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ABSTRACT 

We report an experimental investigation on the measurement of the available bandwidth 

for the users in Gigabit Passive Optical Networks (GPON) and the limitations caused by the 

Internet protocols, and TCP in particular. We point out that the huge capacity offered by the 

GPON highlights the enormous differences that can be showed among the available and 

actually exploitable bandwidth. In fact, while the physical layer capacity can reach value of 

100 Mb/s and more, the bandwidth at disposal of the user (i.e. either throughput at transport 

layer or goodput at application layer) can be much lower when applications and services 

based on TCP protocol are considered. In the context of Service Level Agreements (SLA) 

verification, we show how to simultaneously measure throughput and line capacity by 

offering a method to verify multilayer SLA. We also show how it is possible to better exploit 

the physical layer capacity by adopting multiple TCP connections avoiding the bottleneck of 

a single connection. 

 

Index Terms—Fiber Networks; GPON; Quality of Service; TCP; Throughput, 

Goodput, Multisession 

1. INTRODUCTION 

The ever-increasing bandwidth-hungry applications bring Internet Service Providers (ISP) 

and industries to adopt new architectures based on Fiber To The Building (FTTB) and Fiber 

To The Home (FTTH) solutions and in particular by adopting Gigabit Passive Optical 
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Network (GPON) systems [1]. These new architectures provide ultra-broadband capacities 

but how and if such  bandwidths will be really exploitable by end-user is still an open 

question, especially since the relationship among network quality (Quality of Service, QoS) 

and the user quality (Quality of Experience, QoE) can depend on different factors [2-3].  

It is well known that the amount of useful bits for seconds (defined as either goodput if 

considered at application layer, or throughput if at transport layer) can differ very much with 

respect to the capacity offered at the physical layer, or line capacity [3-9]; for instance, in 

case of the Transfer Control Protocol (TCP) [10-12] the throughput can be much lower than 

the line capacity. This results particularly evident in case of network conditions with high 

values of bandwidth-delay product [5], which are especially common in high capacity 

accesses with line rate higher than 20 Mb/s [13]. This difference between line capacity and 

throughput is a cause of several problems related to Service Level Agreement (SLA) 

verification between customers and ISPs, since the ISP tends to consider the bandwidth in 

terms of line capacities while the customer tends to consider only the useful bandwidth (i.e. 

throughput). Therefore, from the SLA point of view, novel tools are needed to simultaneously 

evaluate throughput and line capacity, i.e., to verify both the effective bandwidth at disposal 

of the user and the one offered by the access technology used by the ISP [14]. On the other 

hand, from the bandwidth efficiency point of view, novel investigations are necessary both on 

new and on already well known methods to suitably exploit the enormous capacities offered 

by the optical fiber accesses, as for an instance the TCP multisession that has been tested in 

this paper [15].  

The most reliable method to estimate the line capacity is to locate a specific measurement 

device at the gateway at the end user’s home (modem, CpE,…). This method is clearly not 

scalable and it is very expensive, since it requires to install monitoring boxes very close to 

the customers' access links. Conversely, cheap methods to evaluate the user connection 

quality are based on “speed test” tools, which measure the time to download a specific data 

file from a dedicated server. Therefore such speed tests measure the application layer 

goodput (or the transport throughput) and they are not reliable to evaluate the line capacity. 

For instance, in [13] it was shown that the goodput is quite close to the line capacity in case 

of conventional ADSL2+ connections having a channel bit rate lower than 10 Mb/s. However, 

for line rate higher than that, the obtained throughput can be very different from the actual 

line capacity.  



 

In this paper, we specifically consider the measurement of line rate and application 

goodput of PON access technologies. To the best of our knowledge, TCP performance over 

PON networks has been the subject of few papers [16-18], and these have all focused on 

IEEE EPON systems. For GPON systems, only [19] aims at assessing the impact that the 

GPON MAC layer may have on TCP. In [19] the authors report a preliminary study of TCP 

performance issues that may arise in GPON networks.   

This paper has dual aim: first, to show methods to simultaneously measure throughput 

and physical line capacity in very wide broadband GPON accesses, and second, to illustrate 

how to overcome the throughput limitations due to TCP. To this extent, we present 

experimental tests that were carried out in a testbed consisting of a backbone core and an 

access (GPON) portions, representing a common wide regional network [20]. 

The remainder of the paper is structured in the following way: Sect. 2 reports a short 

overview on the bandwidth behavior in TCP and UDP measurement contexts, and on the 

QoS measurements. In Sect. 3 we describe the experimental setup and in Sect. IV we report 

the results for throughput versus line capacity for a GPON line at 100 Mb/s considering both 

TCP and UDP case. Sect. 4 is concluded by a proposal to implement speed tests to measure 

both the line capacity and the user throughput in such a way to certify the SLA between ISP 

and user, giving some tools to point out the user satisfaction from the application point of 

view. In Sect. 5 we experimentally test the multisession approach [6][15] that represents 

another method to measure the line capacity and overall to fully exploit the capacity in TCP 

environments. Section 6 reports some considerations on our methods when they operate in 

presence of impairments located in wide area networks segments and we report some tests 

carried out supposing a bandwidth bottleneck in the transmission between two routers. 

Finally, conclusions are drawn in Sect. 7. 

2. OVERVIEW ON BANDWIDTH DEFINITION AND MEASUREMENT AND THE CONTEXT OF 

QUALITY OF SERVICE 

Quality of Service (QoS) is the term that characterizes the performance from the network 

point of view and it is usually measured by means of some parameters as bandwidth, jitter, 

delay and packet loss.  

QoS refers to a network’s ability to achieve maximum bandwidth and deal with other 

network performance elements like latency, error rate and availability. Quality of service 



 

also involves controlling and managing network resources by setting priorities for specific 

types of data (video, audio, etc.) on the network. More details on the QoS definition can be 

found for an instance in [2], that it has been the reference point for our investigations. 

Currently, for QoS evaluation, one of the most critical parameter is the "bandwidth" that is 

also a subject of dispute between users and ISPs, and it is due to the fact  that the bandwidth 

measured by the user depends on too many factors that are independently by the physical 

channel [3][13].In particular, for the bandwidth definition,  we have to specify the OSI layer 

we refer to, distinguishing between line capacity and bandwidth at disposal of the user. 

Currently, the Internet services and applications, most notably HTTP, are based on IP 

protocol at the network layer, and most of them rely on TCP at the transport layer. This 

implies that download throughput is regulated by TCP. Theory and experimental tests [4-13] 

showed that TCP flow and congestion control mechanisms suddenly become the major 

bottleneck when exploiting high capacity paths with large Round Trip Time (RTT). In 

particular the download time of file depends on the Receiver Window (RWND) and on the 

Congestion Windows (CWND). The former depends on the Operating System (OS) installed 

by the user on its PC [4-5], while the latter depends on the congestion control implemented 

algorithms. We remember that the throughput, Bt, depends on these parameters, and in 

particular on the line capacity, Bc, according to the following relationship:  
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In particular the sender is allowed to transmit no more than the minimum amount of data 

specified by CWND, RWND and RTT. As for any sliding window protocol, TCP throughput is 

proportional to the window size, and inversely proportional to the sender-receiver RTT. The 

mechanism of the TCP Congestion Control drives the CWND values to the actual path 

capacity that cannot be larger than the capacity of the bottleneck link. For example, in [13], 

it was shown that Windows XP (which is still used) suffered a strong reduction of the 

throughput with respect to the line capacity also in case of 20 Mb/s access as the one offered 

by ADSL2+ technology. Important improvements were showed up by OSes like Windows 7 

and Linux, even though limitations were well observed in exploiting higher speed access 

capacities in presence of moderate RTT, cases that verify for accesses obtained by means of 

GPON. 

Eq. (1) refers to throughput in stationary conditions; to know the detailed throughput time 



 

evolution more complex equations are necessary and simulations can be useful. For instance 

in [22], Sect. 2.6, a simulation tool is reported to analyze the throughput behavior, and in 

particular to define the length of the packets to be used for throughput tests, especially for 

the case of long RTT. 

The difference between goodput and line capacity could be deeply limited by avoiding flow 

control algorithms, such as by using UDP. Notably, UDP implements no retransmission for 

the case of packet loss, and does not perform congestion control. These simple considerations 

point out that the QoS should be defined for each Layer of OSI stack, and as a consequence 

we could define corresponding SLAs related to different OSI Layers, from physical to 

application Layer. 

With the service evolution, the trend is to shift the SLA verification towards applications. 

This implies that metrics and measurements have to be applied at the application layer; 

therefore suitable SLA parameters must be defined for specific Web services such as 

YouTube, specified in terms of application-level measurable parameters (e.g. Mean Opinion 

Score [3]). These Application SLAs (ASLAs) will necessarily depend on lower-layer SLAs: for 

high-quality HD video delivery, it is necessary to have a very good large broadband physical 

connection that has to be guaranteed by a suitable SLA between ISP and user. This is a 

necessary but not sufficient condition for high QoS at application layer.  

3. EXPERIMENTAL SETUP 

The adopted testbed is shown in Fig.1 [3][20]. The core part is composed of four Juniper M10 

routers interconnected using 1 Gb/s long haul optical links in the Rome area. Three Cisco 

3845 edge routers are deployed at the access part of the network by means of Gigabit 

Ethernet optical links. Finally, the testbed is completed with GPON access networks 

composed of an OLT (Optical Line Termination) and up to eight Optical Network Units 

(ONUs), offering a shared bandwidth equal to 1.244 Gb/s. A desktop PC is connected to the 

user ONU. A high-end server is then connected using Gigabit Ethernet links. To emulate 

different RTT, a delay generator is added on the path between Server and Client to introduce 

an additional delay d.  

To guarantee an End-to-End minimum bandwidth in the backbone path, we use the 

technique described in [20] that allows us to assign a guaranteed bandwidth between two 

end-points of the network by means of different tagging techniques, i.e., Virtual LAN and 



 

Virtual Private LAN Service (VPLS). This technique enforces strict bandwidth requirements 

so that background traffic that may be present on the testbed does not interfere with our 

tests.  

QoS analysis is carried out by exploiting the properties of IPERF tool [21]. 

We consider three different Operating Systems (OS) at the client, namely: Windows XP SP3, 

Windows 7, and Linux Ubuntu 9.10. The maximum CWND at the server was set to 512kB, 

which is larger than the actual maximum RWND imposed by default for all considered OSes.  

 

 

Fig. 1: Testbed design  

4. EXPERIMENTAL RESULTS 

In this section we report the results on the throughput behavior in GPON accesses 

distinguishing between TCP (a) and UDP (b). 

a) TCP case 

In fig.2 we report the throughput measured at time instant during a file transfer test.. Line 

capacity is set to 100 Mb/s. We report two curves corresponding to "No additional delay 

(d=0)" and introducing a delay equal to 100 ms in the network path between server and 

client, so RTT can be assumed equal to network delay, d. Linux is used as the operating 

system. 



 

 

Fig. 2: Throughput measurements over time; line capacity of 100 Mb/s	  

	  

For d=0 we see a modest fluctuating behavior due to the TCP congestion control algorithm: 

the TCP connection tries to exploit the maximum capacity of the line increasing the CWND; 

when the transmission bit rate overcomes the line capacity, packets may be lost, and TCP 

reacts by reducing CWND with a consequent rate decrease. This continuous increasing-

decreasing behavior manifests with the small bandwidth fluctuations, with an average 

throughput equal to 94.5 Mb/s with a standard deviation of 2.3 Mb/s. We repeated this 

measurement 50 times obtaining for each realization an average throughput around 94.5 

Mb/s with a variation less than 0.5%, confirming the same standard deviation. 

With respect to flow with no additional delay, for RTT=100 ms the behavior is totally 

different and in particular we observe a typical transit behavior characterized by an initial 

fast growth of the throughput in time. This is due to the TCP slow start phase, when the 

congestion window grows exponentially, doubling every Round Trip Time until reaching the 

maximum value given by the RWND in our case. The obtained throughput is thus given by 

(1) as RWND/RTT. It has to be pointed out that the case of RTT=100 ms can be considered as 

a typical delay between server and client in a continental environment. 

It has to be pointed out that RWND is an arbitrary value depending on the operating 

system implementation and its setting is critical because it influences the performance. In 



 

fact if the threshold value is set too high relative to the network Bandwidth Delay Product 

(BDP), the exponential increase of congestion window generates many packets losses, with 

subsequent significant reduction of the connection throughput. On the other hand, if it is too 

small, TCP results in poor utilization especially when BDP is large.  

In case of fig. 2, the O.S. sets RWND=512 Kbyte that corresponds to a throughput of about 

95.5 Mb/s when no additional delay is added in the network path (blue line) and about 42 

Mb/s for RTT=100 ms. The same value was obtained by repeating the measurement 50 times. 

Fig. 2 clearly shows the limitations in terms of throughput due to the TCP behaviour and 

therefore the difficulties of TCP in exploiting huge line capacities as in case of fiber accesses 

under large RTT. This behavior is better summarized in fig. 3 which reports the throughput 

versus RTT for different OSes for a line capacity of 100 Mb/s. The experimental throughput 

is obtained as a time average along a period of 10 sec and each experimental point represents 

the average from 50 realization tests (for each experimental point the relative standard 

deviation was always lower than 1%). Evident substantial differences between Windows XP 

and more recent OSes (Windows 7 and Linux) are due to enhanced TCP algorithm 

implementation, related to adaptive parameters in the algorithm (i.e., Auto-Tuning of the 

RWND which can grow much larger than the 64kB offered by Windows XP). 

 

Fig. 3: Throughput vs RTT for different OSes 



 

In the same figure we also report the analytical behavior from eq. (1) adopting Windows XP 

and Linux OSes, assuming as RWND 512 and 64 Kbyte for Linux and Window XP 

respectively. As illustrated in the next section, this strong bandwidth reduction could be 

avoided by adopting UDP protocol.  
 

b) UDP case 

UDP does not implement any sliding window algorithm that limit the throughput; therefore, 

if the server-client transmission is the same as the line capacity, the UDP throughput is 

maximum and equal to the line capacity (apart the overheads of the IP and lower layers 

encapsulation). This is shown in fig. 4 where we report the throughput versus time in the 

UDP case. We enforced the server to transmit data at 95.6 Mb/s. No loss was thus observed 

at the receiver. These tests were performed with an additional delay between server and 

client equal to 100 ms. In fig. 5 we detail the jitter behavior in the same test conditions of fig. 

4; it has to be pointed out that such jitter values have no influence for current applications 

also based on HD and 3D video contents. 

 

Fig. 4: Time evolution of the UDP Throughput for a line capacity of 100 Mb/s and RTT=100 

ms 

 



 

 
Fig. 5: UDP jitter for a line capacity of 100 Mb/s and RTT=100 ms 

 
Since UDP does not implement congestion control mechanism, we expect to suffer packet 

losses when the server transmission rate exceeds the bottleneck capacity. This behavior is 

clearly shown in fig. 6 where we report the packet loss (in percentage with respect to the 

total packets) versus server data transmission (Tx Rate). As expected, loss occurs as soon as 

the data transmission rate from the server exceeds 95.5 Mb/s. Conversely when the bit rate 

is higher than the line capacity we observe packet losses corresponding to difference between 

channel bandwidth and server transmission rate. No difference was observed among 

Windows XP, W7 and Linux as far as the data loss behavior was concerned. 

 

 

Fig. 6: Packet loss (%) versus server data transmission (Tx Rate) in case UDP with RTT=100 

ms	  



 

c) Considerations and proposal for GPON bandwidth measurements 

The results shown in this section suggest us a simple method to simultaneously measure the 

QoS according to different aspects related to the OSI layer and in particular to measure: 
• the line capacity to verify SLA between the user and the ISP;  

• the throughput (as available bandwidth for the user); 

• the goodput (as available bandwidth for the user at application layer). 

To perform this set of measurements, a software agent based on the following steps, has 

been developed. In particular the building blocks of the algorithm implemented by the agent 

are the following:  

i) First, it performs throughput measurement by adopting a classic TCP file download 

method to evaluate Bt; 

ii) It measures other QoS parameters such as delay td (RTT measured with PING), 

congestion window and threshold value;  

iii)  After the measurements of RTT and Bt, an estimation of the line capacity, Bc, can be 

obtained by means of eq. (1);  

iv)  Secondly, to measure the line capacity it performs a UDP test to obtaining other QoS 

parameters such as jitter and packet loss. UDP test is divided in two steps. First a 

UDP stream is sent from the server with a line capacity of Bc’, measuring the lost 

datagrams with respect to the transmitted datagrams. In such a way we obtain the 

useful transmitted bits, BTU, and from the total transmitted bits BTT, we can 

achieve the estimated line capacity as Bc = (BTU/BTT) * Bc’. In the second step the 

effective line capacity is measured by means of a UDP test based on downloading of 

a file and forcing the transmission rate Bc * = Bc - ε (i.e. ε=0.001*Bc ), verifying that 

a packet loss is lower than 0.1%. The value of ε depends on the required reliability 

of the measurement and in particular on the SLA between ISP and user. If the 

required packet loss is verified Bc * is the line capacity.  

5. MULTISESSION TRANSMISSION 

The previous section has shown that when the RTT is large, UDP could be more appealing 

than TCP, with the conditions to have a transmission bit rate lower than the line capacity. 

However, no congestion control would be available, thus making the usage of UDP 



 

impractical, especially if we consider the case of a shared channel where packet losses can be 

caused by concurrent flows competing for the same capacity.  

On the other hand, most services are based on TCP. Those would be strongly limited in 

case of large RTT, and some solutions have to be proposed to overcome the TCP limitations 

shown in the previous section to exploit all physical layer capacity.  

Here we experimentally demonstrate the possibility of using a multisession transmission, 

where a file is subdivided into N files and each sub-file is transmitted at the same time with 

a bit rate Bm = Bc/N.	  

 

Fig. 7: Time evolution of the TCP Throughput for a line capacity equal to 100 Mb/s and 

RTT=100 ms in case of 2 flows 

	  

In fig. 7 we report the case of two flows. Comparing with fig. 2 we can see that the flows 

behave independently. After the initial transient, the throughput reaches a value around 42 

Mb/s for each flow. In this case the multisession permits to much better exploit the line 

capacity doubling the throughput. However the sum of the flow rates is still lower than the 

line capacity. 



 

	  
Fig. 8: Evolution over time of TCP Throughput for a Multisession with 5 flows. The highest 

curve is the sum of the five flows. Line capacity equal to 100 Mb/s and RTT=100 ms 

 

 

Fig. 9: As in fig. 8 but for a Multisession with 10 flows. The highest curve is the sum of the 

ten flows. Line capacity of 100 Mb/s and RTT=100 ms 

	  



 

In figures 8 and 9 we report the case of a multisession download using 5 TCP flows (each one 

obtaining approximatively a transmission rate of 20 Mb/s, up) and 10 TCP flows (each one 

about 10 Mb/s, bottom). As shown in these figures, the total throughput coincides with the 

maximum throughput (95.5 Mb/s) for a line capacity of 100 Mb/s. The measured throughput 

is lower than the line capacity because of the overhead introduced by layers of the network 

stack. As expected, the multisession download fully exploits the line capacity, and 

furthermore it can also be used to measure the line capacity by introducing a measurement 

based on N flows in TCP mode with bit rate Bc/N, where Bc is found in point iv in the method 

reported in Section IV.C. As shown by the comparison between fig. 8 and fig. 9 a reliable 

measurement of the line capacity can be obtained for values of N equal to 10 flows. 

Clearly using multiple TCP flows all the line bandwidth tends to be exploited and this can 

have impact on delays, since the source would send more packets per unit of time, and create 

more congestion on the bottleneck buffer, increasing the end-to-end delay (and thus RTT). To 

see the impact of the multisession we run a RTT test, using Ping, while doing the bandwidth 

test. Results are reported in table 1, which, for each scenario, reports the minimum, average 

and maximum RTT. As expected, as soon as the sender is injecting traffic, the RTT grows 

(due to buffers filling up). We observe a small increase in the average RTT with the increase 

of TCP concurrent flows. While this can be a problem if widespread used among user to 

download content from the Internet, we believe it is acceptable in the context of bandwidth 

test which is seldom run and last for few seconds. Note that when the sender uses UDP 

(which does not implement congestion control), we see that the buffer is overloaded for most 

of the time (min RTT much higher). This brings to the problem of buffer sizing. Indeed, the 

buffer size (and the Active Queue Management eventually used) determines the packet loss 

probability, thus affecting TCP congestion control algorithms, thus possibly impairing the 

observed throughput. 

 

Table 1: RTT values during TCP and UDP tests 

 Ping	  +	  No	  
flows	  

Ping	  +	  1	  TCP	  
Flow	  

Ping	  +	  2	  TCP	  
flow	  

Ping	  +	  5TCP	  
flows	  

Ping	  +	  10	  TCP	  
flows	  

Ping	  +	  UDP	  
flow	  

Min	  RTT	   11.2ms	   12.2ms	   12.8ms	   13.4ms	   14.7ms	   17.3ms	  
Average	  
RTT	  

11.9ms	   14.99ms	   15ms	   16.15ms	   16.96ms	   18.43ms	  

Max	  RTT	   12.3ms	   18.2ms	   18.5ms	   18.6ms	   18.7ms	   19.4ms	  
 



 

Buffer sizing is a controversial topic still in discussion among the research community, where 

either very small buffers [25] or very large buffers are suggested [26], with no clear winner. 

Assuming a droptail queue management, the golden rule to choose the buffer size is to set it 

according to the bandwidth delay product, i.e., S≥C*RTT, where S is the buffer size, C is the 

end-to-end capacity [24]. In our case, we consider C=100Mb/s and RTT=100ms, which leads 

to S≥1.25Mbytes. This would guarantee that, in case one TCP connection is loading the link, 

eventual congestion would not cause any degradation of the throughput. Notice however that 

a proper setting of the buffer size requires knowing both C and RTT, which is clearly 

unfeasible in generic cases. Regarding to GPON ONU buffer we have set the maximum value 

around 9.9 Mb, that would give us a bandwidth after line coding more than 9.9 Gb/s [23]. 

However, given the target of our work (bandwidth estimation and verification in ISP 

networks), we would not have any control on the buffers in the real networks. We leave the 

study of buffer sizing and AQM policies impact for future work. 

6. CONSIDERATION ON WIDE AREA NETWORKS 

The results reported in the previous Sections refer to a lab environment, that mainly analyze 

the network access behavior. Further investigations should analyze some impairments that 

could be present inside the metro-core networks, including the traffic forwarding in routers 

and the interaction among different line loads. A deep study on this topic would require 

measurements on real wide area networks and this is not the subject of this paper. 

Simulations analysis could be useful and in particular the model reported in [22] could give 

important information. To complete our analysis we prefer to report an interesting 

experimental test that shows up important considerations on measured bandwidths reported 

in the previous Sections when different loads are present in the network, that can induce 

traffic congestions in some network segments. In particular, looking at the set-up of fig. 1, we 

simultaneously analyze the throughput behavior of ONU1 and ONU2 with two different 

traffic sent by the Server. In particular a 100 Mb/s UDP traffic was sent to ONU1, while 100 

Mb/s TCP traffic, which was started before the UDP traffic, with multisession approach, was 

sent to ONU2. Furthermore in order to see the role of a core congestion we set a VPLS 

bandwidth path [20] of 157 Mb/s between routers J1 and J3. In such a way we could observe 

a sort of fighting between the two ONU traffics. 



 

In such experimental condition in fig. 10 we report the throughput measured at ONU1 (up) 

and ONU2 (below). 

 

 

 
Fig. 10: UDP throughput at ONU1 (up) and TCP throughput  (3 TCP parallel flows, in purple 

the sum of three flows) at ONU2 (below) 

 
Figure 10 clearly shows that the throughput measurements strongly depend on all the 

network impairments, and therefore the interaction among UDP and TCP traffic can induce 

different bandwidth measurement, with consequence on the line capacity estimation. This 



 

suggest us that correct monitoring of the access capacity would require also a passive 

monitoring of the traffic able to analyze some network environments as for example reported 

in [26]. 

7. CONCLUSION 

The huge capacity offered by the optical fiber accesses introduce new challenges on the 

measurement and the exploitation of the bandwidth. In fact, due to the intrinsic behavior of 

the Internet protocols, the effective bandwidth at user disposal can be much lower than the 

line capacity. Furthermore the evaluation of the Quality of Service, and in particular the 

measurement of bandwidth requires further insights, since we have to distinguish to which 

OSI Layer we refer. The question is if we wish to measure either the line capacity or the 

available bandwidth at disposal of the user, since this has important consequences on the 

Service Level Agreement verification, especially between customers and their Internet 

Service Providers (ISPs).  

In this work, we report an experimental investigation on the bandwidth measurement 

behavior in a GPON network, connected to a backbone area, analyzing the impact of the 

Internet protocols. In particular our tests showed that the available bandwidth can be much 

smaller than the line capacity when TCP is adopted. We show how UDP can allow to fully 

exploit the GPON capacity and we propose a method that allows to measure with few steps 

both the throughput  and the line capacity permitting to have a tool to verify SLA between 

ISP and customer. We also show how to fully exploit the line capacity in a TCP environment 

by means of the multisession approach, that can be also adopted to evaluate the line 

capacity. Furthermore we also analyze the throughput behavior when bandwidth limitations 

are present in some core network segments. The obtained results clearly show that the 

throughput measurements strongly depend on all the network impairments. This suggest 

that correct monitoring of the access capacity would require also a passive monitoring of the 

traffic able to analyze some network environments. Future works will be based on 

monitoring of the traffic performed by passive measurements. 
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