods try to improve the effectiveness of optimization algorithms and least squares methods with the
use of surrogate models. The use of surrogate models allow to smooth poorly behaved problems reducing
the discontinuous response results that can be obtained from nonlinear simulations. The data fit applied
on the simulation results coming from complex models allow exploiting the benefit of gradient-based al-
gorithms, improving in this way the convergence rate. Global search methods are then applied to properly
explore the overall design space with reduced computational costs while gradient based methods are then
used to efficiently converge towards the set of possible local solutions that are identified. A summary table
that shows the link between the method classification, the desired problem characteristics and applicable
algorithms are presented in table 4.2.

4.4.7 Models - DAKOTA

DAKOTA toolkit interface is mainly based on the definition of the characteristics of the models to be
managed. Once the iterators (which definition refers to the methods set up for the simulation) are imple-
mented the execution requires the connection with models. In particular this phase involves the mapping

87

Table 4.2: Methods classification and applicable algorithms [98].

Method Classification

Desired Problem Characteristics

| Applicable Methods

Gradient-Based Local | smooth; continuous variables; no | optpp_cg
constraints
Gradient-Based Local | smooth; continuous variables; | dot_bfgs, dot_frcg,
bound constraints conmin_frcg
Gradient-Based Local | smooth; continuous variables; | npsol_sqgp, nlpqgl_sqp,
bound constraints, linear and | dot_mmfd, dot_slp,
nonlinear constraints dot_sqp, conmin_mfd,
optpp_newton,
optpp_g_newton,
optpp_fd_newton,
weighted sums (multi-
objective), pareto_set
strategy (multiobjec-
tive)
Gradient-Based Global | smooth; continuous variables; | hybrid_strategy,
bound constraints, linear and | multi_start strategy

nonlinear constraints

Derivative-Free Local

nonsmooth; continuous variables;
bound constraints

optpp_pds

Derivative-Free Local

nonsmooth; continuous variables;
bound constraints, linear and non-
linear constraints

asynch_pattern_search,
coliny_cobyla, col-
iny_pattern_search,
coliny_solis_wets,
surrogate_based_local

Gradient-Based Global

nonsmooth; continuous variables;
bound constraints

Gradient-Based Global

nosmooth; continuous variables;
bound constraints, linear and non-
linear constraints

ncsu_direct
coliny_direct, effi-
cient_global, surro-

gate_based_global

Gradient-Based Global

nonsmooth; continuous vari-
ables, discrete variables; bound
constraints, linear and nonlinear
constraints

coliny_ea, soga, moga
(multiobjective)

88

PDCLUWECTIE LT ITIPUL valldIco diilu LT TTopPUTISCES Liladl Ldadll DT ODLallicu 1oirn uic Sihdiatiort. 11Icic 15 dio0
the possibility to define single interface with a single model or other more complex connection as in the
case where sub-iterators and sub-models are considered. The main ways through which the recursion
capabilities are implemented are represented by the following relationships:

e Nested relationship
e lLayering relationship

e Recasting relationship

Using these components it is possible to implement and integrate more complex simulation architec-
tures. In the case of nested relationship a sub-iterator component manage the execution of sub-model
simulation. In the case of layered relationship instead the sub-iterators and sub-models are used only
on periodic updating of the main model. Finally in the case of recast relationship the response functions
coming from the simulation are used to define new problem formulation. At the end another model cat-
egory can be defined for the particular case of surrogate model. Recast models are used in the case of
variable and response scaling, transformations of uncertain variables and related response derivatives to
employ standardized random variables, multi-objective optimization, merit functions and expected im-
provement/feasibility. As previously introduced the construction of surrogate models can take account for
the various techniques available from DAKOTA packages. The related methods are reported for clarity in
the following brief list:

* Taylor Series Expansion

e TANA-3

* Polynomial Regression

e Gaussian Process (GP) or Kriging Interpolation

— Surfpack GP
— Dakota GP

e Artificial Neural Networks (ANN)

e Multivariate Adaptive Regression Splines (MARS)
e Radial Basis Functions (RBF)

* Moving Least Squares (MLS)

e Multifidelity Surrogates

¢ Reduced Order Models

Surrogate model accuracy can be locally improved through the use of correction methods that con-
sider the evaluation of the truth model on particular iterations. Additive corrections can be introduced
also for the first and second order functions evaluation to correct respectively the gradient information
and hessian data. Beta correction as first-order additive correction allows enforcing the convergence and
consistency between the surrogate model and the high-fidelity one. The second-order corrections can be
implemented through the use of analytic, finite-difference and quasi-Newton Hessian methods. The cor-
rections introduced in the trust region can be defined both with additive and multiplicative approaches.
All the presented techniques for surrogate models definition represent different procedures with which
the surface of the approximated response function can be fitted. This process can be resumed with three
phases. In the first part we have the selection of the set of the design points to be considered. Then for
the selected points the true function is evaluated from the related simulation run. Finally the information

89

SdUITICTU 15 USTU LLU LUITTIPULT LT UTIRTIOWIT QUudlitiuic,, Ucpyciiullly Ul LUIC dppiodlll auopLlcud 101 Ui gClil=
eration of the surrogate model. For example from these information the polynomial coefficients, neural
network weights and Kriging correlation factors can be estimated, allowing the characterization of the ap-
proximation assumed. Taylor series for example is well widespread in the definition of some model above
all when a purely local approximation is needed. TANA-3 method is instead a multipoint approximation
technique based on the two point exponential approximation. In particular this approach is characterized
also by the use of Taylor series approximation for the management of intermediate variables. In this case
the powers of these intermediate variables are identified to match the information coming from the cur-
rent and the previous expansion point. DAKOTA toolkit offers also the possibility to manage the generation
of polynomial regression model with linear, quadratic and cubic approach. Kriging and Gaussian processes
are used mainly for the construction of spatial interpolation models. The ANN models are another family
of surface fitting techniques that employs a stochastic layered perceptron (SLP) artificial neural network.
In particular this method uses the neural network based on direct training approach proposed by Zimmer-
mann [71]. The multivariate adaptive regression spline method is a surface fitting technique developed
a Stanford University. In particular the parameter space is partitioned into sub-regions on which forward
and backward regression methods are applied to create the response function for each sub-region. In this
way each single domain is characterized by its own coefficients and parameters. These values are then
used to build the response function extended over the entire parameter domain to create a smooth and
continuous surface. This approach does not guarantee that the obtained response function pass through
all the data points evaluated. MARS is however particularly suited for the management of nonparametric
surface fitting of complex multimodal data trends. In the case of Radial Basis Functions the values modeled
depends on the distance from a center point defined centroid and the approximation is build starting from
a sum of discrete number of weighted radial basis functions. The shape related to the function chosen
can be of various types but generally the shapes are Gaussian-like or splines-defined. The evaluation of
functions weights are obtained through linear least squares solution. The moving least squares are rep-
resented by an evolution and a more specialized version of the linear regression models. In the case of
linear regression approach the sum of squared residuals (where residuals are represented by the differ-
ences between the approximated models and the true one at a fixed number of points) is minimized. In
the case of more specialized version of weighted residuals the differences is also weighted for the de-
termination of the optimal coefficients governing the polynomial regression function. The moving least
squares techniques are moreover a class of techniques where the weighted coefficients are moved or re-
calculated for every new point where the response prediction is recalculated. The Multifidelity Surrogates
models belong to the family of hierarchy type approximations that are often also called multifidelity mod-
els, variables fidelity models or variable complexity models. In particular these approximated models are
obtained through different ways as for example a coarser discretization, a reduced element order, looser
convergence tolerances or omitted physics phenomena. The reduced order models are represented for
example by techniques as Proper Orthogonal Decomposition (POD) often used in computational fluid dy-
namics (also known as principal components analysis or Karhunen-Loeve in other fields). Another example
is represented by the Spectral Decomposition (also known as Modal Analysis) in structural dynamics. The
approximated models are obtained through the use of reduced basis and projection of the original high
dimensional space to a reduced one. Nested models are particularly used in the case where sub-iterators
and sub-models are needed to perform a complex system evaluation. The sub-iteration generally accepts
variables from an outer level, performs the sub-level analysis and computes a sub-level response that is
then passed again to the higher level. The solutions provided by this approach can involve different classes
of problems as listed in the following:

e Optimization within optimization (for hierarchical multidisciplinary optimization)
e Uncertainty quantification within uncertainty quantification (for second-order probability)
¢ Uncertainty quantification within optimization (for optimization under uncertainty)

e Optimization within uncertainty quantification (for uncertainty of optimal solutions)

90

T 1.0 VvadliavICo ™ UWURINvV IM

The variables definition within DAKOTA toolkit represents the feature through which it is possible to
set the parameters that are then managed by the available methods. Depending on the method that it-
erate over the model bounded to the simulation the variables cover different meanings. In the case of
optimization study the variables are modified at each iteration with the final aim to obtain an optimal de-
sign solution. In parameter study, sensitivity analysis and design of experiments the variables are related
to the exploration of parameter space. Finally in uncertainty analysis the variables are instead associated
to aleatory distribution in order to compute the related aleatory characterization of the response output
functions. The considered framework provides the management of different variables types: design vari-
ables, uncertain variables and state variables. In particular another categorization is based on the nature
of the variables domains, distinguishing between continuous and discrete variables domain. The discrete
variables domain can also subdivided into discrete range, discrete integer set and discrete real set.

e Continuous range
e Discrete range
e Discrete set of integers

¢ Discrete set of reals

Often the nature of the variables range affects the choice of the algorithm or method to be imple-
mented for the problem resolution. For example the presence of variables coming from continuous range
allows the selection of gradient-based methods in the context of optimization study while parameters as-
sociated to discrete range cannot be directly related to the previous defined ones. In particular discrete
design variables are often well suited for the management by a non-gradient based methods as for exam-
ple the genetic algorithms. Discrete variables can be classified as categorical and non-categorical ones.
The categorical ones represent the parameters that cannot be relaxed during the running of the solution
method. For example this class is represented by the number of particular mechanical components that
cannot assume values also only slightly different from the designed ones. When the discrete variables
can assume values however slightly different from the designed ones the class is represented by the non-
categorical typology. In this case the variables values can be relaxed during the execution of resolution
method. For example the choice among a series of standard thickness for a particular component can be
managed as non-categorical discrete range due to the fact that the variable under study can change slightly
its value.

e Categorical discrete variables

* Non-categorical discrete variables

Since engineering problems are often related to the presence of a wide class of aleatory uncertainties
DAKOTA offers different distribution for the representation of continuous aleatory uncertain variables and
discrete aleatory uncertain variables. In the following list is reported the distribution that can be considered
in the definition of aleatory design variables:

e Continuous Aleatory Uncertain Variables

Normal

Lognormal

Uniform

Log-uniform

Triangular

Exponential

91

= DCLld

Gamma

Gumbel

Frechet
Weibull

Histogram Bin
e Discrete Aleatory Uncertain Variables

Poisson

Binomial

Negative Binomial

Geometric

Hyper-geometric

Histogram Point

State variable identify those parameters that are not directly involved in the design process and under
these conditions there is no need to map them through the simulation interface. These variables are rep-
resented essentially by those values that do not represent the value to be chose within the design process
for a particular problem, They are however important because their values are necessary for the execu-
tion of the computational model. For example they can be represented by the convergence tolerances,
time step controls or any quantity that is fundamental for the execution of the model but it is not rele-
vant for the design process. In the same way as in the case of design variables they can be classified as
continuous range, discrete range, discrete integer-valued set and discrete real-valued set. They affect the
computational model but are not active from the solution algorithms and their modification can result in
the changing of the simulation conditions (resulting then in different results). The management of mixed
variables by iterator depends strongly on the iterative method related to that study. This choice affects
the subset or views that characterize the variables data that are active during that iteration. The coexis-
tence of variables of different types influences the management of the overall parameters available, since
some variables are modifiable by certain methods while other not. The latter one needs to be mapped
through the interface in an unmodified status. The process with which the active variables are established
is fundamental for the determination of the derivatives that must be computed. Another important fea-
ture that needs to be specified in the variables definition block is represented by the domain type that
can be categorized as mixed or relaxed. The simulation interface needed in the case of communication
between DAKOTA framework and external simulation codes is required to exchange information through
the file-system. In particular the system calls and forks are obtained through the implementation of read-
ing and writing process of parameters and results files. Before the simulation invocation DAKOTA creates
a parameters file where it is possible to find all the information needed for the cycle execution. The for-
mat of the related file is available both in standard and APREPRO type (APREPRO denotes a Unix-based
operating system module). Within this file it is possible to specify the variables, the active set vector, the
derivative variables vector and analysis components. Each row specifies the value and the tag with which
the object are identified. This approach allows managing the dynamic memory allocation. The variables
are listed in a precise ordered representation following the different typologies presented previously (con-
tinuous, discrete, etc...) and the reported tag are those used by DAKOTA as those specified in the user's
DAKOTA input file. In analogous way active variables vector, derivative variables vector and analysis com-
ponents are reported providing first the related identifiers. Data representation provided with APREPRO
format is the same as that adopted in the standard format and all the ordering conditions are the same but
represented with a slightly different construct. The use of this module representation is bounded mainly
to the advantage of directly interface the APREPRO utilities. These ones allow the integration of pre- and
post-processing activities, simplifying the model parametrization. APREPRO utility allows also mapping the

92

||}\K|.J]\.I‘]

DAKOFTA

Results File

DARKCTA

Parameters File

=TT T

- - o - - 4 - e
- rd LY s
= i Y e
Application Interface
- = Analysis E -
(1Filter) o T eoen |17 (OFilter)
~——-—=< | Code/Driver || N
D 4 [|
e = = == = == = J
- <

Figure 4.13: Components of the simulation interface [98].

variables passed through DAKOTA with that related to simulation code in a template file. In this way it is
possible to populate directly the template file with the target variables. The introduced Active Set Vec-
tor represents a vector containing a set of integer codes and there are many integers as the number of
the requested response functions for that study. In particular each response function has its own integer
which identifies a well-defined set of requests for the corresponding function. Each integer is associated
to a binary codification and a precise meaning. These latter refer to get hessian, gradient and value of the
response function or get only gradient for example.

4.4.9 Interfaces - DAKOTA

The interfaces specification is one of the most important features that allow DAKOTA to manage sim-
ulations related to external codes. There are different types for the possible integration of the simulation
interfaces between DAKOTA and external code simulation through the mapping of input and output pa-
rameters. One of those is represented by the integration of algebraic mappings. This one is represented
by the possibility to bind the process management framework with code implemented in AMPL modeling
language. In this case codes generated in AMPL can be used concurrently with AMPL solver library directly
through DAKOTA. The required constraints are represented by the generation of particular files for the in-
put and output parameters [46].
Simulations interfaces can be managed through three different approaches depending on the implemen-
tation of the code connection. The invocation of simulation codes can be realized with a system call, fork
or a direct function invocation. In the case of system call and fork it is created a separated interface with
respect to the DAKOTA framework and the related communications are realized through the exchange of
parameter and response files. In the case of direct invocation a separated process is not created and the
execution is realized within the DAKOTA process. The implementation of direct interface allows obtaining
some advantages with respect to the computational demands. The code calls can be directly bounded
to DAKOTA executable, avoiding the overhead linked the creation of input and output files for the code
execution. This approach allows also the improvement of the performances related to the execution on
parallel computers. The drawback is instead represented by the required conversion of existing simulation
code into a library with a subroutine interface. The implementation of forks invocation is recommended
with respect to the system call due to the portability and backward compatibility that can be assured.
In the case of system call the invocation of system interface uses the system function from the standard
C-library. The fork interface uses the fork, wait and exec families of functions to manage the simulation
drivers. In particular a copy of DAKOTA process is created, replacing this copy with the simulation code or
driver process. Transfer of variables and response data between management framework and simulation
code are realized through the file system. The overall structure of the simulation interface components is
represented in figure 4.13.

The elements reported in the representation can be identified in the system call invocation as in fork

93

Figure 4.14: Standard parameters file format [98].

and direct integration. The input and output filters include the optional facilities that allow pre- and post-
processing actions. These modules are needed to integrate the simulation code through the implemen-
tation of analysis driver while the input and output parameters are passed as command line arguments.
In particular the related expressions that are directly connected with the function evaluation depend on
the scripting language used to integrate the simulation code (UNIX C-shell, Bourne shell, Perl). In the case
C/C++ program are used then the parameters files are passed as arguments through the traditional argc
and argv instructions. The possible implementation that regards components interface depends mainly in
the characteristics of the integrated analysis driver. Several solutions can be adopted depending on the
needs.

¢ Single analysis driver without filters

Single analysis driver with filters

Multiple analysis driver without filters

Multiple analysis driver with filters

In the case a single analysis driver is used and it is built to process directly the parameters and results
files related to the framework then there is no need to implement filters. The files coming from DAKOTA
are directly used by the simulation code to set the input and finally it generates the responses evaluation.
System call and fork interfaces can be used to support asynchronous operation and also can be executed
exploiting background running. The implementation of single analysis driver that filters invocation requires
a different syntax with respect the previous integration. When multiple analysis drivers are involved in the
simulation run the processes can be combined in a single system call through the use of syntax structure
slightly different from that relative to the invocation of the single analysis driver. The interface process
is supported by the features offered by the simulation file management that can help to debug potential
errors. These features are represented by the file saving functionalities (before and after driver execution),
file tagging evaluations, management of temporary files and work directories. The work directory set up
is one of the most important features related to the invocation of DAKOTA cycle. In particular it is often
convenient to execute filters and simulation codes in directory which is different from one where DAKOTA
is launched. Moreover the evaluations of input and output files require that they are placed in separated
directories to avoid potential conflicts between the various objects. The available data processing utilities
allow the execution of various simulation codes in the proper way in order to manage the integrated sim-
ulation interface reducing the possibility of running problems. All the information that are needed for the
definition of the parameter input file is generated from DAKOTA and then it is used by filters or other pre-
processing files to set the simulation code execution (for example in the case where the proprietary codes
require the generation of an input file following a well-defined template standard format). The related
data are contained within the parameters input file following a certain data pattern. An example of such
file is reported in figure 4.14.

94

Table 4.3: Active set vector integer codes.

Integer code Binary representation Meaning

7 111 Get Hessian, Gradient and Value

6 110 Get Hessian and Gradient

5 101 Get Hessian and Value

4 100 Get Hessian

3 011 Get Gradient and Value

2 010 Get Gradient

1 001 Get Value

0 000 No data required, function is inactive

The first line contains the integer representing the number of variables that are considered in the anal-
ysis. This row is identified with the tag "variables" that follows the integer number. Each line that im-
mediately follows the first one represents a variable. The value associated to the considered variable for
the current function evaluation is followed by the tag name that identifies it. Then the integer that rep-
resent the number of functions is introduced and followed by the tag "functions" that comes before the
lines containing the functions set information. In particular those lines identify the active set vector infor-
mation (ASV) and their tag. Then the integer representing the number of derivative variables and its tag
"derivative_variables" anticipates the lines containing the derivative variables vector (DVV) and their tags.
Finally it is possible to locate the integer for the number of analysis components (with the proper "analy-
sis_components" tag) followed by the analysis components array and their tags. The descriptive tags for
the variables are defined in this section and are mapped to the names expressed in the user's specification
(if not provided by user names these tags are introduced as default descriptors). The Active Set Vector
represents both the objective functions and constraints functions. For example if the considered prob-
lem has one objective function and two constraints then the ASV has dimension three. Along the list the
objective functions come first and then the constraints evaluations. These ones are reported in the order
consistent to the user definition. The derivative variables correspond to the variables introduced in the first
vector specification. The information related to the “analysis_components” tags refer to the possibility of
pass additional information for the simulation. In this way it is possible to provide at run time additional
specifics that the simulation code can use to complete its execution (for example it is possible to pass to a
structural code the name of a particular mesh file to be used). The same data structure can be highlighted
in the representation related to the DPREPRO format parameters input file. Starting from the information
contained within the parameters input file the user's supplied simulation interface must manage the pro-
cess to proper generate the required format output. In particular on the basis of the previously introduced
input file format the output file format have to satisfy the contained format directive. User's implemented
interfaces have to access this input parameters file, process it, generate the input required for the external
simulation code, execute this one and gather the created output. After this phase the results information
has to be elaborated to create the output file that DAKOTA must process to proceed with the following cycle
iteration. On the basis of the results for constraints and objective functions DAKOTA provides the new val-
ues for the input design parameters for the next input parameters file. The input parameters file previously
shown contains the directive for the generation of data readable by DAKOTA. In particular starting from the
Active Set Vector the output must contain in the same order a list of rows where each line contain first the
value and then the tag of the related object represented (objective functions or constraints). The tags can
be omitted due to the fact that the correspondence between the name of the result and its position along
the list is uniquely determined. The rows containing the Active Set Vector integer data is important for
the determination of the length of the information that will be contained in the output parameters file. In
particular depending on that integer value it comes out the typology of data to be bounded with the object
that is referred to. In particular the code that express the data to be included in the output parameters file
(and that it is up to the user to recreate such file through the use of scripting module or filters files) are
summarized in table 4.3.

95

Figure 4.15: Results file data format [98].

On the basis of what entity is required from this specification integer number the corresponding simula-
tion quantity (objective function or constraint) holds the computed values. For example if only the function
evaluation values are required (integer = 1) then there are as many values as the simulation quantities.

4.4.10 Responses - DAKOTA

The section related to responses tag of the input parameters file manages the definition of responses
specification. This part provides the pattern for the formats that the defined elements must follow. In
particular these parameters include the definitions for the response functions as objective functions, con-
straints or calibration parameters. Also these specifications introduce the format representation of the first
and second derivatives. On the basis of the considered techniques there are different response functions
types that can be chosen. It is possible to define optimization data set, a calibration data set or a generic
data set. Considering the availability of gradient information different types of gradient evaluation can be
selected. In some cases gradient information are not needed and so gradients will not be used while in
other context the required gradients data are numerically obtained through the finite differences approx-
imation. In the cases the gradients will be supplied by simulation code the information gathered can be
considered analytically. Finally it is possible to consider mixed gradients in the case the simulation code
provides some gradient components while DAKOTA will approximate the remaining needed through finite
differences. The hessian availability can be managed in the same way through different approaches on
the basis of the available data. In some cases hessian information is not required from the iterative code
while in other ones this information are computed numerically with finite differences applied over first-
order differences of gradients or second-order differences of function values. In the case quasi-hessian
specification is present then the required data are evaluated by a series of secant updates from gradient
evaluations. In the case the hessian information are instead provided by the simulation code then the data
required con be analytically elaborated. Mixed hessian are finally related to the cases where numerical,
analytic or quasi-technique approaches are used. DAKOTA results file supports only one format expression
while parameters-input file can be represented with two formats. An example of the results file pattern is
reported in figure 4.15.

After the model simulation/iteration DAKOTA is expecting the generation of a file containing the in-
formation related to the output values with the format represented in the previous introduced figure. In
particular the values provided must follow the function requests defined in the active set vector specifi-
cation. In this file it is generally possible to enhance three different sections. The first section contains
the function values and each row includes the related numeric evaluation and the tag that can also be op-
tional. DAKOTA follows the order defined in the active set vector and the presence or not of tag string do
not affect the correct evaluation of the contained information. The second block represents the gradients
information which are provided within brackets and they must not be identified with any tag elements. In
the same manner the hessian data are reported within double brackets and also in this case they do not be

96

TUCTILIICU DY Udg oLl iTgo. 1TTIT COTTTCOPUTNUCTILC DCLVWCECTI LT UCTHIVdUVES THOTTTHaUIOnN aliyg uic valilavico LU UC
used is provided by the Derivative Variables Vector (DVV). This vector contains the data needed to compute
derivatives and the one to one correspondence is realized through the length of the vector itself. Inputs
data of DAKOTA framework can be identified with two different formats. Annotated matrix and Free-form
matrix represent the two potential alternatives that can be chosen for the data input exchange.

4.4.11 Outputs from DAKOTA

After DAKOTA iteration execution the results can be provided in different ways. In particular the out-
puts are reported on a text-based files that summarize the main event and iterator evaluation obtained
from the simulations. During cycle running the data can be plotted on screen listing the information of the
current execution while the same output can also be printed on a text file. In the same manner a text-file
can be used to gather the process overall information (for example reporting the results of variables val-
ues, objective function and constraints for each iteration corresponding to a particular row of the file) in
a tabular data file that can be easily post-processed with an external tool for visualization purposes. The
standard output printed on the screen includes basically the evaluation number, the parameter values,
the execution syntax, the active vector and the response data set. First an initial block reporting the main
setting of DAKOTA process is plotted while the central part before the final block visualizes the results of
each evaluation for the current iteration. For each function evaluation block are plotted the input variables
values, the system call to the driver that manage the simulation driver and finally the results from the sim-
ulation execution (objective function and constraints evaluations). Before the evaluation of the objective
function and constraint element is reported the active set vector. As previously indicated this object allows
to express the types of data that are required from the simulator for the objective function and constraint
element. In particular the integers contained code the evaluation of only function evaluations or also the
gradient information, hessian etc... (the main guidelines that define this codification are included within
the previous introduced section on the interface of the simulation code). Depending on the particular
function evaluations settings the iterator can require for the single function evaluation additional compu-
tation related to the definition for example of gradient information. In this case for example each function
evaluation can require the computation of gradient data through the estimation of other function (and so
simulation) execution as for the finite differences approximation. This computations are like a sort of inter-
nal evaluations for the estimation of the data required to compute the direction of variables changes for
that particular iteration. Finally the DAKOTA overall process is summarized in the final block where all the
main information are summarized. In particular in this section it is possible to highlight the best values ob-
tained for the optimization parameters, objective function, constraints, total evaluation counts and timing
summary. Some other information can be plotted on the output stream on the screen depending on the
characteristics of the implemented solution routine or coming from the features of the algorithm included
in the solution library used. DAKOTA tabular format is also generated at the end of iteration process and
the main purpose of such capability follows from the need to plot the obtained results on other external
graphics plotting package. Some 2D visualization capabilities are available on UNIX platform while on Win-
dows one they are not implemented. These features allow to plot the iteration results as the simulation
run.

4.4.12 Examples applications of DAKOTA framework

In literature are present different examples of object oriented approach for the solution of engineering
issues. Research activities have focused on addressing the challenges related to the application of itera-
tive systems analyses to complex problems where simulations are expensive to evaluate and the response
metrics may be poorly behaved (i.e., noisy, multimodal, discontinuous).

An example of such initiative is represented by the rSPQ++ Framework from the department of chemical
engineering of Carnegie Mellon University [72]. This object-oriented tool for successive quadratic pro-
gramming has been developed to support Successive Quadratic Programming (SQP) algorithms, allowing
the integration with external specialized application. In particular different interfaces can be generated for

97

LHCT COTINTLLONT WILTT Vallouo TS dl digTllid UDJTLLS do TTIalliLTo allu nicdl SUIVETS.

Examples of methods applied in the context of uncertainty quantification area are available from [120],
[121] and [122], where the application of local and global reliability methods is investigated. In particu-
lar in [122] such techniques are applied for the study of microelectromechanical systems (MEMS). Other
research activities regarding stochastic expansion or mixed aleatory-epistemic methods can be found in
literature.

DAKOTA application to surrogate-based optimization is investigated in [123] and [124] where interesting
results are provided. In the same way other surveys dealing with optimization and model calibration under
uncertainty can be found in [125], [126] and [127].

Another challenging topic approached also with the use of DAKOTA framework is represented by the par-
allel processing and some results are available from [128] and [129].

98

Chapter 5

State of the Art

In the current chapter some of the most recent research initiatives regarding the integration of model-
based approaches in the advanced phases of a project are briefly introduced. In particular a large number
of examples that can be found in literature regard the integration of multidisciplinary design and analysis
methods within a model based infrastructure. The management of alternatives and optional elements is
not still properly considered from a model-based perspective. In the same way the integration of MDO
techniques within a model-based environment is currently not well formalized, also if the design optimiza-
tion across broad trade space is one of the main target capability of MBSE (as highlighted in figure 5.1). In
the near future the cross domains analyses will be some of the most challenging activities that will charac-
terize the development of MBSE "philosophies" and frameworks.

Different solutions may be considered for the actual implementation of MBSE paradigm to MDO de-
sign methods, as can be seen from reference literature for the same type of problem. Each solutions show
advantages and drawbacks in relation to the specific context that has been considered and for this reason
a unique, shared and comprehensive architecture is still far from being defined. The initial part of this
work has been characterized by an analysis activity for the formal definition for the integration under eval-
uation. Various conceptual architectures has been preliminary proposed but only that one that seems to
show a better behaviour has finally been considered and directly implemented in the framework under
development.

5.1 Main problems and characteristics

Different kind of issues can arise when Multidisciplinary Design Optimization techniques are integrated
with Model Based System Engineering methodologies. The development of the proper interfaces is strictly
affected by the way such integration is actually implemented as well as it is placed within the overall design
and analysis process. In the following sections some of the most important problems are briefly described
to highlight the main aspects that must be taken into account when the overall infrastructure will include all
such features. A clear understanding of the overall process and the related infrastructure must be properly
defined to avoid the increase of issues when the actual implementation of the code is realized. If some
concepts are not clearly well-posed during such phase then the issues can only increase in the following
steps. A clear conceptual framework is then fundamental for the right evolution of the work, paving the
way to the exploitation of the available resources.

5.1.1 Management of complex system

Currently the integration of complex aerospace systems requires the involvement of a large number of
information. The amount of data stored, processed and exchanged is directly connected with the effective-
ness of the overall process. The main conceptual infrastructure must be conceived to support the design
and analysis process, trying to avoid negative consequences as data surplus for example. The management
of complex systems is currently difficult to take under control as the number of variables is generally wide.
In this case the correct handling of all such information represent one of the key-elements that affect the

99

optimization across broad

[:

MBSE Capability Reduced cycle times

xS QOMAIN efTect:

trade space

2ASE0 AN

Institutionalized /
MBSE across Distributed & secure model repositories
Academia/Industry] crossing multiple domains
it
I Defined MBSE theory, ontology, and formalisms I
Well g ———
s Architecture model integrated
:'sfg:d = with Simulation, Analysis, and Visualization
z
— Pl ing&s rt
Matured MBSE methods and metrics, e uppo
Integrated System/HW/SW models | *Research
/ / *Standards Development
Emerging MBSE standards I *Processes, Practices, & Methods
Ad Hoc MBSE Vg *Tools & Technology Enhancements
Document Centric f sQutreach, Training & Education R
2010 2020 2025

Figure 5.1: Design optimization capability highlighted on MBSE roadmap for the near future [14].

integration between MBSE and MDO. All data involved must be reflected in a well formalized conceptual
infrastructure to ensure an effective connection between MBSE environments and MDO capabilities for
example. In particular different strategies can be considered to manage project data since they often de-
pend on various factors such as design processes structure, analysis workflows or used tools.

The effective management of system architectures is one of the most challenging activities and different
solutions have been proposed and implemented by different research teams. The heterogeneity of all the
subsystems and components that characterize the design phases of a product is an aspect difficult to take
under control. From this point of view interesting results have been achieved by the Institute for Systems
Research, University of Maryland. An overview of the related framework is available from [106] where
a promising framework for model-based systems engineering is described. It consists basically by an in-
tegrated modeling hub and various application methods/tools which includes also tradeoff analyses via
optimization.

5.1.2 Communication between domain-specific disciplines

Another problem that can affect the overall integration is represented by the communication between
domain-specific disciplines. In this case the interfacing of MDO techniques with MBSE environment must
foreseen the main features of the data exchange process between different domains. The communication
among people with different backgrounds can widely affect the main purpose of the proposed approach.
The use of different tools, procedures and format to model and analyze the same product must be properly
coordinated. A shared conceptual infrastructure can widely improve the effective exploitation of MDO
methods within an MBSE environment, ensuring the seamless exchange of data across the disciplines. In
this way each discipline can however continue to use its own methods, tools and processes but the overall
system model is shared on common basis. The communication of the data needed for a multidisciplinary
analysis must be properly faced to ensure the connection with a model based methodology.

5.2 Possible solutions

The actual integration between MDO methods and MBSE methodologies can be approached in differ-
ent manners, depending in particular on final objectives as well as the specific workflow that characterizes

100

LT IHdividual LOTMTPdIly. IVIUILUILLCIPITNdEy dlidliyoCo Ldlil VT UoSTU LU TTTIVEOSLISALT LHC provduct paiiolniiidricco
on the basis of the available set of data and the way such information is managed affects the integration
architecture. Generally the solutions that can be adopted varies on the basis of the tools chosen as well as
the main features for the platform to be considered. In particular it is assumed that the multidisciplinary
analyses are managed by a dedicated platform, clearly distinguished from the simulation tools which pro-
vide the results managed by the platform itself (this distinction is based on the fact that currently some
multidisciplinary analyses can also be executed within some simulation software while in this case the plat-
form handling the overall cycle is more properly a process manager). From a conceptual point of view it
is possible to identify two main possible alternatives that can be pursued for the final scope (but other
ways can also be followed). In the first case the exploitation of MDO methods is based on the capabilities
provided by an external multidisciplinary analysis platform. Such environment can be selected among the
current available ones. In particular commercial solutions as open-source ones can be evaluated and con-
sidered for such integration. In this case a MBSE environment can be used to store all the representative
information related to the system model while an actual external platform uses such data to set up multi-
disciplinary analyses. In this case the strategy foresees the implementation of all the adapters required for
data exchanges among the involved simulation environments (the ones managed by the multidisciplinary
platform). Data are collected, processed and then properly used to set up the chosen analysis (sensitivity
analysis, optimization, uncertainty quantification, etc. for example). The exploitation of the MDO capabil-
ities is basically provided to the MBSE framework as an external "service".

In the second approach the MDO capabilities can potentially be integrated within the MBSE environment,
paving the way for a better use of the benefits deriving from a model-based philosophy. In particular the
functions provided by a multidisciplinary analysis platform can be deeper integrate within the design pro-
cess with respect the the previous solution. In this manner the it is possible to exploit the effectiveness
provided by a model based infrastructure. For example the same optimization cycles can in fact be con-
ceived directly within a model-based architecture (the same approach can be equivalently extended to
the other analysis types such as sensitivity analysis, uncertainty quantification, etc.). In this second type,
an object-oriented solution can widely enhance the advantages of a unique environment for the modeling
and set up of multidisciplinary analyses, reducing for example the efforts required for the consistency check
when data are exchanged directly with an external process manager (distinguishing for the sake of clarity
such definition from the multidisciplinary environment which can potentially implemented also within a
specific simulation environment with its own Domain Specific Languages - DSL). The process manager can
then be conceived to be directly embedded within a system modeling framework, constituting a whole
with the platform. This way provides promising capabilities but requires at the same time a clear under-
standing of the back-end structures and mechanisms from the implementation point of view. The overall
interfacing for the involved simulation tools and environment can be pursued with less efforts if a common
conceptual infrastructure is shared among the involved disciplines, reducing the time spent on consistency
control. Such integration can be realized basically only if the platforms and the relate methodologies are
clear and accessible. This situation often limits the choice to open-source initiatives and projects which
ensure the possibility to directly manage the source code, customizing the already developed features to
achieve the desired objectives.

In the following section some example of the current approaches is provided to show how such research
topic is promising and that however different strategies can be pursued to assess the effectiveness of this
integration.

5.3 Examples of research initiatives

Different initiatives have addressed their efforts towards the investigation of the potential benefits re-
lated to MBSE methodologies in the context of system design and analysis. The greater improvements
have been mainly obtained within research centres or academic organizations. Many studies have been
realized in this direction at the Jet Propulsion Laboratory (JPL). Similar analyses have involved academic
institutions as the University of Michigan (System Engineering Department), California Institute of Tech-

101

NOUIVEY \(LdllTlll) allu IVidoodUITUuoSTLLS TiouLituLc O 1CLHTNOIVgY (Vi). 1TTIC 1TIdjOTILy O SUCLTl SUIVCyo Tlidos VCCT
characterized by the investigation of SysML language actual benefits in the design and modeling processes
from system perspective. The main applications regard the definition of architectural and behavioural ar-
chitectures through SysML diagrams, considering in particular a representative model of the product. Only
the last few years the research topics have started to evaluate the possible integration of such tools with
external solver. In this way the main objective is to understand which advantages can be reached through
such a methodology.

In the following sections some of the briefly introduced initiative will be considered with more details about
the processes and approaches used, enhancing the characteristics that can be recognized among the vari-
ous projects.

Some research activities also if not completely addressed to the evaluation of the complete set of MDO
methods are however characterized by the assessment of feasibility of partial functionalities. For example
some interesting initiatives are evaluating the integration of Sensitivity Analysis feature in the context of a
model base framework.

Some interesting studies has in fact been done in the context of sensitivity analysis for the design process
of space system in the context of model based system engineering environment [48]. In this case the main
idea is represented by the implementation of a central integrated design environment which is then inter-
faced with different external tool (Excel workbooks, QUDV standards and Catia V5 script automation link).
The developed framework follows the data model defined in the context of such study. In particular the
data model foresees the presence of a system component that is related to zero or multiple parameters.
The single parameter is then associated at least to one value. The system component also contains zero
or multiple balancing where this element refers to the equation/relation that formalizes the relationships
between the involved parameters (for example the physical relationship that characterizes the behaviour
of the considered phenomena). The balancing element contains at least one or more source parameters
and they represent the variable that formal cover the right hand side of the equation/relation (in particu-
lar they refer to the variable that are known and that allow to compute the quantity on the left hand side
of the equation). The right/left side classification is not binding but allows to better express the fact that
some variables are available (defined as source parameters) while one is computed explicitly (defined as
target variable). This approach considers only one variable as the computed one. This pattern then defines
two association towards the parameter class. One defines the source relationships (at least one or more
parameters) and the other one represents the target relationship (only one parameter involved).

In this case the sensitivity analysis process can be considered as an interesting instrument in the context
of the overall design and analysis process. Starting from the design activity the following phase is repre-
sented by the implementation process at high level. Then there is the testing procedures, followed by the
evaluation activity. Once this latter one has been accomplished the analysis process represents the final
phase of overall system development life-cycle. In this context the sensitivity analysis can be particularly
useful in case it can be used for the partial automation of the evaluation process.

In this case the example considered is represented by the application of sensitivity analysis to the dimen-
sioning of the tank of the spacecraft which represent one of the recurring task that characterize the early
development phases of space system. In particular the example considered involved also three different
engineering domains as mission analysis, propulsion and structure. The implementation process is strictly
related to the specific engineering problem that is considered. The decision depends on which parame-
ters are available and which ones are not. These classification can change from problem to problem for
the same set of parameters. The unknown variables must be computed while those available are used to
define the boundary constraints for the case study. The objective of such approach is to clearly identify
the sensitivity index of some input variables with respect to the output under evaluation, providing the
information that the team leader can use to drive the study.

5.3.1 Jet Propulsion Laboratory - JPL

One of the first MBSE experience at JPL is represented by the Systems Engineering Advancement (SEA)
initiative. This project was aimed to the identification of the potential improvements that the MBSE method-

102

VIVgY Lall touucc 101 LT THidiagTIihichit O opdlc 1THOOSI10TL. 1TTIT TTidlll THUTLS al© aUulcooTU LOWdIUS LTNITCC
different directions: the full life-cycle program (from early studies to operations and dismissal), the full
depth within a project (from the systems down to components characteristics) and finally the full technical
scope (considering all the various domain-specific environments such for example propulsion, avionics or
electrical fields). The target of SEA project was to understand if possible improvements can be made for
some of the functions directly involved in the space mission definition. This functionality regard mainly:
system architecture, requirements management, interface definition, technical resource management, sys-
tem design and analysis, system verification and validation, risk management, technical peer reviews, de-
sign process management and systems engineering task management. SEA activity developed product,
services and training to accomplish this objective, focusing on processes, products, tools, people and tech-
nology.

SEA project investigated different modeling tools considering a set of criteria to assess their benefits in
the management of real-scenario conditions. The evaluation criteria regarded the architecture and de-
sign modeling (considering for example SysML, UML languages or Enhanced Functional Flow Block Dia-
gram EFFBD), the executable modeling and simulation (evaluating interoperability, trade space modeling
and performances modeling for example), the information management (user-definable schema, meta-
data query, document linking, etc...), and finally the administration and usage.

As previously discussed the main purpose of SEA initiative allowed to better organize the knowledge about
the competence model within the context of System Engineering. This perspective is characterized by the
technical knowledge, the personal behaviours and the processes. Technical knowledge refers to the do-
main/discipline specific viewpoints that are involved in the system development process. SEA has also
shown how one of the most challenging aspect is currently represented by the investigation and integra-
tion of model-based engineering design (MBED) tools.

Another interesting MBSE initiative has been developed at Jet Propulsion Laboratory in the context of space
mission applications. Model based system engineering paradigm is mainly related to the work of Modeling
Early Adopters group and Integrated Model Centric Engineering initiative. After an initial phase of feasibility
analysis the main research topics regard the practicality and usability studies. The current model manage-
ment capabilities are well increased thanks to a maturing standard and tooling interfaces that are addressed
towards the applicability to actual space design programs. MBSE approach not necessarily entails a wide
use of SysML language and its methodologies must not be confused with the conceptual architecture that
SysML covers. Model-based architecture allow to manage multiple languages/tools and methods, defining
at the same time different engineering perspectives of the same model. Analytical models has started to
be integrated within this methodology, considering also the current workflow that characterize the devel-
opment of complex systems. The configuration of multidisciplinary design environment can be obtained
through a proper transformation from the SysML model to a multidisciplinary design environment (as for
example ModelCenter, Phoenix Integration) [49]. The main aim of this approach is represented by an au-
tomated process for the generation of trade space for the support of analysis activities for components in
use. The application of SysML language to products modelling has been addressed to verify consistency
and completeness of model definition. Another interesting feature is directly related to the satisfaction
of uniqueness for the involved elements (avoiding the potential presence of redundant data for the same
object) and also to the definition of the necessary abstract classes to model what actually is needed.
MBSE methodologies can help to avoid design errors, supporting the project development in more consis-
tent way. It becomes even more difficult to control the increasing number of design variables that can be
identified during the development phases. A model based approach and an unified common tool for the
management of system level characteristics allows to reduce the likelihood of wrong choices and design
errors. Straightforward architectural design has historically lead towards errors that has caused the loss
of space system. For example spacecrafts as DARTS or Mars Reconnaissance Orbit have been affected by
errors that have negatively influenced the accomplishment of their mission. The errors that have compro-
mised their mission might be identified by a more suited design process with a model based approach.
UML/SysML language has been investigated for the implementation of a model based design approach
within the Jet Propulsion Laboratory experience. The formality and semantic rules that characterize the
view diagrams allow to enhance the model consistency and parameter interdependencies. Currently the

103

TSoCadilll LOPIC UNTTLLUN 15 aUUlCooTU LUWAIUS LT Uciiinuorn Ol Tnouct midaliiagCihicrit proccoos WIICIC LT
system can be "compiled" from an evolving model. In this way it is possible to manage the right accom-
plishment of system performance with respect to customer requirements early in the design phases and
also through a more formal workflow. The main features related to this aspect are related to the version
control (for the current baseline of the system), tracing of the dependencies, data integrity, modularity and
reusability. In this context becomes particularly interesting also the right management of changes propa-
gation since clashing needs are often highlighted during the development phases.

Enhanced changes propagation allow to rapidly update system characteristics (evaluating different design
solutions more quickly) but at the same time require a consistent check for the people that are working
on the same system (that have to relate to system that change continuously on the other side). Another
important topic is represented by the correct management of system alternatives investigation (for exam-
ple how consider the possibility to manage different system alternative on different branches). Another
important feature to be investigated is directly related to the capability to understand when a particular
object can be considered ready for reuse, creating a library of well-defined and common accepted engi-
neering objects (for example the version control of the released library becomes an important feature).

In this context SysML is an evolving standard and one of the main challenging problems is represented by
the backward compatibility with previous version, since continuous improvement and changes are intro-
duced. Project that last several years and the MBSE methodologies are applied from the beginning then an
important effort must be allocated to a refactoring process in the case some new standard features have
been introduced.

The last problems has lead the OMG to manage the standard versions reducing the time spent for the cor-
rection of previous introduced element that are not allowed in the new release for example. The main
aim is represented by the possibility to reduce the risk related to the passing from one version of the lan-
guage standard to the other. The transformation rules in this case must be well defined to avoid relevant
inconsistencies between the models. The main direction of the research topic related to SysML devel-
opment is currently represented by the analytical integration with external domain specific tools/solvers.
Domain-specific tools can gain increasing popularity thanks to SysML interfacing and some classes of such
instrument are reported in the following list.

e Requirement management tools (for example DOORS)
 Satellite Toolkit

e Math solvers

* Modelica tools (for example OpenModelica or Dymola)
e Mechanical CAD tools

e Electrical CAD tools

e QOperational research tools

e Campaign simulation tools

* Process tools

The interconnection between the models in the domain specific environment with the SysML system
model can currently be faced with different approaches since these an interesting research topic. Some
examples of such approaches that face the problem of the interconnection between the domain-specific
models (define in the various native domain environment) and central system model are reported in the
following list (they are also currently the alternatives considered within the context of JPL research activity).

* Projection between models for interconnection in native domain (the properties coming from the
domain specific environment are connected and loaded within SysML system model).

104

= Cidiiuc LOuTdinaivtl.
e Connect relevant parameters

e All models as views on same supermodel.

The most interesting challenge in MBSE is mainly related to the relationship between the computer sci-
ence methods (considering the SysML development environment) and object-oriented approach to man-
age the current engineering design process.

The benefits coming from MBSE approach have been recognized from the JPL experience and can be ex-
pressed in the following lines. Coordination and enhanced traceability of the product components are
some of the main advantages. Another interesting feature is related to the possibility of automated verifi-
cation and also generation of documents (directly related to the reduction of time and costs). The formal
definition of rules and connection between the models allow to support the generation of cases and oper-
ational scenario. Finally the definition of a unique central model can enhance the capability to query the
needed information.

Another example related to the application of MBSE methodologies to space mission concept can be identi-
fied in the Europa Mission Concept Study [50]. Jet Propulsion Laboratory has gained important advantages
from the use of MBSE methodology within the design of space mission. In particular the Europa Mission
Concept Study has been done through the integration of MBSE approach which allowed to capture and
analyse the system solutions more effectively. This study has enhanced the importance of system modeling
for the management of space systems architecture. This approach allows to better manage the complex-
ity of the system considered, providing the capability to manage the dynamic architecture solutions that
typically characterize the early development phases. This feature shows a better behaviour in the system
design process with respect to the traditional system engineering modeling.

The reference case used to assess the MBSE methodologies is represented by the Jupiter Europa Orbiter
(JEOQ). The development of this science mission in the design Phase A was supported also with the part-
nership of the IMCE initiative. In this case SysML has been chosen as the modeling language for the inte-
gration of MBSE definition architecture. This environment allowed to integrate in the same framework all
the involved stakeholders, providing a common tool to share information and discuss about the possible
solutions in more consistent way.

The MBSE approach allowed to analyse consistently different mission configurations, exploring other pos-
sible solutions and proposing the split of the original architecture into two independent solutions. In this
case the science instruments are properly placed on the two independent spacecraft since the configura-
tions considered show improved performances with respect to the original concept. The architecting infor-
mation must be managed in a more comprehensive system model as the design becomes more detailed.
A modest architecting framework was developed to accomplish this objective and it was subsequently
adapted using an open-source web development tool for collaborative databases. The tool developed
within this context is referred to as Architecture Framework Tool (AFT).

Further improvements can be obtained with such tool types in order to support the architecting effort. This
approach will allow to better manage the workflow related to the design process, encouraging a deeper
iterative and incremental approach in the development of the product.

The collaborative SysML tool environment chosen for this study has been identified with the commercial
solution proposed by NoMagic and represented by the MagicDraw tool. The deployment of such tool has
been characterized by a well-supported training phase for the people involved in the system modeling pro-
cess. The SysML environment has been properly adapted to the specific needs of the modeling team. A
modeling plan has been developed to drive the system evaluation with a more flexible approach within
the MBSE paradigm. In particular the mission conceptual architecture description is implemented within
the ATF framework (in particular three mission concepts are evaluated). The single mission concept is then
modelled with SysML defining the physical decomposition, system and subsystem block diagrams and mass
reports. In this way the team iteratively interact with the system model and the contained information,
exploiting also the capability to partially automate the generation of documents or some preliminary anal-
ysis (such as the mass budget).

105

Architecture

Description
wcriles 1...° 2 ETportant o §...5
I Stakeholder
hagd..t
T
comddast.t | Concern M—
is importantto 1. can retate
is considered by 1..." to i
&
iz congidersd by 1.7
Trade
considers 1. - bl *ind-..*
éavsluataai nt Success
TS Criterion
1% comprised of 1...°
cmn participate in 0...* is addressed by 1...° ;
L -
emn be erposed of 0.5 ie described by 1.7 i
=upports 1
BDPEATS i 1.0 View ParUE Pates In 1"
appears in 1...* prescribes 1.7
invokss0..* L,
appearsin 1..* appearsini..* ests blishes methods for 4.+ () ()
Model
conferme to 0,4 utilizes 1...
constrains View point
Requirement p= w - — — —® . pa
apies specifies 0...*
o eaoh supports 1.7
fmatanca Function
s=ia blishes method s for 1. Ana 'Y’i s iz supporicd by 0.
fulfilla 0...*
i considered in1..* iz aszessad g 1.4
SpacTEat o spec Mes 0. Iz aszigned to 1...*
R R participaiczin . connects 2.
Relationship {F} Element | canbecompossd of ora prototype for d.*
oy - i w1 P .
belongs < Tmonf belongs mvolves1..
- -;;’ ol ..’ conadas k..*
b parficipak=cind._.* . s aliwe oy 4.
@ Scenario E}
1 +
R
specihes B, Property determmnes the vale of 1.5

1B Eproaccd Tl 1. |

Figure 5.2: Conceptual meta-model of JPL research initiative on MBSE [50].

The description of the architecture is defined on the basis of the concepts inspired by [51] and developed
to properly manage the representation of the various features that characterize the system model such as
hardware, software and operational aspects. The result of this conceptual analysis is reported in figure 5.2.

The block elements of the previous figure refer to the categories that conceptually describe the space
mission architecture. The various categories defined in this diagram define a group of information that
the related models must contain. In particular the system components must modelled following the re-
lationships defined with this diagram. A similar approach has been considered for the generation of the
system meta-model defined within this work but with slightly different categories and their relationships.
The architecture description follows the relationships and conceptual categories defined within the previ-
ously introduced meta-model and all the contained information have to been integrated within the OWL
ontology to consider the possible interface with web-based services. The following considerations briefly
characterize the objects involved within the definition of the space mission architecture.

The Architecture Description identify one or more Stakeholder, each with one or more Concern. The Con-
cern itself results in one or more Success Criteria (this object is directly related to the integration of the
requirements coming from the stakeholders). The Concern is considered by one or more Trade and each
of which considers one or more Principle. The Trade element evaluates one or more Option. The View
element is directly related to the Function, Element, Viewpoint, Relationship, Property, Concern, Scenario
and Model categories. All the interfaces that potentially characterize the Element definition are all mod-
elled through the Relationship object. In particular this categories include also all the possible elements
that are associated to the interaction between the Elements that compose the system. Model category is

106

Ustu LU SUpPPULOIL LTIC dildlyolo PIrULEoS WITHILTT 15 TCIdlTU dioL LU LT Ucihiniuon Ol uic mnoriration LOrialiicu
within the Scenario element.

The Trade element has been introduced to group all the possible Option that are referred to a certain Con-
cern of the Stakeholder object. Certain Option is described by one or more View and within this element
the description is obtained through the definition of the Element and other objects.

The system definition starts from the proposed model and then consider also the investigation about the
hierarchical composition of product elements. In particular the components of certain elements can be
integrated in different manner obtaining various configurations that can be studied to assess their advan-
tages with respect to another one. The process of integration of atomic elements into a composite product
is also identified as deployment of such product. Such hierarchical analysis has been captured through the
Internal Block Diagram of SysML language. This diagrams allow the development team to discuss about
the interconnections that are modelled for example.

Another important feature that must be considered is represented by the work breakdown hierarchy. This
aspect is mainly related to the organization of the work package and its decomposition, allocating the
various resources on the system elements. The management of space mission concept through a level de-
composition based on the distinction between the equipment and subsystem often results in an oversim-
plification. The Viewpoint category has be introduced mainly for this reason while the system hierarchical
definition is still maintained to ensure a well-defined organization and modularity of the analysed system.
Analysis process is as important as its correct documentation. The management of the technical margins
(as for example those related to the mass, the power or also the energy) is one of the critical issue that
characterizes system development also in the early phases. The evaluation of such technical features can
be done with two approaches. The investigation can be realized within the SysML tool itself if the analyses
are not so computationally demanding. The computation can also be interfaced with an external solvers
when the solution is particularly demanding.

Another interesting feature that can be found among all the possible capabilities is represented by the
support for the generation of the Mass Equipment List (MEL) which is directly related to assessment of
mass budget assessment. Starting from the root node of the product the mass budget can be obtained
iteratively processing all the contained items.

The same modeling approach can be used to monitor and manage the power margin and energy balance
to evaluate preliminary analyses. The SysML implemented model does not still consider the influence of
time and so the evaluation of power budget is referred to static preliminary computations. This approach is
however not well suited to more detailed design since the time scheduled components operational modes
and scenario directly affect such investigation.

Data balance margin can be evaluated and managed similarly to the previous section since the notion of
time is not still well implemented within SysML environment.

The other features evaluated within this study are represented by the radiated equipment lifetime, science
margin, cost estimation, integration with cost models and finally the automated report generation and web
publishing.

The radiated equipment lifetime and margin (RELM) model has been developed to assess the effective-
ness of the current components shielding or if it is required a better protection. The computations of such
evaluations are demanded to an external solver (Wolfram Mathematica) for the processing. The science
margin helps to identify the efforts required to address a science concern. A Science Margin Model (SMM)
is used to quantify the balance between the changes in technical design and the corresponding changes in
science return.

The cost estimation is one of the critical element for a quick evaluation of solution feasibility and also for
the right identification of the resources needed for the project. Most cost models are related to the mass
parameter in the early phase of the development and since this variable can be estimated more consis-
tently and before with respect to the traditional approach.

The report automatic generation is one of the most interesting benefits related to the application of an
MBSE approach to a space mission project. Reports, tables and documents can be generated on the basis
of the information available in the system model (from the diagrams for example), allowing a better control
and consistency of the data introduced.

107

SQUITIC ULNICT TAAITIPIC Ul SUCLTT HTILEST ALVl Ldll DT 10Ul ir LtcLlhifitdl HiCidiuic do LT WUIR O£] WIICIT IVIDOL
methodologies are applied for the analysis of space mission operational scenarios. In this case the Radio
Aurora Explorer (RAX) mission is modelled using a SysML tool within the context of MBSE methodology.
The choice of a cube sat mission allows to show the capabilities of such a modeling paradigm in the context
of highly integrated and coupled subsystems. The closeness of the involved subsystems and the high level
of equipments integration lead to a particularly challenging design process for such a missions. In this case
the MBSE methodology has been considered for the management of the behavioural and operational as-
pects. Several simulation tools has been integrated to assess some analysis on the basis of the information
contained within the SysML model. Data included within the behaviour models, subsystem functions and
internal states are used to set up the simulation scenarios for the spacecraft. The main aim has regarded
the demonstration of the applicability of such approach, investigating the feasibility, the evaluation of per-
formances and the computation of system metrics. The information contained in the central model has
been used to build the representative mission scenarios simulation, highlighting also the feasibility of op-
erational schedules evaluation. This modeling architecture enhances the capability to obtain operational
performance feedback still in the previous design phase, allowing to proper identify potential development
errors and also reducing the problems related to the consistency of the data exchanged.

Different analysis approaches has been considered since various strategies can be implemented for the
evaluation of the required parameters. In this case an example of such analysis has been realized exploit-
ing the internal solver available with the SysML modeling tool. Such capability is based on the evaluation
of the design parameters that are defined within a parametric diagram. The relationships between these
parameters model link between the quantities that characterize some physical law or mathematical ex-
pression. The modeling approach of SysML parametric diagram allow to define the contained elements
without defining which of these ones are outputs or inputs. This acausal representation of the relation-
ships between some parameter allow to consider the same rule/law also in the case of other evaluations,
when for example the quantity that have to be computed is now an input when in another context this
one was an output. In particular the internal solver used in this work is called ParaMagic and it is available
within the SysML MagicDraw modeling environment. The parameter/s to be evaluated are identified on-
the-fly by ParaMagic and the causalities between the available data are assigned consistently with those
available. This analysis instrument allow to realize some preliminary evaluations without the need to link
to an external solver for the characterization of some scenarios. This method is well suited in the case of
simple relationships between the considered parameters but the implementation of an high number of
values can be cumbersome and not particularly easy to understand. Also this analysis instrument is not
suited in the case of models slightly more complex or when the parameters to be set are many since the
substitution for the single scenario must be done manually. In this context it is necessary to instantiated
the investigated scenario starting from the block definition diagram of the analysis and system design ele-
ments. In this work the ParaMagic solver approach has been used to solve the communication download
analysis.

The power analysis is instead performed using the PHX ModelCenter tool to model the workflow between
different external solvers. In particular external solver are used to compute the orbital position of the
spacecraft while Matlab scripts allow to solve for the dynamics of the satellite. Finally the mission system
activity analysis has been performed using the Cameo Simulation Toolkit (a plug-in of the MagicDraw tool),
animating the state machine and activity models. In this way a behavioural analysis of the model has been
performed, checking the data, information and logical flow between the various elements involved. One of
the major effort that has been enhanced from this work is identified with the time spent for the integration
of simulation object and their testing since they are integrated in a common environment. This process
require the definition of different files and scripts that allow to manage the processing of the information
from one solver to the other (generating the related wrapper functionality). Further improvements are
scheduled in this direction to provide a more consistent simulation environment.

Interesting results coming from the integration between different types of data and geometrical models
are also available from [119]. Such work basically concerns the capabilities that can be achieved through
the use of Building Information Models (BIM) for the management of the data of a complex project. The
connection of various types of analyses beyond pure graphical representations allows to improve the ef-

108

1 i

(NN,

e e —— = Systems Engineening

= | = = Architecture | =i S — |

= —_ * Tradeoff i
Database / Knowledge
» Model Recycling = Concept Design @ o
+ Database upgrade + Planning g N
+ Maintenance AT~ + Architecture: CAD e st L

- - - + Visualization

ot Engineering Design
k. = sDocument creation

Systems (CAM, BIM...)
* Virtualizatio
* Human facta

* Procuremen

@ ; - Collaboration
L = Content Control

‘ Management

Manufacturing (CAE) « Stress ; i
= Briefing R | = Custom Analysis .
* 3D Printing (E.g. Radiation
* Mock up Hardness) -
development +Eic.
» Construction
* Robotic

Implementation

Figure 5.3: Conceptual overview of the lifecycle of an aerospace system and the phases that can be covered
with the proposed Virtual Space Construction Process (VSC) [119].

fectiveness of data exchange. In particular it is investigated the integration between model-based systems
engineering languages/processes (for example SysML) and a powerful geometrical architectural design tool
with BIM capabilities. The related approach is applied on a hypothetical example concerning space habi-
tats in order to evaluate how and in which way the design of complex system can be enhanced in the near
future. A conceptual overview of the workflow of aerospace hardware development and the phases that
can be covered with the proposed Virtual Space Construction Process (VSC) is provided in figure 5.3.

5.3.2 TU Delft

Another interesting initiative related to the integration of Multidisciplinary Design Optimization and
Concurrent Engineering has been represented by the research activities that are developed at Delft Uni-
versity of Technology [53]. In particular the academic effort has been addressed towards different direc-
tions as the operative research, education and application. The developed methodologies are evaluated in
the context of actual space applications as cube sat projects (for example Delfi-C3 and Delfi-n3Xt). At the
same time the model based system engineering methodology is currently proposed in different university
courses while also multidisciplinary design optimization research activities are analysed in the same con-
text.

The application of concurrent engineering for space applications has enhanced certain limitations as this
research group has observed from the actual design approaches. In particular the main limitations can be
summarized in the following ones (also reported in figure 5.4):

e No multiple options

¢ No trade-off

109

No multiple options

No trade-off

Limitations

No optimal solution

Not dynamic (uncertainty)

Figure 5.4: Overview of the main limitations of the concurrent engineering for space.

Multidisciplinary
Systems Engineering Design Optimization

(SE)

Optimal Design Scheme
Technical Process

Well-constructed
Management Process Multidisciplinary Math
Models

1
Interdisciplinarity,
Synthesis

Figure 5.5: Main features and common aspects of MDO and System Engineering.

* No optimal solution

¢ Not dynamic (uncertainty)

All these elements come out in the context of a multidisciplinary team working on the same project.
The same problems can be remarked for certain collaborative environments (as for example within struc-
tures similar to Concurrent Design Facility). In particular the interaction between people working on the
same product at system level shows as the management of multiple options is difficult to formalize. The
same conditions lead to a not well established definition for the generation of trade-off and consequently
also for the identification of optimal solution. This situation is then characterized often by a not dynamic
environment where is not so easy to manage the uncertainties that can be met during the design process.
The System Engineering area is well described by the definition of technical process and management pro-
cess that in the last several years has been relatively formalized (as can be seen from the NASA System
Engineering Handbook). The Multidisciplinary Design Optimization environment is mainly characterized
by the definition and a clear understanding of the optimal design scheme. Another important feature is
represented also by the construction of a well reliable multidisciplinary math models. The contact points
between such areas are represented by the synthesis and the interdisciplinary (figure 5.5).

One of the most interesting objective of this study is represented by the assessment of the feasibility
related to the integration of MDO into existing System Engineering/Concurrent Engineering architecture.
One of the key feature that characterizes such potential integration is represented by a clear understand-
ing of the overall interface and synergies that can be identified when different design processes are put
together. From this perspective the MDO approach used covers a key-role in the definition of the prod-
uct development. The interrelations between different models and various design activities figures out
how difficult is to put all together the integration between the MDO techniques and SE/CE methodologies.

110

Integration

Difficulties of
applying MDO

Modeling Utilization

Figure 5.6: Main areas directly involved in the integration process of MDO techniques.

Some of the difficulties that characterize the application of MDO can be resumed in the following areas,
represented in figure 5.6 for the sake of clarity:

e |ntegration
e Utilization
e Modeling

The incorporation of MDO paradigm within SE architecture requires a clear definition of different in-
volved elements. The main idea is represented by the incorporation of automatic search of optimal solu-
tion under uncertainties and the information available in quantitative, qualitative and uncertain form. The
other objects to be considered are the knowledge and the existing S/C SE framework.

The analysed methodology is based on the principles of Knowledge Based Engineering (KBE) where all
the elements that characterize the definition of specific system are formalized following a certain pat-
tern. Starting from requirements the space system is then decomposed defining the space segment (bus
and payload) and ground segment, proceeding through all the levels to clearly identify the required fea-
tures. The same project has considered the evaluation of such integration on a case study represented
by a distributed space system. This scenario has also been modelled considering also the identification of
uncertainty source, providing the base for a problem of Uncertainty Multidisciplinary Design Optimization.
Independent input (design variables) have been managed to proper evaluate the dependent output (at-
tribute values), obtaining the optimal configuration for the conceived optimization problem.

The overall system model has been implemented considering also the definition of RAM model, lifecycle
model and cost model. In this manner the traditional technical models are kept separated from those
that are more related to the management perspective of a product. For example the mission analysis
model, spacecraft model, launcher model and ground segment model are all included in what is called
a performance-based context (also if the previously defined group of models can also be considered for
the evaluation of system performances). The RAM model is used in particular to evaluate the reliability,
the availability and the maintainability on the basis of lower level system (contained elements) reliability,
TRLs, redundancy, etc. The lifecycle model is instead used to define the list of activities that are needed to
proceed from user requirements to the a specific phase. The cost model is based mainly on the estimation
of three principal sources. In particular these are represented by the development costs, the launch costs
and finally the operational costs. This approach for the evaluation of the costs related to the investigation
of overall system costs can be defined in different manner on the basis of different methods and of avail-
able information. The current challenges for the integration of MDO techniques are conceptually reported

111

Automatically search Quantitative,
optimal solution qualitative and

under uncertainties uncertain information

Requirements
for
incorporation

Figure 5.7: Overview of the main challenges for the integration between MBSE environments and MDO
capabilities.

in figure 5.7 from the perspective of TU Delft analysis and experience (they are referred to the present
practise for concurrent engineering for space).

One of the most important phase is represented by a clear understanding of the interconnections be-
tween the various models and in particular the feedback and forward links that can strictly couple two or
more simulations.

The problem has been modelled through the assignment of uncertainties to system model parameters and
the incorporation of uncertain events. In particular the lifecycle model includes the possibility to stochas-
tically introduce delays within an activity. In the same manner the component failure can be modelled as
a distribution. Finally the CER model considers the effects of probability distribution to properly evaluate
the uncertainties that can affect the costs estimation.

The integration of MDO into SE/CE framework has been conceived through the definition of concepts trade
space, solutions identification and assessment, design parameters investigation and finally system/subsystem
evaluation. The final aim of such approach can be recognized as the identification of the optimal design
solution.

This research activity is focused on the assessment of such integration and future developments are ad-
dressed to the interfacing with the Concurrent Design Facility available in TU Delft.

5.3.3 University of Michigan

The integration of MDO techniques with an MBSE environment is currently investigated with the sup-
port of different research initiatives, as can be seen for example from the works developed in the context of
University of Michigan. In particular some interesting research activities, as reported in [69], [52] and [93],
show how the integration of optimization techniques within a MBSE framework is a promising approach
for the development of complex aerospace systems. In this case the development process of small satellite
systems has been supported through the use of a SysML tool integrated with external solvers. SysML has
been used to model all the representative information of the system itself, allowing also the definition of
the rules and laws that characterize the relationships among the properties of the satellite. In this case
the parameter diagrams have been used to link all the values that are directly related with each other for
the computation of a certain variable. The SNR Analysis link budget for example has been built with such
an approach. All the data required to define the current status of the project are stored though SysML,
used also to define the topological architecture of the subsystems modeled for such reference case, con-
sidering however the preliminary phases of a project. The attitude determination and control subsystem
is modeled with all the related components in the same environments that allows also a clear and con-

112

Simulationand Hardware and
Analysis Modeling Model Software Design
Tools Repository Tools

Automated View
and Report
Generation Tools

Figure 5.8: High level representation of the infrastructure considered for the design problem of CubSat
example.

sistent representation of all the involved elements. The SysML system model for the Cubsat mission is
then connected with external solving environments through proper developed interfaces and plugins to
compute the needed quantities. In this case the simulation capabilities mainly regarded power analysis,
communication download analysis, mission system activity analysis and orbit dynamics. The information
collected within the system model are also used to set up optimization analysis through the use of devel-
oped interface with a multidisciplinary analysis tool (PHX ModelCenter@®)in particular). The information are
properly processed to partially automate the definition process for an optimization analysis, directly man-
aged within the ModelCenter environment with the data provided by the System Model. Such environment
monitors the overall execution of the optimization as well as all the simulations required to achieve the de-
sired results (for example Matlab©codes and Excel ©spreadsheets are also included within the cycle). In
this case the integration between MBSE environment (represented by the SysML System Model modeled
with a commercial tool) and the MDO techniques (provided within the context of PHX ModelCenter®)) is
obtained though proper developed interface plugins and script that manage the generation of the overall
scenario. An high level representation of the model based approach can be conceptually represented in
figure 5.8.

The main advantages highlighted by such approach are represented by the capability to partially au-

tomate the generation of simulation scenario on the basis of the available information. In this way it is
possible to reduce the consistency problems that can arise when model transformations or data exchanges
are required to built a simulation case. At the same time has been possible to better exploit the overall
information to define an optimization study that was able to better explore the design space with less ef-
forts from the user. At the same time some challenging issues must also be properly faced.
Different licenses are often required to properly set up the used simulation tools, considering also the re-
lated vendor support in some cases. This problem often rises with the use of commercial tools and their
related environments while the alternative solution is represented by open-source software. In this case on
the other side the documentation and support is often not necessarily ensured by the developing teams.
Another problem highlighted by such studies is represented by the large efforts required to set up the sim-
ulation environments, including creating wrapper files, wrapping models, saving and re-opening models.

113

114

Chapter 6

Conceptual Infrastructure

One of the most important features directly related to the developed framework is represented by
the need to analyze the potential introduction and formalization of trade-off capabilities within a con-
sistent modeling environment. The evaluation of system performances and the study of feasible solu-
tions/configurations represent some of the most important activities of a system project. The early de-
velopment phases are mainly involved in the definition of product characteristics and heavily affect the
following system behaviour. This process is lead by the correct identification of the criteria that are then
used to investigate the responses to external environment. A formal definition of the criteria used to quan-
tify the effectiveness of certain system solutions is a complex activity and often is strictly related to personal
knowhow of single person, driving sometimes to a subjective perspective. The focus of the current work
is also represented by a feasibility assessment about the possibility to formalize the overall architecture
evaluations. The proposed approach theoretically shows interesting benefits regarding the reduction of
possible misunderstandings and subjective interpretations of system results.

A correct evaluation of an architecture has generally to take into account different elements:

Requirements

Scenarios (operational and not-operational)

Stakeholder’s concerns and related preferences

Overall architecture properties

All these elements must be used to properly support the decision making process, providing the in-
struments to justify certain choices and correctly investigate impacts on design solutions. Such aspects
can be differently approached and managed by various system modeling tools. All the previous general
considerations can in fact be processed developing different high level formalization often on the basis of
the company or organization know-how about System Engineering. The key-role in such procedures is also
represented basically by a correct understanding and conceptual definition of the metrics and evaluation
criteria for the investigation of the response under analysis.

6.1 Introduction

The previous sections have highlighted the current needs with respect to the research field of System
Engineering. In particular the considered examples and research initiatives had the role to show how a for-
malized infrastructure for the management of the advanced phases of a project is currently not properly
defined. The definition of a consistent conceptual architecture that includes the great part of the avail-
able scenarios is difficult to obtain, above all for the most advanced phases of a space product where the
possible cases cover a wide range and a unique set of common concepts is difficult to establish. The main
aim of the present work focuses on the understanding of the possible alternatives that can be chosen and
then the development and investigation of one solution among these ones. In this way the final purpose

115

15 dUUICooCU LUWAIUS LTIT 1UCTTILINCaliun UL LT THHSOITN s TITHITHL dllU COTICTPLS LidU TTIUSL VT LdRCTT ITILO dl=
count. The application of model-based methodologies in the advanced phases of complex system requires
in fact a well-understanding of all the involved entities (from people to the processes and design methods),
avoiding the possibility to neglect some modeling methods or analysis mechanisms. This aspect must be
not undervalued since it strictly affects the evolution and effectiveness of the methodologies associated to
the Model Based System Engineering "philosophy".

The next sections first provide a description of the common issues that that can be found during the appli-
cation of a model based methodology in the advanced phases of a development process. Then the main
definitions of the terms used are reported. The classification of the involved concepts as well as the rela-
tions among them is reported, presenting what can be considered as a simple taxonomical or ontological
analysis that paves the way for the overall infrastructure. The main concepts are presented in this section
but more details are provided in the appendices and they are used to conceptually build the framework that
can then be implemented following different alternatives (for example the same conceptual infrastructure
can be implemented differently on the basis of the chosen technologies).

6.1.1 Current issues

Product lifecycle management (PLM) is an all-encompassing approach for innovation and system infor-
mation management from preliminary concepts to end of life. PLM shows its capabilities to support model
based systems engineering and system lifecycle. Information models, meta-data models (different view-
point to represent product model) and procedures need to be developed in order to support multi-domain
systems engineering, simulation-based engineering, and knowledge management, besides the current de-
sign approach. The difficulties that can be encountered during data-exchange are partly caused by lack
of general accepted industry standards and protocols for PLM meta-data models and processes. Informa-
tion models and data exchange between virtual prototyping solutions and PLM systems need improve-
ment. Additionally, virtual environments are getting larger and more closely integrated together often
through proper developed network system. In this context a more effective data structure and collabora-
tive methodology cover a key-role for the definition of the right solution.

The use of a collaborative environment has emerged as a consequence of a continually changing working
place which calls for the collaboration of multiple actors, with different background, roles, knowledge, ex-
pertise and tasks. The capability to collaborate over time and space, within and across organizations or
corporation, is fundamental to reach this flexibility through the best possible management of the knowl-
edge and resources available (ensuring for example a well-defined way of information access). The desired
flexibility can be pursued through the implementation of a distributed environment with particular em-
phasis on interaction mechanisms among all the involved actors.

The current implementation of system modeling infrastructures for the management of overall informa-
tion, such for example SysML solution, has shown interesting features and numerous advantages. SysML
models pave the way to the definition of a well-harmonized system representation that can widely reduce
the development time and costs with respect to the traditional design approaches. Such capabilities are
highlighted by the various reference cases and studies that are carried out on MBSE methodologies through
the use of SysML language. These analyses have also enhanced the difficulties that come out when a static
and representative model is interfaced with simulation environments. They show not only the benefits
that can be obtained by such an approach but concurrently also the main fields that require a better def-
inition. The latter ones slow down in fact the application of such methodology up also to simulation and
analysis environments. Some of the points already opened with respect to SysML language are reported
in the following lines. One of the main aspect refers to the practical usability of this language for system
knowledge and the related easiness to be learned, used and employed in practise. Such languages is also
evaluated to understand its applicability in daily problems with low overheads, considering for example
the capability not only to manage a restricted subset of problems.

Another important criteria that must be take into account in the choice of SysML as system modeling lan-
guage is affected by the degree of independence. The capability to run across heterogeneous environments
independently by the related platform is a key-factor for the definition of a collaborative environment. Such

116

15oUT TTIUSL DT PIOPCTTY TVAIUQLTU WILTTTCOPTLL LU OYOIVIL LOUIS AU PidUVTNTTS LU TIgUTT OUL T ITILEST ALV PpIOD=
lems can arise when different organization and corporation work together (for example in the case some
resources are shared in the same project).

The investigation of SysML language involves also its capability to provide a zoom function, enabling in par-
ticular the users to start at a high modeling level (for example at overall system level) and then navigate to
mode detailed levels (as for example the component or production line level). Various research initiatives
are currently addressed to the evaluation of such kind of feature since zoom capability can widely improve
the actual design process with respect to the traditional one. In this way it will be possible to use the same
system modeling environment both during the preliminary phases as also in the more detailed ones. Anal-
ysis activities are now considering the application of such capability to more complex project with the final
aim to identify all the related issues.

Another important ability that languages as SysML must provide is represented by the effective manage-
ment of system knowledge across different modeling domains. This capability is strictly related to the
future developments of increasingly collaborative environments and must be well-demonstrated. The scal-
ability of modeling languages must also be considered since the management of different types of projects
running on different types of companies is a key-factor for the development of a shared modeling ap-
proach (involvement of Small Medium Enterprise — SME and large companies). The ability to readily react
to changing conditions (as design changes or organization changes for example) is currently one of the fea-
tures that is pursued and it is important that such agility is available from modeling languages. The actual
demanding design environment is searching also for modeling solutions that are not necessarily bounded
to proprietary aspects since in this way it is possible to develop their own environment with no limitations
on licenses, customizing the framework on specific needs (no costs are associated to the licenses manage-
ment and upgrading). The other benefits is also represented by the reduced or even absent installation
and upgrading costs.

All the efforts involved in such research activities are mainly addressed to the evaluation of the actual
economical benefits that modeling languages such as SysML can effectively add to product development
and manufacturing processes. The main interest is addressed to understand how much the results of such
modeling languages outweigh the costs of their adoption.

The use of an infrastructure based on SysML language have to face often with all the problems related to
its application within a collaborative environment. The advanced phases of a project pursue in fact a wide
collaboration among the involved teams and actors for the successful achievement of the objectives set.
Currently the integration of a SysML tool wit+hin a collaborative environment is not well defined since all
the available solutions are based on desktop applications without common procedures for the exchange
of the involved information. In this case the collaboration among different people become difficult to
achieve since the collaboration among person working on the same project requires proper developed
merging mechanisms. Project data stored in the same file are difficult to manage when a large number of
people work on it. Such process needs the correct handling of updates, accesses and ownerships of the
edited information to avoid data losses and consistency problems. Currently the large part of SysML based
tools provides functionalities that are particularly useful and well suited for the management of a large set
of data on the same file. The management of data across different users working not on the same file (but
for example on copies of it) requires mechanisms and capabilities that can be not necessarily embedded
within a SysML based platform. In this case alternative approaches can mitigate such problems through
the use of different types of infrastructure. In particular web-based technologies can improve the collab-
oration process and the current proposed infrastructure has been conceived to enhance such aspect with
respect to the response performances that can be achieved trough a desktop application.

The primary objective of this work regards the analysis of a possible alternative solution in the choice of
system modeling language. An evaluation of modeling approach is conceptually defined, formalized and
evaluated starting from the just described considerations about system modeling languages main issues
and features. In particular the application of an MBSE methodology is investigated considering the de-
sign of space systems in the advanced stages of the project. One of the current most challenging topic
concerns the integration of such recent philosophy with the analysis environments. The capability to in-
terface a modeling environment with analysis and simulation ones covers a key-role for the spreading of

117

Mouci=udoclU dpplioallico. 111 Propuscl 1idiliCVWOUIR Tidos DECTT TvdiudicU TTiallily Ofl U1 Capdllity Lo 1lidall=
age simulation models through a web-based interface, also developing a process for the definition of mul-
tidisciplinary analyses. The focus has been represented by the development and assessment of a frame-
work for the definition of multidisciplinary surveys as soon as possible, theoretically conceived to support
system performances analyses during both the preliminary phases and the more detailed ones. The devel-
oped framework is based on a different design approach with respect to the current solutions. Different
research initiatives have basically driven the definition of various desktop applications that allow the defi-
nition and analysis of aerospace systems ([54], [55]). Open-source projects and proprietary initiatives have
implemented different kinds of design and dimensioning toolkits, each one concerning a specific problem
as radiation transport and effects, micro-meteoroids and space debris, planetary environments, contami-
nation and spacecraft plasma interaction for example. They are generally not so flexible when the design
scenario moves away from the nominal one since they are often hard coded around a specific design issue.
The customization of such tools becomes not so easily to handle even supposing the possibility to modify
some application parts.

The final purpose of the present work is not aimed to the formalization and implementation of such a de-
sign infrastructure since the commercial solutions and built-in-house toolkits offer already a wide range
of performing capabilities. There is no need in fact to reinvent the wheel since the main issues come out
when such analysis environments are integrated each other in a more complex framework.

The primary objectives are the development and assessment of a design approach that enable the integra-
tion at high level with no limitations on the analysis workflow that is often strictly related to both company
knowledge and project needs.

The definition of a different approach for the design process can enhance the capability to properly exploit
the available resources, customizing the simulation utilities and toolkit functionalities. The main idea is to
develop a problem solving environment where the users can access analysis tools but are not limited by
their native implementation. A multidisciplinary analysis environment where the design flow is not con-
strained by the built-in implementation of the framework shows numerous advantages. In this way the
design workflow can be supported and monitored across its phases through the same environment that
can be used in the same manner on other projects. Such feature enables also the possibility to seam-
lessly exchange data between different projects since all the objects follow the same data structure and
are implemented on the same platform. In the end such modular approach improves the reuse of already
defined components both from different project developed at the same time as also from previous ones,
exploiting the available historical data. The concepts, main features and related results are presented with
more details in the following sections.

The right representation of system configurations is difficult to achieve and different solutions can be con-
sidered. Such choice directly affects the development phases of a complex system and different research
activities are addressed towards such aspect as [111] for example.

6.2 Taxonomy

The definitions considered in the current work are based on the concepts available from ECSS technical
memoranda and are slightly modified in some specific cases [56]. Such changes and additional integrations
to already developed definitions are included to take into account aspects that are not initially foreseen or
are not covering some particular situations for the proposed methodology.

e Actor: In the current work the term actor identifies the entity that acts through specific means with
other entities. In particular such integration can involve both human users and computer systems,
depending on the specific situation and involved entities. For example during system integration and
manufacturing there are potentially human actors that interact with a product and its components.
On the other side a web service interaction can involve a human user and a client machine that
represents a lifeless entity which however can be implemented to provide all the responses needed

118

LO LS 1alT WILTT OLHCTE dCLOTS. THC TUChitniCacion U1 dCLlOlS aliu LHCIh TSiallOniohips WiILHHTE d SpPCTUltic
infrastructure depends on the context and level of details that are considered.

Analysis: Analysis represents a verification method that uses techniques and tools to confirm that
verification requirements have been satisfied. Basically an analysis can be done through different
means. A specific analysis can be done with the support of simulation models and tools but in other
cases analyses can be realized without such elements. For example a mass budget can be considered
as an analysis activity but it not necessarily involves a simulation (such affirmation must be properly
understood with reference to the concept of simulation). Generally it is also possible to associate
analysis with an analysis model that can be used for example to set up a specific simulation. In
this manner the same analysis model can in fact be used to generate and manage different simula-
tions. The relationship between analysis and simulation classes places the related concepts on the
same level. The analysis concept can be defined independently to the fact that it is associated to a
simulation items. In the same way a simulation can be used not necessarily within the context of an
analysis since this method has been conceived with the final aim to verify one or more requirements.
A simulation is conceived instead to model and foresees the behavior of a product before its actual
realization or also to evaluate the possible responses of a particular object (also if already manu-
factured) in some particular scenario before certain actions are taken. In this case the simulation is
not done to verify some requirement (providing support to an analysis activity) but only to foresee
system behavior. Both concepts are quite similar but their main difference is related to the final pur-
pose they are associated with. A simulation item can be then defined independently with respect to
a particular analysis. A simulation can be linked to a specific analysis when it is done with the final
aim to assess the product behavior with respect to a certain requirement. Generally the individual
analysis can be associated to a number of different simulations since the verification of a particular
analysis situation can require the execution of different kind of simulations. In particular in the pre-
liminary phases of a project the single analysis can be supported with a number of simulations. For
this reason the two concepts are considered separated to avoid possible misunderstandings.

Some considerations can help to further describe such concept but in the following expressions more
concepts will be clarified. Considering the common terms used in System Engineering an Analysis can
be linked to an Use case while the the Simulation (conceptually related to the concept of Simulation
case) can be linked more properly to a Scenario.

Baseline: A baseline represents a set of information which describes exhaustively a situation at a
given instant of time or over a given time interval. A baseline is generally used as a reference for
comparison with and analysis of subsequent evolutions of the information. In such definition sys-
tems options and alternatives can be considered or not as object belonging to the current baseline
on the basis of the desired modeling purposes. In the current work the key point for baseline defi-
nition depends on the choice for options and alternatives belonging. The term baseline should not
contain options and alternatives if literally considered on the basis of ECSS definition. In the same
way the design variables provided by the users must also be managed as external object to the cur-
rent baseline but must be however traced within the same project.

In this sense the options and alternatives can be linked to the related project and a specific baseline
at the same time. They are directly contained within the project but not in the baseline, ensuring
that when the baseline is deleted the linked optional or alternative objects are not removed from
the project. Baseline is basically used to take account of the nominal representation of the overall
system as an instantaneous shot of project nominal state (current configuration without options or
alternatives) in a specific time instant.

Dataflow: An important concept that must be clearly defined and that is strictly related to the inte-
gration of multiple analyses within the context of a multidisciplinary environment is represented by
the dataflow. This term must be not confused with the concept of workflow that is however defined
in the following. The dataflow describe the flow of information that characterizes the execution of a

119

LCildill Ppallcill O allidlyoto. 111 pditiCUuldl UIC UdldllOv UdolLdally UCOSULITOCS LTHT TTIaliVlnspS DTLWCECTI
analysis objects within a specific scenario with respect of input/output connections. This definition
does not include show the time relationships between the involved elements but shows only the
dependence between the variables. The same dataflow can in fact be managed in different ways on
the basis of the time scheduling chosen for a particular case. The time dependence is not highlighted
with the dataflow but with the workflow.

Design: A design can be seen as a set of information that defines the characteristics of the product.
This definition can be partially related to baseline term since their meaning is quite similar. In the
current work the term design also includes all the options and alternatives entities that come out
during the project development. In particular the design refers to the options and alternatives that
are currently under investigation and not necessarily to only the nominal configuration. From this
view point the concept of design is wider than baseline one which in this work refers only to the
nominal set of system data.

Design can equivalently be considered as the process used to generate the set of information defining
the characteristics of a product. In this case it refers mainly to the design activity than to the set of
information.

Discipline: The discipline is a specific area of expertise within a general subject. Such concept is
already considered in the current work and it covers a key role for the correct definition of the col-
laborative infrastructure.

Environment: Natural conditions and induced conditions that constrain the design definitions or op-
erations of a product. Such definition refers to all such entities that are not directly part of the system
and their identification allows a clear understanding of the relationships between the system itself
and external entities. The boundaries that characterize the interaction between various entities can
change on the basis of what is defined as system for that specific case. The same set of entities canin
fact be differently termed on the basis of the considered boundaries between the system and exter-
nal environment. Generally the external environment can be confused with the whole environment
where the system is also included. This concept must be clearly identified. In the current work the
term environment can also be identified with the external environment. The union between the sys-
tem and the external environment represents the whole world (basically what can also be identified
as the whole environment) while the system must not be confused with the external environment
since it is not part of such entity (considering the differences just introduced).

The environment can be basically considered as an actor but this definition does not necessarily im-
ply that it belongs to the system. A system contains a collection of items but there are no constraints
on which items belong or not to the system itself. This depends in fact on boundaries features.

Function: A function is defined as the intended effect of a product. Such concept is mainly related
to the functional analysis activity that often comes before the hardware and actual component se-
lection. In particular such process describes completely the functions and their relationships, which
are systematically characterized, classified and evaluated.

Item: An item may be more generally a product, a service or an actor. Such term has been considered
to better formalize and describe the concepts introduced within such analysis (e.g. systems, product,
service, actor, etc.).

Mission: A mission is basically defined as a set of tasks, duties or functions to be accomplished by an
element. This definition can be scaled on different levels on the basis of the object that is currently
considered. The overall system has its own mission which is different from the one related to a spe-
cific component of the same system.

Model: A model can be basically defined as a physical or abstract representation used for calcula-
tions, predictions or further assessment. A model can also be used to identify particular instances

120

Ul UC pPproduct C.g5. HigHL Houct, 1CiCiiillg 1 LS CdoC LU 1Cal VUJTLL Lidl NUWCEVETD U0 THIOUL TCPITOCTTIL
the exact system but is used to assess some specific behavior. In certain cases it is also possible to
consider the definition of simulation models. In particular by simulation models it is meant here
both data models, e.g. geometrical model of a system, and behavioral models, e.g. the algorithms
representing the behavior of a component or environment expressed in a high level programming
language. A model normally (but not always) has inputs, outputs and internal state variables and
constants.

A generic model represents an entity (e.g. a power distribution network) that can be configured to
represent any instantiation of that entity.

Although generic models are a powerful concept, they can become over complex and it becomes
more effort to configure a generic model than to develop a specific model from scratch.

Depending on the context, models can be classified according to their fidelity, their domain or their
modeling technique.

Modeling technique: The modeling technique identifies the method used to analyze and describe
the behavior of a model. Common techniques can be represented by the following types:

Physical (electrical, mechanical, etc.)

Behavioral

Functional (with respect to external interfaces)

Geometric

Other different types can also be considered on the basis of the specific modeling needs.

Performance: In the current work the performance is defined as a quantifiable characteristics of a
function and it allows to evaluate the behavior of certain elements, paving the way for the compari-
son between two different entities.

Process: Such concept can be defined as the set of interrelated or interacting activities which trans-
form inputs into outputs. Inputs to a process are generally outputs of other processes.

Product: A productis defined as the results of a process and in this terms can be represented basically
by services, software, hardware or processed materials for example. Following such definition the
concept of product can be related both to tangible (physical system) and intangible (service) entities.
It can at least be associated to a collection of tangible object at one level.

Project: A project is basically represented by a set of coordinated and controlled activities with start
and finish dates, undertaken to achieve an objective conforming to specific requirements, including
constraints of time, cost and resources.

Requirements and Specifications: A distinction between the terms related to requirements and
specifications will be useful for the following sections. Such terms are in fact widely used in the
field of System Engineering and a clear description of their meaning can help to avoid possible mis-
understandings. Their function is quite similar but the specific meaning is associate to the processes
of design and analysis of a product.

Requirements are what your product should do, the specifications are how you plan to do it. The re-
guirements represent the application from the perspective of the user. The specification represents
the application from the perspective of the technical team.

Service: The term service refers all the intangible entities that can be involved during an activity or
an interaction between some actors. In particular such definition can be associated to the action
of that characterizes the interaction between actors during a specific scenario. The related entity is
basically intangible both on macroscopic level and microscopic one.

121

T oinuialivll. 1HC SHTuialion CONLCpPL IicitTio LU d TUll O SLTHdTO 1T d SITHUId LUl WILEE d SITTTUId LU Sudl L«=

and end-time. During the simulation events may be injected into the simulation by the user, a script,
external hardware or another simulation. Such definition more generally can be extended to run that
not necessarily involves the time dependence. The most part of simulations are currently defined
in the time domain but that is not an absolute law since there are other specific types of simulation
that do not involve directly the time dependence. The dynamic evolution of current in an electrical
power subsystem refers to the first type of simulation for example. The simulation of a structure
response loaded with a set of stationary forces and moments represents another type of simulation.
The main purpose of simulations is to foresee the behavior of a system interacting or not with an ex-
ternal environment, providing useful data to evaluate the responses before some specific scenarios
occur. In such definition the time role is not necessarily present since some particular computations
are not directly involving time dependence.
Simulations can be used to support analyses since they provide the results needed to achieve a cer-
tain response but are but are not necessarily required by a specific analysis. In the same manner a
simulation can be done without a direct connection with an analysis, since it can be formally used
for other purposes (such as representative purposes for customer/supplier for example).

o System: Set of interrelated or interacting functions constituted to achieve a specified objective. Such
concept must not be confused with the product term since a product can be defined as a single entity
(able to be identified as a single entity) while the system requires however the presence of interact-
ing entities. In particular the same entity can be described as product or system but on different
levels since in the first case the main attention is on the whole entity as a unique element while in
the second definition the main focus is on the various entities and their relationships. Such two con-
cepts are however so similar that they are often considered synonymous. A clear distinction between
such two definitions can help to better organize and formalize the overall meta-model structure. The
actual benefits that can be achieved with the separation of such two terms is not often fundamental
in the applications that have been developed so far.

A system can be defined more succinctly as a collection of items and the related interactions. System
boundaries allow to clearly identify which items belong to the system and which do not. The related
classification strictly depends on the specific case and related scenarios.

System concept must be clearly distinguished from the external environment since it generally in-
cludes all the entities with which the system interact with. The system is affected by external en-
vironment as also in turn it can influenced by system behavior. This distinction is fundamental to
understand the boundaries for the context under evaluation since such identification allows to char-
acterize the occurring interactions. From this viewpoint the external environment do not belong to
the system but its role is fundamental to model system interactions. Space applications deal often
with the definition of Segment and the use of this definition is fairly widespread to such an extent
that ECSS standard included it. In particular the segment is defined as a set of elements or combi-
nations of systems that fulfils a major, self-contained, sub-set of the space mission objectives. Such
definition is however not so constraining since the entities considered in the related definition can be
also considered as systems their own. Segment is basically a convenient representation of a complex
space system that in turn involves other systems. In this way such single system can be termed as a
space segment but what it means is basically the same since it is only a matter of scale. A segment
can in fact be considered as a system as any other one but in the context of complex space applica-
tion this distinction can help to manage all the data involved. Examples of segment are represented
by Space Segment, Ground Segment, Launch Segment and Support Segment.

e Use case and scenario: Simulation scenarios must be distinguished from the definition commonly

accepted for the description of interactions in the field system engineering. In particular the concept
of scenario must be well understand with respect with use case

— Use case: defined as a group of scenarios linked together by a common user goal.

122

= 2LCldlO. UtTliliTU do >STYUUCIILT Ul SLCPo Lidl UTOSLTTUT LT 1HILCTalLuul DTLWECTE d Usti d4dllu d
system.

The development of a system is generally characterized by the identification a set of goals that are
basically derived from requirements coming from the customer and project statement. The main
purpose of the preliminary phases is represented by the definition of use cases and related scenar-
ios that are first conceptually elaborated and then detailed as the project proceeds. Each system
goals are generally related to one goal which in turn is connected to different scenarios. The same
use case is conceived to globally represent the interactions that may appear to achieve a desired
goal. On the other side the scenario defines the difference sequences that may occur during the
interactions between users and the system for the achievement of the same goal. In this case the
goal is the same but external situations, initial or boundary conditions can affect the time evolu-
tion of events and users roles (such as activities pursued within such scenario). Scenario concept
focuses on the temporal and different situations that can occur for the same use case. For example
achieving the comfort temperature of a building represent the same use case since it is related to
the goal of reach a certain temperature for the comfort of people. The same use case can however
be accomplished in different manners (i.e. scenarios) on the basis of the current initial and boundary
conditions. In the same previous example the operations that a single user can do to maintain a cer-
tain comfort temperature depend on the initial temperature. If the initial temperature is lower than
the comfort one, the set of actions and system interactions are different from those that come out
when the initial temperature is higher with respect to the comfort one. The same reasoning is valid
when the system component that allows reducing environmental temperature (because the actual
temperature is higher than the comfort one) breaks down. Such situation represents however an-
other scenario for the same use case (i.e. achieving the comfort temperature). Scenario description
basically contains all the information about who does what and when, expressing the sequence of
actions between the involved actors and system components. The concept of scenario can be ex-
pressed in slightly different manner from a simulation viewpoint but the meaning remains basically
the same for the purpose of the current work. In this case the scenario can be reported as a par-
ticular initial configuration of a simulator and sequence of events to represent a particular part of a
mission e.g. launcher deployment, eclipse operations, cruise phase. The identification of scenario
boundaries depends strictly in the case that is under evaluation.

¢ Validation: Validation can be considered as the process which demonstrates that the product is able
to accomplish its intended use in the intended operational environment. In this context the verifica-
tion is a pre-requisite for validation.

» Verification: Verification is defined as the process which demonstrates through the provision of ob-
jective evidence that the product is designed and produced according to its specifications and the
agreed deviations and waivers, and is free of defects. Verification can be generally accomplished
by one or more of the following methods: analysis (including similarity), test, inspection, review of
design.

e Workflow: This term is used to define the process within which the analyses are executed. The work-
flow describes in fact the time dependence of the involved analyses, ordering the flow between the
various elements. Conceptually if the dataflow defines which variable of which analysis is connected
to which other variable, the workflow tells us when a certain analysis must be performed. Such con-
cepts must be clearly separated to correctly understand the relationships between the analyses that
characterize a multidisciplinary simulation.

In the context of a simulation environment it is also important to clearly define a shared meaning for the
words: variables, constants and parameters. Such terms are defined in the following lines apart from the
previous definitions since their roles are strictly connected. The following definitions are partially derived
from the Modelica conceptual classification since first the related expressions are clearly formalized and

123

SCLUTIULY LHCY pPave LT Wday 10O UIC IS dUUNT WILHTE dll DDJTLLONICHILCU ChHVITONTHCHL ([IVIOUCIHCa VascUu 101
example).

e Variable: The variable is generally defined as a quantity that can be used to describe the behavior
of an object, providing for example the values related to the states of the component itself. Such
definition does not necessarily lead to the fact that the quantity is always characterized by a variabil-
ity. Under particular condition a certain variable may not change its value over time for example. Its
variability is in fact strictly related to the specific simulation and it is generally different from case to
case. From this point of view a variable defines more properly a quantity that can potentially change
during a simulation. This definition includes both the input and output variables since the related
terms are expressed in the same way. Variables represent basically the quantities that with con-
stants and parameters allow to compute/simulate the behavior of one or more elements, providing
the numerical values required from the equations/functions available in the code for example.

e Constant: A constant can be basically defined as a quantity that does not change during a simulation
and its value is not directly accessible by the user. Such term includes all the physical quantities and
constants that cannot be freely modified or chosen by a designer or analyst. Their values are however
needed by the equations/functions of a particular code to compute or simulate the response of the
system under evaluation. From this point of view its role is basically the same of a variable while from
a modification perspective the access is quite different (the user cannot modify this values on its own
or through other similar mechanisms). Constants are used to define all such values that cannot be
arbitrarily chosen by the user.

e Parameter: Parameters are defined within this context as those values that are required like con-
stants and variables to solve/compute the equations or functions of a particular simulation. In par-
ticular such term identifies the quantities that does not change during a simulation but can be set by
the user or however can be modified on the basis of a particular choice. They refer to those values
that can be chosen at the start of a simulation but cannot be modified during the simulation itself.
They are defined once before the simulation starts but can be changed after the execution to set
another computation. The distinction with the constants values are mainly related to the fact that
the parameters can potentially modified by the user/analyst on his/her needs. In fact a parameter
can remain constants during a set of different simulations but this does not means that it can be
included within the constants definition.

Another important distinction has been done between the concepts of option and alternative. This
consideration will be reintroduced in the following section to clarify some conceptual choices for the frame-
work. In particular such distinction is introduced to take into consideration in a better way the management
of design changes and configurations. The term alternative refers to the design object that theoretically
substitutes another one. In this case a certain element must be present and there are different alternatives
that can be considered. In the current work the term "option" refers more properly to a design object that
can be present or not, depending on the specific case. From this perspective an option is not related to an
object that must be present. Such definitions is currently not clearly defined in the available standards and
they are not yet formalized. The concept of design option is however present in some formalization works
but is approached differently on the basis of the related organization or research initiative. Within the
proposed approach such distinction has been considered quite important for a well-posed management of
design changes.

The previous introduced definitions are then used as starting point for the formalization of the concepts
used in the current work. In particular the concept developed in the context of Virtual Spacecraft Design
project [57] have been considered and partially modified to take in to account some of the aspect that has
been approached. The main concepts related to the topological definitions are reported in the following
section. Such terms are mainly used to formalize system physical architecture, allowing the description
and characterization of the relationships between product components.

Such definitions have been introduced to support the conceptual data structure about the model-based

124

MCLiouvIvgy Ltidi lido DCCT TValUdLCU. 1TICY alTTIOL LT Uy avadlidlIc TOITT LT CLoo LaLliTheal ricinolariud
since other expressions and concepts are expressed with more details. In particular they are selected on
the basis of the concepts that are considered for the current study. Such concepts are then properly used
within the data model to define the related classes that are then elaborated to build up the Ruby on Rails
classes used to implement the design framework.

6.2.1 Topological definitions

The following concepts have been defined to clearly represent system topology on the basis of an ob-
ject oriented approach. Their meaning is strictly related to the conceptual data model used to support
design activities at system level, providing useful capabilities in the context of the proposed infrastructure.

Element Definition

The term Element Definition used for the definition of the meta-model refers to the conceptual rep-

resentation of certain object. It includes all the features that characterize the element that has to be
represented within the system architecture. It contains the definition of all the attributes, methods and
main characteristics for the represented element. It is substantially a class from which the objects used
for the design of the system inherit all the properties. All the object that are linked to the same definition
change consistently all their properties once the Element Definition is modified. This concept is particularly
related to the definition of modularity and reusability of the design object.
In particular an element is defined once (the Element Definition) and then can be used (the Element Us-
age) nay number of times in an architecture (which may contain a hierarchical decomposition) about the
system of interest. The Element Definition and Element Usage structure represent together the architec-
tural design/composition /decomposition of the system of interest. The combination of containedElement
property and referencedElement property of the Element Usage a hybrid product tree can be represented.
In this case both the logical and concrete (also known as physical) architecture are combined. The contain-
ment relationship between the Element Definition and Element Usage instantiated from it allows to inherit
some properties. In particular the Element Usage becomes automatically a member of a certain category
if that one is assigned to the relative Element Definition. From this viewpoint it is possible to say that the
Element Definition concept reflects the Block concept typically used in the context of the ontology of OMG
SysML.

Element Usage

The term Element Usage identifies the instance object obtained from a certain Element Definition. It
inherits all the feature assigned to the relative Element Definition (for example all the related mass prop-
erties). It represents the actual usage of certain Element Definition within a precise context. The same
Element Definition can have different Element Usage but at the same time a particular Element Usage
can refers only to one Element Definition. Once a certain Element Definition needs to be defined within
a particular context for the definition of another Element Definition then the conceptual object must be
instantiated. The Element Usage represents an Element Definition once this has to cover a certain role
within a design architecture.

Both Element Definition and Element Usage can be typically related to a top-down viewpoint in the con-
text of design process. In particular the properties are defined as they theoretically must have in the actual
project. They are assigned for design purpose but not reflect necessarily the actual properties of the sys-
tem (as this start to be produced and realized).

This object identifies in particular those elements that are represent an usage of a certain Element Defini-
tion in the context of an higher level Element Definition that contains that usages. An Element Usage as
defined has one and only one Element Definition that contains it.

Element Occurrence

125

The term Element Occurrence instead covers the role mainly related to the design process for the phase
of simulation and analysis. It represents a particular element or component of the system as it is computed.
This definition is addressed to those phases related to the simulated/computed activities. In this case each
Element Usage is directly related to one Element Occurrence. This concept reflects mainly the design pro-
cess from a bottom-up perspective. In this case the element characteristics reflect those coming from the
computing or simulation process. In this case the properties are inherited from the object not as a priori
defined (for example as in the case of Element Definition and consequently for the Element Usage) but
as computed. This object identifies a specification of a reference to a specific occurrence of an Element
Usage in a fully expanded tree of Element Definition and Element Usages. The identification of a particular
occurrence can be derived from the root Element Definition and the ordered list of the subtended Element
Usage references. The concept expressed with this object can be referred to the “deeply nested connec-
tor” definition in the context of OMG SysML v1.2.

Element Occurrence concept has been conceived to directly generate and identify all the possible instances
that can be present on a certain system, exploiting as much as possible the use of Element Usages and El-
ement Definition and their information, reducing the time required for the characterization of elements
already define.

For example if a motor-wheel has been defined (Element Definition) as the assembly of two Element Us-
ages: the motor and wheel (which in turn are Element Usages of the motor Element Definition and wheel
Element Definition), then six motor-wheel can be instantiated as Element Usages for the locomotion system
definition of a rover. In this case it is not necessary to redefine the contained elements within each motor-
wheel. The six motors and six wheels represent respectively the six Element Occurrence of the motor and
the six Element Occurrence of the wheel. Their generation (as Element Occurrence entities) is automatically
obtained through the information available from the Element Definition of the single motor-wheel (which
also contains the reference to the Element Usage contained).

The Element Occurrence class has been also been defined to take account for a better direct integration
with the data coming from the various disciplines. This object in fact can be used to properly related the
properties coming from the models already defined for certain elements and the information contained
within the main Element Definition entity. This approach partially follows the concept that can be identified
two main design "direction" during system development where an ideal model definition (by for example
the people working at system level) can be concurrently integrated with an already implemented model
(for example coming from structural design process). The main idea is to consider both such information
at the same time, providing an useful perspective to better manage and monitor the system design as the
development proceeds and the maturity level of architecture becomes more detailed.

A description of such concepts is reported with more details in other sections of the present work.

Element Realization

The Element Realization concept refers to the system element as realized. In this case the properties

(for example the mass properties) are not inherited from a conceptual definition (the related Element Def-
inition) but are obtained from a measure process for example. In this case the characteristics are typically
provided by a bottom-up process. In particular the object properties that is identified with the Element
Realization definition can be considered as measured. These properties and also other element character-
istics are those closer to the actual product. This class has been introduced within the conceptual model to
include the possibility that some design elements are already realized during the development phase. In
particular this object models those elements that are effectively produced at the time the design solutions
are evaluated. This situation can be encountered when some elements produced are reused and their def-
initions can be built from the available information still from the early development phases.
The conceptual basis of the present work are strictly dependent on the definitions just introduced since
they are correlated with the theoretical infrastructure on which the framework has been developed. Fig-
ure 6.1 can help to better understand the role of each class that has been considered, providing a better
explanation of the contexts with which such objects can be linked.

126

As designed |- ------ » Element Definition

Element As simulated f====== > Element Occurrence

As built p==-=-—-- > Element Realization

Figure 6.1: Summary of the elements conceptual classes and related modeling context.

The Element Usage class is not reported in figure 6.1 since the role of such concept is close to that cov-
ered by Element Definition. Both this classes are in fact related to the definition of an ideal model of the
system or components under development. They can be grouped within the context of defining an object
as designed, representing the theoretical target towards which the final design is addressed.

Element properties

Another important feature to consider during the definition of element properties is related to the fact
that they can be differently managed on the basis of their relationships with parent object. In particular
the proposed infrastructure is based on the inheritance of all the possible properties from the Element Def-
inition to the related Element Usage but not all such quantities can be handled in such a way. For example
some properties as the mass can be directly inherited from the Element Definition to the Element Usage.
In this manner once the mass is defined within the Element Definition then the Element Usage must have
the same mass. If that is not still true it means in fact that the a new Element Definition is needed to define
the related Element Usage. Not all the properties are defined in such way since some quantities are not
directly inherited from the Element Definition type but they depend on the specific instance of the Element
Usage. This case allows to model all such properties that can be related to a specific element but are not
directly derived from the corresponding Element Definition. An example of such entities is represented for
example by the vector position of an element that defines the position within the parent element (geo-
metric position or center of gravity position) and it cannot be derived from the related Element Definition.
This property in fact changes among Element Usages that have the same Element Definition since it de-
pends on the relative position within the parent. Such example shows how not all properties belonging to
an object instance can be derived from the Element Definition but they are however fundamental to fully
characterize the element.

6.3 Conceptual framework philosophy

In the next sections the main features of the proposed conceptual infrastructure are provided, focusing
in particular on the relations between the concepts and actual objects. Framework philosophy is funda-
mental for the correct definition of the involved concepts and the formal descriptions of the elements in
the previous lines is then used to clearly formulate the overall methodology. A clear formalization of such
terms must not be undervalued since often different people work together on the same project and the
same word has different meanings with respect to the person that is currently using it. Such situation
could be the starting point for a set of problems and misunderstandings that can arise in other phases. It
is important not just the definitions themselves as the fact that they must be globally recognized as shared
definitions.

127

Veded CUTILCppLual 11iICTid™iiivuct Ul UUIT pPIVpPUOTU TTITUHIVUWUVIVSY

The main core of the conceptual architecture of the current work has been developed starting from the
definitions, the classes and their relationships available from the current ESA standard ECSS. In particular
the ECSS-E-TM-10-25A and ECSS-E-TM-10-21A technical memoranda have been considered as reference
for the overall evaluation of the current methodology and the related integration. All the formal defini-
tions used in the current work can be found within these technical guidelines. Some of the considered
concepts are well explained and described in the following sections. This brief introduction allow to better
understand the overall methodology and the choices concerning the development environment.

An important phase during this study was represented first of all by a deep analysis of the current design
methodologies with particular attention to the people, processes and tools involved (as already underlined
by the previous consideration regarding the different resources involved within a system design develop-
ment). The correct characterization of the people involved within a certain process, the skills required to
obtain a particular result and also the tools that can be developed to reach certain objective are all funda-
mental activity for the right generation of a useful solution. The generation of something that can even be
a powerful tool but it is not well suited for the people that have to use this one (for example because the
time required for the training is too long), is not a smart choice.

An important phase of this study was then devoted to a clear understanding of the process involved in the
system design before a methodology and tool was proposed and analyzed. This process has been char-
acterized by a series of alternative approaches for the integration of MBSE methodologies within design
process, indirectly considering also the actual implementation of such approaches with a correspondent
tools interfacing (since it is also important to understand the actual feasibility of the proposed approach).
This analysis allow also to define which person accesses which resources, considering that different do-
main roles are involved on the same project but not all have the same access credentials to edit or delete
something.

The following phase was represented by formalization of the meta-model structure on the basis of the ini-
tial considerations of this study and the main characteristics of the modeling architecture. The modeling
environment plays a key role in the definition of the main features of the proposed analysis framework
since it defines how all data and information are stored and exchanged. The conceptual formulation for
the integration between a modeling context (directly related to the representative definition of the sys-
tem) and analysis capabilities (related in particular to the feature provided by external solvers) requires
first of all a clear understanding of the modeling meta-model. The meta-model integration with the con-
cepts coming from the proposed analysis perspective has been introduced once the modeling conceptual
architecture has been evaluated. One of the principal activity was represented by the evaluation about the
feasibility of such integration, identifying also the potential improvements that such approach can directly
introduce within a design process. The objective is to understand in fact if the proposed methodology
can actually provide tools and services that support the work of engineers with different backgrounds but
working on the same project. It is fundamental to understand how, where and when such MBSE approach
can be integrated during the development process, avoiding the definition of a framework that is not easy
to manage and that is completely away from the well rooted approach that characterizes the traditional
design phases. The idea is to provide a conceptual model that allows the definition of a flexible environ-
ment for the investigation of design process, integrating some capabilities such as the set-up of models
simulation and analysis.

The implementation of the conceptual elements starts from the meta-model that characterizes the rep-
resentative definition of system and additional objects and classes are then added with the final purpose
to manage the various scenarios that have been considered in the first part of this work. The objective
pursued with such a study is the demonstration of the capability to manage the scenarios defined as ref-
erence cases to evaluate framework effectiveness, showing how the proposed methodology can face real
engineering issues. The previously example scenarios are in fact modeled considering real design situa-
tions, exploring in particular some of the possible configurations that can be evaluated within a project.
First of all the definition of meta-model concepts has been characterized by the introduction and definition
of classes to integrate with the ones mainly related to “representative” model of the system. Within this

128

l Desired system design

l Desired system design

I Current system design
I Current system design

Time
Figure 6.2: Conceptual relationships between the modeling activity for desired and actual system design.

context classes for the definition of analyses, simulations and the related code runs has been introduced to
proper manage the integration with the already defined classes. The overall architecture of such concep-
tual formalization is based not only on the definition of the involved classes but also on the relationships
that link each other. The proposed definitions have also the purpose to cover the majority of the current
domain-specific design processes with eventually minor changes in certain specific cases. The proposed
methodology shows interesting behavior with respect to the formalization of design processes, providing
useful base for the standardization of the information collected from different domain-specific environ-
ments (with greater emphasis on those that are characterized by analysis activities).

The design process follows the conceptual approach proposed and under evaluation concurrently with the
modeling framework which main features are represented briefly in figure 6.2.

A desired system design represents generally the target of modeling and analysis activities and as the

development process proceeds the gap with the actual design decreases. The initial desired system design
may not totally match with final one since during project evolution some requirements and customer needs
may slightly change. Similarly some problems may come out as the system design becomes more detailed
and a configuration modification is required to satisfy other boundary constraints. At the same time the
current design can be considered as a constant evolution towards the requirements and specification that
are modeled on the basis of the desired behavior for the overall product. This perspective can be related
to a top-down view for the definition of the desired design and a bottom-up approach that shows the
actual design. In this manner it is also possible to better figure out the main roles of all the people working
on the same project. In particular system engineers are often involved on the phases as the definition
of design solutions (which still need to be analyzed for example) while other domain-specific engineers
are responsible for the implemented models (with analysts role). This conceptual division should not be
understood in the strict sense since also analysts may propose design alternative solutions (in the case
some requirements are not satisfied) for example. In the same manner also system engineers may be
involved directly in specific modeling activities.
In this way the proposed methodology try to clear define the boundaries between the activities that studies
and propose a solutions and those that are instead devoted to the verification of such choices on the basis of
the implemented models and analysis. These concept are partially visible in the structure of the proposed
framework and meta-model classes. The main idea is to clearly highlight the fact that there is a desired
system design (associated with the central system model and managed within the main system repository)
and a current system design (associated in this case to the analysis that are under development as other
domain specific models which are instead managed in the related domain specific repository). This frame
allows to organize all the information in a better way, providing useful instruments to compare the actual
completion level (on the basis of a shared development schedule for example) and identifying at the same
time the areas that need more resources.

129

Vedoela Alidiyolo allu ofiiivialivil rrfcia®iiivuct LUIiLcpyLw

Some efforts of the present work have been addressed towards the definition and formalization of such
object needed for the integration of analysis and simulation concepts within the modeling framework. As
in the previous sections a conceptual analysis has been done for the identification of the required objects,
their attributes and methods. In particular the approach proposed has been developed considering some
of the inputs available from actual engineering design problems. This analysis has tried to figure out what
activities cover a fundamental role during such design processes, identifying all the elements that can be
recognized as common. Once a list of common elements has been defined the following activity has been
addressed to the description of the concepts that allow to formally represent the cases considered initially.
This reverse process has been done to understand if the data structure and meta-model classes are prop-
erly representative for problems similar to those considered as starting point for the proposed framework.
The proposed approach for the management of analysis and simulation starts from the definition within
the meta-model of two different objects with two different purposes. This difference has been introduced
to properly manage the references to files and resources involved during the design process, above all
with particular attention to the amount of data that must be processed in the more detailed phases. This
feature is mainly related to the choice of store files on server side or properly map their links (file-system
paths about the related resources). Whichever approach is chosen is important to understand that this
one is strictly related to the following implementation for the files storing and resources links (for example
in the case some results files need to be committed).

The previously consideration are particularly important for the implementation of a multidisciplinary sur-
vey that in fact requires a well-defined simulation environments to properly manage the available infor-
mation and to run without problems. The formalization of such process must be clearly described since it
represents a key-role element for the framework under evaluation.

The considered integration about simulation environments and modeling framework has been conceived
to support the design activities from system perspective with the capability to provide such service with
a web-based architecture. This capability should not be confused with similar multi-domain simulation
environments conceived to bound different simulator on different machines (distributed on a network)
as for example HLA (high-level architecture) or other similar protocols. This one is in particular a general
purpose architecture for distributed computer simulation systems and using such protocol, computer sim-
ulations can interact between each other with no restrictions on the computing platform used. The overall
interaction is managed through the Run Time Infrastructure (RTI) and all the involved simulations must
however follow the pattern specified by the protocol itself. In this way all the computer simulations can
communicate and all the executions are called in the right order on the basis of a synchronized process.
This simulation integration requires however that all the involved codes are already built and updated to
HLA protocol and for this reason it is not well suited for the management of models that are continuously
changing (as in the case of design process). HLA represents a good choice for the integration of simulations
already validated and working across computer platforms and in particular when a network communica-
tion between the various models is required. The design process is often characterized by models not fully
implemented with respect to some aspects and a more flexible approach for the integration of simulations
represents a good solution.

Meta-models includes also the definitions about the operative modes and scenarios regarding the system
under development but they are not directly considered within the conceptual classes for the simulation
set-up. At the end all the concepts and meta-model formulations have been used to implement the fea-
tures related to the modeling framework but a more detailed description of the framework developed
are reported in the next sections. The main purpose is in fact to evaluate the correctness and effective-
ness about the main modeling and design conceptual architecture. From this viewpoint the developed
framework should be considered as a demonstrator for the model-based methodology currently under
investigation.

130

GCUINLTPL 11U OUICTh Tooarcn mitiativeo

Both OCDT and VSD projects approached the conceptual definition related to analysis and simulation
also if but they introduced classes and concepts slightly different from each other. In particular OCDT
initiative considers the concept of Rule, Iteration (strictly related to Concurrent Design Facility), Relation,
Parametric Constraint, Option and Design Method. The iteration concept in this case is strictly related to
the feasibility and trade-off studies that are performed within the context of Concurrent Design Facility.
In this context it represents an iteration in the process of developing an engineering model. Rule and re-
lation have been mainly conceived to specify the relationships between categorizable things within the
data model. The parametric constraint class is instead designed to specify a relation that consists of a pa-
rameter (that acts as variable), a relational operator and a value through equality or inequality constraint.
The option class represents a potential design solution for the system of interest. It is basically a design
alternative that can be compared with other ones to perform trade analyses for example. This concept is
basically conceived to collect options at system level and it is not mainly conceived to model options at a
lower level. Conceptually the design options are not so easy managed as the system complexity increase
with this approach. Options trade-offs can in fact involve design activities with elements at a more low
level (component level for example) during the detailed phases of a project. Under these conditions the
management of different low level options can become more difficult to control and correctly perform. The
methodology proposed in the current work approaches such problem in a different manner introducing a
slightly different conceptual definition. In particular a more detailed overview will be provided in the next
sections.

The main concepts related to analysis and simulation that are coming from Virtual Spacecraft Design project
(already introduced in the first part) can be summarized in the following ones: Analysis Execution, Anal-
ysis Design, Analysis Model, Analysis Run, Analysis, Analysis Case and Analysis Result. They are currently
implemented within the infrastructure that arise from VSD research initiative and are used to validate the
related data model.

In both cases, considering in particular the initiatives related to VSD and OCDT projects, the previously
introduced concepts are not fully validated and they are currently under investigation to understand the
possible improvements with respect to actual engineering project.

6.3.3 Design Variables main conceptual definition

One of the most important feature of the integration of design variables within the modeling and analy-
sis tool is represented by the correct definition of such elements. Such process must be supported by a well
formalized conceptual meta-model for the design variables. The related class has been defined considering
mainly the sizing and design process where such object have to be inserted. Starting from this perspective
the main attributes are identified and included within the definition. In particular the variable properties
selected in the context of the proposed methodology are represented by the name, the description, the
type and the features related to this one. Other attributes as the nominal value and the possibility to con-
sider such object as operational or not for the analysis to be considered. In the case of closed variability for
the design variable under evaluation the related value chosen can be directly represented by the nominal
one.

The purpose of the attribute related to the operational status of the design variable under consideration
has been introduced to provide the capability to choose if certain design variable is however under eval-
uation or of it can be managed properly for the definition of a particular survey (trade-off, optimization,
uncertainty quantification, etc.). This attribute in particular can be denoted with ACTIVE attribute, refer-
ring directly to its status in this way. This property can be managed for example through a Boolean value
that allows to understand if the parent design variable is currently under evaluation or if the related value
has been fixed on the basis of the already done analysis. The idea that has animated such a choice is repre-
sented by the advantages to introduce an object for the monitoring of the open design variables. The main
benefit is also represented by the possibility to proper trace the changes for the single design variable.

The name and description attributes do not require particular explanation about their meaning in the con-

131

- Element Definition Design Variables - Element Usage - Design Variable
Creation Definition Instantiation Specialization

/ \ (Element Usage)

nominal value
modification

nominal value

1 1
1 1
1 1
1 1
1 1
|- description - - 1
| 1
| 1
| 1
| 1
1 1

range range

modification

type

Figure 6.3: Conceptual view of an example definition process related to design variables.

text of design variable. The type attribute has been conceived to better manage the possible automated
processing once a simulation tool is integrated. Specific range settings and further elements can be in-
troduced starting from the type definition, reducing the possibility to introduced erroneous information
and improving the design process formalization at the same time. For example once the design variable
as been defined as continuous then a maximum and minimum values will be provided to define the range
the parameter belongs to. In the same way can be managed discrete variable, enumeration ranges or sta-
tistical parameters. The nominal value is instead introduced to guide the settings for potential surveys (as
initial value) but also for example to store the value coming from analysis once this one has been formally
fixed.

For the same Element Definition it is possible to access different classes of design variables which introduc-
tion will be better understood with the following examples and scenarios considered as reference cases.
The current meta-model formalization considers three main categories for design variables. In particular
within the same Element Definition component it is possible to define one or more individual design vari-
ables, one or more groups of design alternatives and one or more groups of design options.

Alternatives group stands for a set of solutions/configurations that are mutually exclusive between each
other while Options group identifies a series of objects that are not mutually exclusive between each other.
This conceptual classification is the one used in all the present work. Both alternatives and options group
are mainly conceived to manage physical components inside parent one as will be better explained in fol-
lowing examples referring to real problems.

A conceptual flow for the modeling activities related to design variables is reported in figure 6.3.

The figure conceptually illustrates an example of process flow for entering individual design variable
within a specific Element Definition. The design variables definition can be done as all the other available
activities in the context of the just created object. Name, description and type attributes are defined in
this moment and are available as main characteristics for the Element Usage that are instantiated from
this object. Nominal and range attributes are also defined in the same operation but they are treated
differently since they can be modified once the Element Usage has inherited the first inserted values. In
this way it is possible to model for example two element coming from the same Element Definition (and
in this way the same design variables) but with the capability to take two different range values. This fea-
ture allows to face design problems in a more flexible way, enhancing the possibility to configure object
conceptually the same but with slightly different boundary conditions. In particular the main idea in this
case is represented by the fact that the user is able to modify the range and nominal value independently
among various Element Usages that are all inherited from the same Element Definition. Once the nominal
value of the design variable has been introduced for the Element Definition then the Element Usages that
are instantiated from this one inherit the same nominal value but its change is not prevented since all the
Element Usage are independent between each other. In the case the design variable must assume the
same nominal value among the various Element Usages then such scenario must be modeled introducing

132

d SPYCUITIL COTIOLIAITILS 10U LHIT LOUTISIUCTITU UTOIETHT ValldICo. 11T LICITICTIC UoUyCo diT 1Tl 1dll ProposcuU do Ifi=
dependent elements a priori but future implementations may consider the possibility to directly impose
from Element Definition the fact that the nominal value of design variable is the same among the various
Element Usages. The proposed meta-model and the related methodology for the management of design
variables (conceived for the definition in the context of modeling environment) has been conceived to sup-
port the design phases of a system. For this reason is particularly important to clearly understand the role
of such capability and avoid the potential generation of a over detailed set of information. An excessive
amount of data must be avoided as a lack of information. The considered approach for the definition of
design variable has been conceived to improve the exchange of data between disciplines strictly involved
on correlated engineering problems. The main idea is based on the sharing of those design variables that
strictly affect the design of different disciplines at the same time, paving the way for the building of a mul-
tidisciplinary design environment. In this manner it is avoided the possibility to share design variables that
are strictly evaluated and investigated by a specific discipline. The classes defined with alternatives and op-
tions groups are introduced to better organize the available information in the context of design process.
Both these groups must formalize a set of possible solutions strictly related to a specific system aspect.
Options groups can conceptually be represented only by one set since the term options as intended do
not affect the other elements. They are in fact independent from each other and one group of options
for the individual Element Definition is enough to model own needs. The meta-model schema allows for
the definition of multiple options groups also for the same Element Definition since a clearer perspective
and a more structured representation Is provided in this way. A specific engineering domain can upload
their options groups separately from groups coming from other department, ensuring a more readable
representation of the information. In this way options groups can be organized and stored enhancing their
belonging to thermal or structural domain for example.

The alternatives and options management approach does not consider the introduction of constraints at
this level. Object constraints are defined separately from the design variables introduction procedure. This
phase has the main role to define all the possible solutions and combinations between the alternatives and
options groups introduced. Theoretically speaking all the data entered at this stage can represents a poten-
tial system configuration. The check about the correctness and feasibility of a specific variables arrange-
ment is made a posteriori evaluating the constraints that are defined in another section. The rules that
must be satisfied are evaluated through analyses and simulations of the system (or components) configu-
ration under investigation. In this way the main purpose is to clearly separate the creation and exploration
of design space from the constraints and requirements. The implementation of a priori determination of
which configurations are feasible may be more efficient but shows some integration difficulties at the same
time.

The Design Variable class may confused with the conceptual definition of another component property
since during the development process theoretically all the features related to a certain object can be con-
sidered as design parameters. For example the mass related to certain component can be defined in the
Element Definition object and then modified as design proceeds. Then this property can be defined as
a design variable (in the same manner also all the other Element Definition properties can be viewed as
design parameters) and for this reason the Design Variable class seems to be not properly correct in the
context of the proposed framework, since it must be considered as a duplication of information. The De-
sign Variable class has been mainly conceived to related the modeling framework with the multidisciplinary
design environment. Such class allows in fact to better formalize the characteristics of the parameters that
in this way can be integrated in the context of a analysis environment. The creation of component design
variable based on Design Variable class must be animated by the need to share such parameter with other
disciplines, paving the way for potential surveys that have to be done to assess specific investigations. At
the same time nothing prevents the possibility to associate a design variable defined in this way to a com-
ponent property previously defined. It is theoretically possible to substitute for example an optimal value
(found through proper assessments) if this value is directly related to a certain component property. Such
proposed approach has been introduced to clearly identify those design variables that are shared with
other disciplines in the context of a multidisciplinary environment.

From all the previous considerations the elaborated concepts are summarized in the metamodel scheme

133

DesignMethod

+constrained_values +design_methods
1.4 0.

VpValue

+variable_value
1

DesignVariable

+design_variable
0.1

+owned_design_variables |0.*

+owner |1

User

Figure 6.4: Metamodel association related to the Design Variable class.

and correlated with the other classes. In figure 6.4 is reported the section of the overall metamodel directly
related with the Design Variable class. In the same figure 6.4 is also possible to see the Design Method class
that will be however introduced in the following sections. In particular the association related to such class
is currently implemented in a slightly different manner, taking into account in fact the mapping between
the values available from the system model and the quantities of the design methods themselves.

6.3.4 Constraints and formulas management

A clear distinction between the concepts of verification methods and design methods must be done
before more detailed considerations are introduced about constraints and formulas. Verification meth-
ods are generally used to control the correctness of design solutions, monitoring the current status of the
project with respect to system requirements and specifications. Design methods are instead related to
the generation or computation of certain system properties or design solutions. Such methods are used
to support the design activities, providing useful instruments during the development process. They are
applied to evaluate design data or also suggest specific choice among a range of possible ones. In partic-
ular an example of design method can be represented by a simple rule of thumb that can be used in the
preliminary phases of a project to roughly evaluate an indicative behavior or value for a particular element.
This concept will be strictly related to the definition of formulas. The framework data model considers also
the definition of the two important concepts represented by the constraints and formulas formalization.
SysML language provides useful diagram to manage both these elements (Parametric diagrams) which are
basically considered at the same level. The definition of formulas or equations with SysML language can
start by the definition of Constraint block that allows binding some parameters in a certain manner. Some
model variables can be linked to such Constraint block once the related relationship has been defined. In
this way a SysML tool solver (for example ParaMagic, Cameo Simulation toolkit, ParaSolver, etc...) can try
to obtain the required values on the basis of the availability of inputs. In this case the solver itself tries
to correctly assign the causality of the involved variables, assuming that the formulated relationships and
available quantities lead to a well posed problem. In this context Constraints and Formulas concepts are
not so different entities and can be managed substantially in the same way.

The proposed approach and the related framework face such definitions in different manner since these
two objects are managed differently during design process also if they seem to be slightly similar. Con-
straints can be defined in a way similar to formulas, using basically the same semantics (number, operators,

134

CLL...) 10T LT Uchiirnition O LI ITidltU TAPICOOSI10T11S DUL UICTH TVdIUdUOI Tias UHTTITHIL PpUlrpousco.

Constraints are generally evaluated a posteriori after analyses have been done while formulas are mainly
used to evaluate something that is not known a priori. In particular formulas may be used to compute
variables to assess constraints satisfaction. Both these object can however be implemented using a script-
ing code to model the related relationships and expressions. The language used for this purposes can be
different as Modelica, MathML, etc... but the first one seems a well suited solution.

Constraint and formula expression more generally can contain algorithms implemented also with condi-
tional operator but simpler relationships can be considered without losing the capability to well represent
real problems. In this way the complexity level will depend on actual situations and specific needs. One
implementation difference is related to the fact that constraint element can contain operator like equality
or inequality sign while formula object is defined with equal sign. The evaluation of constraint element
should return a response about satisfaction or not on the basis of the available values (a third response
type can be related to the case where something is missing and the solver is not able to evaluate the related
expression, for example providing a warning).

Following such considerations the related concepts are properly formalized within the data model. A con-
straint definition element has been introduced with the related attributes and associations. Constraints
definition belongs to certain project and can be inserted and edited from an interface on the main page of
modeling environment. Future improvements will consider the possibility of a direct association of such
constraint element with the requirements. The single constraint is evaluated on user command and the
results from this check rise from the current available values for the properties linked with the expression
itself. In this manner the main idea is also to provide utilities to support the automated check of routine
activities. For example it will be implemented some capabilities as the automatic verification of all the
constraint related to the current project at the same time instead the verification of only one element at a
time.

The definition of Constraint class has been conceived with the main purpose to provide editing capabilities
for the code used to model the related expression/algorithm. The variables contained within the related
expression are then properly mapped to the properties values of Element Definition for example from
which maintain however an independent representation. In this way when a constraint is evaluated the
related variables are substituted in the expression with the value currently present on the latest version
of system model. The methods defined within constraint class are then also used to check for the cor-
rectness of the relationships, returning a feedback on the satisfaction or not on the basis of the available
data. Editing activities and updating of already defined constraints can also be done to manage such kind
of information. Constraint objects are defined as element belonging to project and not directly included
within the components of the system since in this way different bond can be used on the same component
in different project.

The definition of Formula concept is another important feature related to the design phase. Such concept
has been introduced mainly to manage the "rule of thumb" expressions that are often used in the early
phases of development. In particular this class has been introduced basically to model those expressions
that can be evaluated by an external solver in a short time. These objects will not be linked to a particu-
lar project since they offers functionalities that can be reused on other design processes while constraint
element are instead bounded to a certain system development (strictly dependent on the current require-
ments and needs). Such utility can also be implemented following the same definition of Constraints class
as the use of Modelica code to evaluate the related expression. Analogous results can also be obtained
through the use of JavaScript language with the advantages to load the required expression on client side,
reducing the latency due to server response. This last approach can also be used since the possible com-
putations are independent from the information collected from the server. They will be used mainly to
support simple design evaluations, providing instruments useful for the identification of values consistent
with the properties under development.

Formula concept must not be confused with a more generic capability that is natively embedded within
the web based environment since there are standard simple computations that are quite common across
different project (for example mass budget, power budget, etc...). The formulas that have been previously
introduced within a project are available to other ones since the idea is to collect such information in a

135

COMMTNON 1Cpositolny. 11CoC LWU LOTILTPLS TTTUSL DT LOTIGIUTTITU STPAldlCly SITILC LTICY diIT dUUIcooCU LU Lwo
different purposes. While one is used to compute directly a specific system property (mass budget for
example is used to evaluate the current state of the project with respect to mass property) the other is
used to evaluate an output value physically consistent with the specified inputs (for example a simple solar
array formula can be used to obtain different power outputs values on the basis of various array surface
extensions).

The main characteristic of the formula definition is represented by the fact that the expression implemen-
tation is not directly dependent on properties specific to a particular project. The formulas are defined
starting from a generic expression and then the related variables and parameters can be managed in dif-
ferent ways. The main idea is to evaluate formula outputs on inputs provided in different manner:

¢ Inputs defined through mapping directly with system model properties.
¢ Inputs defined through user provided values.
¢ Inputs defined both with mapping of system model properties that through user defined values.

The correct interpretation of the code content and then the identification of algorithm/expression are
based on the right parsing of the script itself.
The constraint object is basically introduced to check the possible violation of user defined relationships
between numeric values associated to system components properties. The main idea is to return only a
Boolean response on the evaluation of constraint code with respect to the values passed as arguments.
Such feature must be not confused with the results that can be provided by a simulation since the con-
straint verification requires only the evaluation of the correctness of the current values. A code similar to
that implemented within a constraint can also be used to provide the result of a specific simulation item but
in this case the final purpose is quite different. For example a Modelica code can be used to build a simple
rule of thumb for the evaluation of some particular property in the preliminary phases and the same code
structure can equivalently be used to define a certain constraint. The two concepts must remain separated
since even if a similar Modelica code is used for simulations with low fidelity level in the first case, such
code is however related to a simulation item.
Currently the constraint verification has been conceived to evaluate static variables through their substi-
tution with the mapped parameters of related algorithm but more complex investigation can further be
added in the future (for example considering the evaluation of constraints involving variables that comes
from dynamical simulations). The required value for the evaluation of constraint are ideally all available
from the system model but further development can include also the evaluation of parameters that de-
pend on the run of external simulations. Such situation comes out when some of the required variables
are provided by the run of a simulation item directly linked with the mapped property.
Design and dimensioning processes are often supported by simple formulas and rules of thumb that are
used to rapidly give a preliminary idea and an indicative value of a particular quantity. This situation has
been considered and the related concepts formalized at data structure level, providing another interesting
feature with the definition of a specific class. In this manner simple functions and formulas can be shared
among the people involved in a project and can be uploaded through a dedicated interface once a certain
expression is not found. A library of related formulas can then be populated as an increasing amount of
actors are involved in the process, reducing the time required to redefine expressions already uploaded
and improving also the knowledge and information infrastructure.
The objects formalized basically as formulas are not bounded a project with reference to the relation-
ships defined within the data structure. In this way such elements can be managed independently across
projects providing useful capabilities that can be shared avoiding also the time consuming process of re-
invent something that has been already defined. The same expression can be so used into another context
mapping another set of component properties. A formula evaluation has been conceived to be mapped
both to values already defined within the system as also through user-provided quantities not directly re-
lated to the that contained within the project (for example with the final aim to investigate the possible
results of certain input). The correct evaluation of formulas code is obtained through a parsing of the con-
tained information, providing the filed for the set up of the available input.

136

Black-box Solving code

Satellite operating time

capacity specific impulse

Figure 6.5: Conceptual view of properties estimation approaches.

An example about the main approaches that can be considered for the management of properties evalua-
tion is reported in figure 6.5. In particular an example referred to the estimation of operating time property
of satellite is reported highlighting the dependencies with respect to the properties of contained elements
(tank capacity and thruster specific impulse in this particular case).

The concept of formula has been basically formalized in the class Design Method and all the previous
considerations remain valid. The Design Method objects are used to model all such formulas and equa-
tions (including also the functions used to define the available "Rules of thumb") that are used to compute
some specific values or properties. A set of values can be linked to a design method through a mapping
between the related quantities (the corresponding ones available within the design method expression).
In this way the design method remains an object "independent" from the values loaded within the model
and it can be reused in other scenarios/components. The relationships between the actual properties and
the corresponding "positions" within the design method is stored through the mapping object. The design
methods have been conceived for the fact that they are used to run the computation of a certain values as
output (it can be used to compute one or more output but it must be checked that the a certain value that
is output from a design method belongs only to one method at time to avoid potential conflicts) and then
they can be directly loaded/stored within the system model or not, depending for example on the user
choice. During the development phases one or more input variables of a design method can change and
the updating of the computed output values can be managed through different approaches. The update
can be automatic on the input variables change or more properly controlled by the user through a user in
the loop check. The final solution depends on implementation purposes but does not affect the main fea-
tures of the conceptual model considered. The core computation associated to the Design Method can be
implemented following different alternatives. If the computations are not so demanding they can be done
through a Modelica based code (for example implemented with the algorithm section available) directly
storable within the object itself. There are however no limitations on the fact that for complex computa-
tions are done through executables or external codes directly linkable to the Design Method class with the
Resource object. In the same way also the Constraint class can be managed with complex codes through
external resources.

With respect to the object Constraint previously introduced, the mapping mechanism is the same as for
Design Method but their scope is quite different. In the case of Constraint object the mapped values are
connected with the final aim to verify the correctness of the constraint rule. In particular the relate con-
straint rule is evaluated through the provided values and properties and it only checks if the expression is
satisfied with no aim to generate an output to load or substitute with another one in the system model.

137

L Udolildlly LOINITLLS LTIC TUlTnicriiCdl vaiuco 1TidppclU WILTTE LTIT QUdTILILICS COTILATITU Wwithinl Lnic CLOsudiric dliid
evaluated the expression itself. The result of such investigation will be the satisfaction or not of the rule
considered.

It is generally possible that the evaluation of the quantities that must be provided to the constraint rule de-
pends on design methods. Such event is foresees and happens for example when a certain quantity linked
with the constraint is in turn an output variable that must be computed through a design method. In this
case the computation of the constraint must pass first across the evaluation of all the quantities needed
before the final investigation of correctness of the rule.

The concepts of Function Model and Design Method (more details are available in the appendices) show
similar features that in certain cases can also overlap but they are basically conceived to model two differ-
ent situations. In the case of Function Model the main aim is represented by the evaluation of system (but
the same concepts applies also to subsystem or the individual components) behavior on the basis of the
available data from the system model. In this case there no limitations on the fact that some properties or
variables result from the related computations/simulations. The final scope is to simulate the response of
the system and not the direct computation of quantities that can be used within the design itself. The Func-
tion Model wants only to show how a specific object (system, subsystem or component does not matter)
behaves with no primary attention on the evaluation of specific properties. On the other hand the Design
Method object has the main purpose to compute one or more design variables or properties. In this case
the attention is not directly addressed towards the assessment of an object behavior but mainly on the
computation of one or more specific elements. Such result can however be considered as a specific case
of the behavior of a certain element (system, subsystem or components does not matter), and from this
viewpoint similar to the scope of Function Model, but the conceptual reasons that animate the definition
of such two concepts are considered different within the current work. The Design Method class reflect the
need of dimensioning relations and rules while the Function Model class show how an element behaves.
Some example can help to clarify such distinction.

The computation for example of the thickness of a structural panel is provided by a rule of thumb based
on the height and width of the panel itself (taking into account preliminary dynamic considerations of the
panel behavior). In this case such relationship that links some properties of the panel can be model through
a Design Method. The evaluation of the stresses and deformations of a certain panel when loaded with
external forces can be pursued through a Function Model that shows how the system under evaluation
behaves. Such computation does not directly generate values or data that can be stored within the sys-
tem model but there is not limitations on such possibility. The computation of a satellite autonomy can
potentially be included within both the Design Method as well as the Function Model. In this example in
fact the autonomy can be evaluated as a property and then stored within the system model but at the
same time can be seen as something directly representing the behavior of the system. In some cases both
definitions can overlap but it is however important to distinguish such objects since they refer to situations
conceptually different. An example of Constraint class is less "overlapping" with the previous ones and a
simple case can be represented by a constraint on mass value for the allowable launch limit.

A design method can be seen as a particular case of a constraint where the relation is always true since
the related output are computed directly through the relation itself on the basis of the available input. In
particular the relation can be implemented exploiting the capabilities of Modelica language and with an
object oriented approach. In this case the output and input are not known before the computation has
been executed and the causality of the involved quantities is explicitly resolved with the code run. Other
functions or equations can however be considered where the causality of the related quantities is already
known before the execution of the code. In this case the input and output of the expression are clearly
defined when the relation is created. In both cases the common feature is represented by the fact that the
relation is used to obtain one or more quantities on the basis of available values, independently of the fact
that the causality of such quantities is known or not. Such aspect is mainly related to the actual implemen-
tation of the code and more generally it is also not ensured that the available data allow to compute the
desired quantities.

In the case of constraints instead the expression is not resolved to compute one or more input but only to
establish if the relation is true or not. In this case the expression is not necessarily true as in the case of a

138

) ! A +contained_design_options
+design_options_container |1 L _design_opt
- - +haseline_ttems

0.* +haseline_iterm_options |0..* 0.*
EngineeringDataltem DesignOption
+optional_tems |1..* +optional_tem_options |0..*

Figure 6.6: Conceptual overview of the meta-model main relationships related to the Design Option class.

design method.

The Design Method class must not be confused with the definition of Verification Method class. The first
object is strictly related with the generation of design solutions and provides values with respect to certain
properties/objects for example. In the second case instead the Verification Method describes basically how
are defined the methods that check the correctness of the design choices.

6.3.5 Options and alternatives management

The management of design variables (including with this definition also the options that can be consid-
ered during certain design phase and that for example are under evaluation) can be approached in different
manners and some of the most current methods have been introduced previously on the state of the art
section. In the present work options and alternatives are handled differently with respect to the solutions
considered within similar analyses (briefly introduced in the sections above). In particular new classes are
defined to exploit the model based approach for such aspect and the related concepts are presented in
the following. The proposed solution for the management of the design variables is represented by the
definition of the concepts of Options Group. This object represents a set of options that are related to the
definition of certain design variable. Different options groups are theoretically conceived as independent
between each other. Two different options groups are referred to two different and theoretically indepen-
dent design variables. Potential constraints between two different options groups can be implemented
through the definition of constraints class that can be derived from requirements objects. In this man-
ner it is possible to model and capture the design constraints between different design variables but such
constraint objects have to be theoretically introduced. The Options Group class strictly depends on the
definition of another concepts that has been defined as the Design Option object. Such element is used to
define the set of the specific option/alternative that can be associated to a particular object. A conceptual
overview of the related associations are reported in figure 6.6.

In the proposed infrastructure the individual Design Option is contained at least within an Engineering
Data Item since more generally when an option/alternative is defined it always belongs to a father object.
At the same time the Engineering Data Item can contains zero or an undefined number of design options.
A Design Option collects one or more optional items that can be represented by Engineering Data Items.
In the same association an optional Engineering Data Item can be linked to zero or more than one Design
Options since it can basically appears in more than one option/alternative. A specific Design Option can
contains or not a set of baseline items, represented by Engineering Data Items, that represents the nom-
inal configuration for the current baseline of the project. In the first case the class refers to the concept
of alternative while in the second one it is addressed towards the representation of the optional items. In
fact when an individual Design Option does not have an associated set of baseline items this means that
the related objects are not alternative to another set of elements but they are more properly a collection

139

Design Option #1

Design Option #2

Options Group #1

Design Option #3

Options Group #2

. . Design Option #4
Engineering Data ltem #1 esign Uption

Design Option #5

Figure 6.7: Example instantiation of Engineering Data Item, Options Group and Design Option objects.

of optional components. The distinction used in the current work between the "alternative" definition and
"option" one is provided in the previous section on taxonomy. The same association allows also to know
which Design Options are associated to a certain Engineering Design Item (as can be seen in the other di-
rection of the association).

The Options Group concepts introduced in the initial part of this section gains importance when an evalua-
tion of different design solutions must be considered. In this case the investigation of system performances
is based on the correct understanding of which items are correlated and which not. It is possible in fact
that some baseline items are common between two different design options and in this case they cannot
be considered separately. The presence of such kind of overlap between design elements does not allow
to manage independently these objects. It is important then to understand which objects can be managed
separately, allowing an effective definition of the overall design space. In particular it is assumed that an
Options Group represents a collection where the individual elements can be considered as a design vari-
able. In this way when an analysis is performed each Options Group contains a set of possible "values"
represented by various Design Options. From this point of view it can be seen as a useful object to clearly
define the set of groups that must be properly processed during an analysis of system capabilities. Other
strategies can however be considered for the management of the information available from the proposed
model-based infrastructure. The Options Group class has been mainly conceived to take into account the
possibility to set-up automatic or partially automatic methodologies for the investigation of system per-
formances. Such aspect is however strictly related to the actual implementation of the code and more
details will be provided in the following chapter. Summarizing it is possible to say that an Options Group
identifies a collection of one or more Design Options that point to the identical set of baseline items while
the same Engineering Data Item can contain a collection of Design Groups. An example instantiation of
such structure is conceptually represented in figure 6.7.

In this way each Option Group can be assimilated to a design variable that can assume the "values"
represented by the contained Design Options (they "virtually" cover the range of the possible solutions
with respect to a specific baseline configuration). In the same manner it is also possible to distinguish
between a group of alternative (pointing to a baseline set) and groups of options.

The developed definition has been conceived to include not only the optional or alternative items from the
physical or topological perspective. The introduced concepts are in fact defined from a more general point
of view. In this manner optional or alternative choices can also be considered for other items types, such
for example the activities, scenarios or functional items. The main definition is directly built in fact from
associations with the basic Engineering Data Item (more details about the Engineering Data Item class are
provided in the appendices).

The conceptual definitions considered does not limit the creation of optional or alternative elements that
contains on their own alternative or optional objects. Such situation is foreseen in the metamodel since the

140

Design Option #1

Z/ Design Option #2

Options Group #1

Design Option #3

Options Group #2 §

Engineering Data Item #1 Design Option #4 Contained

design options

: Design Option #5
s | b—— e
L]

T i

i 1

1

Contained design options : i 1 | I
E Design Option #N !

i :

LN

-

Figure 6.8: Conceptual representation of a scenario representing the definition of optional/alternative ob-
jects of other optional/alternative elements.

Engineering Data Items that are defined as the optional/alternative elements for baseline ones can contain
Design Options since such possibility is not constrained, as can be seen from the conceptual model. In figure
6.8 a simple representation of such situation is reported for the sake of clarity.

Once the representation of the system options and alternatives is defined the management of such
information can be approached considering different strategies (their choice depends often on the actual
solution that will be implemented). In particular such data are used to properly generate the possible
combinations that can be associated with the product itself. Such operation must also be evaluated in
two different contexts. In the first case the generation of the combinations can involve the same level of
detail for the object, providing the possible combination for the same hierarchical level. In the second one
the combinations are instead generated considering also different hierarchical levels, paving the way for
the generation of the alternatives tree of a specific product. The related analyses must take into account
the possibility that some baseline elements are common among different Options Group, highlighting some
overlapping of the involved objects. Itis important to underline that the Design Option class is defined con-
ceptually in the metamodel but the related objects can be directly captured from the information available
with Design Options and associated Engineering Data Items. From this view point they are not necessarily
implemented within the platform but are however used to manage the analyses of alternative configura-
tions of the product.

In the case that two Option Groups have no common elements in the set of baseline items then the num-
ber of the overall combinations between such two groups is represented by the product of the number
of alternative contained within each collection. In the case instead the two Option Groups have at least
one common element from the related baseline items then such two collection are not independent and
the number of the overall combinations is represented by the sum of the related alternatives. In the ac-
tual implementation of the strategy for the management of product combinations the possible solutions
are different. A possible choice is represented by the evaluation of all Option Groups assumed at first as
independent design variable and each combination will be investigated to find overlapping objects. If one
combination show at least two set of baseline items (the two corresponding to the related Option Groups
under evaluation) that overlap (with at least only one object), then the overall combination can be high-
lighted with a warning.

The same representation scheme of alternatives/options can be used to properly generate the alterna-
tive tree when there are more than one level of nested Design Options. The available information can

141

| Element Definition #2

Baseline item
Design Group #2

1
1
Design Option #3 Design Option #4 Design Option #5 |}
1
1

Element type

B Design Group #1 l

1% level ==

Element Usage #1

p— Design Group #2

2 |eye| — Design Option #3 Design Option #4 Design Option #5

Element Definition #1

/\
1
]
I
;

Design Option #1 Design Option #2 Element Usage #1
~
’\\‘
\\‘
~,
\“\
\\\
"
Vv Sy
Design Option #3 Design Option #4 Design Option #5

Figure 6.9: Simplified example of the alternatives/options representation on different nested levels.

be used in fact to set up the overall possible solution across the hierarchical decomposition of a product.
For example if an Element Usage contained within an Element Definition represents one of the possible
alternatives of a Design Group for the Element Definition itself, and the same Element Usage points to its
Element Definition (which defines its type) which contains in turn other Option Groups (and their related
Design Options), then such information can be explicitly represented. Starting in fact from the root ele-
ment it is possible to iterate over the baseline elements and associated alternative solutions to identify
the overall nested combinations. Considering the previous example such process is driven by the fact that
accessing each Element Usage it is possible to clearly identify the contained Design Options thanks to the
connection with the corresponding Element Definition (figure 6.9 briefly represents a simplified example
of such connection).

The Baseline class has been defined to conceptually store all the items that represent the current status
of the system under development. In particular it contains the Engineering Data Items that define the sys-
tem, considering also the nominal items that are included within a Design Option. Not all the Engineering
Data Items are defined to belong to a specific Baseline since there is the possibility that a set of objects are
contained within the Project class (which in turn contains the Baseline). In this manner some objects can

142

a3

Figure 6.10: One of the reference cases considered for properties/options management.

be defined within a Project class without necessarily belong to a specific Baseline. This approach allows to
create items that can be used as alternatives/options for a specific Design Option without directly affecting
the structure of the baseline itself.

6.3.6 Scenario types

The definition of the approach for the management of design variables has been developed starting
from the analysis of a certain set of the possible design cases and actual examples that can be found during
the development phase of a project. The conceptual characterization of such methodology has been done
concurrently to the investigation of some examples cases with the final aim to assess the correctness of
the proposed pattern. Iterating on the proposed solution and example cases has allowed to identify and
correct the conceptual model. During this phase the main objective is to assess how the concepts seem
to be well suited for capturing the actual design cases (once certain situations have been badly managed
then the conceptual model has been modified to take into account such condition). Some of these design
cases are reported in the following section, supported by the definition of examples to better represent
the related situation.

Figure 6.10 represents the case where an Element Definition A contains two Element Usage. In the
first configuration the object B is an Element Usage that comes from an Element Definition that is different
from the Element Definition from which is defined the Element Usage D. Also the element Cis an Element
Usage but it is not characterized by an alternative solution. In this case the object B and D is assumed to
belong to the same Option Group because in this representative case it is assumed that both represent a
design variable. Actual situation can be represented by a motor-wheel assembly (the Element Definition)
that contain a wheel that is defined an it is not a design variable (the Element Usage C). On the other side
for this design level the configuration has not been closed for the definition of the element A but two pos-
sible solutions for the motor type have to be evaluated. The options for the motor type are represented by
the motor B (i.e. the Element Usage B) or motor D (i.e. the Element Usage D), respectively “instantiated”
from an Element Definition for the motor of type B and Element Definition for the motor type D.

This example further enhances the fact that one Option Group is uniquely related to one design variable,
i.e. one element that must to be evaluated (for example through analyses).

The Concurrent Design Variable might contain several different Element Usages as it is defined (to model
the fact that certain virtual element can be associated to different alternative solutions). In this case the
Element Usages are not necessarily inherited from the same Element Definition (this depends on the fact
that the conceptual model allows for the management of the case where there is the need to model the
cardinality of some Element Usages coming from the same Element Definition) but they can be related to
different Element Definition theoretically. Their belonging to the same Element Definition is a special cases
that can however be encountered within a design process.

An Element Definition characterized by a particular Design Variable that is inherited on the related Ele-
ment Usages must allow to manage the associated parameters in a independent way. This means that two
or more Element Usages that are derived from the same Element Definition can manage the correspond-
ing Design Variable in a independent manner. The values related to this Design Variable can be different
between different Element Usages but belonging to the same Design Variable definition (since they are
derived for the same Element Definition) they have the same range, mean, variance, etc. They are inde-
pendent but share the same characteristics (belonging to the same Design Variable definition from the
Element Definition).

143

[E] N e

Figure 6.11: One of the reference cases considered for properties/options management.

Another possible case that can be found during the design phase is resumed in conceptual figure 6.11.

Figure 6.11 refers to the case where the Element Definition A contains a certain parameter that can
be still defined. In particular the object B can represents a certain design variable that is characteristic
for the Element Definition B. This object can represents for example an Engineering Data Item that can be
chosen and its value has not been still definitely taken for this level of development and it is still under
evaluation. This Engineering Data Item (also identifiable with the Concurrent Design Parameter from the
standard ECSS) is contained within an Option Group element to specify that this object represents a design
variable. This assignment allows to manage this element for possible further multidisciplinary analyses
since its belonging to trade space is formalized with the Option Group definition.

An actual example for this theoretical case can be represented by the case of a wheel element (the Ele-
ment Definition A) that contain the design parameter B representing the radius of the wheel itself. In this
case for example the range of variance of the wheel itself can be expressed as a continuous range between
two ends but also a discrete range can be considered. This depends on the particular design trade space
and all this information can be expressed for example within the Option Group element where the Design
Parameter is included also if this one exist within the Element Definition itself. In particular the proposed
methodology foresees the formal definition of an Option Group that link the design parameter within it but
the parameter itself exist before the definition of an Option Group since for example the radius parameter
exist for the wheel before also if an Option Group is not defined for the wheel (since for example the wheel
itself has fixed radius). The definition of Option Group is something additional to the current definition
of the element. The main idea of such an approach is related to the fact that the Option Group tell me
that some of the available features of such an element can be changed or tuned. This approach has been
implemented since it makes easy the reuse of already defined similar element. The wheel similar to the
one defined with a variable radius (i.e. that defined in the example just discussed) can be obtained starting
from the just defined one but eliminating the presence of the option group element.

The same Element Definition can potentially have multiple Design Variable objects and not all the com-
binations of the related alternatives (since all the Design Variables have been conceived as theoretically
independent objects) may represent a feasible design configuration or satisfy the requirements. The re-
guirements violations or infeasible solutions can be verified a posteriori (after the wrong combination as
been obtained/considered) through an automated process in the case of simple models or by the genera-
tion of a more complex analyses model (created from the domain specialist engineers). Both this investi-
gations are however analyses that can be done to verify the correctness of the design solution and must
be done a posteriori, also because it is more difficult to proceed in the inverse direction. Generally the
design process first defines a possible design solution and then verify through the analyses if that solution
is feasible. The last investigation requires a direct involvement of a domain specialist to build the model
needed for the analyses. The first type of investigation instead is characterized by a partial generation of
the models (that are simpler with respect to those generated in the second case) in automated way through
functions acting upon the available design data. Both cases can theoretically be considered as equivalent
instruments of analyses to verify the design but in the first case they are supported and generated more
quickly (theoretically without the direct presence of a domain specialist). Another case is expressed then
in figure 6.12.

An Element Definition A contains an Element Usage B that in turn contains a Current Design Parame-
ter C that can assume different values over a defined range. This actual case can be represented by the
motor-wheel assembly where the contained wheel can change its radius. This case however is a particular
condition that can be represented as special representation of the previous ones. The Element Usage B

144

Figure 6.13: One of the reference cases considered for properties/options management.

inherits the design parameter (the radius) since it is an instance of a certain Element Definition where the
radius has been defined as a design parameter. This example helps to enhance the fact that the Option
Group is defined for an Element Definition and all the Element Usage that are defined from this one all in-
herit the design variable/variables that are defined in the Element Definition itself. It is necessary to create
a new Element Definition if the design variable is not needed for certain elements.

Figure 6.13 represents the case where an Element Definition A contains a certain cardinality of some
Element Usages (B, C and D) that belongs to the same Element Definition (they are all instances of the same
Element Definition). In this case it is not important the range types for the Element Usages themselves that
can be discrete from two ends (one of which can also be the infinite) or represented by an enumeration.
An example of such case is a particular design context that can be encountered during the development
process but however it can represent very rare situation. An actual example can be represented by the
choice in the number of the motor-wheel assembly to be modeled within a certain design (for example
the locomotion system as our Element Definition A). In this case it is possible to choose three, four or six
motor-wheels assembly (the Element Usages denoted with the B, C and D notation) and all have the same
Element Definition.

The design process often is characterized by the fact that this choice on the number of the motor-wheels
assembly must be consistent with the number of power cables that have to be considered for the power
supply. In this case the consistency is not imposed on this implementation level but can be checked through
the use of proper function that can be introduced within the system model and that can be implemented
as constraints and obtained starting from the requirements. This helps to underlines the fact that at this
level the definition of element and their characteristics are not subject to analysis that are addressed to
another level of investigation (the check through functions that investigate for the consistency of the pro-
posed solutions represents however an analyses also if they are simple ones because launched and verified
still in automatic without the creation of related models and simulations).

The proposed conceptual definition for the design variable allows to manage particular cases where some
elements are strictly constrained about the cardinality of the involved element. This cases can be man-
aged without the definition of constraints between the objects involved. For example the number of im-
plemented motor may represent a design variable and its definition can be considered through the man-
agement of a group of Element Usages. This type of situations can be characterized by the fact that each
motor implies a corresponding wheel. This constraint not necessarily can be modeled with a proper defini-
tion but may be implemented indirectly defining an intermediate layer that is represented by an Element
Definition that includes the motor and wheel Element Usages and that it is globally identified as motor-
wheel assembly. In this manner each time the motor-wheel assembly "instantiate" a certain object then it
includes already the fact that one motor corresponds to one wheel.

The Design Variable object shall allow to define an empty element for the management for example of a
special case of cardinality where the absence of Element Usages can also be an optional solution. This case
is used to define design situations where it also foreseen the possibility that no Element Usage is needed

145

L

Figure 6.15: One of the reference cases considered for properties/options management.

from trade-off analyses. For example an exploration rover can considers the definition of the number of
battery element as design variable. In this case there is the possibility that the solar arrays are enough
to provide the required energy supply. Under these conditions the battery Element Usage can then be
represented by an empty object because they are not needed from the analyses. In this situation might
be useful to have defined the possibility that the design variable can be represented by an empty element.
The reference cases that can be considered for the conceptual definition can be represented also by the
figure 6.14.

In this case two Element Usages (inherited from two Element Definition) represent the options to other
two Element Usages since they can be strictly related and cannot be placed within the Element Definition
A without the corresponding Element Usage. This case allows to model the situation where two (or more)
Element Usages are correlated between each other. In particular the Element Usage B can be associated
to the Element Usage C and equivalently the Element Usage D must be associated with the Element Us-
age E. An example can be represented (in the motor-wheel context) by the situation where a motor of
type B can be associated only to a wheel of type C while a motor of type D can be related only to a mo-
tor of type E. This situation can be approached differently. An approach can be represented by the fact
that the Element Usages are managed independently and so all the combinations are allowed but exter-
nal constraint functions (implemented in another context) are executed to evaluate the feasibility of the
investigated configuration. In this case all the Element Usages belong to an equivalent number of Design
Variables, each one independent from the other. The other approach can be expressed considering two in-
termediate Element Usages generated from Element Definitions where the corresponding characterization
is represented by the containment of the two (or multiple) Element Usages that are interrelated. In this
manner it is possible to avoid the definition of an external constraint to model the related condition. With
this second solution the constraint is in fact internally bounded with the Element Definition. A conceptual
representation of this second solution is represented in the figure 6.15. A special case of the considered
situation is however captured with the considered modeling and it is represented by the fact that the two
couples are obtained from the same Element Definition.

A complex design situation can be represented by the figure 6.16.

Figure 6.16: One of the reference cases considered for properties/options management.

146

HELHS CaoC LT LWOU LICHITHIL UodsCo dl T UTHITITU Sudl LTIE 1TOTT LHT SdllIT CITINCHL UCHTHUON VUL LTy dic

evaluated considering two different values for the same Design Variables inherited from the Element Def-
inition (from which all the considered Element Usages are defined). This design problem is also captured
within the defined conceptual model.
One important feature of the proposed modeling approach is represented by the capability to develop
both logical and physical models of the system. In this manner is possible to clearly define the difference
between the functionality (defined through the definition of logical models) and the hardware/physical ob-
jects that allocate such functionalities (defined through the definition of the physical models). The correct
definition for the available alternative solutions can help to provide interesting support functionalities. The
formal characterization of design options can be directly managed to obtain a clear representation of the
system alternative configurations. The information gathered by the correct definition of option class can
be used for example to automatically generate pattern as the trade tree which is widely used to provide a
useful viewpoint during system development and design [58].

6.3.7 User conceptual model

Considering the specifications available from [65] it is possible to identify the users that are directly
involved with the system modeling tool. They are briefly reported and described in the following list.

e Study Manager: is the team member that represents the study customer.
e Team Leader: is the team member that leads the concurrent design study team.

e System Engineer: is the team member that is responsible for system engineering and the overall
system aspects.

e Assistant System Engineer: is the team member that assists the System Engineer.

e Domain Expert: is the team member with particular skills in and knowledge of a specific domain,
usually an engineering domain, and responsible for those aspects of a concurrent design study that
relate to that domain. How many domains experts participate in a concurrent design study team
depends on the specific needs of a particular study.

e Study Coordinator (Central Authority): is generic role indicating the common user aspects of the
team leader, system engineer and assistant system engineer.

¢ Administrator: is the user of OCDT that performs administrative tasks to create, adapt and configure
user accounts, study areas, IT infrastructure including backup, restore and archiving, etc.

e Observer: is a participant not actively involved in the study also if this role is under study and must
be confirmed (at the time this work has been written).

The users access architecture has been implemented starting from these theoretical classes and defi-
nitions (defined equivalently within the data model). The provided credentials at login page are then used
to proper manage the information returned to the current user on the basis of his/her access level. In this
way it is possible to customize the data that the user can see, providing different restriction levels about
the capability to create, edit or only see certain properties. In the same manner it is also considered the
possibility to change the returned perspective (page or framework layouts) on the basis of the discipline-
domain the user belong to. This feature has been directly related to the role that certain user covers within
a project, allowing for the same user to cover different roles in different project as also various roles for
the same project. This capability ensures a flexible management of the people involved in project, pro-
viding also the basis for a well-organized collaborative environment. The details about such integration
and implementation are introduced in the following sections, where the results about the Ruby on Rails
implementation are briefly presented.

147

FHTITILrouuiLcu Uscl Proliics 1iadve DT UsSTU dlll Sliglhitly 1hounicu LU UcvciUp UIC TUICS Uidl diT LUICH dlilu=
ally implemented within the proposed framework. The implemented framework has been developed not
only on the basis of the previous conceptual model from the standard but also taking into account actual
design processes. The roles defined for the proposed approach are briefly introduced in the following list:

e Administrator: the users with such role monitor the whole web-based infrastructure and they are
mainly involved in the developing and coding activities. Such user has access to all data contained in
the database and all functions that can be provided by the application itself. Examples of such role
are network or application administrators.

e Analyst: this user defines generally a project member that is able to access data (on the basis of
the process configuration), make comments and upload certain resources (e.g. in the case some
analysis results must be linked). Such user is basically not allowed to create, update or delete engi-
neering items since this capability is associated mainly with the designer role. Such profile has been
conceived to model all such project role that generally deal with analysis and simulations but are not
directly involved in the actual design process (they can propose architecture or components changes
through comments but only the user with item ownership can modify it e.g. the designer). In partic-
ular there is no constraint on the fact that the same physical user (the individual person) can cover
different role within the same project (designer and analyst) at the same time. In this case on the
basis of access credential the user can in fact change the design or edit items with the advantage
that the overall process is now formalized and monitored. Examples of such role are thermal analyst
or mechanical analyst.

e Designer: such user can access the data on the basis of the ownership that he/she possess. In par-
ticular such profile can edit the data on which he/she exerts his/her ownership. Basically all the
engineering data items that such user defines inherit the ownership from him/her and remains un-
der these conditions until a process owner user modify the ownership of the data that belong to a
designer. The actions and operations that such profile can do depend also on the process configura-
tion for a specific project (such operational domain is defined by the process owner). The available
data and visible information can also be filtered on the basis of the discipline the designer comes
from. Examples of such role are system manager, verification manager or program manager.

e External Service: such profile has been defined to model all the actions that can characterize the
interaction of the main application with other web-based infrastructure. In this case data can be
provided following the paradigm of RESTful interfaces. In particular not all data can be exchanged
but only the filtered ones or those designated on the basis of the process configuration. Such profile
has been considered to basically exchange data not through rendered views (since the process in this
case does not involve another human user but generally a web-service) but