
21 December 2022

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Branch-and-price and beam search algorithms for the Variable Cost and Size Bin Packing Problem with optional items /
Baldi, MAURO MARIA; Crainic, T. G.; Perboli, Guido; Tadei, Roberto. - In: ANNALS OF OPERATIONS RESEARCH. -
ISSN 1572-9338. - STAMPA. - 222:(2014), pp. 125-141. [10.1007/s10479-012-1283-2]

Original

Branch-and-price and beam search algorithms for the Variable Cost and Size Bin Packing Problem with
optional items

Publisher:

Published
DOI:10.1007/s10479-012-1283-2

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2570943 since:

Springer

Noname manuscript No.
(will be inserted by the editor)

Branch-and-price and beam search algorithms for
the Variable Cost and Size Bin Packing Problem
with optional items

Mauro Maria Baldi · Teodor Gabriel
Crainic · Guido Perboli · Roberto Tadei

Received: date / Accepted: date

Abstract In the Variable Cost and Size Bin Packing Problem with optional
items, a set of items characterized by volume and profit and a set of bins
of different types characterized by volume and cost are given. The goal con-
sists in selecting those items and bins which optimize an objective function
which combines the cost of the used bins and the profit of the selected items.
We propose two methods to tackle the problem: branch-and-price as an exact
method and beam search as a heuristics, derived from the branch-and-price.
Our branch-and-price method is characterized by a two level branching strat-
egy. At the first level the branching is performed on the number of available
bins for each bin type. At the second level it consists on pairs of items which
can or cannot be loaded together. Exploiting the branch-and-price skeleton,
we then present a variegated beam search heuristics, characterized by different
beam sizes. We finally present extensive computational results which show a
high accuracy of the exact method and a very good efficiency of the proposed
heuristics.

Keywords bin packing · column generation · branch-and-price · beam search

1 Introduction

The Variable Cost and Size Bin Packing Problem with optional items (V CSBPPo)
consists in a set of bins characterized by volume and cost and a set of items

M. M. Baldi and R. Tadei
Politecnico di Torino, Turin, Italy

T. G. Crainic
CIRRELT and School of Management, UQAM, Montreal, Canada

G. Perboli
Politecnico di Torino, Turin, Italy and CIRRELT, Montreal, Canada

2 M. M. Baldi et al.

characterized by volume and profit. Moreover the items are split into two fam-
ilies: the compulsory and the non-compulsory items. Whilst the compulsory
items must always be loaded, the non-compulsory items might not be loaded
into the bins. The goal of the V CSBPPo is to select appropriate bins and
items in order to minimize the total net cost given by the difference between
the costs of the selected bins and the profits of the selected non-compulsory
items.

The V CSBPPo is a generalization of many packing problems such as the
Bin Packing Problem (BPP), the Variable Sized Bin Packing Problem (VS-
BPP), the Variable Cost and Size Bin Packing Problem (VCSBPP), the Knap-
sack Problem, and the Multiple Knapsack Problem with and without identical
capacities. This provides the great advantage that the same technique em-
ployed for solving the V CSBPPo might be used to solve even other different
packing problems.

From the transportation and logistics point of view, the V CSBPPo mod-
els problems arising in cross-continental transportation. Indeed, freight flows
require intermediate transshipment locations, such as ports, where freight is
consolidated and loaded on ships.

Aim of this paper is to give an exact method, based on branch-and-price, for
solving the V CSBPPo. Our method is characterized by a two-layer branching
strategy – first on the bins and then on the items – instead of a simple item
to bin assignment as previously done in the packing literature (Martello and
Toth, 1990; Monaci, 2002). This exact technique allows us to reach a mean
gap of 0.03% and close most of the instances in the V CSBPPo literature.

Exploiting the branch-and-price skeleton, we then propose a beam search
heuristics, which visits a portion of the branch-and-price tree only. Extensive
computational tests obtained by varying the beam search parameters allow us
to find results comparable to the branch-and-price within a limited computing
time.

This paper is organized as follows. In Section 2 we provide a literature
review on the problem. Then, in Section 3, we define in details the problem
and provide a set covering formulation which is the one adopted by both the
branch-and-price and the beam search algorithm. Section 4 recalls both lower
and upper bounds which will be used when executing the two algorithms.
In Section 5 we thoroughly discuss the branch-and-price algorithm and in
Section 6 the beam search heuristics. These algorithms are both extensively
tested in Section 7. Finally, Section 8 is devoted to the conclusion and future
perspectives.

2 Literature Review

The V CSBPPo is a novel packing problem recently introduced by Baldi et al
(2011, 2012). In their papers, the authors presented the problem, named the
Generalized Bin Packing Problem, providing both an assignment and a set cov-

V CSBPPo branch-and-price and beam search algorithms 3

ering formulation. Exploiting these formulations the authors computed both
lower and upper bounds to the problem.

The V CSBPPo is a generalization of the well known Variable Cost and
Size Bin Packing Problem (VCSBPP) (Crainic et al, 2011), which is a variant
of the classical Bin Packing Problem (BPP) (Martello and Toth, 1990).

Due to its recent introduction, the V CSBPPo literature is quite limited.
Thus, in the following, we recall the literature related to the most similar
problem, the VCSBPP.

In the past decades both exact and approximation methods have been pro-
posed to tackle the VCSBPP. It has been introduced by Friesen and Langston
(1986) who proposed three approximation algorithms. Other approximation
methods have been proposed by Murgolo (1987), Chu and La (2001) and Kang
and Park (2003). More recent approximation algorithms have been proposed
by Haouari and Serairi (2009), Crainic et al (2011), and Hemmelmayr et al
(2012).

The VCSBPP can also be seen as a special case of the Multiple Length
Cutting Stock Problem(MLCSP), where the item demand is equal to one and
different types of stocks (which are equivalent to the bins) are involved. Ex-
act methods for the MLCSP have been proposed by Belov and Scheithauer
(2002) and Monaci (2002). Alves and Valério de Carvalho (2007) first pro-
posed an improved column generation technique trying to solve the VCSBPP
to optimality. One year later, the same authors introduced a branch-and-cut-
and-price algorithm for the MLCSP (Alves and Valério de Carvalho, 2008).
Correia et al (2008) presented discretized formulations which aimed to solve
the VCSBPP to optimality with new valid inequalities. Recently, Bettinelli
et al (2010) introduced a branch-and-price algorithm for the resolution of a
variant of the VCSBPP with the addition of filling constraints. These con-
straints imply that, due to stability reasons within the bins, each bin must
be filled at least at a minimum security level. To the best of our knowledge
the latest work dealing with exact methods for solving the VCSBPP is due to
Haouari and Serairi (2011), in which the authors proposed lower bounds and
an exact branch-and-bound algorithm.

3 Problem Definition and Formulation

The V CSBPPo consists in a set of bins and a set of items. The bins are clas-
sified into bin types. We suppose all sets to be finite. All the bins which belong
to the same type have the same volume (or capacity) and cost. Moreover,
constraints on the bin availability for each bin type and for all bins must be
satisfied.

Each item is characterized by a volume and a profit. The set of items is
split into two subsets: the subset of compulsory items and the subset of non-
compulsory items. The subset of compulsory items includes all those items
which are mandatory to load. Vice versa, the subset of non-compulsory items
includes those items which might not be loaded. When items are loaded into

4 M. M. Baldi et al.

bins, capacity constraints must be satisfied. This means that the total volume
of the items loaded into a bin must not exceed the capacity of the bin itself.
The goal of the V CSBPPo is to select appropriate items and bins in order to
minimize the total net cost, given by the difference between the costs of the
selected bins and the profits of the selected non-compulsory items. We just
consider non-compulsory items because, as compulsory items must always be
loaded, their profits behave like a constant in the objective function.

A first possible model for the V CSBPPo is an assignment formulation
which relies on the assignment formulation used by Martello and Toth (1990)
for the BPP. As shown in Baldi et al (2011, 2012), the assignment formulation
for the V CSBPPo is not used in practice, but it can be exploited to get a first
lower bound to the V CSBPPo, named LB1, reported in Section 4.

A second possible formulation for the V CSBPPo is a set covering formu-
lation dealing with feasible patterns. Given a bin of a certain type, a feasible
pattern is a combination of items that can all be loaded into the bin, i.e. the
sum of their volumes is not greater than the capacity of the bin. Since only fea-
sible patterns are taken into account, then the problem of feasibility, in terms
of capacity constraints, is implicitly guaranteed by the pattern definition.

Let us consider:

– J the set of bins and m its cardinality
– I the set of items and n its cardinality
– IC ⊆ I the subset of compulsory items and INC ⊆ I the subset of non-

compulsory items, such that IC ∪ INC = I and IC ∩ INC = ∅
– T the set of bin types
– Wt and Ct the volume and the cost of each bin of type t ∈ T , respectively
– Lt the minimum number of bins of type t ∈ T which must be used
– Ut the maximum number of bins of type t ∈ T which can be used
– U the maximum number of bins which can be used in total
– wi and pi the volume and the profit of item i ∈ I, respectively
– Kt the set of all feasible patterns for bin type t ∈ T
– K =

⋃
t∈T Kt the set of all feasible patterns that can be generated for all

bin types
– Ak a vector of indicator functions aik, k ∈ Kt, t ∈ T , i ∈ I, such that
aik = 1 if item i is accommodated into pattern k of bin type t ∈ T , 0
otherwise

– ck = Ct −
∑
i∈INC aikpi the net cost of pattern k ∈ Kt, computed as the

difference between the cost of the associated bin and the total profit of the
non-compulsory items accommodated into the pattern.

In the set covering formulation for the V CSBPPo, we introduce a binary
variable λk for each pattern k ∈ Kt. This variable is equal to 1 if pattern
k ∈ Kt is used, 0 otherwise. The set covering formulation of the V CSBPPo is
as follows:

V CSBPPo branch-and-price and beam search algorithms 5

Minimize
∑
t∈T

∑
k∈Kt

ckλk (1)

Subject to
∑
t∈T

∑
k∈Kt

aikλk = 1 i ∈ IC (2)∑
t∈T

∑
k∈Kt

aikλk ≤ 1 i ∈ INC (3)∑
k∈Kt

λk ≤ Ut t ∈ T (4)∑
k∈Kt

λk ≥ Lt t ∈ T (5)∑
t∈T

∑
k∈Kt

λk ≤ U (6)

λk ∈ {0, 1} k ∈ K (7)

Due to the definition of the pattern cost ck, the objective function (1)
consists in minimizing the difference between the total cost of the used bins
and the total profit of the loaded non-compulsory items. Constraints (2) state
that all the compulsory items must be loaded into some bin, whilst constraints
(3) affirm that non-compulsory items may or may not be loaded. Constraints
(4) and (5) state respectively that at most Ut and at least Lt bins of type
t ∈ T must be employed. Constraint (6) expresses that at most U bins can be
used in total. Finally, (7) are the integrality constraints. We name SC the set
covering formulation (1)-(7) and R-SC its continuous relaxation.

We also introduce the following dual variables associated to R-SC :

– µi free: dual variable associated to i-th constraint (2)
– νi ≤ 0: dual variable associated to i-th constraint (3)
– αt ≤ 0 dual variable associated to t-th constraint (4)
– βt ≥ 0 dual variable associated to t-th constraint (5)
– ε ≤ 0 dual variable associated to constraint (6)

A peculiarity of the SC and the R-SC is that the number of all feasible
patterns K is exponential. A common technique used to cope with this aspect
is column generation (Desaulniers et al, 2005). In particular, Baldi et al (2011,
2012) present a lower bound to the SC computed from the R-SC via column
generation, named LB2, as reminded in Section 4.1.

4 Bounds

In this section we briefly introduce lower and upper bounds that will be em-
ployed in our proposed methods to solve the V CSBPPo (see Baldi et al (2011,
2012) for details).

4.1 Lower Bounds

The first lower bound, LB1, comes from the assignment model aggregating
together some constraints. LB1 can then be computed as follows:

6 M. M. Baldi et al.

Minimize
∑
t∈T

Ctyt −
∑
i∈INC

pixi (8)

Subject to
∑
i∈IC

wi +
∑
i∈INC

wixi ≤
∑
t∈T

Wtyt (9)

Lt ≤ yt ≤ Ut t ∈ T (10)∑
t∈T

yt ≤ U (11)

yt ∈ Z+, t ∈ T (12)

xi ∈ {0, 1}, i ∈ I (13)

where yt is an integer variable which counts the number of used bins of type
t, xi is a binary variable which is equal to 1 if item i is loaded into some bin,
0 otherwise.

The second lower bound, LB2, is computed performing a column genera-
tion technique to the relaxed model R-SC . Column generation is an iterative
procedure which starts taking a few patterns into account and then, at each
step, tries to add new patterns of negative reduced cost to those already con-
sidered. If none of these patterns exists, the procedure ends. In our algorithm,
we select the pattern of minimum reduced cost for each bin type t ∈ T . This
means that we can select at most |T | patterns at each step. To select these
patterns, we need to solve a subproblem (called oracle), one for each bin type
t ∈ T . To do so, we consider the reduced cost rk of a given pattern k ∈ Kt
for a bin of type t ∈ T :

rk = ck − [µ ν α β ε]
T
Ak

= Ct −
∑
i∈INC

aik pi −
[
µT νT αT βT ε

]
Ak

= Ct −
∑
i∈INC

aik pi −
∑
i∈IC

aik µi −
∑
i∈INC

aik νi − αt − βt − ε

= Ct −
∑
i∈INC

aik (pi + νi)−
∑
i∈IC

aik µi − αt − βt − ε (14)

Let us introduce a variable xi which is equal to 1 if item i ∈ I belongs to
the given pattern k, 0 otherwise. Since the Ak entries are not known yet, we
may express them in terms of the variables xi. Taking the minimum of (14),
after some manipulations, we get the following knapsack problem as oracle:

Maximize

{ ∑
i∈INC

(pi + νi)xi +
∑
i∈IC

µi xi

}
(15)

Subject to:
∑
i∈I

wixi ≤Wt t ∈ T (16)

xi ∈ {0, 1} i ∈ I (17)

V CSBPPo branch-and-price and beam search algorithms 7

As shown in (Baldi et al, 2011, 2012), neither LB1 nor LB2 dominates
each other. Thus, a third lower bound, named LB3, is trivially computed as
the maximum between LB1 and LB2, i.e. LB3 = max{LB1, LB2}.

4.2 Upper Bounds

In this Section we introduce two upper bounds that are used in the branch-
and-price and beam search algorithms. The first upper bound is the well known
Best Fit Decreasing (BFD) constructive heuristics. Another popular construc-
tive heuristics is the First Fit Decreasing (FFD). Nevertheless, as shown in
Baldi et al (2011, 2012), the BFD heuristics yields, on average, better results
than the FFD heuristics. Therefore we just consider BFD. Our adapted BFD
works on a list of sorted items SIL (Sorted Items List) and on a list of sorted
bins SBL (Sorted Bins List). The solution is built, step by step, by mean of
a list of selected bins S. In particular, when we decide to pick up a bin from
SBL for loading some item, then we say that that bin is selected and will take
part in the solution produced by the heuristics. The main idea of BFD is
the following: given an item i ∈ SIL, we first try to load it into the best bin
among the already selected ones in S. By best bin we mean that bin yielding
the minimum residual space after placing, if possible, item i ∈ SIL into it. If
we succeed we consider the next item in SIL, otherwise we try to select a new
bin from SBL for item i. If item i is compulsory we load it into the first non-
selected bin able to contain it, otherwise we try to load item i into a new bin
b ∈ SBL such that item i is profitable for bin b. We say that item i is profitable
for bin b if its profit plus the profits of the succeeding non-compulsory items
in SIL which can be loaded into bin b together with item i is greater than the
cost of bin b. If there exists a non-selected bin b ∈ SBL such that item i is
profitable for bin b, then we load item i into bin b, otherwise we discard item i
from the packing. We end when we have scanned all the items in the list SIL.
Finally, we perform a post-optimization procedure to try to improve the solu-
tion. In particular, for each selected bin in S we check whether it is possible
to move the items loaded into it into a non-selected bin with a lower cost. The
main steps of BFD are reported in Algorithm 1. Within Algorithm 1 we use
function profitable (which detailed pseudo-code is reported in Algorithm 2),
which computes whether item i ∈ SIL is profitable for bin b ∈ SBL. Finally,
Algorithm 3 shows the post-optimization procedure.

Note that, since compulsory items must be loaded, infeasibility may raise
if the remaining bins in SBL are not able to accommodate a compulsory item.
We avoid infeasibility by introducing one dummy bin s characterized by a very
high cost Cs �

∑
t∈T Ct and by a volume Ws equal to the total volume of all

the compulsory items. The high cost Cs discourages the usage of the dummy
bin s in ordinary cases, and it is only used when infeasibility arises. Since the
items and the bins have multiple attributes, many sorting criteria for the two
lists SIL and SBL are available. Computational experience has shown that, on
average, the best sorting criterion is as follows:

8 M. M. Baldi et al.

Algorithm 1 The main procedure
S := ∅
for all i ∈ SIL do

Identify the best bin b ∈ S into which item i can be loaded and with the minimum free
volume after loading item i
if b exists then

Load item i into bin b
else

if i ∈ IC then
Identify the first bin b ∈ SBL \ S able to contain item i ∈ SIL.
Load item i into bin b
S := S ∪ {b}

else
Identify the bin b ∈ SBL \ S such that profitable(i, b) returns true
if b exists then

Load item i into bin b
S := S ∪ {b}

else
reject item i

post-optimization

Algorithm 2 The profitable procedure for new bin selection
SILi : sublist of SIL starting from the item i;
Load i into b and initialize the bin profit Pb = pi;
for all i′ ∈ SILi do

if i′ can be loaded into b then
Load i′ into b and update the bin profit Pb = Pb + pi′ ;

if Pb > cb, return true else return false.

Algorithm 3 The post-optimization procedure
for all j ∈ S do

for all k ∈ J \ S do
Uj =

∑
i loaded into j wi

if Wk ≥ Uj and Ck < Cj then
Move all the items from j to k
S = S \ {j} ∪ {k}

Bins: sort the bins in SBL by non-decreasing order of their ratio cost over
volume Cj/Wj , j ∈ J and non-increasing values of their volumes;

Items: sort first the compulsory items in non-increasing values of their vol-
umes and then the non-compulsory items in non-increasing order of their
ratio profit over volume pi/wi, i ∈ INC and non-increasing values of their
volumes.

In the following we assume that this sorting criterion is used every time
BFD is mentioned.

The second upper bound, which is very tight, consists in solving the set
covering model considering all the patterns produced by the column generation
only. Since this can be time consuming, we give to the solver a time limit of
20 seconds. We name this upper bound ZSC .

V CSBPPo branch-and-price and beam search algorithms 9

5 Branch-and-price

The branch-and-price is an exact method which aims to find an optimal so-
lution by exploiting a tree structure where an easier subproblem is solved at
each node. It is a development of the branch-and-bound method with the ad-
dition of performing a column generation procedure (also called pricing) at
each node. In the following we name LB(j) and UB(j) respectively the lower
and the upper bound associated to the subproblem of node j, and UB the
global upper bound to the problem. Note that LB(0) = LB3 since, at the
root node of the search tree (node 0), the best lower bound is LB3. We devel-
oped our branch-and-price algorithm for the V CSBPPo extending the ideas
of Bettinelli et al (2010), who proposed a branch-and-price technique for the
VCSBPP with minimum filling constraints.

5.1 Bounds at the root node

At the root node we compute the lower bounds LB1, LB2, LB3, and the upper
bounds BFD and ZSC , as described in Section 4.

5.2 Branching

We adapted to the V CSBPPo the branching strategy of Bettinelli et al (2010).
At each branching node we perform a binary branching through two criteria
which consider the patterns created by the column generation at that node.
The first criterion involves the number of bins for each bin type t ∈ T . If it can-
not be adopted (see below) then we move to the second criterion, which works
on the items. In Monaci (2002) the author proposes another kind of branch-
ing based on the assignment of critical items into bins, but, after preliminary
experiments, this approach turned out not to be very effective.

5.2.1 Branching on the number of bins

Given the patterns created by the column generation when solving the R-SC
model, we compute zt =

∑
k∈Kt

λk and we consider the bin type t∗ such that
zt∗ has its fractional part the closest to 0.5. Then, in the first child node, we
impose the additional constraint to use at least Lt∗ = dzt∗e bins of type t∗,
whilst in the second child node we impose the additional constraint to use at
most Ut∗ = bzt∗c bins of type t∗. If t∗ does not exist we consider the second
criterion, which branches on the items.

5.2.2 Branching on the items

Given the patterns created by the column generation when solving the R-
SC model, we compute fij =

∑
t∈T

∑
k∈Kt : aik=1∧ajk=1 λk and we select the

10 M. M. Baldi et al.

items i∗ and j∗ such that fi∗j∗ is the closest to 0.5. The additional branching
constraints are then

xi∗ = xj∗ (18)

in the first child node and

xi∗ + xj∗ ≤ 1 (19)

in the second child node. Let us note that constraints (18) and (19) are not
explicitly added to each node. As we show in Section 5.3, they are implicitly
managed within the oracle in the pricing step.

Let us observe that (18) means that items i∗ and j∗ must be loaded together
in the same bin, otherwise they are not loaded at all. Vice versa (19) states
that items i∗ and j∗ cannot appear together in the same bin. Note that the
presence of constraints (19) changes the type of pricing sub-problem, having
to face a Knapsack Problem with Conflict Graph (also named Disjunctively
Constrained Knapsack Problem), a variant of the standard Knapsack Problem
much difficult to solve (Hifi and Michrafy, 2007). Conversely, constraints (18)
can be implicitly satisfied substituting the involved items by a macro item, say
l, which volume wl is the total volume of the items, profit pl is the total profit
of the non-compulsory items, and which dual variable πl is the total of the
dual variables of the items. This macro item becomes compulsory if at least
one of its items is compulsory.

5.3 Pricing

Pricing at a given node, say j, is performed by applying a column generation
technique to try to tighten the lower bound of node j, LB(j). As stated in
Section 5.2.2, the pricing subproblem at non-root nodes can be a Knapsack
Problem with Conflict Graph. Due to the high computational time required
to optimally solve this problem, three oracles with increasing computational
time are used. The first and the second oracles are simpler and faster than
the third one, but they can fail. The third oracle never fails but it is the
most time consuming one. If the first or the second oracle succeds, we quit the
subproblem, otherwise we go to the next oracle. This particular architecture of
the subproblem limits the third oracle usage in order to reduce the computing
time. In particular, the three oracles are:

– Heuristic oracle
– Knapsack Problem without constraints (19)
– Knapsack Problem with constraints (19).

We remind that constraints (18) are implicitly managed in the three oracles
through the introduction of macro items (see Section 5.2.2), therefore only
constraints (19) may appear when solving the oracles. The first subproblem,
the heuristic oracle, is a greedy procedure which produces a pattern by first
sorting items by non-increasing values of πl

wl
and then by trying to insert the

V CSBPPo branch-and-price and beam search algorithms 11

sorted items into a bin of the current type t ∈ T . Note that this oracle may fail
due to two reasons: a) the loaded items violate one of the additional constraints
(19) (which means that the new pattern is infeasible) or b) the oracle generated
a pattern with a positive reduced cost. Failure b) is a drawback due to the
heuristic nature of the oracle. Indeed, since this oracle is not exact, it does not
generate, in principle, a pattern yielding the minimum reduced cost. Therefore,
if the first oracle generates a negative reduced cost pattern, we however have
(although it is not the one yielding the minimum reduced cost) a profitable
pattern for proceeding with the column generation procedure and so we can
quit the subproblem. Vice versa, if the first oracle generates a positive reduced
cost pattern then, since it is not the pattern yielding the minimum reduced
cost, there could exist, however, a negative reduced cost pattern. Since, in
this particular case, we cannot predict whether such a negative reduced cost
pattern exists, the first oracle fails and we move to the second one.

The second oracle consists in solving a Knapsack Problem on the items.
without constraints (19). Since this is an exact oracle, it fails only if constraints
(19) are violated. Hence, if the solution satisfies these constraints we are done.
Otherwise two things may happen: a) the solution is not feasible but its re-
duced cost is positive, b) even the second oracle fails if at least one among
constraints (19) is violated. In the first case, since this is an exact subproblem,
it means that also the remaining patterns have positive reduced costs, even
if the created pattern is infeasible. Therefore we quit. In the second case, we
undergo oracle three.

The third oracle consists in solving a Knapsack Problem with constraints
(19). By construction, it never fails. Nevertheless, the presence of constraints
(19) makes it time consuming. That is why we leave this oracle at the end,
after the first two oracles. Computational experience confirms that the third
oracle is actually rarely used.

To speed-up the whole pricing procedure, we exploit the fact that the lower
bound of a child node cannot be less than the lower bound of its father node.
In other words, let j − 1 be the father node of node j (different from the
root node), then LB(j) ≥ LB(j − 1). This implies the addition to the Master
problem (1) - (7), concerning node j, of the following constraint:

∑
t∈T

∑
k∈Kt

ckλk ≥ LB(j − 1). (20)

Note that the introduction of (20) in the Master Problem modifies the ora-
cle (15) - (17). Let θ ≥ 0 be the dual variable associated to constraint (20)
then, following the same procedure presented in Section 4, the new column-
generation subproblem becomes:

12 M. M. Baldi et al.

Maximize

{ ∑
i∈INC

[(1− θ)pi + νi] xi +
∑
i∈IC

µi xi

}
Subject to:

∑
i∈I

wixi ≤Wt t ∈ T

xi ∈ {0, 1} i ∈ I

5.4 Rounding

This technique tries to tighten the lower bound yielded by the pricing proce-
dure. Let LB2(j) be the lower bound produced by the column generation at
node j, then a new lower bound can be found solving the following problem:

min LB(j) =
∑
t∈T

Ctyt −
∑
i∈INC

pixi (21)

s.t.
∑
t∈T

Ctyt −
∑
i∈INC

pixi ≥ dLB2(j)e (22)

∑
i∈IC

wi +
∑
i∈INC

wixi ≤
∑
t∈T

Wtyt (23)

Lt ≤ yt ≤ Ut ∀ t ∈ T (24)∑
t∈T

yt ≤ U (25)

yt ∈ Z+ ∀ t ∈ T (26)

where Lt and Ut are the bounds on the number of bins which have been
previously calculated in the branching step. Finally, we try to tighten the
global upper bound by solving a BFD heuristics with exactly yt bins for each
bin type t ∈ T and considering the disjoint additional constraints on the items.
The main idea of the rounding problem (21) - (26) is to try to increase the
lower bound LB2(j) yielded by the pricing step. This is expressed by constraint
(22). Vice versa constraint (23) comes from aggregating some constraints of
the assignment model, as done in the model (8) - (13). The details can be
found in Baldi et al (2011, 2012).

6 Beam search

Beam search is a particular heuristics that relies on a branch-and-bound or
branch-and-price tree (Della Croce et al, 2004). The approximation behavior
is due to the fact that just a part of the search tree is explored. This means
that, at a given level of the tree, only γ nodes are visited. The parameter γ
is the size of the beam. The γ nodes are selected according to a particular

V CSBPPo branch-and-price and beam search algorithms 13

criterion. In our tests we have considered a beam size up to 4 and selected
those nodes showing the best absolute gaps, computed as |LB(j) − UB(j)|.
Since the philosophy we adopted when developing the beam search was to save
time, we decided to skip the ZSC computation and the rounding problem at
each node.

7 Computational results

In this section we present the computational results of our branch-and-price
and beam search methods. First, the testing environment and the instance
sets are presented in Subsection 7.1, while detailed computational results of
the branch-and-price and the beam search are given in Subsection 7.2. Fi-
nally, being the V CSBPPo a generalization of the VSBPP, in Subsection 7.3
we compare the results of the branch-and-price and the beam search with the
state-of-the-art methods for the VSBPP in order to show how much the gen-
eralization process affects the results both in terms of efficiency and accuracy.

7.1 Testing environment

The algorithms were coded in C++ and the models implemented with CPLEX
12.1 (ILOG Inc., 2009). ZSC was computed within a limited computing time
of 20 seconds, when needed. We ran our branch-and-price algorithm with a
time limit of one hour and our beam search with a time limit of three minutes.
Experiments were conducted on a Pentium IV 3.0 GHz workstation with 4 GB
of RAM. The instances are the same used by Baldi et al (2011, 2012) and are
briefly here described:

– Class 0: This first set is made up by 300 instances; those created by Monaci
for the VSBPP (Monaci, 2002). Since these instances were created for solv-
ing the VSBPP, all items are compulsory. We show here the details of
Monaci’s instances, where ten instances were randomly generated for each
combination of number of items, item volume, and bin types defined as
follows:
– Number of items: 25, 50, 100, 200, and 500
– Item volume:

I1: [1, 100]
I2: [20, 100]
I3: [50, 100]

– Number of bin types:
A: three types of bin, with volumes 100, 120, and 150, respectively, and

costs equal to the volumes
B: five types of bin, with volumes 60, 80, 100, 120, and 150, respectively,

and costs equal to the volumes.
For each bin type t ∈ T , Lt = 0 and Ut is equal to the number of bins
equal to dVtot/Vte, where Vtot is the total volume of the items. No values
for U are given and all items are compulsory.

14 M. M. Baldi et al.

– Class 1: same instances of Class 0 where all items are non compulsory and
their profits are generated according to the following distribution: pi ∈
dU(0.5, 3)wie, where U stands for the uniform distribution.

– Class 2: same instances of Class 0 where all items are non compulsory
and the item profits are generated according to the following distribution:
pi ∈ dU(0.5, 4)wie, where U stands for the uniform distribution.

– Class 3: a 500-item class with 60 instances with a percentage of 0%, 25%,
50%, 75%, and 100% of compulsory items.

7.2 V CSBPPo results

In Table 1 we report the branch-and-price results for classes 0, 1, and 2. In
particular, column 1 shows the class number; column 2 the number of bin
types; column 3 the number of items, column 4 the percentage gap at the
root node, column 5 the residual percentage gap at the end of the branch-
and-price; column 6 the number of visited nodes on average, column 7 the
number of instances solved to optimality over 900; column 8 the number of
instances solved to optimality where the solution found at the root node is
also an optimal solution; column 9 the average computing time. Note that the
percentage gap at the root node is computed as the difference between the
best lower and upper bound at the root node over the best lower bound at the

root node; i.e.
∣∣∣UB(0)−LB(0)

LB(0)

∣∣∣ · 100. Note that, since LB(0) can be negative, we

compute the gap with absolute values. If LB(0) = 0, the gap is set equal to
UB(0).

To compute the residual gap at the end of the branch-and-price, we define
the best lower bound at the end of the branch-and-price LBB as follows:

LBB =

 UB if the best solution found so far is optimal

LB(0) otherwise.

Then the residual percentage gap is computed as
∣∣∣UB−LBB

LBB

∣∣∣·100, where UB

is the upper bound corresponding to the best solution found by the branch-
and-price.

The results of Table 1 are quite satisfactory: not only we reduce the gap
from 0.13% (i.e. the gap calculated at the root node) to 0.03%, but we also
solve to optimality 702 instances over 900. The most difficult instances to
solve are those with 500 items, and in particular those with 3 bin types. This
is justified by the fact that the more the number of items increases, the more
the instances are difficult to solve. Moreover, with 3 bin types the choice on
the available bins is quite reduced. This makes the problem harder due to the
presence of equivalent patterns which increase both the number of variables
involved in any column generation iteration and the fragmentation of these
variables in the optimal solution of the pricing procedure.

V CSBPPo branch-and-price and beam search algorithms 15

In Table 2 the branch-and-price results for Class 3 are presented. We de-
cided to separate Class 3 results from the other classes because these instances
are characterized by the presence of both compulsory and non-compulsory
items, while the number of items is always 500. Therefore there is not a direct
matching with the columns of Table 1. In Table 2 the columns have the fol-
lowing meaning: column 1 shows the percentage of compulsory items; column
2 the percentage gap at the root node; column 3 the residual percentage gap
after the branch-and-price; column 4 the number of visited nodes on average;
column 5 the number of instances solved to optimality over 60; column 6 the
number of instances solved to optimality where the solution found at the root
node is also an optimal solution; column 7 the average computing time.

The percentage gap at the root node and the residual gap at the end of
the branch-and-price are computed as for Table 1. In this case, we solved to
optimality 19 instances over 60, i.e. 31% of Class 3 instances. Although the
absolute difference of the gap reduction is approximately the same in the two
tables (around 0.1%), the residual gap is not as good as in Table 1. This is
justified by two issues. First one, the gap at the root node is already high. This
is justified by the fact that, for large size instances, 20 seconds of time limit
are not enough to compute ZSC to optimality. This implies a higher bound at
the root node. The second issue concerns the fact that, as in Class 3 instances
both compulsory and non-compulsory items are present, two different sets of
constraints are necessary: (2) for compulsory items and (3) for non-compulsory
items. This splitting of items with their relative constraints makes the problem
harder to solve and justifies the gap growth for Class 3 instances.

In Table 3 we report our beam search results. In particular, the columns
have the following meaning: column 1 shows the class number; column 2 the
beam size; column 3 the residual percentage gap after applying the beam
search; column 4 the number of instances solved to optimality over 960; col-
umn 5 the number of solutions better than those found by the branch-and-price
and, finally, column 6 the average computing time. In this table we report all
the classes together because we aim to show the overall gap depending on the
beam size rather than on the instance attributes. The residual percentage gap
is computed in a similar way as for the branch-and-price. Indeed, due to the
previous branch-and-price calculation, now we know the optima of many in-
stances and we can refer to them when computing the final gap. In particular,
given an instance, let UB be the best upper bound found by the beam search.

Then the residual percentage gap can be computed as
∣∣∣UB−LBB

LBB

∣∣∣ · 100, where

LBB values are those computed when performing the branch-and-price. If the
branch-and-price could not find an optimal solution, the beam search might
find a better solution. However this is quite rare, as it can be seen in column
5 of Table 3. The results show very promising gaps for classes 0, 1, and 2,
but not so good for Class 3. This time the high gaps are also justified by the
fact that, at the root node, to save time, we do not compute the ZSC upper
bound which would have improved the accuracy of the method. Of course,
increasing the beam size improves the final gap, to the detriment of the com-

16 M. M. Baldi et al.

CLASS TYPES ITEMS % GAP(0) % GAP NODES OPT ROOT OPT TIME
25 0.27 0.00 5.00 30 22 0.05
50 0.21 0.00 26.33 30 19 0.51

3 100 0.24 0.02 1190.93 28 13 80.62
200 0.18 0.07 4107.80 19 9 1057.24

0 500 0.25 0.20 901.67 13 7 2165.01
25 0.14 0.00 9.93 30 25 0.09
50 0.10 0.00 13.07 30 22 0.31

5 100 0.13 0.01 776.53 29 11 146.84
200 0.09 0.05 2970.27 22 13 680.71
500 0.06 0.03 1008.80 16 9 1908.28

0.17 0.04 1101.03 247 150 603.97
25 0.32 0.00 13.80 30 20 0.20
50 0.16 0.00 188.67 30 13 22.41

3 100 0.13 0.04 3297.87 19 6 963.22
200 0.09 0.03 3607.33 21 5 1115.82

1 500 0.21 0.21 1099.80 10 5 2560.55
25 0.20 0.00 100.07 30 23 9.16
50 0.06 0.00 429.73 30 24 45.65

5 100 0.05 0.01 1939.00 24 12 625.94
200 0.03 0.01 4322.93 18 6 1199.36
500 0.03 0.03 933.47 14 9 2053.72

0.13 0.03 1593.27 226 123 859.60
25 0.15 0.00 13.20 30 22 0.30
50 0.19 0.01 797.27 28 17 222.94

3 100 0.07 0.01 2246.07 22 9 744.96
200 0.07 0.04 4593.00 19 7 1209.31

2 500 0.21 0.19 1030.80 11 6 2404.29
25 0.07 0.00 23.07 30 26 1.81
50 0.06 0.01 726.67 28 19 106.84

5 100 0.03 0.01 1974.00 23 13 861.03
200 0.02 0.01 3462.60 22 6 1084.04
500 0.02 0.02 836.53 16 11 1959.58

0.09 0.03 1570.32 229 136 859.51
OVERALL 0.13 0.03 1421.54 702 409 774.36

Table 1 Branch-and-price results for Classes 0, 1, and 2

PERC. % GAP(0) % GAP NODES OPT ROOT OPT TIME
0 0.11 0.10 1291.33 3 1 2820.44
25 0.32 0.31 1109.00 4 3 2472.01
50 2.11 1.86 1058.50 4 1 2525.91
75 0.47 0.41 1080.17 4 0 2749.93
100 0.21 0.15 1234.33 4 1 2626.93

OVERALL 0.65 0.57 1154.67 19 6 2639.04

Table 2 Branch-and-price results for Class 3

puting time. The relative accuracy of the beam search is highly compensated
by the small computing time, which is less than 3 minutes, when the branch-
and-price requires, on average, up to 45 minutes. Therefore we can conclude
that the proposed beam search is a good compromise between accuracy and
computational effort.

7.3 VSBPP comparison

As stated in the Introduction, the V CSBPPo generalizes several packing prob-
lems, in particular the VSBPP. Due to its recent introduction, the V CSBPPo
literature is quite limited, while for the VSBPP several heuristic and exact
methods are available. In this section we use the proposed branch-and-price
and beam search algorithms to address the VSBPP and compare the results

V CSBPPo branch-and-price and beam search algorithms 17

CLASS BEAM % GAP OPT IMPROVING TIME
1 0.33 130 2 23.35

0 2 0.29 150 3 28.59
3 0.28 159 3 31.12
4 0.26 170 3 33.94

0.29 176 4 29.25
1 1.25 99 3 39.29

1 2 1.16 109 3 54.10
3 1.10 114 2 59.71
4 0.98 124 2 64.58

1.12 128 3 54.42
1 0.93 103 4 42.43

2 2 0.84 113 3 53.64
3 0.79 119 2 60.22
4 0.74 123 2 65.89

0.83 129 4 55.54
1 4.97 7 1 145.74

3 2 4.72 9 0 155.54
3 4.70 11 1 157.95
4 4.68 11 1 158.63

4.77 11 2 154.47

OVERALL 1.75 444 13 73.42

Table 3 Beam search results

with those of the state-of-the-art methods specifically designed for the VSBPP,
in particular BBHS , the branch and bound presented in Haouari and Serairi
(2011) and V NSHSB , the VNS introduced in Hemmelmayr et al (2012). For
the beam search, we consider the setting with beam size equal to 4. We consider
the instance set of Monaci (2002), which was also used by Haouari and Serairi
(2011) and by Hemmelmayr et al (2012). Other available VSBPP instances
(see, e.g., Alves and Valério de Carvalho (2007)) do not seem to be sufficiently
challenging, as both the branch-and-price and the beam search are able to
solve them to optimality at the root node with a negligible computational
time.

Table 4 compares BBHS with our branch-and-price. The table reports the
number of items in the instances and, for each method, the mean percentage
gap between the upper and lower bounds at the root node and the number of
instances solved to optimality. BBHS performs better. This is due, as stated
by the authors in their paper, to a series of dominance criteria and lower
bounds specifically designed for the VSBPP, which, unfortunately, cannot be
extended to the V CSBPPo. For instance, the dominance criteria heavily used
the hypothesis that the number of available bins for each type is infinite, which
is not the case for the V CSBPPo and neither for the VCSBPP (Crainic et al,
2011). As expected, since the V CSBPPo is more general, it looses somewhat
in efficiently proving optimality, but preserves excellent performances in terms
of gaps. A similar behaviour can be observed when comparing V NSHSB and

18 M. M. Baldi et al.

the beam search (Table 5). In this case, the gap remains under 0.5%, within
a competitive computational effort (about two minutes in the worst case).

BBHS B&P
ITEMS % GAP OPT % GAP OPT

25 0 60 0 60
50 0.01 59 0 60
100 0.02 59 0.1 57
200 0 60 0.6 41
500 0 60 0.11 29

Table 4 VSBPP results: comparison between BBHS and branch-and-price

VNSHSB BEAM
ITEMS % GAP OPT TIME % GAP OPT TIME

25 0.00 60 150 0.09 54 0.10
50 0.01 59 150 0.21 45 0.53
100 0.00 58 150 0.32 35 3.60
200 0.01 54 150 0.28 20 37.03
500 0.01 52 150 0.41 22 128.44

Table 5 VSBPP results: comparison between V NSHSB and beam search

8 Conclusion

In this paper we introduced two different methods for solving the V CSBPPo.
The first one is an exact algorithm based on a branch-and-price scheme.
From the branch-and-price we then derived a beam search heuristics. We fi-
nally presented extensive computational results and showed that most of the
V CSBPPo open instances in the literature can be closed.

Future research will be devoted to the introduction of specific cuts for
the V CSBPPo and derive from them a branch-and-cut-and-price algorithm.
This is challenging because the conditions for deriving cuts for the VCSBPP
and accelerating the column generation available in the literature (Alves and
Valério de Carvalho, 2007, 2008) do not hold for the V CSBPPo.

Acknowledgements While working on this project, the second author was the NSERC
Industrial Research Chair on Logistics Management, ESG UQAM, and Adjunct Professor
with the Department of Computer Science and Operations Research, Université de Montréal,
and the Department of Economics and Business Administration, Molde University College,
Norway.

This project has been partially supported by the Ministero dell’Istruzione, Università
e Ricerca (MIUR) (Italian Ministry of University and Research), under the 2009 PRIN
Project “Methods and Algorithms for the Logistics Optimization”, and the Natural Sciences

V CSBPPo branch-and-price and beam search algorithms 19

and Engineering Council of Canada (NSERC), through its Industrial Research Chair and
Discovery Grants programs, and by the partners of the Chair, CN, Rona, Alimentation
Couche-Tard and the Ministry of Transportation of Québec.

References

Alves C, Valério de Carvalho JM (2007) Accelerating column generation for
variable sized bin-packing problems. European Journal of Operational Re-
search 183:1333–1352

Alves C, Valério de Carvalho JM (2008) A stabilized branch-and-price-and-
cut algorithm for the multiple length cutting stock problem. Computers &
Operations Research 35:1315–1328

Baldi MM, Crainic TG, Perboli G, Tadei R (2011) The generalized bin packing
problem. Tech. rep., CIRRELT, CIRRELT-2011-39

Baldi MM, Crainic TG, Perboli G, Tadei R (2012) The generalized bin packing
problem. Transportation Research Part E 48(6):1205–1220

Belov G, Scheithauer G (2002) A cutting plane algorithm for the one-
dimensional cutting stock problem with multiple stock lengths. European
Journal of Operational Research 141:274–294

Bettinelli A, Ceselli A, Righini G (2010) A branch-and-price algorithm for the
variable size bin packing problem with minimum filling constraint. Annals
of Operations Research 179:221–241

Chu C, La R (2001) Variable-sized bin packing: Tight absolute worst-case
performance ratios for four approximation algorithms. SIAM Journal on
Computing 30:2069–2083

Correia I, Gouveia L, Saldanha-da-Gama F (2008) Solving the variable size
bin packing problem with discretized formulations. Computers & Operations
Research 35:2103–2113

Crainic TG, Perboli G, Rei W, Tadei R (2011) Efficient lower bounds and
heuristics for the variable cost and size bin packing problem. Computers &
Operations Research 38:1474–1482

Della Croce F, Ghirardi M, Tadei R (2004) Recovering beam search: Enhancing
the beam search approach for combinatorial optimization problems. Journal
of Heuristics 10:1381–1231

Desaulniers G, Desrosiers J, Solomon MM (eds) (2005) Column generation.
GERAD 25th Anniversary Series, Springer, ISBN 978-0-387-25485-2

Friesen DK, Langston MA (1986) Variable sized bin packing. SIAM Journal
on Computing 15:222–230

Haouari M, Serairi M (2009) Heuristics for the variable sized bin-packing prob-
lem. Computers & Operations Research 36:2877–2884

Haouari M, Serairi M (2011) Relaxations and exact solution of the variable
sized bin packing problem. Computational Optimization and Applications
48:345–368

Hemmelmayr V, Schmid V, Blum C (2012) Variable neighbourhood search for
the variable sized bin packing problem. Computers & Operations Research
39:1097–1108

20 M. M. Baldi et al.

Hifi H, Michrafy M (2007) Reduction strategies and exact algorithms for the
disjunctively constrained knapsack problem. Computers & Operations Re-
search 34:2657–2673

ILOG Inc (2009) IBM ILOG CPLEX v12.1 User’s Manual
Kang J, Park S (2003) Algorithms for the variable sized bin packing problem.

European Journal of Operational Research 147:365–372
Martello S, Toth P (1990) Knapsack Problems - Algorithms and computer

implementations. John Wiley & Sons, Chichester, UK
Monaci M (2002) Algorithms for packing and scheduling problems. PhD thesis,

Università di Bologna, Bologna, Italy
Murgolo FD (1987) An efficient approximation scheme for variable-sized bin

packing. SIAM - Journal on Computing 16:149–161

