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Summary

This thesis is focused on the structural behaviour of high-rise buildings subjected
to transversal loads expressed in terms of shears and torsional moments. As
horizontal reinforcement, the resistant skeleton of the construction can be
composed by different vertical bracings, such as shear walls, braced frames and
thin-walled open section profiles, having constant or variable geometrical
properties along the height. In this way, most of the traditional structural schemes
can be modelled, from moment resisting frames up to outrigger and tubular
systems. In particular, an entire chapter is addressed to the case of thin-walled
open section shear walls which are defined by a coupled flexura-torsional
behaviour, as described by Vlasov’ stheory of the sectorial areas.

From the analytical point of view, the three-dimensional formulation proposed
by Al. Carpinteri and An. Carpinteri (1985) is considered and extended in order to
perform dynamic analyses and encompass innovative structural solutions which
can twist and taper from the bottom to the top of the building.

Such approach is based on the hypothesis of in-plane infinitely rigid floors
which assure the connection between the vertical bracings and, consequently,
reduce the number of degrees of freedom being only three for each level. By
means of it, relevant design information such as the floor displacements, the
externa load distribution between the structural components, the internal actions,
the free vibrations as well as the mode shapes can be quickly obtai ned.

The clearness and the conciseness of the matrix formulation alow to devise a
simple computer program which, starting from basic information as the building
geometry, the number and type of vertica stiffening, the material properties and
the intensity of the external forces, provides essential results for preliminary
designs.

VII






Sommario

Questa tesi analizza il comportamento strutturale di edifici di notevole atezza
sottoposti ad azioni trasversali, quali azioni taglianti e momenti torcenti. Il
corrispondente rinforzo strutturale pud essere rappresentato da diversi sistemi di
controventamento, come le pareti di taglio, i telai controventati ed i profili a
sezione sottile aperta, aventi proprieta geometriche costanti o variabili lungo
I’altezza dell’ edificio. In questo modo, pud essere presa in considerazione la
maggior parte degli schemi tradizionali impiegati in questo ambito: dai telai
momento-resistenti fino agli schemi a trave-cappello e quelli tubolari. In
particolare, viene dedicato un intero capitolo a caso delle travi a sezione sottile
aperta, caratterizzate da un comportamento misto che associa le deformazioni
flessiondi aquelle torsionali, cosi come descritto dallateoria delle aree settoriali o
teoriadi Vlasov.

Da punto di vista anditico, viene ripresa ed ampliata la formulazione
tridimensionale proposta da Al. Carpinteri e An. Carpinteri (1985) per poter
svolgere analis dinamiche ed includere soluzioni strutturali innovative che
ruotano e si rastremano dalla base fino ala sommita della costruzione.

Tale metodo e basato sull’ipotes di piani infinitamente rigidi che assicurano il
mutuo collegamento frai rinforzi verticali e riducono il numero di gradi di liberta
a soli spostamenti di piano. Inoltre, dalla sua applicazione, possono essere
ricavate informazioni progettuai di grande interesse, come la deformata, la
ripartizione del carico esterno fra le singole componenti del sistema resistente, le
azioni interne, le frequenze proprie e le deformate modali.

La chiarezza e la concisone della formulazione matriciadle facilitano
I"ideazione di un semplice programma di calcolo che, a partire da informazioni
basilari quali la geometria della costruzione, il numero ed il tipo di controventi, le
proprieta del materiale el’intensita delle azioni, fornisce risultati indispensabili per
progettazioni preliminari.
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Chapter 1

Horizontal Stiffening in the Design of Tall
Buildings

1.1 Introduction

Tall buildings have aways been the symbol of supremacy of the nations engaged
in their construction. Since its first appearance, this architectural typology has met
approval in the public eye. Especially from a scientific point of view, it is become
an appeding challenge for the designers focused on the interpretation of its
structural behaviour.

Originally, high-rise structures were an American prerogative; nowadays they
represent a worldwide architectural phenomenon, even for those countries
regarded as less advanced, which however are demonstrating a fast industria
growth. As a matter of fact, most of the last super-tall buildings are located far
from the United States: China, Korea, India and Malaysia, characterised by a
considerable economic capability and technological progress, represent an evident
proof of this current trend. Nevertheless, even if the geographical location of the
last constructions is changed, the human attempt of overcoming the limits aready
achieved is ill the main reason which keeps aive the interest in this field.
Thereby, further goals in terms of achievable heights and unconventional shapes
are expected in the next future.
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Figure 1.1 — Monadnock Building in Chicago (1981, USA).

Historically, the appearance of tal buildings was due to the Industria
Revolution, at the end of the nineteenth century. In the construction field the
technical evolution permitted to have available advanced materials and equipment
which were indispensable for the realization of tall structures. From this point of
view, the invention of the lift facilitated the evolution of these buildings as well as,
in this period, a decisive transition was the use of those materials considered, until
then, far from the scope of the constructors, being absent their corresponding
production technology. In particular, the presence of steel in the structural skeleton
involved a series of benefits, such as an increased construction speed, the
availability of various shapes, the possible reuse, the high ratio between resistance
and weight and a reduce degree of uncertainty about the material properties, which
contributed to change the conceptual design of the constructions.

Initially the early reason of growing in height was commercial, having to
compensate for the lack of space and natural light in a urban densely populated
land [111].
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Figure 1..2— Braced frame structures.

However the higher the building, the more sensitive it became to laterd actions
coming from wind and earthquakes. Without lateral giffeners, the dimensions of
the structural elements increased so that they couldn’'t be longer a satisfactory
solution from an architectural point of view. In addition, it constituted a limit on
the evolution in height of these revolutionary congtructions. The 17-storey (64m)
Monadnock Building in Chicago, being an impressive structure in which the
resistant mechanism relies on heavy masonry walls, is even now the symbol of this
issue[112].

For this purpose, the conventional load-bearing systems were substituted by
new technologies which reduced the dimensions of the structural members and
guaranteed the global stability of the building. The first result was a steel frame
structure, which exploited the resistant properties of the materia to reach an
adequate stiffness, without compromising the architectural demands. This
typology was followed by other systems designed to absorb and distribute the load
according to their own stiffness. At this stage moment resisting frames, braced
frames, shear walls and interactive frame - shear wall combinations appeared [34,
58].

1.2  Structural Behaviour of Frames and Shear Walls

The moment resisting frames are constituted by beams and columns devised to
absorb the loads coming from the dlab. The latter is usualy outlined as an
horizontal rigid diaphragm which transfers vertical and lateral loads to the
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structura skeleton. In the absence of specific bracings, all the horizontal stiffness
is based on the flexural and shear resistance of the network of beams and columns,
being the joints designed as perfectly rigid.

The choice of this typology is due to the fact that the horizontal forces are not
predominant if compared to the vertical ones. Otherwise, this entails an excessive
increase of the dimensions of the structural component. In addition, pure rigid
frames become not efficient for building higher than about thirty storeys, because
the corresponding shear deformation determines too large drifts. To avoid these
effects, further bracings, such as diagonal members between consecutive floors,
are added to the previous scheme. In this way the flexura moment acting in the
beams and columns decreases and the shear is absorbed as axia load by the
diagona edements so that the globa behaviour becomes similar to that of a
cantilever system. This is the case of braced frames in which the diagonal
reinforcements contribute to the horizonta resistance by means of their axia
stiffness (Fig. 1.2).

These stedl configurations symbolise the turning point in the height race which
started in the early twentieth century. The first structure showing a steel skeleton
was the Park Row Building in New Y ork, which reached 30 storeys in 1899, but
the most popular among all was the Empire State Building, with its 102 storeys
above ground in 1931.

Even though the heights of the buildings were already outstanding, due to the
lack of innovative technologies and advanced analysis techniques, such reinforced
solutions were redlised through an excessive use of structural materials
determining anyway over-designed congtructions. Later on, a different approach
was undertaken: the vertical behaviour was supposed to be separated from the
horizontal one and specific structural elements able to absorb the entire horizontal
load were devised: this was the case of the shear walls. The latter are cantilevers
developing from the ground to the top of the building and, usually, characterised
by thin-walled open sections which also allow to house stairwells or lift shafts.
These structures are also known as core walls and can be specifically designed
with particular cross sections or coupled with other walls to reproduce a resultant
system with afinal stiffness exceeding the sum of the individual components.

The previous schemes can be adopted together to increase the global horizontal
stiffness of the building and to reduce the lateral sway, which represents one of the
most restrictive conditions coming from the legislation for this type of
construction. Thus shear wall — frame interaction system became a very popular
scheme, which captured the attention of the scientific community in 1970s.
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Figure 1.4 — Model of an interactive frame - shear wall combination; natural deformations
of the components (a) and effect of their combination (b).

The effectiveness of this solution is due to the different deformation which
characterises the frame with respect to the shear wall. In presence of horizontal
actions, the former is mainly subjected to shear deformations, whereas the latter to
flexural ones. In this way, in the bottom part of the building, the shear wall
sustains the frame, whereas, in the top part, the frame restrains the shear wall, thus
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reducing the global deformation of the resistant system (Fig. 1.4). This
sophisticated configuration can be applied for building up to 70 storeys in height.

From a structural point of view, in order to design each component of the
scheme, it is necessary to identify the amount of external load which is carried by
each single element. To this purpose, taking into account the model of Fig. 1.4, a
simplified approach hypothesizes that the connections between the members are
defined by rigid trusses, so that the congruence of the horizontal displacements at
each floor is satisfied. If F represents the external load vector and X the redundant
unknowns defining the forces transmitted through the trusses, due to compatibility
conditions the following expression can be written:

where C; and C, are the compliance matrices of the shear wall and frame
respectively.

Defining C as the sum of the matrices C; and C,, the numerical solution of Egn
11)is

X =C1C,F (1.2

which permits to evaluate the internal load distribution (Fig. 1.4b) and, thereby, to
develop a preliminary design of the components of the horizontal resistant system.

1.3 Outrigger Systemsand Tube Systems

Later, designers supposed that the building could be treated in a holistic manner
and, therefore, analysed as a three-dimensiona body rather than as a series of
planar systems. This outlook gave rise to various other models which increased the
lateral resistance without an excessive use of structural materids. As a
consequence, the traditional analyses were gradualy replaced by global
approaches.

The structure was considered as a vertical cantilever or a system of cantilevers
on the ground, having al the required latera stiffness allocated to the perimeter of
the building. This shrewdness aimed to increase the structural depth of lateral
load-resisting elements and, thereby, their resistant contribution.

According to these outlooks and depending on the height of the construction,
several solutions, such as outrigger, framed-tube, bundled-tube and tube-in-tube
systems were realised (Fig. 1.5, 1.6).
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Figure 1.5 — Typologies of horizontal stiffeners.

Originally outrigger systems were employed in the sailing ship in order to
increase the stability and the strength of the masts subjected to wind forces. From
this point of view, atall building could be considered analogous to the mast of a
ship in presence of further elements similar in behaviour to the spreaders and
stays. Thus, the engineers understood that it was possible to couple the interna
core of the building with the exterior columns and redise the same scheme
adopted to strengthen the ships (Fig. 1.7).
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Figure 1.8 — Structural behaviour of an outrigger system; comparison in terms of moment
diagram between systems with or without outrigger bracings.

It is evident that they are primarily conceived to reduce the global deformation
of the building, caused by the flexural behaviour of the resistant core. This is
achieved by reducing the overturning moment of the cantilever scheme and by
transferring the reduced moment to the outer members through extremely rigid
horizontal beams connected to the core at specific levels. When horizontal loading
acts on the structure, the rotation of the core is reduced by the axia force that
arises in the external columns, in particular tensile force in the windward columns
and compressive force in the leeward ones (Fig. 1.8).

Roughly speaking, the resistant system can be idealised as a moment resisting
spring which tends to induce a reversal of curvature in the bending behaviour of
the cantilever scheme. In addition, including deep spandrel girders, which work as
belts surrounding the entire building, it is possible to mobilise also the other
peripheral columns to assist in restraining the outriggers, providing an
improvement up to 25-30 per cent in stiffness. In order to have the outrigger and
belt girder adequately stiff in flexure and shear, they often present a vertica
extension which covers at least one or two storeys. Consequently, because of the
obstruction caused by them, the corresponding levels are inevitably reduced to
technical levels (Fig. 1.9).
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Figure 1.9 — Scheme of belt trusses working in connection with the outrigger system.

This structural typology can be easily inserted in the resistant skeleton of the
building without excessively altering the original architectural shape according to
two main schemes: in the first one, the core is located between the column lines
with the outriggers extending on both sides (Fig. 1.8); in the second, the coreis on
one side of the building connected to the columns of the other side by means of
horizontal cantilevers.

This solution can be employed with a single outrigger, usualy located at the
top of the building to maximise the restraining effect, or with some outriggers,
disposed at different levels of the building. The choice depends on the needs of
reducing the pure flexura behaviour of the origina structure.

Many super tall buildings have been realised following this structural typology:
among all, Place Victoria Office Tower (Montreal, 1965) and First Wisconsin
Centre (Milwaukee, 1973, Fig. 1.10) can be mentioned.
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Figure 1.10 — The U.S. Bank Centre in Milwaukee (1973, USA): example of a tall
building restrained by two outrigger systems.

From the design point of view, an approximate method for a preliminary
analysis can be adopted to evaluate of the optimum location of an outrigger and,
thus, achieve the minimum total lateral sway of atall building of height H.

The approach is based on some assumptions and some compatibility
conditions: the materia islinear elagtic, the external columns are only subjected to
axial forces, the outriggers are rigidly connected to the core and the latter is
perfectly constrained to the ground; the rotations of the core have to match with
those related to the corresponding outriggers placed at the same levels.

For the purpose, the deflection of the inner core, considered as a simple
cantilever subjected first to the horizontal externa actions g and, then, to the
restraining effect due to the outrigger, is computed. The latter can be considered as
the effect of a moment-resisting spring, whose stiffness depends on its vertical
location.

The compatibility equation related to the rotation at the level (z=H - X) is:

19q - 8S(X) = 19X (13)

in which 9 is the rotation of the cantilever at z = (H — x) due to the external
actions, whereas U4y, is the rotation at the same level, due to the rotationa spring,
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with the negative sign because it acts in the opposite direction; finally 0Oy is the
rotation of the global systemat z= (H - x).
Eqgn (1.3) can be written in the following explicit form:

q 3 3 Mx _ My
E(H —X)—E(H—X)—K—X (14)
being

- g, thedistributed external action;

- El, theflexurd rigidity of the inner core;

- H, the height of the building;

- X, the unknown vertical position of the outrigger, from the top;

- M,, the resisting moment due to the rotational spring;

- K, the spring stiffness obtained by means of the axial rigidity EA of the

extreme columns as EAd?/[2(H-x)]

- d, therdative distance between the externa columns.

Once the moment M, is acquired from Eqgn (1.4), the top drift of the building
can be computed taking into account the effects of the externa action and the
moment M, by means of the Superposition Principle. Since thefirst contribution is
constant, the procedure which aims to minimise the lateral sway of the building is
turned into the attempt of maximising the negative top deflection caused only by
the rotational spring. The latter is then differentiated with respect to x and equated
to zero to define the best location of the outrigger.

My
yx = 5o (H? = x?) (1.5)
d(yx) _
e = (1.6)

The extension of the solution in the case of two or more outriggers can be
obtained following the same methodology. Taranath [111] provides a summary
graph, related to a 46-storey building, for the case of two contemporary outriggers
systems. In Fig. 1.11 some design curves are reported, in order to identify the top
displacement of a building in which the outrigger systems are arranged. The
information that can be acquired are given in a non-dimensional form, so that they
can be extended to consider different types of internal resistant core. In the y axis
there is the number of the level to which the outrigger is associated, whereas in x
axis the ratio between the top drifts related to the global resistant scheme and the
one free from outrigger systems.



Chapter 1 — Horizontal Stiffening in the Design of Tall Buildings 13

without belt—>]

40 @ truss system
/X X! |
3 A

Z Optimum
BC
By o
\/® Single belt truss

26 location
N
; N
(28, 4) 3
3 &LK‘_\
N\ @ \
0 0.2 0.4 0.6 0.8 1.0
Top floor deflection parameter:

* / Deflection

(36, 23)
/

Epal 7

0o o

=

24

20

Story number
for belt truss location
>

G

12|(20, 15)

==

Belt truss system deflection
braced core deflection

Figure 1.11 — Curves for the evaluation of the best location of two outrigger systems.

The continuous curve represents the case of only one outrigger, whose location
varies along the height. If the latter is zero, the value of top drift coincides with the
one related to the case of pure cantilever. In addition, it is evident that the
optimum position of the single reinforcement is about 60 per cent of the entire
height. On the contrary, the other curves represent the cases of two outriggers:
once the upper one is fixed (defined by the circled number), the corresponding
curve defines the value of the top drift as the lower is moved in the storeys
immediately below. In this way, it becomes possible to identify the best
configuration of two outrigger systems in order to have the minimum lateral sway
of the building. For instance, if the upper reinforcement is posed at the 36™ level
and the lower at the 23 level, the building shows only 17 per cent of the top
displacement if compared to the case of pure cantilever behaviour. This result
proves the effectiveness of this kind of structural solution, if employed in a high-
rise building.

The idea of entrusting the horizontal resistance to the components constituting
the perimeter of the building induced the engineersto a breakthrough in the design
of the structural skeleton. If the stiffening is located along the perimeter of the
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building, the corresponding lever arm increases to such an extent that the structure
becomes much dtiffer than the previous cases, thereby alowing to reach
unimaginable heights. In this way the structure tends to behave as an equivalent
huge hollow tube cantilevering out of the ground. This solution, known as framed
tube, directly derives from the frame concept. Indeed, it is characterised by closely
spaced columns and deep spandrel beams rigidly connected together and smeared
on the perimeter of the construction. The fina result is a single three-dimensional
tube element, which represents the most economical and yet safe and serviceable
system for the design of buildings with over 50-60 storeys [33, 37, 65].

The earliest application of the tubular notion is related to the designer Fazlur
Khan that conceived the 43-storey DeWitt-Chestnut Apartment Building
(Chicago) in 1965.

At present most of the super-tall buildings are built according to the tubular
concept: the 100-storey John Hancock Building (Chicago, 1969), the 110-storey
Sears Towers (Chicago, 1973) and the 110-storey World Trade Centre Towers
(New York, 1973, destroyed by a terrorist attack in 2001) are glaring proof of this
construction typology.

From the structural point of view, the building can be assimilated to a
cantilever whose bending behaviour is associated with the axial forces absorbed by
the columns of the tube's windward and leeward faces. If the mesh of columns and
spandrel beams is adequately dense, the latter can be treated as a continuous wall
element. In this way the building can be easily reduced to a vertical hollow beam,
whose stiffness depends on the geometrical inertia of the globa cross section.
Columns arranged in facades transverse to the wind direction operate as
compression and tension flanges of the box beam, whereas the rest as webs.

The distribution of the stresses is supposed to follow the assumption of plane
sections, as proposed in the Euler-Bernoulli hypothesis. This construction
typology alows to create diversified shapes manipulating the plan form without
atering the structural efficiency. Nevertheless, due to architectura reasons, a
highly dense mesh of beams and columns is in contrast with the need of natural
light in the inner spaces. On the other hand, the increase of the openings causes the
structure to behave as a thin-walled beam, in which the shear stresses and shear
deformations are decisively much larger than in a solid beam. The corresponding
effect is the distortion of the cross section, which entails the annulment of the
hypothesis of plane sections. As a consequence, the classical theory of bending is
no longer applicable and the intensity of the actions in the columns are no longer
proportional to the distance from the neutral axis of the section. A careful anaysis
of the problem shows a non-linear trend of the stresses, which are lower in centre
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of the flanges, but higher near the corners. This phenomenon is known as shear lag
and plays a decisive rule in the design of tubular schemes. Just for this reason the
frame tube system is considered inefficient over 60 storeys. A further evolution of
the tubular concept overcomes this problem. Braced tubes are devised by means of
the addition of external diagonal elements which contribute to tiff the whole
structure. Thanks to this solution, the exterior columns can be widely spaced as
well as the sizes of spandrel beams and columns can be smaller, permitting to
adopt larger window openings. In this case the shear stresses, which represent the
main cause of the shear lag of frame tubes, are absorbed by the huge diagonals
which almost annul the shear deformation through their axial stiffness, allowing a
pure flexura behaviour of the building. In this way the engineers are alowed to
reconsider the Euler-Bernoulli hypothesis of plane sections, being the trend of the
stresses almost linear. One of the most famous braced tubes is the 100-storeys
John Hancock Center in Chicago, in which the diagonals are clearly shown in the
facades and placed at 45° angles to each other, forming enormous X braces on
each side.

Another structural configuration which implements the tubular scheme is
represented by the bundled tube. This solution was adopted to improve the
horizontal resistance of super-tall buildings and to renew the architectural shapes
of these constructions. A cellular or bundled tube building consists of two or more
independent tubes, which operate together to the structural stability of the entire
building. Since the bundled tube is derived by the connection of individual tubes,
it is possible to model a variety of architectural configurations by simply
terminating the tubes at different levels. This solution gives the idea that the
structure is climbing towards the sky, causing at the same time the astonishment of
the viewers. This expedient also alows to design super tall structures without an
excessive increase of the base area, which would be necessary in presence of
frame tube scheme.

It is obvious that, in the design of each tube, the shear lag has to be taken into
account, even if, in a globa analysis, its effect seems to be somewhat reduced.
Furthermore other advantages are provided by this configuration. In presence of
tubes of different heights, there is firstly a remarkable reduction of the masses
from the ground to the top which influences the dynamic behaviour, being the
arisen inertia forces decisively smaller as the highest floors are considered;
secondly, the lateral sway due to the wind is also reduced, in virtue of less exposed
surface areas. This configuration is greatly appreciated and, to this day, one of the
most esteemed is Sears Tower, an outstanding 110-storey building, which was the
world' stallest building from 1973 to 1998.
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Section B-B

Section A-A

Figure 1.12 — Sear Tower in Chicago (1973, USA).

Its resistant system is composed by nine square tubes each having a different
height. Four main cross sections define its external profile: the first shows all the
tubes connected each other; the second loses two corner tubes, as the third case, in
which other two corner tubes disappear. Finaly only two tubular elements reach
the total height of the building (Fig. 1.12).

The structural efficiency of bundled tubes can be further improved. The braced
tube scheme can be proposed for each single tube, especialy in the presence of
different shapes, such as rectangular, triangular or hexagonal. This choice forces
the structures to behave as an integral body with respect to the external actions
and, therefore, loss of structural integrity disappears.

Finaly, with the aim of increasing the global stiffness of the building, the
externa tube system can be connected to an internal core, which participates to
resist part of the lateral load. This is the case of tube-in-tube systems, where the
core itself can be made up of a solid tube, a braced tube or a framed tube and can
be considered as an internal protection against unexpected impacts due to human
errors or terrorist attacks. Therefore, it is evident that the tubular concept offers
several opportunities to the designers, being a flexible solution able to satisfy most
of the innovative architectural shapes and guarantee both stiffness and stability. It
is not by chance that the current tallest building in the world is Burj Khalifa, a
bundled tube structure of 830 meters, built in Dubai (Saudi Arabia) in 2010.
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1.4 Innovative Structural Solutions

Only recently, next to economics, municipal regulations and politics, aesthetics
has got aleading role in the planning and design of high-rise buildings. Changesin
the structural form are supported by the emerging architectural trends in design
and the developments in structural anaysis techniques, made possible by the
advent of high-speed digital computers.

One of the most known results of this tendency is the diagrid system, which
confirms the breakthrough in the idea of tall building. This term is derived by the
union of the words diagonal and grid. Thefirst is associated to the effectiveness of
diagona elements with respect to the horizontal stiffening of frames as well as
tubular schemes. In effect, such configurations allow to reduce the global shear
deformation of the structure exploiting primarily the axia forces arisen in the
diagona members, which are much less troubling from the design point of view.

The term grid refers to the base idea of the tubular schemes, that is the ability
to smear most of the horizontal resistance on the externa perimeter of the
building. The result is a mesh, completely surrounding the building, constituted by
only diagona elements arranged in a triangulated pattern and able to absorb the
total horizontal action.

However, if compared to conventional braced configurations, the outstanding
originality introduced by diagrid systems is the absence of vertical elements. This
means that the mesh is designed to carry, at the same time, gravity loads and
lateral actions. Furthermore, even if the structura importance of diagonal bracings
has always been acknowledged, most of times they have been hidden within the
structure in order to avoid interfering with the building aesthetics. On the contrary,
diagrid structures have shown the architectural potentialities of the diagonas,
which have become an innovative feature of tall buildings. It suffices to say that
their triangulated configuration uniformly arranged on the entire fagade enables to
model groundbreaking shapes, which contribute to characterise the hosting
communities. An example is the 30 St Mary Axe (London, 2004), a 41-storey
building defined by a curved form which earns it the name of “the Gherkin”. Such
construction demonstrates that current architecture has forsaken prismatic forms,
to embrace curved ones.

In the early phases of the design process, two main information are needed to
model an elementary scheme for a diagrid structure: the optimum angle of the
diagonals and a preliminary assessment of the area constituting the structural grid.
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Figure 1.13 — Axial deformation of diagonal bracings due to horizontal displacement and
rotation of the braced frame.

In the first case, the optimum angle can be acquired comparing the
requirements of the shear strength with the ones reated to the bending strength. In
the latter case, the value which allows to carry gravity loads and offers the
adequate bending stiffnessis obvioudy 90 degrees. This solution is insufficient for
the shear resistance, as shown by frames without diagonal bracings. In order to
find the best angle for the shear deformation, a simple scheme of a braced frame,
reported in Fig. 1.13, facilitates the evaluation. Due to the horizontal displacement
u caused by a force F, the diagonals are subjected to axial deformations and,
therefore, internal actions Fy arise equilibrating the external force.

2Fqcos9 =F .7

In alinear elastic domain, the force F4 is related to the axial deformation g4 by
means of the cross section A and Y oung's modulus E. In addition, &4 is function of
the horizontal displacement u and the geometrical characteristics of the model. By
substituting these information in the previous equilibrium equation, a relationship
between the external action F and the corresponding horizontal displacement u is
obtained.

Fd = EAEd (18)
ucos?d ucosdsind
8 = h/sin®) . h (1.9)

F= % (sin 29 cos9 EA)u = k,u (1.10)
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Figure 1.14 — Optimum value of the angle of inclination of the diagonal elements.

The optimum value of ¥ can be deduced plotting the function k,, which
represents the horizontal stiffening of the model. Asit can be seen from Fig. 1.14,
the optimum ¥ corresponds to about 35°. Since diagrid structures have to resist to
both shear and bending actions, it is expected that the angle of the diagonal
constituting the external mesh will fall between 90° and 35°. Furthermore, it will
be dependent on the geometrical properties of the building: for short buildings
having low aspect ratio (height/width), the shear behaviour is dominant and ¢ will
move downwards, whereas, for tall buildings with high aspect ratio, the behaviour
will be puredly flexural and the angle will be close to 90°.

These findings can be confirmed by an example regarding a building with an
aspect ratio of 6.7, being the height equal to 240 m and the width to 36 m. In this
case two main scheme are modelled: one is constituted by an external mesh
together with four corner columns; the other shows only the mesh without any
vertical components. In each scheme the inclination of the diagonals is modified
according to seven configurations, as shown in Fig. 1.15. A static analysis is
performed considering the same horizonta actions for al the cases. The resultsin
terms of top displacements are carried out in Fig. 1.16 and 1.17. In the first model,
where the corner columns are employed, the analysis demonstrates that the lateral
stiffness is not too senstive to angle in the region of 63°. Therefore, the
inclinations between 53° and 69° can be equally taken into account. In the second
model, since no vertical elements are present, the diagonals have to carry, at the
same time, both gravity and horizontal loads. The corresponding effect is the
upward shift of the optimum value of 9, with an average value of about 70°.
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Figure 1.15 — Different schemes of diagrid structures in terms of angle of inclination of
the diagonal bracings.
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Figure 1.16 — Top displacement of atall building stiffened by an external mesh constituted
by vertical and diagonal elements: effect of the inclination of the diagonals on the results.

Another important point of a preliminary design is the evaluation of the amount
of area in the diagonals of the mesh. For this purpose the building can be divided
into modules which define single diagrid patterns. Depending on the direction of
the load, the faces, in which the structural elements are considered subjected to
only axial forces, act as webs or flanges.
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Figure 1.17 — Top displacement of atall building stiffened by an external mesh constituted
by diagonal elements: effect of the inclination of the diagonals on the resuilts.

With respect to Fig. 1.18, a relation between the external actions and the
corresponding displacements can be acquired. Taking into account the scheme of
Fig. 1.13, the following relations can be written:

V = kpu (1.12)

M = kyp (1.12)
where

kp =2 (Ai‘;"E cos 192) Ny (1.13)

Ky = (szf BZ sin 9% ) N (1.14)

The terms N, and N; represent the number of diagonals belonging to the webs
and flanges respectively. Once the externa load is defined as well as the
maximum displacements are derived from the limits imposed by legidation, the
approximate value of area of the diagonals can be obtained:

Agy = ——d__ (1.15)

~ 2Ny Ecos92u

_ 2MLg
Afw = NfEBZ sin 923 (1.16)
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Figure 1.18 — Scheme of adiagrid structure for a preliminary design of the diagonals.

The expressions (1.15) and (1.16) have to be applied to both the principal
directions of load, in order to evaluate the upper board value related to the areas.
These information can be employed in the phases of the conceptua design, to
identify the preliminary geometrical characteristics of the structure according to
the architectural requirements.

Nowadays other lateral load resisting systems, such as space trusses, which are
modified braced tube with diagonals connecting the exterior to the interior, super-
frames, in which mega-columns are realised as components of braced frames, and
exoskeleton structures, which have the horizontal resistance placed outside the
building line, are gaining ground.

Nevertheless, it is evident that developments regarding the design of high-rise
and irregular buildings are described by a continuously evolving process. The
interference coming from the new architectura trends is leading the building
design towards solutions which have to optimise the structural skeleton with
respect to the exterior shapes, such as aerodynamic, twisted, tapered, tilted or even
free ones.

As a matter of fact, al over the world, some bizarre shapes have aready been
commissioned and, in some cases, just built: for instance, the HSB Turning Torso,
a twisted skyscraper of 54 storeys in Malmo (Sweden), and the 66-storey London
Bridge Tower, also known as Shard of Glass, apyramidal shaped building now the
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tallest structure in Europe, are very appreciated. In addition, many futuristic
projects have already been proposed: among al the Millennium Tower by Sir
Norman Foster, which is a 170-storey tower reaching 840 meters of height, and
the Kingdom Tower, which should be over 1 km high, can be remembered.

For the future, it is expected that the aready achieved limits will feed the
pursuit of new heights and unconventional shapes and, therefore, it will probably
determine improvements in technology of structural systems and materials.

Even if the increase of the complexity of the forms is balanced by powerful
computers and several multi-function Finite Element (FE) software, the choice of
an appropriate model able to thoroughly identify the key parameters governing the
response of the structure as well as the force flow acting within the stiffening
members remains crucial. On the one hand, FE programs can evaluate the
construction in its entirety, reaching high degree of accuracy. They can model any
detail, giving the idea that nothing gets lost.

Nevertheless this skill can hide some drawbacks [61, 103]. During the design
stage, it's very difficult to assess the resistant contributions coming from different
stiffeners as well as handle an enormous amount of data. In effect, especialy
during the phase of evolution of the concept, the former could cause time-
consuming misunderstandings; the latter could be easily a source for errors.
Moreover, the great number of input and output data does not support a clear
explanation of the structural mechanism and does not allow the designers to
identify the distribution of the external forces among the stiffening members.

On the other hand, based on some carefully chosen hypotheses, simplified
procedures could represent a valid aternative in the early stage of conceptual
design being characterised by some advantages, such as a faster data preparation
and a more transparent method of analysis, which can make the process less liable
to unexpected errors. In addition, unlike FE simulations, the limited degree of
accuracy is balanced by the capability to provide a comprehensive picture of the
structura behaviour and to gain knowledge of the key parameters governing the
response of the building.

In any case, being reciprocally complementary instruments, both approaches
can lend support to the engineer's judgment. While, in the early stages,
approximate methods evaluate the basic characteristics of the project, in the final
ones, FE models can conduct a more thorough computation.






Chapter 2

Theload Distribution Matrix between Vertical
Bracings

2.1 Introduction

In most buildings the horizontal resistant system consists of different elements
which can vary one to another according to their specific stiffness properties. The
use of in-paralel members is a structura solution which immediately appeared as
a simple way of increasing the horizontal stiffening of high-rise structures. From
the design point of view, many researches were developed to identify the
distribution of the externa forces among the internal bracings.

The earliest models, dating back to 1960's and 1970's, were provided for the
preliminary design of tall buildings, in particular to offer approximate and quick
approaches that were at engineers disposal. In some cases, design curves were
proposed in order to address the structural solutions towards the best ones for the
specific loading case. At that time the comparison between anal ytical methods and
those relying on digital computers started to appear. Nevertheless, the drawbacks
of the analytical approaches were related to the fact that they could be applied to
restricted cases, defined by simple structural combinations. As a matter of fact, in
most cases planar configurations were studied and only one degree of freedom per
storey was considered.

The formulations conceived in this field were based on the following
fundamenta hypotheses:

25
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- the structural material is homogeneous, isotropic and obeys Hooke' s law;

- the floor dlabs are rigid in their own plane but their out-of-plane rigidity is

neglected;

- only static and conservative loads are taken into account in the analysis,

- for transversal analysis, the axial deformation of the structura elements due

to gravity loads is considered negligible.

The earliest methods took into account the case of shear-wall versus frame
interaction. Related to this scheme, the approaches by Khan and Sharounis [64],
Coull and Irwin [34], Heidebrecht and Stafford Smith [58, 59], Haris [56] and
Mortelmans et al. [84] can be mentioned.

The papers by Khan and Sbarouinis represent the first effort to this study. Coull
and Irwin proposed a simple coefficient method for the assessment of the load
digtribution in three-dimensiona structures stiffened by shear walls; Heidebrecht
and Stafford Smith devised an approximate method of analysis of open section
shear walls subjected to torsiona actions as well as a smple hand method for the
static and dynamic analysis of uniform and non-uniform structure consisting in
frames coupled with shear walls, both defined by planar loading and deformation;
Haris focused his attention on the matrix approach for the determination of the
load distribution matrix related to in-parallel planar frames. Furthermore his paper
was one of the first which included the torsional behaviour in the analysis. Finally
Mortelmans, also followed the way traced by Haris and proposed an approximate
method for the combined bending and twisting of high-rise buildings under wind
loading. He reduced the problem to the solution of a linear system of four
equations with four unknowns, from which the bending and twisting moments in
any element of the structure could be acquired, regardless the number of floors but
with an high degree of accuracy.

Other approaches followed, most of which were based on the continuum
medium technique. This method permitted to take into account the elements which
connect the vertical bracings at the floor levels. The base idea was to replace the
effective connection by continuously shear forces, which produced a stiffening
effect on the behaviour of the global system. Rosman [95, 96] was the pioneer of
this approach. In effect he was the first to analyse shear walls with openings which
could be treated as distinct walls characterised by a global stiffening due to rigid
connecting beams. After him, Beck [9] extended the formulation taking into
consideration the axial deformation of the walls and offered simplified formulas
for the determination of the redundant unknowns arising in the connecting
elements.
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The continuum medium technique was followed by other works: among all, the
papers by Schwaighofer [98], Coull and Choudhury [31], Qadeer and Stafford
Smith [90] can be pointed out. Later, Stamato and Mancini [102], Gluck and
Krauss [54] used the same technique to analyse three-dimensional problems
concerning frames and walls.

The evolution of the construction typologies due to the search for greater
heights as well as the development of innovative architectural shapes, involved the
conception of different formulations. The first results were represented by Khan
[65], Coull and Bose [37], who dealt with tubular structures. The same research
was further extended to other structural issues, as the case of Hoenderkamp and
Snijder [60], who focused on the structura effects of flexible connections, while
Leeet al. [71] proposed an analytical method for the design of outrigger systems.

In some cases, the approaches were derived from different research areas,
however proving to be adequate for the analysis of tall constructions. Devel oped
for framed-tube systems, the stringer-shear panel method by Connor and Poungare
[30] was derived from aeronautics. Modelling the resistant skeleton as a stringer-
shear pand assembly in which the stringers were supposed to carry only axial
loads without bending stiffness and the panels were defined by shear rigidity
without axial or bending strength, the building could be reduced to stringers on
any side and shear panelsin between.

In another case, a core tube could be analysed as an equivalent rod, in which
the effects of the bending and shear deformation as well as shear lag and torsion
were taken into account. Closed-form solutions were acquired for the deflection,
shear lag and torsional angle, by means of the elastic theory by Takabatake and
Matsuoka [107, 108].

Other methods, starting from aerospace engineering, imagined to subdivide the
structure into substructures and to operate as the case of Finite Element (FE)
approach, in which the substructures were considered as super-elements. The first
focused on this methodology were Leung [72], Leung and Wong [ 73], Wong and
Lau [125], followed, more recently, by Kim and Lee [66] and Steenbergen and
Blaauwendraad [103].

A further formulation was proposed by Pekau et al. [86, 87], by means of their
approach, caled Finite Storey Method (FSM). The global behaviour of the
construction could be reduced to the nodal displacements obtained from the
analysis of two-storey substructures. The main advantage was a reduced number
of nodes so that the computational time of the method proved to be very short; in
addition, both frames and shear walls, in a single scheme or composed to represent
tube-in-tube configurations, could be considered.
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Asit can be seen, many formulations can be employed for the static analysis of
a tall building; however, most of them are characterised by a deep lack of
generality, which impedes to analyse different structural typologies and, above all,
tends to reduce a three-dimensional examination to a planar problem. In this way,
it is evident that they become inappropriate, especially in the case of very complex
shapes, which cannot be grossly simplified.

2.2 A Synthetic Three-Dimensional Approach

In line with the mentioned formulations, a more general semi-analytical approach
is here described. It is a three-dimensional method, directly derived from the
papers by Carpinteri et al. [24, 25], in which only three degrees of freedom per
storey are taken into account. This choice allows to study, at the same time, the
bending and the torsional behaviour of the structure.

The approach proves to be general, since it is possible to consider any type of
vertical bracings, from simple frames to free-shaped tube systems. Furthermore, it
is defined by the following benefits: firstly, the load distribution matrix, which
defines the amount of external force absorbed by each structural element
according to its own stiffness and its position in the building plan, can be
evaluated; secondly, an easy identification of the structural parameters on which
the horizontal behaviour of the building depends can be performed; findly, the
formulation proves to be extremely clear and concise, limiting in this way the risk
of unexpected errors and guaranteeing, in presence of very complex structures,
very short times of modelling and analysis, if compared to FE programs.

Starting from the previously mentioned hypotheses, a N-storey building is
considered having M vertical bracings, each defined by an arbitrary position in the
floor plan. The right-handed system XY Z defines the global coordinate system of
the problem. Since the dabs, which interconnect the bracings each other, are
considered infinitely rigid in their plane, the degrees of freedom of the problem
can be represented by the transversal displacements of the floors: in particular, two
trandations & and m directed according to the X and Y direction and the
transversal rotation 9, for each storey. In the same way, the external load applied
to the building is expressed by the 3N-vector f, in which 2N shears p,, py, and N
torsional moments m are included (Fig. 2.1).

Px
= {0} = () @)
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o2 ()

Figure 2.1 — Scheme of a tall building stiffened by M vertical bracings and subjected to
transversal actions.

Figure 2.2 — Global and local coordinate systems. The Z-axis completes the right-handed
global system XY Z and Z;" completes the right-handed local system XY ' Z; .

For the i-th bracing the right-handed system X;Y;'Z" represents its local
coordinate system.
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Figure 2.3 — Internal loadings f; transmitted to the i-th bracing in the global coordinate
system (a); degrees of freedom of thei-th bracing in the local coordinate system X;'Y ;' Z /",
axonometry and top view (b). Note that the highest floor isindicated with 1 and the lowest
with N.

The 3N-load vector f;” and the 3N-displacement vector &, describe the amount
of external load absorbed by the i-th element and its transversal displacements
respectively, both in the local coordinate system (Fig. 2.2).

The loading vector f;" can be reduced to f;, which refers to the global coordinate
system XY Z, by means of the following expressions:

p; = N;p; (2.2)

m; =m; —Y; Ap; U, (2.3
_(bi

fi = {m,} (2.4)

where the superscript ~ indicates that the coordinate system is the local one.
Theterm N; represents the orthogonal matrix from the system XY to the system
Xi Yi': vy is the coordinate vector of the origin of the local systemin the global
one; U, is, instead, the unit vector associated to the Z direction.
The orthogonal matrix N; can be represented by means of the angle ¢ between
theY axisandthe Y, axis (Fig. 2.2):

_[cosp sing

t7 [-sing cos¢ (25)
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in which each term isadiagonal NxN sub-matrix.

cosp 0 0
cosp=| 0 0 (2.6)
0 0 coso

Eqgns (2.2) and (2.3) can be re-written in the following matrix form
fi* = Aifi (27)

The matrix A; gathers the information regarding the reciprocal rotation between
the local and globa coordinate systems and the location of the i-th bracing in the
global system XY:

[ N, 0
Ai_[_uz/\wi I]

where | is the identity matrix and O the null matrix. The component —u, A ys;,
valid for each floor, is a relation obtained from Eqgn (2.3) exploiting the fact that
the scalar triple product is invariant under any cyclic permutation of its terms. For
the sake of simplicity, in order to take into account the N floors of the structure,
this vector product can be written as a final 2NxN matrix C; composed by two
diagona sub-matrices containing the coordinates (x;; y;) of the origin of the local
wstem Xi*Yi*.

(2.9)

T 7 k
—u, AP; =—1|0 g) 1|=-[-yvi x]=-cf (2.9
X; yi O
Thus the final expression for the matrix A is:
A, = [ Ni O] (2.10)
—-C; 1

In the same way, the vector §;’, constituted by 2N trandations &', n;" and N
rotations ;" , can be connected with the same one, referred to the globa coordinate
system §;, by means of the synthetic NxN matrix B;:

Since the following relationships are valid for the displacements:

-nf
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9 =9 (2.13)

the matrix B; is similar to the matrix A;, in which the term C;" is reduced to a null
matrix.

R (214)

A relation between f; and & is well-known by means of the condensed
stiffness matrix ki, referred to the local coordinate system:

ff = K6 (2.15)

Substituting Egns (2.7) and (2.11) into Egn (2.15), the load vector f; turns out
to be connected with the displacement vector §; through a product of matrices,
which identifies the stiffness matrix k; of the i-th bracing in the global coordinate
system XY.

Exploiting the presence of in-plane rigid dabs, the transversal displacements of
each element can be computed considering only the three generalised floor
displacements &, n and 9. This is performed through the matrix T;, which takes
into account the location of the bracing in the floor plan by means of the
coordinates (xi; V).

If we consider the equation which describes the rigid displacements of a point
P with respect to another point O, the following vector expression is derived:

dp =dop +9kA (P —0) (2.17)
which, in expanded form, becomes
() =loo) * s 0 16m-vo) 218

If the point P represents the origin of the loca coordinate system, whereas O
the origin of the globa one, Eqn (2.17) can be re-written as

The trandation in X direction of Eqn (2.19) is computed by means of the unit
Vector uy:

u =u+9kAY; - uy (2.20)
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Exploiting the properties of the scalar triple product, Eqn (2.20) becomes

U =u+Y; Auy - 9K (2.21)
In the same way, the trandlationin Y direction is
v; = v+ y; Auy - Ok (2.22)

Asinthe case of Egn (2.9), it is possible to define afinal matrix containing the
vector products of Eqgns (2.21) and (2.22), which assumes the same form of the
af orementioned matrix C;.

Ui Aug
llJi/\uy

The expansion of Egn (2.23) to consider N floors givesrise to

d;=d+ [ ]GE (2.23)

'~|Ji A uy _ —Vi _
[wi . uy] =% =c¢ (2.24)
and, therefore, the ANx3N matrix T; is easily acquired.
[T Glg =
§; = [0 Il] §=T,5 (2.25)

The substitution of Egn (2.25) in (2.16) alows to identify the stiffness matrix
of the i-th bracing, referred to the global coordinate system XYZ and to the
generalised floor displacements &, n and ©:

For the global equilibrium, the external load f applied to the structure is equal
to the sum of the M vectorsf;. In this way a relationship between the external load
and the floor displacements is obtained and the globa stiffness matrix of the
structure is computed. By means of this matrix, once the external load is defined,
the displacements of the structure are acquired, from which information regarding
each single bracing can be deduced.

f=YM f; =21, (A7'K;B;T;)8 = X1, k; 8§ = K8 (2.27)
and, therefore,
§ =K If (2.28)
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Figure 2.4 — Horizonta stiffening in tall buildings: a 3D frame and a planar braced frame.
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Figure 2.5 — Horizontal stiffening in tall buildings: shear walls with constant section and
tapering profiles.

Recalling Eqn (2.26) and comparing it with Eqgn (2.28), an equation connecting
the vector f with f; allows to define the amount of the external load absorbed by
thei-th vertica stiffening:

§ = K7f = ki’ 'f; (2.29)
f; = kK f = (A7'K;B;T,)K 'f = R,f (2.30)

The load distribution matrix R;, obtained from Egn (2.30), demonstrates that
each bracing is subjected to a load which is directly proportional to the external
load f and to its own stiffness matrix k;’, but inversely proportional to the global
stiffness matrix K, as the case of in-parallel bracings in a plane problem. Once the
generalised displacement vector & is known, recalling Egns (2.11), (2.15) and
(2.25), the displacements and the corresponding forces related to the i-th bracing,
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in its local coordinate system, can be computed. Consequently, since the loads
applied to each element are clearly identified, a preliminary design can be easily
performed.

8; = B,;T,K™If (2.31)
ff = K{B; T;K™1f (2.32)

Eqgn (2.32) solves the problem of the external loading distribution between the
resistant elements employed to stiffen a three-dimensional tall building. Such
formulation proves to be general and can be adopted with any kind of structura
elements, provided that their own condensed stiffness matrix k" is known.
Therefore most of the common horizontal stiffeners, such as frames, braced
frames, shear walls and tube-systems can be easily implemented in this static
formulation (Fig. 2.4, 2.5).

2.3 Stiffness M atrix of Frames and Braced Frames
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Figure 2.6 — Scheme for the computation of the stiffness matrix of a cantilever beam.

Particular attention is focused on the computation of the stiffness matrix of aframe
structure. Before deeply analysing this topic, the procedure which allows to define
the condensed stiffness matrix of avertical cantilever is proposed, according to the
method proposed by Pozzati [88].

Let us consider a shear wall subjected to concentrated horizontal forces F; (Fig.
2.6).
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Figure 2.7 — Components of the stiffness matrix of abeam.

Each inter-floor segment, whose dimension is constant and equal to h, is
defined by the corresponding stiffness matrix k;j, which refers to the horizontal

displacements (o, ..., o) and rotations (o, --., 0on) (Fig. 2.7).

12 —-12 —6h —6h
_Hj[-12 12 eh 6h
Ki=13| Z6h 6h  an? 2n? (2.33)
—6h 6h  2h% 4h?

The global stiffness matrix of shear wall can be obtained expanding and adding
the contributions of all the segments. Therefore, in the case of a 3-storey shear
wall having constant geometrical dimensions, the global stiffness matrix is.

12 =12 0 —6h —-6h 0
[—12 24 —12 6h 0 —6h}
_El 0 —-12 24 0 6h 0

K=%|-6h 6h 0 4?2 202 o0 (239
—6h 0 6h  2h%? 8h? 2h?
0 —-6h 0 0 2h? 8h?
The latter can be written highlighting some terms:
_ Fq _[kdd kdr] {5(1}
F=Ké- { O}_ Nl 1S (2.35)

in which 84 and 6, stand for horizontal displacements and rotations respectively.
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Figure 2.8 — Equivalence between aframe with rigid connections and a shear wall.

From Egn (2.35) the condensed stiffness matrix K™ of the shear wall can be
obtained and the relationship between actions and horizontal displacements can be
acquired:

K* = Kgqq — Karki' Kpg (2.36)
Fq = K*84 = (Kgg — KarKii'Kra) 84 (2.37)

In the case of a frame with rigid connections, the previous formulation can be
used if we consider that the rotations of the nodes belonging to the same floor are
equal each other. This assumption can be considered true in presence of infinitely
rigid floors, when the frame shows a perfectly shear type behaviour; otherwise, it
describes only an approximate behaviour. Following this hypothesis, the rotational
resistance due to each bay is given by 6EJ/L for each node, being J, and L the
second moment of inertia and the length of the horizontal beam respectively. The
contributions of al the bays can be added together and considered as the effect of
arotational spring applied to the corresponding floor.

Therefore, recaling Egn (2.35), its effect can be directly included in the main
diagona of the sub-matrix k;;. On the other hand, excluding the bays, the frame
can be easily treated as a shear wall in which the resistance of each segment is
egual to the sum of the resistances of the corresponding columns.
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Figure 2.9 — Scheme of a braced frame with a single diagonal element.

In the case of a 3-storey frame with a constant floor height (Fig. 2.8), the
corresponding stiffness matrix can be defined by two components: the first one is
related to the columns, whereas the second to the bays:

K=k.+ky (2.38)
The matrix k. can be written taking into account Eqn (2.34):

12 —-12 0 —6h —-6h 0
[—12 24 —12 6h 0 —6h}
CE)l 0 —12 24 0 6h 0

kc = h3 —6h 6h 0 4-1’12 2h2 0 ‘ (239)

—6h 0 6h 2h? 8h2? 2h?
0 —-6h 0 0 2h%? 8hZ2

On the contrary, the matrix k, is a null matrix with the exception of the
component k., which is given by:

0 o kes 0 0
k, = [ 0 ] Sky=|0 kg O (2.40)
v 0 0 K¢

Finally, exploiting Eqn (2.36), the condensed stiffness matrix of the frame is
obtained.

The same formulation can be extended in order to encompass braced frames by
considering the effects of the resistant diagonals.
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Figure 2.10 — Modél of a braced frarr;e equivalent to a shear wall.

Defining EA as the axial rigidity of the diagonal elements, only bracings in
tension are assumed to be engaged in the analysis. The ssmplified scheme of Fig.
2.9, showing the deformed configuration of a braced frame stiffened by a single
diagona element, helps to identify a further resistant contribution.

Due to the displacement & of the frame, the diagonal bracing is subjected to an
axial deformation, which is a function of the angle a.. As a result, an axial force
arisesin the element:

EA
Nd = (\/ﬁ Ccos O() ) (241)

The horizontal component of this force congtitutes the resistant contribution of
the diagonal bracing with regard to the lateral displacement of the frame.

EA
F= [ o (cosa)Z] § = kyd (2.42)
Therefore, the structural scheme proposed by Pozzati (Fig. 2.8) can be

modified, adding to each floor a fictitious horizontal spring whose stiffnessis the
sum of the terms k, related to the diagonals connected to the floor (Fig. 2.10).
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This resistant contribution can be directly added to the coefficients of the main
diagonal of the sub-matrix k4 previously described in Eqgn (2.35).

In the case of diagonals which refer to Q non-consecutive floors, it is better to
define a reduced QxQ stiffness matrix, which only represents the contribution of
the diagona bracings. The latter, adequately expanded to N-dimension, can be
added to the NxN stiffness matrix of the corresponding simple frame and, then,
included in the general formulation [27].

24 Numerical Example

The capability of the analytical method is highlighted by the execution of a
numerical example on a high-rise building, loaded by transversal static actions.

A 40-storey building, whose horizonta resistance is provided by three open
section shear walls reaching an height of 200 meters, is considered. Their
dimensions and geometrical properties are shown respectively in Fig. 2.11 and in
Table2.1.

Table 2.1 — Geometrical properties of the shear walls.

Element N. 1 2 3

I [m7] 483.45 19.22 71.18

l, [m] 80.76 176.40 469.99

l, [M°] 3611.67 487.50 1997.06

J [mY 0.54 0.31 1.29
Xe [m] -15.21 0.00 16.45
ye [m] 3.43 -13.79 6.97
o [°] -32.45 0.00 -8.69

The structural material is concrete, whose mechanical properties are an elastic
modulus and Poisson’ sratio equal to 30000 M Pa and 0.18 respectively.

The loading is defined by concentrated transversal actions applied to the floors,
according to the global coordinate system XY Z (Fig. 2.11).

In particular, along the X direction a resultant force of 99 kN for each floor is
considered, whereas in Y direction it becomes equal to 104 kN. In this specific
case a clockwise torsional moment of 183.5 kNm is taken into account.

This structural scheme is modelled through both the present method and a
computer program implementing the Finite Element method.
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H=200m

h=5m

E = 30000 MPa
v=0.18

E, = 99 kN/floor

F, = 104 kN/floor
M, = -183.5 kNm/floor

Figure 2.11 — Internal core system of a tall building constituted by thin-walled open
section shear walls (measures in metres).
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Figure 2.12 — Comparison between the analyticad and FE method in terms of
displacements of the building.

The results with which the comparison is performed are expressed in terms of
displacements, in particular tranglations and rotations of the floors according to the
globa coordinate system XYZ. The corresponding curves are reported in Fig.
212. 1t is sdf-evident the outstanding convergence of the aforementioned
methods, which confirms the usability of the anaytical method at least in the first
phases of the design process.
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Figure 2.13 — Load distribution between the components of the core system in terms of
shearsin X and Y direction and torque.
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Figure 2.14 — Bimoment action in the shear walls constituting the core system.

Unlike FE simulations, the load distribution between the gtiffening elements
can be easily computed. In this way, it is possible to identify the percentage of
action absorbed by each bracing and, consequently, to evaluate the intensity of the
arisen internal forces, such as shears and torsiona moment (Fig. 2.13).
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Element N. 1 2 3

M, [kNm] -350313.09 -20827.37 -116807.38
M, [kNm] 2776.34 17162843  26628.93
B [kNm'] -116436.02 -15716.44 -64382.83

o(B) = -0.28 MPa 0.87 MPa 6(B)= 1.26 MPa -0.4 MP
o(M)=-3.81 MPa -7.99 MPa G(B)=0.62 MPa  -0.62 MPa G:M)]: 486 MPa -89 jw,;
— o(M)= 1.66 MPa  -10.0 MPa .

N. 1 N.2 -0.09 MPa -0.08 MPa
0.32 MPa || -0.45 MPa 1.60 MPa -2.44 MPa

3.27 MPa 0.34 MPa

-0.35 MPa 0.35 MPa -1.10 MPa N.3

7.06 MPa -4.61 MPa 6.45 MPa |
1.72 MPa -0.63 MPa 0.50 MPa
7.41 MPa © ~ 4.49 MPa 8 88 MPa

Figure 2.15 — Comparison of the stress state due to bending and warping of the walls.

In the case of thin-walled open section shear walls, which follow the Vlasov’'s
theory of the sectorial areas, the analytical method also allows to define the trend
of the bimoment action, which is known as the cause of the warping deformation
of thistype of sections when subjected to torsional loads.

The main effect of this uncommon internal action is the development of an
additional state of stresses defined by normal and tangential components. Their
intensity can be, in some cases, comparable to the one derived by pure flexura
behaviour. Therefore, since the latter can affect the structural behaviour of the
entire building, the evaluation of the bimoment action during the design process
has to be performed. In Fig. 2.14 the curves of bimoment related to each shear
wall are shown, whereas in Fig. 2.15 information regarding the additional stress
state in terms of normal components are reported. In the latter figure, a comparison
with the stress state caused by the pure bending behaviour is highlighted and it can
be seen that, in some cases, the bimoment action determines an increase in tension
of about 20-30 per cent [17].






Chapter 3

Thin-Walled Open Section Profilesas Vertical
Stiffening

3.1 Introduction

In the design of tall buildings the horizontal actions become predominant if
compared to the vertical ones. In effect, due to gravity loading, the geometrical
dimensions of the resistant members increase from the top to the bottom
proportionally to the height of the structure. If we consider aregular construction,
each floor is similar to the others and, therefore, the corresponding vertical actions
can be considered constant for each level. On the contrary, when horizontal forces
are considered, in the absence of specific resistant systems, the actions devel oped
in the structural skeleton increase as the third power of the total height, implying
an unreasonable growth of the structural dimensions. For this reason, over specific
heights, it is compulsory to analyse the vertical behaviour separately from the
horizontal one.

As described in Chapter 1, most of the resistant solutions, appeared since the
70, employed vertical elements arranged as cantilevers constrained at the base
and designed to absorb the total horizontal force coming from earthquakes and
wind. These members, commonly known as shear walls, can be freely located in
the plan of the structure and used with or without other vertical bracings to obtain
an adequate stability without an excessive supply of structural material. Besides,

45
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just for these reasons, it became very popular for those constructions whose
maximum height was lower than seventy floors.

These bracings can be congtituted by steel braced frames or concrete walls,
both with different sectional shapes. In the case of not excessive heights, they can
be represented by a smple plane element whose resistance is proportiona to the
maximum dimension of the section. For greater heights, they are designed to
behave as three-dimensional elements, having an appropriate bending resistance in
two principal directions as well as a good torsiona stiffness, giving rise to thin-
walled hollow or open section walls.

The sectiona shape, the number of vertical bracings and their location in the
floor plan are chosen in order to absorb almost the total twisting action applied to
the structure and, at the same time, to house the stairwells or the lift shafts, which
areindispensablein atall structure.

Unlike hollow sections, in presence of torsiona actions, thin-walled open
sections elements reveal a particular behaviour, which is far from the common
one. In effect, once the torsional deformations take place, the section twists around
its shear centre but, at the same time, does not remain plane, since it can undergoes
different longitudinal extension causing the out-of-plane distortion or warping of
the section. As a consequence, a further longitudinal stress state, absent in the
theory of pure torsion, develops in the thickness of the section. Therefore, in the
analysis of this type of structures, Saint Venant’s theory and Euler-Bernoulli’s
hypothesis of plane sections prove to be inadequate to describe their structura
behaviour.

Due to their wide versatility, thin-walled open section beams draw engineers
attention. Originally their application was united to the development of aeroplane
structures, since these elements perfectly met the requirements of weight-saving,
however offering an adequate stiffness.

Only later their purpose was extended to cover structural functions in the
building and bridge design. The analytica approach related to these profiles
started about a century ago, but most of the developments in this area were
accomplished in more recent times, about fifty years ago, by means of the methods
proposed by S.P. Timoshenko [114] and V.Z. Vlasov [119]. Both of them focused
the attention on the identification of an exhaustive theory which, even if
approximate, was able to describe the structural behaviour of thin-walled open
section profiles. Actually, Vlasov was the one who led a meticulous study on this
topic, whose goals were even recognised by Timoshenko himself. Such thorough
work was then synthesised in his book Thin-walled elastic beams, which remains a
milestone in the scientific literature.
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3.2 Vlasov's Theory of Sectorial Areas

V.Z. Vlasov devoted an entire lifetime of scientific activity to the theory of thin-
walled structures. The author started his research by devising an approximate
formulation for the anaysis of shell structures. It was based on a variational
approach which allowed to reduce the partial differential equations describing the
problem to a system of ordinary equations, which were type familiar to those
employed in the common theory of structures. Such method was adopted for the
analysis of shells and hipped systems of open and closed sections. However, the
flexibility of his method permitted to extend the dissertation to consider thin-
walled open section elements and to obtain a comprehensive treatise on the
problem of their flexural-torsional instability and vibrations.

Hereinafter a complete summary of the method is proposed, from which the
analytical approach for the evaluation of the structural behaviour of thin-walled
open section shear walls used to stiffen horizontaly a tal building has been
derived.

Thin-walled open section profiles can be considered as long prismatic shells, in
which their three main dimensions are all of different order of magnitude: the
thickness § is small if compared with any characteristic dimension d of the cross
section as well as the cross sectional dimensions are small if compared with the
length | of the shell; the following proportions define this typology:

2<0.1 $<o01 (3.1

In the theory the author refers to the middle surface, as the surface lying
midway through the plates constituting the beam, the generators, as the lines
parallel to the beam axis and lying on the middle surface, and the profile line, as
the intersection of the middle surface with a plane normal to the generators. In this
way, an orthogonal coordinate system can be derived, since each point of the cross
section can be found by means of two coordinates: z is the one along the generator
and s along the profileline.

Two main geometrical hypotheses are at the base of Vlasov’ stheory:

e thesectionisconsidered rigid and, therefore, its shape is undeformabl e;

¢ the shear deformations of the middle surface, that are due to the change of
the right angle between the generators and the profile line, are assumed to
vanish.
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Figure 3.1 — Cantilever |-beam subjected to a concentrated load on one of its flanges.

Let us consider the case of a cantilever 1-beam subjected to a concentrated load
on one of its flanges (Fig. 3.1). Exploiting the Superposition Principle, this load
can be reduced to the sum of two different loading cases: one is purely flexural
and can be studied by the law of plane sections; the other is defined as flexural
torsion, since the extreme flanges are forced to bend in opposite directions in their
own plane as a result of the torsion induced by the specific loading case. This
means that the section does not remain plane and normal stresses appear in
addition to the tangential ones. These additiona stresses give rise to a generaized
longitudinal force, called bimoment action, which is directly connected with the
warping of the section and consists of two bending moments, each acting on one
flange, having the same magnitude but opposite sign.

In the case of solid beams, this self-equilibrated action has alocal character and
its effect rapidly falls off with increasing distance from the point of application of
the load. On the contrary, in the case of thin-walled open section beams, the
warping stresses fall off slowly as much as the walls are thin. The intensity of this
stress state cannot be neglected for these profiles and the application of Saint
Venant's theory could lead to gross errors in the design process. As a matter of
fact, this particular behaviour demonstrates that the torsion can take place not only
under the action of transversal torsiona loads, but even under the action of
longitudinal forcesif these cause the development of the bimoment action.

For an adequate analysis of these profiles, the need of atheory, ableto take into
account the out-of-plane distortion of the sections, is evident.

Let’s consider a free shaped thin-walled open section beam, located in a
generic coordinate system, in which the Z axis is parallel to the longitudinal axis,
or centroidal axis, of the beam (Fig. 3.2). Defined a specific cross section at z =
const., X and Y axes complete the right-handed coordinate system XYZ. Each
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point of the profile line can be determined by using the coordinates (x, y) or the
sectional coordinate s.

With the aim of defining the equations which govern the structural behaviour
of thin-walled profiles, it is assumed that the beam is subjected to some
deformations. As a result of these, each point of the section is characterised by a
new position in the general coordinate system XY Z.

According to the first geometrical hypothesis, the beam is deformed, but the
shape of the section remains unchanged. Therefore, it behaves as a perfectly rigid
body, whose position can be evaluated by means of only three independent
variables corresponding to three transversal displacements: two trandations of a
chosen point A connected to the profile, which are § in X direction and n in Y
direction, and the rotation ¥ of the section.

The transversal displacements &y and ny of any point M(x; y) belonging to the
cross section can be determined through the well-known expressions:

EM=8§— (y—ya)d v =N+ X —xa)9 (32

inwhich (Xa; ya) are the coordinates of the point A inthe XY Z system.

The full displacement of M can be described by a vector, whose components
are: the longitudinal displacement u, defined positive if it increases as the
coordinate z the transversal tangential displacement v, directed long the tangent t
to the profile line and considered positive if it increases as the sectional coordinate
s; and, finally, the transversal normal displacement w, whose positive direction n
is defined by the fact that u, v and w must represent a right-handed coordinate
system (Fig. 3.2).

If o is the angle between the positive direction of the X axis and the positive
direction of the tangential axist, the transversa displacements v and w, related to
the generic point M(z, s), can be computed by means of the projections of &y and
M Oon the tangent t or the normal n:

v(z,s) =&y cosa + Ny sina (3.3
w(z,s) =nmcosa — &y sina (3.9

By substituting Egns (3.2) in Egn (3.3) and (3.4), the following expression are
obtained:

v(z,s) = &cosa+nsina + I[(x —x4) sina — (y — ya) cosal (3.5)
w(z,s) = —¢sina+ncosa+ I[(x —xp) cosa + (y —ya) sina] (3.6)
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Figure 3.3 — Computation of the sectorial coordinate .

Starting from Eqgns (3.5) and (3.6), the lengths of the perpendiculars h(s) and
d(s) from the point A to the tangent and normal respectively of the profile line at
M can be highlighted:

h(s) = (x —xa) sina — (y —yp) cosa (3.7)
d(s) = (x —xp)cosa+ (y —ya) sina (3.8)
The longitudinal displacement component u can be acquired by exploiting the

second hypothesis of Vlasov's theory, according to which the shear deformations
of the middle surface are considered negligible in the anaysis. Therefore, if vy is
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the shear strain representing the variation of the angle between the lines s = const.
and z = congt.:

_Ou  0v _ 0 (39)

=—+—=
Since the expression of v is known, the analytical expression of u is derived by
integration.

s av

u(z,s) =0(z) — o st (3.10

% ds = &' (z) cosa(s) ds + n'(z) sina(s) ds + 9'(z)h(s)ds (3.11)
Taking into account the following relationships:

cosads = dx

sinads = dy

hds = dw (3.12)
the equation of u is clearly obtained:

u(z,s) = ¢(z) — §(2)x(s) — ' @y(s) — 9" (2 w(s) (3.13)

The term {(2) is an arbitrary function, depending only on z, which describes an
uniform longitudinal displacement of the entire section; dwis twice the area of the
elementary triangle whose base is the infinitesimal length ds and whose height is
the distance h, defined by (3.7). Therefore, o(s) is twice the area enclosed between
the arc Mg-M and the construction lines which connect the point A with the points
Mo(s = 0) and M(s). This term is defined as sectorial area or sectoria coordinate,
whereas A is the sectorial pole and Mg the sectorial origin (Fig. 3.3).

Observing Egn (3.13), it can be seen that the longitudinal component u is
composed by four terms. The first three are well-known, since they are related to
Saint Venant's theory and arise as result of extension and bending in the XZ and
Y Z planes. This means that, due to these terms, the sections deforms but remains
plane.

The component, which describes the warping of the section, is totally
expressed by the fourth term and, in particular, 9’ can be considered as an
amplitude, whereas w as the shape of the warped section at z= const.
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Figure 3.4 — Components of the tangential stress state.

Once the displacement field is acquired, by differentiating u with respect to the
variable z, it is possible to obtain the expression of the longitudinal deformation «:

€= % =&(z,5) = {'(2) = §"(@2)x(s) =" (@)y(s) — 9" (D) w(s) (3.14)

From Egn (3.14) it is clear that the hypothesis of uniform torsion, according to
which the angle of twist per unit length should be constant, fails.

Egn (3.14) does not fully determine the strain €, since the functions , &, 1 and
¥ are unknown. To overcome this problem, it is necessary to use the static
conditions, or conditions of equilibrium for an elastic body which undergoes a
definite deformation. In this case, in effect, internal forces arise in the beam and,
in particular, the author considers only two types of stresses: normal stresses,
acting in the direction of the generators, and tangentia stresses, in the direction of
the tangent to the profile line; on the contrary, the tangential stresses acting
perpendicularly to the profile are assumed to vanish.

The normal stresses are supposed to be constant over the thickness of the beam,
whereas the tangential stresses vary according to a linear law. The latter can be
considered as the sum of two components: the first is given by the constant
average value of the stresses, the second takes into account the difference between
the linear and the constant distribution of the stresses (Fig. 3.4). In addition, the
former are function of the variables zand s, the latter is only dependent on z

Therefore, according to these hypotheses, the second component can be
referred to the torsional moments considered in the theory of the pure torsion, that
is, to a resultant torque M, given by the product of the derivative of the angle of
rotation and the torsiond rigidity GJ.
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Figure 3.5 - Longitudinal equilibrium of an infinitesimal strip of beam.

Taking into account the Hooke's law, the stress field is directly derived from
the strain field. If we consider two perpendicular directions, that are longitudinal
and transversal, the relative extensions of the beam can be computed by means of
the corresponding normal stresses:

€= %(c —vo,) (3.15)
€ = %(01 — Vo) (3.16)

in which the subscript 1 indicates the transversal direction and the term v is
Poisson’sratio.

In accordance with the second geometrical hypothesis, the deformation €; of
the contour is null and, consequently, the strain € can be highlighted.

0, = VO (3.17)
1-v?

E
Substituting Eqn (3.14) in Eqgn (3.18) the genera law for the distribution of the

normal stressesis:
0(z,s) =E{{ —¢'x—1"y—9"w) (3.19)

IR

mla

€= o (3.18)
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This expression demonstrates that normal stresses can appear not only in
presence of uniform extension and bending of the beam, represented by the first
three terms, but also as a result of the torsion of the cross section. In the theory of
puretorsion, this specific contribution is usually assumed to vanish.

The equation which describes the tangentia stresses characterised by a constant
average distribution can be abtained considering the longitudinal equilibrium of an
elementary part of beam whose dimensions are the length dz, the width ds and the
thickness 6 (Fig. 3.5).

(do)8ds + (dt)ddz + q,dsdz = 0 (3.20)

being g, alongitudinal distributed external force.
Dividing Eqgn (3.20) by dsdz and integrating with respect to the variable s, the
expression of the tangential stressesis found.

(00)8 . (01)6 _

?+?+qz—0 (321)
1 9

W(z,s) = [TO (z) — fos q,ds — fosa—ZSds] (3.22)

The term Ty is an arbitrary function of z and can be computed setting s= 0. In
this case, in effect, we obtain:

To(z) = 1(z,0)6 (3.23)

which means that T, is the shear force per unit length of beam acting on the
longitudinal sections= 0.
The substitution of Egn (3.19) in (3.22) givesriseto:

1(z,s) = %[To(z) - fos q.ds — E(7" fos dA - ¢" fos xdA —n""’ fos ydA +
—9"" [7 wdA)] (3.24)

The latter can be re-written in a synthetic form if the following expressions are
used, among which, in addition to the well-known static moments, the sectorial
static moment S, appears:

J; dA = A(s) Jy xdA = S,(s)
Jy ydA = Sy(s) Jy wdA = S,(s) (3.25)



Chapter 3 — Thin-Walled Open Section Profiles as Vertical Stiffening 55

z+dz

Figure 3.6 - Equilibrium of a strip of beam subjected to transversal loads.

Moreover, in the hypothesis that the distributed force g, and the shear force per
unit length Ty are null, Eqn (3.24) becomes:

(z,s) = % [7A(S) — &Sy () —n"""Sx(s) — 978, (5] (3-26)

A careful examination of this expression reveals that the first termis due to the
externa action represented by longitudinal shear forces applied to the lateral edges
of the beam; the second and third are related to the well-known formulation
proposed by Jourawsky for the computation of the tangential stresses in presence
of bending, whereas the last term describes a constant distribution of tangential
stresses over the thickness as effect of the non-uniform torsion.

As it can be seen, both the equations describing the normal and the tangential
stresses are expressed in terms of the unknowns g, &, n and 9. Such displacements
are computed applying the equilibrium conditions. To this am, a strip of beam,
included between the cross sections at z = const. and z+dz = const., is considered
(Fig. 3.6).

The actions applied to the strip are:

- the normal and tangential stresses and the torsional moment M, related to
the section at z = congt.;
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- the same just mentioned, increased by a certain value proportional to the
differentia dz, related to the section at z+dz = const.;

- the distributed transversal loads ¢y and ¢, acting along the X and Y
direction respectively.

If S represents the whole curve of the profile line, the equilibrium equations are
defined as
Y2=0- [ Z—;Sdzds =0

Yx=0- [ %cosa6d2d5+qxdz =0

Sy=0- [ %sina8d2d5+ qydz =0

XM, =0- fs %Sdz[(x —Xp) sina — (y — ya) cosalds +

M

+mdz + 22 dz = 0 (3.27)

The last equation, which describes the null resultant moment with respect to an
arbitrary point A(xa; Ya), 1S composed by the following contributions: the first
represents the effect of the shear stresses defined by a constant distribution over
the thickness of the section; the second is function of the externa distributed
actions; the third depends on the torsional moments which are proportiona to the
torsional rigidity GJ.

Exploiting the expressions (3.12) and integrating by parts the last three
eguations, Eqns (3.27) become:

Js Zda=0

%XSE—IS x%[a—:éi]ds+qx=0

sool, =& vs[izo] s oy =0

%maﬁ—fs o= [2s|ds+m+Z2=0 (3.29)

For the equilibrium, since no external forces are applied to the lateral edges of
the beam, the first terms of the Egns (3.28b, c, d) are equal to zero.
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If the partial derivatives with respect to z and s are interchanged and the Egns
(3.19) and (3.21) are considered, the following expressions can be derived:

%dA — E(ZH _ IIIX _ nnly _ 19”’(1))dA (329)
d [t g do "

2 [gs] ds=- _55] ds=—E({" —gVx—nVy - 9Vw)dA  (3.30)
Mz — GJ,9" (3.3

9z
Consequently, if the substitution of the previous equations in the system (3.28)
is performed, the final system of the equilibrium equations is obtained.

E(('A—E"S, —n"'Sy —9"'S,) =0

—E("'Sy = 8Ty ="Vl — 9"1,,y) = ay

—E(T""Sx = §VIy —n"VI, = 8Vey) = qy

—E(7""Se — §V1py = nVlpx — 9V, ) — GJ19" = m (3.32)
where the sectoria characteristics of the section are defined as

J wdA =S, Jg w?dA =1,

Jg wxdA =1y Js wydA =14, (3.33)

In addition to the sectorial static moment, the sectorial moment of inertial,, and
the sectoria products of inertial,, and I, appear.

The system (3.32) of differential equilibrium equations is synthetic and alows
to compute the four unknowns of the analytical problem. Nevertheless it proves to
be complicated and especially complex to be solved. Observing the coefficients of
the unknowns, it is evident that the system is dependent on the arbitrary functions
X(9), y(s) and ax(s). In the described procedure, generic information regarding the
coordinate system XYZ, the sectorial pole and the sectorial origin have been
indicated. Therefore, with the aim of simplifying the system (3.32), it is possible
to choose a reference system which causes the vanishing of the following
integrals:

Sy=J; xdA=0 Sy=J; ydA=0
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Iy = Jg xydA=0 (3.34)
So=Jg wdA=0 loy = Jg wxdA =0

lox = f; wydA =0 (3.35)

The conditions (3.34) can be immediately fulfilled if the coordinate system
XYZ is modified so that its axes become the central axes of the section. As regard
the conditions (3.35), the choice of a particular sectoria pole and a particular
sectorial origin, which determines the annulment of the integrals, is not
straightforward.

3.2.1 Déefinition of thePrincipal Sectorial Origin

If we consider the thin-walled open section of Fig. 3.7, we can define the sectoria
coordinate o taking into account the sectorial pole and the sectoria origin, on
which the numerical value of ® depends:

w = wg(sy;s) (3.36)

being the point B the sectorial pole and s, its sectorial origin on the section.
If apoint s, of the section is considered, the expression (3.36) can be re-written
as the sum of two contributions of area:

wg(S1;S) = wg(sy;Sg) + wg(Sp; s) (3.37)

in which the first term of the sum is numerically defined, being s; and s, known,
whereas the second one depends on the variable s.
The following hypotheses can be established:

e the origin 5 is such that the corresponding diagram of the sectorial coordinate
wg(sg; s) isdefined by a sectorial static moment S,(s) equal to zero;

e the origin s; is such that the corresponding diagram of the sectorial coordinate
wg(sqy; s) isdefined by a sectorial moment S,(s,) different from zero.

Taking into account Egn (3.37), the expression of the sectorial static moment
related to the origin sy is

Soo(SO) = fA W (SO; S)dA = fA wB(Sl; S)dA - fA wB(Sl; SO)dA =0
(3.38)
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O, >
X

Figure 3.7 — Identification of the principal sectorial origin with respect to the pole B.

Since the term wg(sq;So) IS a constant unknown, it can be directly computed
from Egn (3.38).

wg(s1;50) = [, wp(s1;5)dA/A =S, (s1)/A (3:39)

Therefore, the following assumption can be expressed: once a generic sectorial
pole B and a generic sectorial origin s; are defined for the computation of the
sectorial characteristics of the section, Eqgn (3.39) substituted in Eqgn (3.37) alows
to find the diagram of the sectorial coordinate wz whose sectorid origin  is
principal and, thereby, the corresponding sectorial static moment is null. This
specific diagramis called the principal diagram referred to pole B.

From a graphic point of view, we can operate in this way: once the diagram of
ageneric sectorial coordinate isdrawn, in order to find the diagram to which anull
sectorial static moment corresponds, it is necessary to deduct from the original
diagram the constant value given by the ratio between the sectorial static moment
related to the original diagram and the total area of the section. Once the diagram
has been modified, it is easy to recognise the point of the section which represents
the principal sectorial origin, related to the arbitrarily chosen sectorial pole. In Fig.
3.8 an example of this simple processis shown.

Moreover, if we apply Egns (3.37) and (3.39) in the definition of the other
sectorial characteristics (Egns 3.35), we find out Ssmple equations that permit the
calculation of the sectorial moment of inertia and the sectorial products of inertia
related to the principal sectoria origin starting from those related to the generic
sectorial origin.
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a) b)

s, s,

Figure 3.8 — Computation of the principal sectorial diagram for a U-shaped section:

generic diagram wg(s,) (@) and principal diagram wg(S) (b).

As regard the sectorial moment of inertia, exploiting Egn (3.39) we obtain:

lo(so) = fA wg(sp; s)dA
lo(s0) = [, w§(sy;8)dA+ [, wi(sq;s0)dA+
—2 [, wg(s1;s0)wg(sy;s)dA

Iy(S0) = Iy (51) — W (s1;50)A
In the same way, as regard the sectoria products of inertia,

lox(s0) = [, wB(so;8)ydA = [, wp(s1;s)ydA +
—wg(S1;S0) fA ydA
Loy (s0) = [, wg(sp;s)xdA = [, wg(sy;s)xdA +

—wg(s1;So) J, xdA
Lox(s0) = Lyx(51) — wg(S1;50)yGA

Iooy(so) = Iooy(sl) — wp(s1;S0)XGA

(3.40)

(3.41)
(3.42)

(3.43)

(3.44)
(3.45)
(3.46)
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where the following relations have been used:
[, ydA =yGA

Jy xdA =xA

The expressions (3.42), (3.45) and (3.46) are valid for any arbitrarily chosen
sectorial pole.

Finaly, observing the relations (3.45) and (3.46), it can be seen that, in the
hypothesis of a centroidal coordinate system, the sectorial products of inertia are
independent from the sectoria origin.

3.2.2 Déefinition of the Principal Sectorial Pole

Considering the section of Fig. 3.9, the sectoria coordinate o having the point A
as the sectorial pole can be computed by means of Eqns (3.7) and (3.12):

d d
dwy = [(x ~Xa) 5= (y —ya) d—:] ds = (x —xa)dy — (y —ya)dx (347)
The same expression referred to another point B becomes:
dwp = (x —xp)dy — (y — yp)dx (3.49)

Developing the subtraction between the previous differential expressions and
integrating, we obtain arelation between m, and wg:

wp = wp + (ya —yB)Xx — (xa —xp)y + C (3.49)

The integration constant C depends on the sectoria origin of the two sectorial
coordinates. Assuming, therefore, the generic point s, whose coordinates are (Xo;
Yo), astheorigin of both o and wg, the numerical value of Cis easily determined:

C = (xa—xB)yo — (ya — ¥B)Xo (3.50)
Thereby, Eqn (3.49) becomes:
wp = wp + (ya —yB) (X —Xo) — (xa —xB)(Y = ¥o) (3.51)
or, inasynthetic form,
wp = W+ ayX — gy + A (352
being
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Figure 3.9 — Sectoria calculus with respect to two different sectorial poles A and B.

oy = (ya—ys)
ox = (Xp — Xp)
o= (xpo —xp)yo — (Ya — ¥B)X0

Now, the expression (3.52) can be used to define the sectorial moment of
inertia and the sectorial products of inertiarelated to the sectorial pole A.

loa = [, wadA = [, (wp+ ayx —ayy + oc)sz
loya = [, waxdA = [, (wp + ayx — ayy + a)xdA

loxa = [, waydA = [, (wp + ayx — axy + a)ydA (3.53)

If we define the principa sectorial pole as the pole which determines the
annulment of the sectorial products of inertia, through the last two equations of the
system (3.53) it is possible to calculate its geometrical coordinates. For the sake of
simplicity, a central coordinate system is established for the cal culation:

loya = loys + ayly — aylyy + aSy

loxa = loxB + aylyy — ayly + aSy
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which, according to the particular coordinate system and the hypothesis on the
point A, are reduced to

ImyA = ImyB + O(yly =0 (3.54)
loxa = loxg —axlxy =0 (3-55)

The geometrical coordinates of the principal pole A can be directly computed,
since they are the only unknowns of the problem. In addition, it must be noticed
that Egns (3.54) and (3.55) are valid for any generic sectorial pole B and do not
depend on the position of the sectoria origin on the section.

If the arbitrary pole B is posed in the centroid of the section, the computation of
the coordinates of A isfurther simplified:

ya=— IooyB/Iy (356)

XA = IooxB/Ix (357)

Asiit can be seen, the principal sectorial poleisa special point, whose position
depends only on the geometrical dimensions of the cross section, in contrast to the
principal sectoria origin, which depends on the arbitrary sectoria pole.

If an axis of symmetry exists, the principa pole lies on this axis; moreover, the
intersection point between this axis and the profile line of the section
unequivaocally defines the corresponding principal sectorial origin.

For a beam of constant section, the principal sectorial pole coincides with the
shear centre of the section. This means that, through Egns (3.56) and (3.57), the
coordinates of the shear centre of a thin-walled open section can be easily
acquired.

Starting from these findings, the following corollaries can be expressed:

- in a centroidal coordinate system, the principal sectorial diagram whose
reference pole is the shear centre C (X.; Y.) can be directly computed knowing
the principal sectorial diagram whose reference pole is the centroid G of the
section:

We = Wg Y X — XY (3.58

- in a centra coordinate system, the sectorial characteristics related to the
principal sectorial diagram whose reference pole is the shear centre C (Xc; V)
are related to those derived from the principal sectoria diagram whose
reference pole isthe centroid G of the section:
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Iooc = Iu)G + ygly+Xng + ZYCImyG - ZXCIme

loye = loyg Tyely =0

Loxe = loxg = Xclx = 0 (3.59)

- in a generic coordinate system, the positions of the principal sectoria pole
and its corresponding principal sectoria origin can be obtained solving the
following system of three equations, in which B is a generic sectoria pole
and the terms a, o, and o, are the unknowns of the problem:

Soa = J, wadA = [, (wp+ayx—oxy+a)dA=0
loya = fA wpaxdA = fA ((oB +0(yx—axy+0()di= 0

loxa = [, waydA= [, (wp + oyx — 0y + @)ydA = 0

Once the unknowns are computed, exploiting Eqgn (3.52) the principa
diagram w, can be constructed, from which the position of the principal
sectoria origin can be deduced. In addition, this procedure demonstrates that
the sectorial products of inertia whose reference pole is the shear centre are
null only if the corresponding sectorial origin is the principal one for that
pole. On the contrary, if the coordinate system is centroidal, regardiess the
sectoria origin, the sectorial products of inertia whose reference pole is the
shear centre are always null, as demonstrated by Eqns (3.54) and (3.55).

3.2.3 Numerical Example

In this section a numerical example regarding the computation of the sectorial
properties of a thin-walled open section is proposed and described in depth. To
this aim, let us consider the section shown in Fig. 3.10, which represents a typical
shape for shear walls constituting the horizontal resistant skeleton of a tall
building.

The computation starts with the hypothesis that the geometrical properties of
the section are known and referred to the central axes of the section. For clearness,
the numerical details are reported in Table 3.1.

The first step of the procedure is the choice of an arbitrary sectorial pole and an
arbitrary sectorial origin. Since the coordinate system is central, for the sake of
simplicity, the centroid is considered as sectorial pole and the free end of the
section as sectorial origin.
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Figure 3.10 — Thin-walled open section in a central coordinate system (a); scheme for the
sectorial calculus. the dimensions are referred to the profile line of the section (b).

Table 3.1 — Geometrical properties of the thin-walled open section beam.
A[m] L, [m] I, [m"] J [m]
6.14 38.8 30.5 0.189

Now, chosen the positive sense of the ray which connects the pole to the points
of the section, the diagram of the coordinate wg can be easily computed according
to Eqgn (3.47). Then the sectoria static moment can be defined and, consequently,
exploiting Egns (3.37) and (3.39) the principal diagram related to the pole G, that
IS wg, isobtained. In Fig. 3.11 these passages are shown for clearness.

Swe = [, wgdA = 1749 m*
w(51;50) = Sei /A = 28.48 m?

we = W ~ WG(S1;Sp)
The next step is the evaluation of other sectoria properties, such as the

sectorial moment of inertia |, the sectorial products of inertia I, and I
according to therelations (3.33).

log = J, wgdA =1538.8m°

loye = J, wexdA=0m> I, = [, 0gydA=-219m®
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Figure 3.11 — Generic sectorial diagram wg and principal sectorial diagram wg, both
referred to the centroid supposed to be the sectorial pole.
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Figure 3.12 — Principal sectoria diagram referred to the shear centre supposed to be the
sectorial pole.

7.6m’

The term |, is null since the diagram of the variables wg and x are such that
their product is null over the entire cross-section; whereas the term |, is different
from zero and, in particular, equal to -219 m°. As a consequence, the coordinates
of the shear centre of the section are acquired through Egns (3.56) and (3.57):
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Once the location of the shear centre in known, the corresponding sectoria

characteristics can be defined.

The principal diagram of the coordinate o¢ is computed through the application
of Egn (3.58), in which the principal diagram og is used. In Fig. 3.12 the result of
this equation over the entire cross-section is shown.

Finaly, exploiting the system (3.59), the sectorial properties related to the
shear centre and to the principal sectorial origin are:

Iooc = Iu)G + ygly+Xng + ZYCImyG - ZXCIme

= 1538.8 + 5.64%(38.8) — 2(—5.64)(—219) = 302.7 m®

[

wye = loyg T Yely = 0+ 0(30.5) = 0 m®

Loxe = loxg — Xcly = —219 4 5.64(38.8) = 0 m®

Detailed information for the calculation of the sectorial properties are reported
for clearness hereinafter. In particular, the procedure can be performed employing
the Table 3.2 of the product integrals and referring to the diagrams of the variables

X, y and o indicated in Fig. 3.11 and 3.13.
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Table 3.2 — Product integral table for [ OL F; (x)F,(x)dx.

Fy(x)
= b blb
S 2 abL 1abL 1abL al(b+b,)
- 2 2 2
i a 1abL 1abL 1abL aL(b+2b,)
2 3 6 6
L
i L(2abtab,
a,| blajra,) bl(ajt2a,) | bL(Zata,) |1
a,@ ) ’ 6 ’ 3 © tab+2ab)
/_’ . 2abL 1abL 1abL al(b+b,)
3 3 3 3
L
parabolic
tangent \i a 1abL 1abL 1 abL al(b+3b,)
L - 3 4 2 12
parabolic
i\ a 2abL _5abL 1abL aL(3b+5b,)
. 3 12 4 12
G ﬂjc bL(ctddte) |  bL(2d+e) bL(c+2d) % [b,(c+2d)
r— 6 6 tb(2d+e)]

Swg = 0305 E (4.56)(1.37) +
5.8 5.8

+22(21.35 4 35.6) + 22 (35.6 + 52.4) +

log = 2(0.305)

+27(2(23.9%) + 2(28.482) + 2(23.9)(28.48)) + 3 (7.1)? ()] = 1538.8 m*

loxg = 2(0.305)

6

2

5.8

6

2

1.37

2

5(4.56 + 21.35) +

2

(2(7.1%) + 2(23.9%) + 2(7.1)(23.9)) +

%(E)Z (7.1) - (2)2 (7.1 + 23.9)] =-219m°

(52.4 + 57)] =1749 m*

L7 (-2(23.9) () - 228.48)(1.5) — (23.9)(15) - (28.48) (%)) +
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3.24 Differential Equilibrium Equationsin Principal Directions

The system of equations (3.32) can be strongly simplified operating some sharp
choices: in effect, if a central coordinate system is considered, as well as the
sectorial pole coincides with the shear centre of the section and the corresponding
sectorial origin is principal, the conditions (3.34) and (3.35) are al immediately
satisfied. This means that the system (3.32) is reduced to four independent
equilibrium equations:

{'AE =0

El &Y = q,

ELn" = qy

El, 9V — GJ9" =m (3.60)

Choosing the opportune boundary conditions, the system can be solved and the
functions {, €, n and & can be determined. From these, the normal and tangential
stresses and, consequently, the corresponding internal actions can be found.
Taking into account Egn (3.19), the latter are given by:

N = [, odA = EA
My = [, oxdA = EI,¢"
M, = — [, oydA = —ELn"

B = [, owdA=—EIl,9" (3.61)

The fourth equation describes a new static term which is defined as bimoment
action and represents a generalised balanced force system composed by two
bending moments, each having the same magnitude but opposite sign.

The subgtitution of the expressions (3.61) in (3.19) gives an equation which
connects the normal stresses with the corresponding internal actions:

0=———x+%y+liu) (3.62)

The first three contributions derive from the classical theory of strength of
materials and are based on the hypothesis of plane sections; the fourth describes
the normal stresses arisen in the beam due to the out-of-plane warping of the
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section. Asit can be seen, thisterm is similar to those derived from the bending: in
effect, it is directly proportional to the action and to the corresponding variable
function and inversely proportional to a coefficient of inertia.

Similarly the internal actions connected to the tangential stresses are:

Ty = J, t8cosads = [, t8dx
T, = [, t8sinads = [, t8dy

M, = [, t6hds = [, t8dw (3.63)

Substituting Egn (3.26) in the system (3.63) and considering, from the
integration by parts, that:

Jy Sxdx=10 Jy Sxdw =10

Jy Swdx=0

Jy Sydy =0 Jy Sydw =10

Js Swdy =10

Jy Sydx = -1, Jo Sxdy = —Ix

fA Sepdw = =1, (3.649)
the following relationships are obtai ned:

T, = —EL§"

Ty — _EIXT],”

M, = —EI,9"" (3.65)

As the case of normal stresses, an equation which connects the tangential
stresses with the internal transversa actions can be highlighted:

=225, (s) (3.66)

= _E|Tk Iy
T=—3 L Sy(s) + L Sx(s) +
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Again, the first two terms are the same proposed by Jourawsky in the theory of
plane sections, whereas the last one, having a similar expression, is derived from
the theory of the sectorial areas.

Comparing Egns (3.65) with Egns (3.61), it is possble to connect the
longitudinal actions with the transversal ones. In this way the complete formal
analogy between the well-known bending formulation and the flexura-torsional
oneis confirmed:

T, = —M}, T, = M, M,, = B’ (3.67)

Observing Egn (3.67c) it is evident that the section is, actually, subjected to
two types of torsiona actions, resulting from the fact that the tangential stresses
are subdivided into two different components, as shown in Fig. 3.4. Therefore, the
total resistant torsional moment is finally given by the sum of two separated
contributions:

Mz = M, + M,,, = GI,9' — EI,9"" (3.68)

3.3 Experimental Investigation on War ping Defor mation

The analytical formulation proposed by Vlasov, known as the theory of the
sectorial aress, is rarely used when thin-walled open section beams are taken into
account. Nevertheless, even though in the literature many papers, focused on the
structurd behaviour of these elements, have been published, to the author's best
knowledge, none proposed a specific experimental technique to evaluate first-hand
their particular out-of-plane distortion, when subjected to torsional actions. In
order to verify the theory of the sectorial areas, in the present section an
experiment regarding a thin-walled open section profile subjected to flexural and
torsional loads is performed. For this purpose, a steel beam showing a U profile
has been realised. With the am of an optica device, suitable for precision
measurements, the warping deformation of the section, as a consequence of the
application to different levels of concentrated torsional actions, can be defined.

The evaluation of the effectiveness of the analytical formulation consists in the
comparison of the results obtained experimentally with those coming from two
different methods: the first implements the equation of Vlasov's theory, whereas
the second relies on the Finite Element method.

First, a brief summary of the main passages of the analytical formulation which
alows to define the stiffness matrix of thin-walled open section beams subjected
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to transversal loads is provided below. Finally, the main phases of the
experimental test are described.

331 StiffnessMatrix for Thin-Walled Open Section Beams

The warping deformation is an unusual distortion which characterises thin-walled
open section beams. This phenomenon, usually neglected for most of structural
elements, appears in presence of transversal loads, in particular if they cause
torsiona effects.

Let's consider a linear-elagtic isotropic and homogeneous beam having a thin
walled open section in aright-handed reference system OXYZ (Fig. 3.14). Let &, n
and { be the trandations of the origin O along the directions X, Y and Z
respectively and ¥ the rotation of the section.

In a general loading case, the equilibrium equations of the beam are expressed
by:

E(Q"A-¥"Sy —n"'Sy —9"'S,,) = q,

—E(T"'Sy = §V1, ="y = 8V1yy) = ax

—E(7""Sy = &Iy ="V, — 0V1y) = gy

—E(7"Se — EV4y —1VIpyx — 9VI,,) — GJ8” = m (3.69)

which can be simplified applying the conditions described in Section 3.2.4.
Therefore, the system (3.69) turnsinto

EAT" = q,

El &Y = q,

ELn" = qy

EI, 9"V — GJ,9” =m (3.70)

The equations, initially coupled each other through the variables &, 1, £ and 9,
are now independent. In Egn (3.70d) the term which refers to Saint Venant's
theory is, for now, disregarded. Its contribution will be added later, in the fina
expression which defines the stiffness matrix of the element.

If the system of external forces is only represented by transversal actions, Egn
(3.704) can be neglected.
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Figure 3.14 — Thin-walled open section beam in aright-handed coordinate system.

The remaining equations can be organised in a matrix form through the
following vectors of the displacements & and the actions g:

3 qx
&= {n} q= {qy} (3.71)
9 m

EIsY = q (3.72)

inwhich | is adiagonal 3x3 matrix whose diagona coefficients are expressed by
ly, Ixand |, being all the other elements equal to zero.

Since |l is symmetrical and positive definite until the geometry of the section is
such that the corresponding sectorial moment of inertial,, is different from zero, it
is possible to invert the expression (3.72) in order to highlight the vector of
displacements .

If the actions are not represented by forces distributed along the beam, but
concentrated in correspondence to N specific sections (Fig. 3.154), Egn (3.72)
remains valid in each segment circumscribed by these sections and shows the
following form:

8" = —I"1F/E (3.73)

where the relation between the vectors q and F is given by:
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Figure 3.15 — Thin-walled open section beam subjected to concentrated transversal actions

applied to specific sections (a); scheme for the continuity conditions between different
sections (b).

F
__dp__2)g, (3.74)
q 0z 0z y ’
My

The transversa displacements &, n and ¥ are acquired integrating Egn (3.73) in
each domain where the expression is defined and introducing the adequate
boundary conditions. Such conditions are subdivided in continuity and global
conditions.

The continuity conditions for the j-th section (j =2,..., N) are:

8(J)j—17j =6(Nj/j+1

8 (Nj-1i =8 (Njsjr1 (3.79)
8"(J)j=17j =8"(Njsjr1
EI8"'(j)j-1/; = E18""(J)j/j+1 + F(J) (3.76)

in which the first two are kinematic, whereas the last are equilibrium conditions
(Fig. 3.15h).

If the beam is constrained as a cantilever beam, the global conditions for the
free edge (j = 1) are given by the equilibrium conditions:
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8"(1)=0
8"(1)=-I"1F(1)/E (3.77)

whereas, for the opposite edge ( j = N+1), two kinematic conditions are
considered:

S(N+1)=0
§(N+ 1) =0 (3.79)

For the sake of simplicity, the transversal displacements of the sections are
reported in a single 3N vector §, in which the trandations along the X axis, then
those along the Y axis and, finally, the rotations are posed. Smilarly, a global 3N
vector F containing N shear forces F,, N shear forces F, and, finaly, N torque
moments My is assembl ed.

By means of the procedure of integration previously mentioned, it is possible to
obtain a relationship between & and F through the compliance matrix C or its
inverse, the stiffness matrix k.

8=CF=Kk'F (379)

Finally the torsional contribution coming from Saint Venant’s theory, which is
proportiona to the torsional inertia J, is added to the torsional component of the
calculated stiffness matrix.

Once the external actions are known, by means of Eqgn (3.79), it is possible to
obtain the displacements of the corresponding sections in terms of &, mn and 0.
Then, differentiating the latter with respect to the coordinate z and exploiting the
last component of Egn (3.13), the axial displacements which define the warping of
the section are deduced, according to the theory of the sectorial areas.
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3.3.2 Experimental Investigation

HEA 160
f
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Figure 3.16 — Scheme of the test on a thin-walled U-shaped section steel beam.
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Figure 3.17 — Geometrical properties of the thin-walled steel profiles.

Specific experimental investigations for the evaluation of the effective out-of-
plane deformation of thin-walled open section beams subjected to torsional actions
are amost absent in the literature of the past fifty years.

Therefore, the contribution described below proves to be particularly
innovative for the structural analysis of these profiles.
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(b)
Figure 3.19 — Picture of the little steel frame, applied to the extreme L-shaped profile, to
which the laser is connected (a); scheme of the reflection of the laser (b).

The evauation of the warping deformation is performed by means of an
experimental test on a 1.6 m long steel beam, constrained as an horizontal
cantilever. The cross section is defined by athin-walled U profile (Fig. 3.16).
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Figure 3.20 — Location of_ the o_ptical device and the ruler which allows the measurement
of the warping of the section.

On the upper flange, at distance of 0.16 m each other, some little beams, having
L-shaped section and conveniently altered for the gpplication of the transversal
actions, are welded. The geometrical dimensions of the structural components are
reported in Fig. 3.17.

The applied loads are represented by masses, each of 3.08 kg, located at 0.23 m
far from the shear centre of the U-shaped section. In this way, at the same time,
shear forces and anticlockwise torsional moments are produced (Fig. 3.18).

The rigid constraint of the cantilever scheme is realised at one of the edges of
the beam by means of welding on a stedl plate, which isin turn bolted to a fixed
system (Fig. 3.16, plate A).

The system for detecting the axial displacements defining the warping of the
section is constituted by three main components. The first is a little steel frame
which is connected, through bolts, to the L-shaped section beam posed at the free
edge of the examined U-shaped section beam. The second is a laser, rigidly
connected to the steel frame, whose ray is directed to the free edge of the bottom
flange of the U-shaped profile (Fig. 3.198). The last is a spherica mirror,
characterised by specific geometrical properties adequate for precision
measurements, which is placed where the ray meets the bottom flange of the main
beam. According to this configuration, the ray of the laser is reflected on the inner
side of the upper flange of the U-shaped section beam, where aruler is pasted (Fig.
3.19b-3.20).
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Figure 3.21 — Relative displacement s between the laser (A—A") and the mirror (B—B’).
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Figure 3.22 — Amplification of s due to the geometrical characteristics of the spherical
mirror.

Because of the concentrated torsional moments, the section twists around its
shear centre, undergoing, at the same time, a distortion out of its own plane. This
deformation can be expressed by the system of axia displacements of the points
constituting the section, once the pure flexural deformations are removed.

Experimentally, it may be evaluated considering the relative axial displacement
of two symmetrical points of the section: the application point of the laser and the
one of the mirror (Fig. 3.21).
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Loaded level: Loaded level:
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applied 0.64, 0.8,
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Figure 3.24 — Measurement of the displacement s during the loading phase: the white
dots represent the consecutive positions of the reflected ray on the ruler.

Exploiting the geometrical properties of the mirror, as a consequence of the
displacement s of the incident ray, it is possible to detect, on the upper flange of
the U-shaped section, the displacement s' related to the reflected ray. Because of
the curvature of the mirror, the term s represents an amplification of s and,
therefore, its measurement becomes much easier (Fig. 3.22). In this case, the
geometrical characteristics of the mirror are such that the amplification factor, that
istheratio between s and s, is about 12.
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Table 3.3 — Comparison between analytical and FE method.

TYPE OF PROCESS: LOADING UNLOADING
Loaded s [mm Loaded s [mm

bl zin] level Analytice[ll JFEM b el level Analytice[ll %EM Err. el
1 0.48 1 7.61E-03 7.56E-03 0.61 1+7 2.52E-01 2.46E-01 2.58
2 0.64 1,2 2.13E-02 2.10E-02 1.23 2+7 2.44E-01 2.38E-01 2.64
3 0.80 1+3 429E-02 422E-02 1.56 3+7 231E-01 2.25E-01 2.71
4 0.96 1+4 744E-02 7.32E-02 1.74 4+7 2.09E-01 2.03E-01 2.79
5 1:12 1+-5 1.18E-01 1.16E-01 1.86 5+=7 1.77E-01 1.72E-01 2.94
6 1.28 1+-6 1.76E-01 1.73E-01 2.00 6,7 1.34E-01 1.30E-01 3.23

|

] 1.44 1+7 2.52E-01 246E-01 2.58 7 7.54E-02 7.26E-02 3.95
Error [%] = (Analytical - FEM)/FEM =100

The experimental analysis was performed varying the loading condition: in a
first phase the L-shaped section beams were progressively loaded from z=0.48 m
to z=1.44 m, being z = 0 m the constrained edge of the beam; then, the unloading
process was conducted following the same order (Fig. 3.23).

In Fig. 3.24 the experimental results, which describe the amplified
displacement s’ related to the loading phase, are reported. It is evident that the use
of the optical device facilitates the detection of the warping displacements which
are, otherwise, invisible to the naked eye.

The same structure was, finally, examined in a Finite Element (FE) program in
order to verify the effectiveness of the analytical method in the individuation of
the structural behaviour of thin-walled open section beams. In this case, the steel
U-shaped section beam was modelled by means of thin shell elements. In Table
3.3 the numerical comparison between the analytical and the FE method is shown
and a good convergence can be acknowledged, since the main difference is about
4%.

Similarly, the same correspondence can be noticed comparing the numerical
results with experimental ones: in Fig. 3.25 normalised values of the axia
displacement s are reported taking into account every single loading condition,
during both the loading and unloading process.

Since Vlasov's theory proves to reach enough accuracy, until the material is
linear elastic, the proposed anaytica formulation can be easily extended to
consider beams with greater dimensions, as the case of thin-walled open section
bracings which are usually employed to stiffen horizontally tall buildings[19].
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Figure 3.25 — Comparison of the results in terms of normalised values of the axial
displacement s, during the loading (a) and unloading (b) process.

34 Capurso’'sApproach for Tall Building Design

In the design of tall buildings, the structural contribution for horizontal actions can
be considered predominant if compared to the requirements coming from the
vertical resistance. As regard medium-high building, one of the most popular
solutions employed to absorb the horizontal 1oad isthe shear wall scheme.

Since these bracings often house lift shafts or stairwells, some openings are
needed along the vertical profile in order to allow the accessibility of the interna
spaces of the building. This means that most of times they can be treated as thin-
walled open section cantilevers. Nevertheless, in these cases the following
assumptions must be formul ated:

e each thin plate obeys to Euler-Bernoulli hypothesis of plane sections;
e the torsional rigidity of each plate derived from Saint Venant’s theory can be
considered negligible;
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e the stiffening effects due to rigid connecting beams, located along the cut edge,
are neglected.

The third assumption is, actualy, very strong and tends to underestimate the
transversal stiffness of the global structure. With the increase of the building
height and, therefore, the increase of the number of floors, the stiffening effect
caused by the connecting beams is such that the torsional behaviour of the whole
element is halfway between the cases of closed and open section, determining a
completely different deformation of the structure.

The first hypothesis is in line with Vlasov's theory, since it involves that the
longitudina fibres remain orthogona to the transversal ones and, therefore, the
shearing strain v, is null. Similarly, the second assumption asserts that, in the
design of vertical bracings characterised by thin-walled open sections, the stiffness
contribution related to the sectoria rigidity El, is much larger than the one
associated to Saint Venant’'s theory, which is proportional to the torsional rigidity
GJ.

According to the previous hypotheses, the analytical formulation proposed by
Vlasov can be adopted to evaluate the structura behaviour of a tall building
stiffened by a single thin-walled open section cantilever [23].

In a generic coordinate system, the attention is focused on the case in which
only the transversa concentrated actions Ty, Ty and Mz are considered. For the
computation of the sectoria characteristics, the origin of the right-handed system
XY Z coincides with the sectorial pole, whereas the sectoria origin on the profile
lineisgeneric.

Supposing to disregard the axial force in the vertical bracing, the following
systems of transversal and longitudinal equilibrium equations can be written:

E(T'Sy — &Iy — 0"y — 9" 1y) = Tx

E(T'Sx — &Iy — 1"y — 9" 1yx) = Ty

E(T"Se =&y =" Lpx — 9""1,) = =My, (3.80)
E(CA—E'S, —1""Sx —9"S,) =N=0

E(Z'Sy = &Iy = "Ly = 9"1yy) = My

E(3'Sx = 'Ly —1""Ix = 9'"lepx) = My

E(TSep = &'loy —M''lpx —9"1,) =B (3.81)
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Eqn (3.81a) alowsto highlight theterm C’:

SX rn Su)
iy (3.82)

ZI — EH % + n”

In this expression the first two terms hide the geometrical coordinates of the

centroid of the section, whereas the third one gives information about the diagram

of the sectoria coordinate w. In effect, considering the expression (3.39), it

represents the constant value which, subtracted to the original diagram, gives rise

to the principal one related to the initially chosen sectorial pole. Consequently,
Eqgn (3.82) becomes:

¢ =8'%c +1"ys +9"wg (3.83)

The substitution of Egn (3.83) in the last three equations of the system (3.81)
permitsto define new expressions of the longitudinal actions.

_E(E”]y + n”]xy + 19”Iu)y) = My
_E(E”]xy +n")x + 19”Iu)x) = My

~E(§"Jwy +1"Jox +9"]u) =B (3.84)
where:

Jy =1y — Axg Jx =1y — Ayg

Jxy = Ixy — AXgYe (3.85)

Jo =1y — Awd Joy = Loy — Axgwy

Jox = lox — AycWo (3.86)

Eqgns (3.85) represent the implementation of Huygens-Steiner theorem, which
transfers the system XYZ from the generic origin to the centroid of the section;
similarly, Egns (3.86), previously shown as Eqns (3.42), (3.45) and (3.46),
describe new sectoria properties, for which the principa sectorial diagram is
considered.

The expressions (3.85) and (3.86) also affect the system (3.80), which turns
into:

_E(Eluly + n”,]xy + Bnllmy) — Tx
_E(E”,]xy + T]H/]X + Bullmx) — Ty
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_E(E”,]my +1"Jx + ‘Smlm) = My, (3.87)
If the matrix of inertiaJ and the vectors 8, M and T are introduced:

]y ]xy ]ooy
] = ]xy ]x ]u)x (3.88)
]my ]mx ]m

§ My, T
§= {n} M =M, T={Ty (3.89)
9 B Mz

it is possible to write the systems (3.84) and (3.87) in a synthetic form:
M = —EJ§" T = —EJ§"" (3.90)

Since the matrix of inertia is symmetrical and postive definite until the
geometry of the section is such that the moment 1, is different from zero, it is
possible to invert it and obtain a relationship between the vector &' and the
concentrated actions T.

8" = —2)7IT (3.91)

The analytical solution which gives the transversal displacements of the section
is acquired integrating the Eqn (3.91) through the boundary conditions at the base
and at the top of the cantilever.

At the constrained end (z=0):

§=0 §=0 (3.92)
whereas, at thetop end (z=1):
8" =0 (3.93)

Once & n and O are known, exploiting Egn (3.83), the uniform axia
displacement { can be computed, taking into account that the corresponding
boundary condition requires:

(z=0)=0 (3.949)
from which we obtain:
(=8&xc+M'yc +9wg (3.95)
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| Ay
[ D

Figure 3.26 - Shear walls congtituted by thin plates converging in asingle point.

Finally, the displacement components u, v and w can be easily derived from
Egns (3.5), (3.6) and (3.13), whereas the interna stress state is given by Egns
(3.19) and (3.26).

This analytical formulation cannot be applied in presence of specific sections
for which the matrix of inertia becomes singular. These are the cases of shear
walls constituted by a single thin rectangular plate or many thin plates converging
in a single point, as shown in Fig. 3.26. In the first case, in effect, one of the two
moment of inertia J,, J, and the sectorial moment J,, become null; in the second
case, only J, is equal to zero. Therefore, in both cases, the matrix J cannot be
inverted and the equation (3.90b) cannot be solved.

3.4.1 Distribution of the External Actions between Vertical Bracingsin Tall
Buildings

The described formulation is extended to consider the case of N vertical
cantilevers which represent the horizontal resistant skeleton of a tall building
subjected to transversal actions applied to the floors according to the global
coordinate system XY Z (Fig. 3.27). The vertical bracings are connected each other
by means of in-plane rigid slabs, whose out-of-plane rigidity can be considered
negligible.

The unknown variables of the problem are the floor displacements, identified
by the trandations & and n in X and Y direction respectively, and the torsional
rotation .

If T, indicates the vector of the transversal actions absorbed by the i-th
cantilever, by virtue of Egn (3.90b):

Ti = —E]L’SHI (396)

where the matrix J; contains the moments of inertia referred to the centroid of the
section and to the principal sectoria origin; §"'" gathers the derivatives of the floor
displacements &, n and 0.
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Figure 3.27 — Floor plan of atall building stiffened by various vertical bracings.

If T isthe vector of the external loads, the equilibrium condition imposes:
T= Zylei = _E(Z%\I:ﬂi)&” (3-97)

Therefore, the combination of N cantilevers behaves as a single cantilever
whose matrix of inertiais given by the sum of the N matrices related to the single
cantilevers.

Nagi=] (399
§'" = _%]—1'1" (399)

Eqgn (3.99) can be solved following the procedure previously described for the
case of asingle vertical bracing.

Once the floor displacements are known, by means of Egns (3.2) the
displacements of each cantilever can be deduced and information regarding the
stress state can be obtained.

Finally, it isinteresting to observe the relation between the vector T; of thei-th
cantilever and the global vector T:

T, =JJ7'T (3.100)

It is evident that each bracing is subjected to an amount of the external load
proportiona to its own inertia, but inversely proportional to the inertia of the
global system, just like Chapter 2 highlights.
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3.5 The Stiffening Effect dueto Lintel Beams

In multi-storey buildings, open section shear walls are normally used as an
economical solution which provides the required lateral stability against wind and
earthquakes and the possibility of housing stairwells and lift shafts. To this aim,
they are often rigidly connected, at each floor, to some structura €lements, such as
lintel beams or dlabs. This configuration can be analysed as the case of a tubular
element perforated by a series of regular openings along the height. In this scheme,
the discrete horizontal components located along the longitudinal cut of the profile
determine a considerable increase of its torsional stiffness and, thereby, the
structura behaviour of the element can be completely different, halfway between
the case of closed section beams and the case of open section beams. Therefore, in
the design process the evaluation of the interchanged actions between the vertica
bracings and the structural components of the floors becomes indispensable to
identify the actual behaviour of the global resistant system.

Many authors dealt with this issue. In effect, the first papers started analysing
coupled planar shear walls connected each other by means of rigid horizontal
elements. The pioneers of these studies were H. Beck [9] and R. Rosman [90],
which proposed a method, called the continuum medium technique, on which
several further papersreied for similar problems. The principle of the method isto
replace the effect of individual beams or slabs, which interconnect the walls at
each floor, by continuoudly distributed shear forces, that concur to stiffen the
structure. In this way, the system of shear walls can be idealised as a single shear
flexural cantilever characterised by a stiffness greater than the sum of its single
components. Two simple hypotheses are at the base of this method:

- the points of contra-flexure are assumed to be at mid-span of the
connecting beams, as long as the cross sections of the walls are such that
the differenceinrigidity is quite negligible:

- the sections of the walls remain plane after the deformation, whereas it
does not happen if the whole cross section of the resultant cantilever is
considered;

- the connecting beams show a pure flexural behaviour, being axially
absolutely rigid.

According to this approach, many papers were derived. As regard the analysis
of coupled planar shear walls connected through rigid lintel beams, the papers by
Schwaighofer [98], Coull and Choudhury [31], Coull and Puri [32], Capuani et al.
[20-22] can be mentioned. In the same way, for the evaluation of the stiffening
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effect due to out-of-plane rigid slabs, the first approach, based on the finite
difference method, was proposed in the paper by Qadeer and Stafford Smith [90].

Then, experimental studies focused on the determination of the effective
bending stiffness of floor dlabs coupling shear walls followed, as shown in the
papers by Coull and Hag [36], Schwaighofer and Collins [99]. Finally, other
works, proposed by Coull and Chee [38-40], exploited Finite Element anaysis to
evaluate the stresses arisen in dlabs as effect of the rigid connection with planar
shear walls. In this way they provided a design procedure for checking against
punching shear failure in slabs.

A complete mathematical analogy exists between laterally loaded coupled
planar shear walls and shafts constituted by open section shear walls subjected to
torsional actions. In effect, the same hypotheses can be considered valid in this
case. Rosman [96] himself proposed a synthetic method for the analysis of
concrete shafts constituted by three-dimensional thin-walled elements and Michael
[81] obtained a synthetic differentia equation for the torsiona coupling of core
walls connected by floor beams between the tips of the flanges, whose general
solution was confirmed by published test values.

The extension of the theory to a complete three-dimensiona continuous
method, focusing on prismatic and non-prismatic elements arranged
asymmetricaly in the floor plan, was later performed by Gluck [53], whereas
Heidebrecht and Swift [57] based their analysis on the matrix stiffness method.

Only later, Tso and Biswas [117] added to the previous formulations the
possibility of taking into account also the axia deformations of the walls, whereas,
through the application of the transfer matrix method, Liauw and Leung [74]
formulated an approach able to consider the possible changes, at different storeys,
of wall thickness, storey height, loading and depth of the connecting beams.

After the seventies, from an analytical point of view, this issue was totally
abandoned, because of the developments of Finite Element methods, which,
supported by advanced technology, became popular for structural analyses. Very
few works appeared: among all, the last ones, implementing the continuous
connection method, were proposed by Wdowicki and Wdowicka [123, 124] for the
evaluation of the stress state in non-planar asymmetric shear wall structures having
stepwise changesin cross-section.

Most of the mentioned papers offer simplified and convenient methods for
hand calculations; nevertheless, even though able to consider several details of the
possible structural configuration, they prove to be unsuitable to be inserted in a
globa formulation for the analysis of complex tall buildings whose horizontal
resistant system is composed by various vertical bracings.
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a)

/

Figure 3.28 — Shear wall stiffened by uniformly spaced lintel beams (@); the discrete
system of lintel beams reduced to a continuum of equivalent mechanical properties (b).

A simplified approach which can be easily considered for the definition of the
stiffness matrix of core walls stiffened by lintel beams or out-of-plane rigid dabs
is hereinafter proposed.

For the sake of simplicity, a single thin-walled open section shear wall is taken
into account for the analysis. Along the cut edge some lintel beams of rectangular
section are arranged as horizontal elements connecting the extremities of the open
section (Fig. 3.28).

The main effect due to the horizontal bracesisthe increase of the rigidity of the
shear wall when subjected to torsion. From this point of view, this configuration
moves away from the theory of open sections and gets closed to the one related to
hollow sections.

Also for these elements, the hypotheses proposed by Vlasov and Rosman are
supposed to be valid. In addition, the horizontal braces are considered deformable
in their plane and ther structural behaviour depends on their flexura
deformations.

If the shear wall is stiffened by n discrete lintel beams, it is necessary to solve a
system of n compatibility equations in which the unknowns are defined by n
transversal forces developed in the beams. Unfortunately, this procedure turns out
to be not suitable for the proposed aim.
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Figure 3.29 - Longitudina distributed shear loads r(z) absorbed by the equivalent
continuum.

Shear centre
°

8A‘I'l'

Figure 3.30 — Effect of asingle lintel beam on a thin-walled open section beam.

In the case of tall buildings, the storey height is such that the lintel beams
corresponding to the floors are closely spaced aong the shear wall. Therefore, the
resultant system can be reduced to a composite spatial system constituted by the
thin-walled shear wall and a plate equivalent in its mechanical properties to the
transversal connections and able to sustain only shear stresses.

The stiffening effect of the plate can easily envisaged by cutting it
longitudinally where the flexural moment is supposed to vanish and simulating the
presence of longitudinal distributed shear loads r(2) applied to the sides of the cut
with opposite direction. These actions do not produce any bending moment on the
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vertical cantilever and the resultant axial force is equal to zero. On the contrary,
only bimoment action is produced, since the two equal and opposite forces cause
the warping of the cross-section of the shear wall (Fig. 3.29).

With the am of identifying this stiffening contribution, let us consider the
structurd resistance of a single lintel beam defined by a rectangular section. Due
to the warping of the section, the extremities of the horizontal beam undergo the
same deformations, but with opposite sign: a transversal displacement and a plane
rotation (Fig. 3.30). If we consider the extreme points A and B of the section, their
vertical displacements due to the warping can be computed taking into account
Eqgn (3.13).

Wp = —(A)AI()I (3101)
W = _(,l)B‘SI (3102)

The rotations can be obtained after the computation of the same vertical
displacements related to the points A’ and B’, which correspond to the sides of the
imaginary cut.

_ (WAI—WA) _ ’
PA="py = (b+e)d (3.103)
_ (WBI—WB) _ ’
P = (L—/Z) = (b + e)19 (3104)
being L the length of the lintel beam, b and e the characteristic dimensions of the
open section.

Because of these displacements, the lintel beam is subjected to an internal shear
force of congtant value R, which is given by:
12EIy
L3
For the case shown in Fig. 3.30, the term included in the square brackets can be
simplified according to the following relationship, which takes into account the
area A enclosed by the profile line of the channdl:

[wg —wp + L(b+e)] =2A (3.106)

If the beam is considered cut in mid-span, a relative displacement between A’
and B’ occurs. Therefore, this implies that, in order to restore the continuity of the
beam, a couple of forces R has to be applied to both sides of the cut.

According to the theory of sectoria areas, the bimoment action produced by
any axia force applied to the section is the negative product of the force and the

R =

[wg — wp + L(b + €)Y’ (3.105)
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sectorial coordinate o of the point to which the force itself is applied. This means
that, due to the couple of forces R, a resultant bimoment action is produced:

B = —R(wgr — w,1) (3.107)
in which
wp = wp — (3.108)
(b+e)L

wg’ = W + (3.109)

2

Consequently, a relationship between the bimoment action and the first
derivative of the twist angle is acquired and a stiffness coefficient which takes into
account the presence of the lintel beam can be highlighted:

48El , ,
B=—"2RA%9 = ko (3.110)
k = 285 p2 (3.112)

L3

These findings can be used to consider the global system of lintel beams
connected to the open section shear wall.

According to the hypothesis of a plate having equivalent mechanical properties,
if the spacing of the lintel beams is uniform, the concentrated forces R related to
the single beam and applied to the sides of the cut can be transformed into two
loads r(2) uniformly distributed along the sides of the longitudinal continuum cut
(Fig. 3.29).

r(z) =R/h =220 A0 = (3.112)

The infinitessimal loads r(z)dz produce a resultant infinitessmal bimoment
action, which is given by:

dB = —rdz(wg — w,’) (3.113)
from which we obtain:
—r(wg — wyr) = dB/dz (3.114)

Exploiting Egn (3.67¢) and differentiating Eqn (3.113) with respect to z, a
distributed torsional action is computed.

48Ely
hL3

m* =r'(wg — wyr) = A%9” (3.115)
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Figure 3.31 — Coupled shear walls constituting a symmetrical shaft.

This contribution can directly inserted in the differential equilibrium equation
related to the angle of rotation © (Eqn 3.60d):

El,9"V - G = m+ m* (3.116)

Substituting Eqn (3.115) in (3.116) and gathering the coefficients of the second
derivative of 9, a new differential equilibrium equation is obtained, in which the
inertia J, is increased because of the presence of lintel beams closely spaced along
the cut edge of the open section shear wall.

El, 9"V — GJ{9” =m (3.117)
« 961, (1+v)
Ji =)+ o A? (3.118)

The expression (3.118) proves to be very convenient for practical use. In effect,
regardless of the approach considered for the structural analysis of the shear wall,
the stiffening effect caused by rigid lintel beams can be taken into account simply
computing the increased inertia J instead of the original one J. In addition, the
same approach can be implemented for the analysis of coupled open section shear
walls constituting a symmetrical shaft. According to this configuration, the flanges
of the walls are connected each other by means of rigid beams. Referring to Fig.
3.31, the previous expressions can be used taking into account that the
simplification (3.106) isno more valid.
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Finadly, if the dtiffening effect is caused by out-of-plane rigid slabs, the
proposed formulation remains valid, since their contribution is reduced to the
definition of the corresponding stiffness term k of Eqgn (3.111). The latter can be
found in literature, most of times acquired through experimental tests. Otherwise,
it can be obtained analytically, as the case of Vlasov, who considered slabs acting
asflat platesin torsion. In this way he defined the following expression:

bdEt3
k =
6(1+v)

(3.119)

where b and d are the slab dimensions, whereast is the corresponding thickness.

Another convenient approach, based on experimenta analyses, is to consider
an equivalent lintel beam and determine its corresponding geometrical dimensions
in order to simulate the stiffening effect of the real dab.

351 Numerical Example
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Figure 3.32 — Floor plan of a 15-storey building stiffened by an internal core tube.
Dimensionsin metres.

Table 3.4 - Geometrical properties of the core tube. Within brackets the properties

changed due to the stiffening effect of the lintel beams.

I [m"] ly [m’] lp [m°] 3 [m’] Xc[m] ye [m]
30.5 38.8 302.7 0.189 (2.75) 0 5.64
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(@ (b)
Figure 3.33 — Core tube system modelled in the FE program without (a) and with (b) rigid
lintel beams.

To highlight the effectiveness of the proposed method, a well-known example
proposed in the paper by Taranath and Stafford Smith [110] and, then, resumed by
Pekau et al. [87] is here modelled. It is the case of a core tube, constituted by a
thin-walled open section beam, subjected to an horizontal action which causes, at
the same time, bending and torsion of the building, since the shear centre does not
coincide with the centroid of the structural system.

The analysis is performed through the formulation described in the previous
section and by means of a computer software implementing the Finite Element
method.

The scheme of the 15-storey building having a sguare plan is shown in Fig.
3.32. The structural material is defined by the following mechanical properties:
Young's modulus equal to E = 2.76 x 10* MPa and Poisson’s ratio v = 0.15. The
storey height is h = 3.81 m, corresponding to a total height H = 57.15 m. The
geometrical parameters of the resistant cantilever are given in Table 3.4.
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Figure 3.34 — Comparison in terms of torsional rotations between the present method and
FE method, with (LB) or without the stiffening effect due to rigid lintel beams.
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Figure 3.35 — Trend of the bimoment action with (LB) or without the stiffening effect due
torigid lintel beams.

In the analysis the effect of rigid lintel beam connecting the free ends of the cut
edge of the open section is taken into account. From a geometrical point of view,
these beams are characterised by a depth of 0.457 m and a width equa to the
thickness of the shear wall.

The structure is subjected to a distributed horizontal load in X direction whose
intensity is 1.197 kN/m; it corresponds to a resultant action, passing through the
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geometrical centroid of the core tube, equal to 69.5 kN for each floor, with the
exception of the top floor, where the value is hal ved.

In Fig. 3.34 the results in terms of torsional rotations are highlighted. Asit can
be seen, the analytical method is very closed to FE approach for both examined
configurations.

The change in the structural behaviour of the building due to the stiffening
effect of rigid lintel beams is self-evident. The curve related to the stiffer case
proves to be very different in shape from the other case and, moreover, we can
assume that it gets closer to the case of a thin-walled cantilever defined by an
hollow section.

In the same way, as a consequence of the reinforcement, also the bimoment
action, which is not clearly obtainable from the FE program, is strongly affected,
as shown in Fig. 3.35. The presence of the lintel beams determines the appearance
of concentrated resistant bimoment actions which oppose to the one generated by
the external load.

The achieved results, consistent with those indicated by Taranath and Pekau,
underline that, in the design process, the presence of stiffening elements, such as
lintel beams or slabs, has to be taken into consideration for a correct analysis even
if approximate, since the structural behaviour of the entire building can be totally
different from the case where no reinforcement is contempl ated.



Chapter 4

Conceptual Design of Unconventionally Shaped
Structures

4.1 Introduction

The constructions of the last years showed an evolution of the architectural shape
of tal buildings. At the beginning, the parameter which classified the exceptional
nature of these constructions was the height. Therefore, for many decades, a race
for greater structures arose, inevitably conditioning the appearance of the
buildings. In this phase, designers often preferred to model the external casing in
order to exhibit innovative structura skeletons; in other cases the externa shell
was conceived to cover them. In any case, the structural component aways
represented one of the main factors able to lead the design of high-rise
constructions.

Only recently, aesthetics has acquired a prime role, undermining the previous
which has been adapted to it. The evolution caused by the emerging architectural
trends in design and the developments in structural analysis techniques, due to the
advent of high-speed digital computers, has led to the current state, in which the
structura component has to be in the service of non-conventional forms,

The scale of skyscrapers is such that their architectural expression turns out to
be very significant for the urban context in which they are located. Therefore, a
deep study on the aesthetic adequacy of the externa form with respect to the
existing constructions is compulsory from the point of view of public opinion and
municipal regulations. The impact on the building aesthetics can often depend on
the structural solution employed to stiffen the construction, primarily against
horizontal loads: in effect, some systems show an environmental impact more
decisive than others.

99
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In braced frames, if the diagonal bracings are inserted within local systems,
such as inner cores, their effect on the aesthetics is absent and the externa casing
can be modelled according to the requirements of the district.

On the contrary, outrigger systems, which exploit the perimeter columns in
combination with huge belt trusses to reach the stiffness required by the
legidlation, are visually cumbersome since they cause a structural domination in
the expression of the buildings; in effect, in these cases, very intimate cooperation
between architects and engineers is required for the final solution.

Figure 4.1 — Shanghai World Financial Centre (492 m).

It is possible to conclude that, when the height is a dominant design factor, the
construction geometry imposes the externa shape of the building. Outrigger and
tube systems are included in this field, snce most of the horizontal resistant
contribution is located along the perimeter of the structure and, therefore, it is
amost impossible to hide their aesthetic effect.

Often architects exploit these configurations to model futuristic forms, such as
the case of bundled tubes, which give the idea that the structure grows up to the
sky.

On the contrary, when the structural solutions are adapted to architectural
projects, the aesthetics prevails, as the case of diagrid structures, and curved forms
replace prismatic ones.
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(b)
Figure 4.2 —HSB Turning Torso (a) and London Bridge Tower (b).

Another factor which, recently, has influenced the external casing of the
structure is the aerodynamics. This trend develops from the need of reducing the
horizontal wind forces in super-tall buildings. Therefore, chamfered and rounded
corners are designed as well as streamlined and tapered forms, with openings
through the building and notches: an example of this ides is the Shanghai World
Financia Centre, being a tapered building which employs a large through-building
opening in its top part (Fig. 4.1). Further advantages of this choice are the
reduction of the along-wing response as well as the across-wind vibration of the
building caused by vortex shedding.

This logic has determined the appearance of twisting and tilting shapes with
discontinuities and multi-planar facades that are characterising the urban skylines
all over the world. In particular, twisting forms, developed in these last years as a
reaction to boxed ones of the modern architecture, provide an improvement in the
dynamic response of the building, since the vortex shedding is ill reduced,
although, from the structural point of view, they represent a disadvantageous
solution. In effect, if we consider a square solid section, its moment of inertiais
the same for any angle of twist considered, but, if atwisting building constituted
by frames is taken into account, its lateral stiffnessis quite reduced if compared to
the corresponding related to the straight form.
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The last evolution of curved shapes is represented by free form building, for
which a geometrical law along the height is missing. For these cases, however, it
is clear that the conception is possible only thanks to the developments of
sophisticated computer software which enhance the capabilities of the structural
analyses.

Nowadays, all over the world, some bizarre shapes have been commissioned
and, in some cases, aready built. Glaring examples are the HSB Turning Torso, a
twisted skyscraper of 54 storeys (190 m) in Mamo (Sweden), and the 66-storey
(308 m) London Bridge Tower, dso known as Shard of Glass, which is a
pyramidal shaped building, now the tallest structure in Europe (Fig. 4.2).

The emerging complexity of the forms can be balanced by powerful computers
and innovative Finite Element (FE) software; nevertheless, in the phase of
preliminary design, in which several resistant configurations are examined, the use
of approximate methods can support the engineers and address their judgement on
the choice of the better structural solution. In effect, they would allow to clearly
identify the key parameters governing the response of the structure as well as the
force flow acting within the stiffening members of the resistant skeleton.

For this purpose, in this chapter numerical procedures for the computation of
the dtiffness matrix of vertical bracings employed in tal buildings, whose
geometry varies along the height, are proposed. Unusually shaped structures, such
as tapered or twisted buildings, are considered in the analyses. In order to evaluate
the effectiveness and the suppleness of the method, comparisons with other
approaches derived from the literature and numerica examples regarding new
architectural trends are carried oui.

4.2  StiffnessMatrix for Bracingswith Variable Cross-Section

The computation of the stiffness matrix of vertical bracings having prismatic
shapes is well-known in literature. The corresponding analytical method can be
easily implemented in a computer program to eval uate the contribution of the main
resistant elements to the horizontal strengthening of high-rise buildings.

If new architectural trends are taken into account, which require, in some cases,
bracings with variable cross-section, the evaluation of their dtiffening effect
becomes more complex. This situation can be met when the structural component
contributes to the external shape of the building casing: in particular, it is the case
of tube systems which alow to freely model a three-dimensional body, il
remaining the main load bearing system.
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To this am, appropriate methods able to analyse stiffeners having innovative
geometry are proposed below, focusing the attention on tapered and twisted
bracings, having closed or open sections.

4.2.1 Tapered and Twisted Bracings (War ping Negligible)

2nd floor - D B 1 .
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Figure 4.3 — Evaluation of the terms belonging to the compliance matrix of the shear wall
(a); schemes for the computation of the displacement Do, (b).

Because of the nature of the problem and the type of structure involved which can
be easily assimilated to a planar shear wall for each principal direction of inertia,
it's advantageous, for a practical point of view, to consider its plane behaviour and
compute the floor displacements starting from the applied loads.

It's well-known that a unitary force applied to the i-th level gives rise to
displacements of al the levels: these values constitute the i-th column of the
compliance matrix of the stiffener.

In the case of 2-storey shear wall, the coefficients of the compliance matrix D
are:

h3 hZh,
D11 =350 Da1 =Dy + 25~
h3 | hyh? | hZh,  hZh; | h3
D1z =Dy D2z L=l sl s (4.1)

T 3E], | 2], | 2E), | El; | 3E)

being h; and J the storey height and the moment of inertia of the i-th level (from
bottom to top) respectively (Fig. 4.3a).
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Figure 4.4 — Multi-storey shear wall having different geometrical characteristics for each
floor.

Since some geometrical characteristics related to the two levels of the shear
wall have been considered different each other, for the definition of the term Dy,
it's more convenient to take into consideration two structural schemes: scheme 1
shows, for the specific load condition, the first floor constrained; scheme 2, free
from additional constraints, shows at the first level the resultant system of forces
due to the initial loading case (Fig. 4.3b). The first four components of the term
D, concern the scheme 2: the first two describe the displacement of the first level,
while the third and fourth are the consequent rigid displacements of the second
level. The last term of Dy, is related to the scheme 1 and represents the
displacement of the second level being the first one constrained.

This procedure can be easily extended to consider N floors, each having its
own storey height h; and its own moment of inertia J (Fig. 4.4).

The generalised term D;; (with j <), representing the displacement of the i-th
level due to the application of a unitary force to the j-th level, can be evaluated
through arecursive process.

For a given load condition applied to the j-th level, the resultant system of
forces at the first level is estimated. Then, the displacement of thei-th level for this
load case is deduced:
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h3 (1;-11)h% n? | 11)h
o Ly (ZEh + ) A—1p) 42)

The same computation is repeated considering the resultant system of forces at
the k-th level (k=2, 3, .., j). A complete expression of Dj; is given by the sum of
al contributions.

i—lk)hi 2 ~Ix)h
Dij = oy Sho [k 4+ LEE o (1 L) 1) (43)

By means of the Egn (4.3) the computation of the lower triangular part of the
NxN matrix D is executed. Exploiting its symmetry, as proved by Betti’ s theorem,
the upper triangular part is completed.

The same method can be extended to assess its torsona behaviour. In this
case, neglecting the warping of the section, the generic term of the NxN torsional
compliance matrix Dy is expressed by means of the torsional moment of inertia J
and the shear modulus G.

Dy = 1Zk 1(;] - (4.4)

The last step is the evaluation of the 3Nx3N stiffhess matrix k* of the generic
bracing, in its own coordinate system. Its structure is block diagonal, constituted
by the 2Nx2N stiffness matrix related to the local displacements u and v, kj, and
the NxN stiffness matrix related to the rotation, k. Each of them is obtained by
inverting the corresponding compliance matrix.

«_[ka O

kd - 0 k:‘,] (45)
._[ka O
k= kg] (4.6)

In the case of twisted bracings, the structure of the stiffness matrix is no longer
block diagonal, since the sub-matrix k;; becomes full.

The computation of its components follows the same approach used for tapered
structures, taking into account the increasing rotation of the sections from the
ground to the top.

Referring to the case of a 2-storey shear wall, a principal coordinate system for
each floor is defined, so that the system XY isrelated to the ground level while the
system (X'Y"); isrelated to thei-th level.
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Figure 4.5 — Modd of a twisted bracing, each level showing its own local coordinate
system (X"Y"); (a); scheme for the definition of the local components of the external forces
and flexural moments (b).

According to this arrangement, all the coordinate systems show the same origin
(Fig. 4.5). With regards to the first level, let F] be the 2-vector representing the
shear-loading along the principal axes of the local coordinate system (X'Y"); and
F; the 2-vector representing the shear-loading along the axes of the coordinate
system XY, so that:

. Fu1 cosa; sina;](Fx1
Fi= {Fv,l} - [—sin a; cos 0(1] {Fy,1} =NiF, (4.7)

where N; represents the orthogonal matrix from the system XY to the local system
(XY™, and « is the rotation angle between the Y axis of the ground level and Y;
axis of the first level. Likewise, the displacement vector 67 related to the local
coordinate system (XY"); is connected with the displacement vector &, related to
the coordinate system XY through the same matrix N;. The loca displacements of
the first floor due to forces placed at the same level along the local axes are
expressed by means of the principal moments of inertia, asfollows:

h3 h3
8u,11 = ﬁFuJ 5v,11 = ﬁFv,l (4-8)
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Taking into account the expression (4.7) for the actions and that corresponding
to the displacements, the Egns (4.8), referred to the coordinate system XY, are
given by:

h3 2, h® . 5
8511 = (ﬁcos o4 +ﬁsm o4 )FX_1 +

h3 h3 .
+ [(3E]v - _3Elu) COS 04 Sin 0(1] Fy,1

_[( B3 h3 :
8y11 = cosay sinay [Fyq +

3B, 3E)
+(h3 sina,2 + 2 cosa 2)F (4.9)
3E]y T 1)yl '

which, in a concise form, become:
8x11 = Dx11Fx1 + Dxy11Fy1
8y11 = Dxy11Fx1 + Dy11Fy1 (4.10)

In the same manner, the rigid displacements of the second floor due to the same
load condition, in the coordinate system (XY"),, are defined as:

Bu21 = Sty + o F LRI
w21 = Ou1 ¥ op=Fun = (3E]v +flv) ul

h3 h3 h3
8y21 =0y11 + EFV,I = (3Elu + ﬁ) Fy1 (4.11)

and, with regards to the coordinate system of the ground level, as:

8 —[(h—3+h3) 2+(h3+h3)' Z]F +
x,21 — 38, 2], COSO(l 3E], 2E), Slnal x,1

h3 h3 . h3 h3 . F
+ [(3Elv + 2Elv) cos o, Sinoy — (3E]u + ZEIu) COS 04 SIn 0(1] y,1

h3 h3 . h3 h3 .
5y'21 = [(ﬁ + ZEIV) cos a4 sinay — (3E]u + ZEIu) CoS a4 Sin 0(1] Fyi +
+[(h3+h3). 2+(h3+h3) Z]F (4.12)
38, 28,/ O T GEy, T 2, CO % P '

Their synthetic form is expressed as follows:

8x,21 = Dx21Fx1 + Dyy21Fy1
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8y,21 = Dxy21Fx1 + Dy21Fy1 (4.13)

As regards the displacements &, due to the loading F,, it's convenient to
consider three different contributions. The first two, related to the coordinate
system (X"Y"),, depend on the resultant system of forces at the first level: a shear-

loading Fgl) equal in modulus to F, and a 2-vector M®, representing the flexural
moments, equal to Fh. The last contribution refers to the coordinate system
(X'Y"), and describes the displacement of the second floor due to F, having
considered the first level constrained. It should be noted that the aforementioned
actions are referred to the coordinate system of the ground level.

The terms related to the shear-loading Fgl) are defined by the Egns (4.11), by
means of the components F,, and F, , applied to the first floor.

1 h3 h3 .
Su,21 (F§ )) = (ﬁ + ZEIV) (Fx2cosay + Fy,sinay )

3 3
8y21 (Fgl)) = (3};3_Iu + ZI;Iu) (_Fx,z sinay + Fy , cos 0(1) (4.149)

The bending contribution of the force F, at the first level is expressed by the
components My, and My, from which the local flexural moments M, and M,, can be
defined.

My = My cosay + My sina; = h(FX,2 cos oy + Fy 5 sin 0(1)
M, = —M; sina; + My cosa; = h(—FX,2 sinoy + Fy , cos 0(1) (4.15)
Therefore, with respect to the system (X'Y"),, the local displacements of the
second level due to applied moments M, and M, at the first level are easily
computed:

2 2 3 3
Su21(MW) = (Zl;ilv + ::l—]v) M, = (ZZIV + E_Iv) (Fx2cosay + Fy,sinay )

2 2 3 3
8v,21(1\/[(1)) = (ZZIu + I;ITu) M, (2};]“ + ;—]u) (—Fx,z sinay + Fy , cos 0(1)
(4.16)

The last contribution, which considers the first floor constrained, is given by
the Eqgns (4.8) through the rotation angle o, between the Y axis of the ground level
and the 'Y, axis of the second level.
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h3 h3 .
8y,22(F2) = 3E), Fyz = 3E), (Fx,z cosay + Fy 5 sin 0(2)
h3 h3 .
8y,22(F2) = 3. T2 = 3 (—Fyzsina, + Fy, cosa,) (4.17)

Thus, the components of the displacement vector 6, in the coordinate system
XY are defined by means of the coefficients Dy 2, Dy 2, and Dyy 2:

8x,22 = Dy 22Fx2 + Dyy22Fy 2

8y,22 = Dyy22Fx2 + Dy 22Fy (4.18)
where
_ (K h® 2 h? 2 ( h? h_3) 2
x22 = (3EIV +2 EIV) cos oy ” + (3Elv) cosaz” + (G5 + 2 5o sine® +
()anes
35 SN
_ (X L R RS L W ( h? h_3) 2
Dy2o = (3E]v +2 Elv) sina;“ + (3Elv) sinay“ + 35, + 2 oh cosoq“ +
+ (3Elu) cos o,
h3 h3 h3 h3 .
Dyy22 = [ 3El, + ZE—]V) - (3Elu + ZE)] cos oy sinay +
h3 h3 )
+[(5g) — Gy cos zsina (419)

As a result, the compliance matrix related to the displacements can be
assembled and, by inversion, gives rise to the stiffness matrix, whose coefficients
are referred to the coordinate system of the ground level. In this case, the full
stiffness matrix is composed by four 2x2 sub-matrices.

Considering N floors, the same matrix is hence composed by four NxN sub-
matrices:

kK: Kk
¥ X-"] (4.20)

k* = * *
=l
A general procedure for a N-storey structure assimilated to a three-dimensional

shear wall that tapers and twists at the same time aong the height can be
developed. Therefore, the displacement of thei-th level, in X direction, due to the
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loading vector F = {F; Fy,;} applied to the j-th level, is defined by two
contributions D, ;; and D,yj:

Dy = Xi_ o {[ hi +(1j—1k)hi+( hi +(lj_lk)hk) (li_lk)] cos o 2 +

3E]vk 2E]yk 2E]y k EJvk
+L;ik+<;;‘,t?:"+ (G ) 0] sine
Duyis = ZjesBhon{ [y + e+ (s + ) Q=10 +
_[ hi +(1j—1k)hk+( hi

+( lk)hk) ;- lk)]}cosak sin oy

3E]u,k 2E]u,k 2E]u,k
In the same way, the generic term Dy ; is given by the following expression:
(1;-L)hg h | =ldhe) o L2
Dy, 12 {[3]5] . + TEur + 2Bk + Thok (1; = L) [sinoy +
hi . (1-lohi hg o G=ldhe 4 2
+[3E]u,k+ Eur + 2Elu,k+ T (1; = 1) | cos ay (4.21)

By means of the Egns (4.21), the computation of the lower triangular part of
the 2Nx2N matrix D of the displacements is executed. Due to the symmetry, the
upper triangular part is completed. Once defined, by inversion, the 2Nx2N sub-
matrix Kkjj, according to the Egn (4.6), the complete 3Nx3N stiffness matrix k is
obtained.

In order to evaluate the effectiveness of the Egns (4.3) and (4.21), two
comparisons regarding tapered and twisted beams are performed.

In the first case, a thin-walled hollow section cantilever is analysed through a
Finite Element program, in which the structure is modelled by means of thin shell
elements. Information concerning the geometrical dimensions and the mechanical
properties are shown in Fig. 4.6a, whereas the results in terms of transversal
displacements are highlighted in Table 4.1.

In the second case, the transversal displacements of a twisted beam are
acquired from the paper by Zupan and Sgje [129]. The scheme of the model as
well as the geometrical and mechanical properties are indicated in Fig. 4.6b; Table
4.2 reports the comparison of the acquired results.

In both cases, subdividing the beams in 40-50 sub-elements, Egns (4.3) and
(4.21) lead to solutions with an adequate degree of accuracy. Besides, such
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segmentation proves to be plausible in high-rise buildings, being the number of
floors equal or, at most, greater.

v

*

E = 30x10°kN/m’

v=1_0.18

(a)

(b)

Figure 4.6 — Tapered hollow (a) and twisted double symmetrical (b) section cantilever.

Table 4.1 — Free end displacement of atapered cantilever.

N.of | Centroidal force f, = 10 kN | Centroidal force f, = 10 kN
levels x disp. [m] Err. [%] y disp. [m] Err. [%]
5 2.840E-03 1.626E+01 | 1.662E-02  5.090E+00
10 2.572E-03  5.302E+00 | 1.614E-02  2.097E+00
20 2.482E-03 1.611E+00 | 1.597E-02  1.015E+00
30 2.457E-03 5.628E-01 1.592E-02  7.009E-01
40 2.444E-03 6.836E-02 1.590E-02  5.520E-01
FEM 2.443E-03 1.581E-02

Error [%] = (Present model - FEM)/FEM =100

Table 4.2 — Free end displacement of atwisted cantilever.

N. of Unitary force £, Unitary force £,
levels | x disp. [m] Err.[%] ydisp.[m]  Err.[%] | xdisp.[m] Err.[%] ydisp.[m]  Err. [%]
10 5.5001E-03 1.43E+00 1.4805E-03 -1.39E+01|1.4805E-03 -1.39E+01 1.6720E-03 -4.06E+00
50 5.4426E-03 3.72E-01 1.6730E-03 -2.66E+00|1.6730E-03 -2.66E+00 1.7295E-03 -7.62E-01
100 5.4344E-03 2.20E-01 1.6960E-03 -1.32E+00| 1.6960E-03 -1.32E+00 1.7377E-03 -2.89E-01
150 5.4316E-03 1.68E-01 1.7036E-03 -8.82E-01|1.7036E-03 -8.82E-01 1.7405E-03 -1.28E-01
200 5.4302E-03 142E-01 1.7074E-03 -6.61E-01|1.7074E-03 -6.60E-01 1.7419E-03 -4.75E-02
Z
‘:pT” 5.4224E-03 1.7187E-03 1.7187E-03 1.7427E-03
ctal.
Error [%] = (Present model - Zupan et al.)/(Zupan et al.) x100
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4.2.2 Tapered Bracings (Warping Prevalent)

S

ground /—

Figure 4.7 — Thin-walled open section bracing, which tapers with respect to the centroidal
axis.

A numerical procedure for the definition of the stiffness matrix of tapered thin-
walled open section bracings in their local coordinate system is now derived. For
these structures, the process of tapering refersto avertical axis passing through the
barycentre of the section. Since the centroid and the shear centre do not coincide,
the location of the latter varies section by section (Fig. 4.7).

As in the previous cases, the expression of the stiffness matrix k” is obtained by
the inversion of the 3Nx3N compliance matrix D.

For this purpose, the computation of the coefficients of the above matrix is
executed by means of the Principle of Virtual Work, in which the contribution of
the bimoment action is considered:

™) )
10 ™ = [ (M(f) ME_I + B ';Im) dz (4.22)

where the apex f stands for the fictional system of internal forces and r for the real
system of displacements.

The proposed method is based on the assumptions that the shear effects on very
slender structures are negligible and the bimoment action is evaluated supposing
the torsional rigidity GJ, equal to zero.
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Figure 4.8 — Local coordinate system for a tapered thin-walled open section bracing.
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Figure 4.9 — Main diagrams for the computation of the compliance matrix of a 2-storey
bracing.

By means of the Eqn (4.22), further coefficients arise, so that D becomes a full
matrix. This means that the torsional behaviour is connected to the flexural one, as
well as the forces acting along a principal direction give rise also to displacements
in the other direction. This behaviour is due to the variation of location of the
shear centre along the longitudinal axis, which consequently affects the definition
of the resultant actions on the generic level.

For the analysis, we suppose to apply the local coordinate system to the shear
centre of the ground level. The actions, applied to the generic floor according to
this coordinate system, show an eccentricity compared to the shear centre of the
same level. This scheme involves further torsional actions on the generic section,
which have to be taken into account in the study (Fig. 4.8). In this way, each local
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force, a the same time, causes displacements in its principal direction, according
to the flexural behaviour, rotations, due to the additional torsional component, and
displacements in the other principal direction, derived from the contribution of the
bimoment action.

For the case of a 2-storey shear wall, the diagrams of flexura moment and
bimoment which are taken into account as the contribution of the rea system of
displacements in Eqn (4.22) are reported in Fig. 4.9. The same diagrams, in which
the generic action is substituted by a unitary load, allow to identify the
contribution of the fictiona system of forces. Thus, after performing the
calculations, the generic expression for the compliance matrix is

DX ny DXB
D= Dgy Dy Dy\‘) (423)
Dy Djy Dy
in which only Dy, Dy and Dy are symmetrical sub-matrices. In addition, it should
be noted that the sub-matrices belonging to the lower triangular part of D are
related to those of the upper part by means of the transpose operation.

Once abtained the stiffness matrix by the inversion of (4.23), the last step
focuses on the addition of the component related to the torsional rigidity GJ,
previoudly neglected. It can be easily computed through the Eqgn (4.4), which
defines the corresponding compliance matrix. Then it is inverted and added to the
NxN sub-matrix related to the rotations. In this way the expression of the matrix
k" for tapered thin-walled open section bracings is completed.

Table 4.3 — Geometrical and mechanical properties of the U-shaped profile.

L[cm] | E[kgem?] | Glkglen?] | 1, [m] 3 [m’] [kgﬂczm]
314 (min) 5.48 (min)
40| 2100000 | 805000 | 114507 (max) | 11.14 (max) 300

In order to evaluate the capabilities of the method, the practical example
computed by Eisenberger [47] for the analysis of tapered thin-walled open section
profilesis performed.

In Fig. 4.10 the scheme of the beam as well as the dimensions of the extreme
sections are reported. The geometrical and mechanical properties are indicated in
Table4.3.
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Figure 4.10 — Tapered open section cantilever subjected to torque [47].

Table 4.4 — Free end rotation [rad] of atapered thin-walled open section cantilever.

Present N. of Analytical

L model e[l equations solution Fam il
10 5.081E-04 1.83E+01 10 5.073E-04 1.82E+01
30 4.671E-04 8.79E+00 30 4.670E-04 8.78E+00
50 4.604E-04 7.24E+00 50 4.604E-04 7.24E+00
100 4.557E-04 6.14E+00 100 4.557E-04 6.14E+00

150 4.542E-04 5.79E+00 150 4.542E-04 5.79E+00
200 4.534E-04 5.62E+00 200 4.534E-04 5.61E+00

Eisenberger 4.293E-04 FEM 4.296E-04

Error [%] = (Computed - Eisenberger)/Eisenberger x100

The loading case considered by the author was very simple, being defined by a
torque applied to the free end of the cantilever beam. The comparison of the
resultsin terms of rotation of the free end of the cantilever are highlighted in Table
4.4. In particular, in addition to the solutions acquired through the present method,
the table includes the results obtained subdividing the beam in sub-elements of
equal length, each having constant geometrical properties. In this case, for each
element, the equation of torsional equilibrium related to thin-walled open section
beams [119] is solved analytically, employing the following boundary conditions:
rotation and its derivative equal to zero at the clamped end; bimoment action equal
to zero at the free end; continuity conditions for the rotation, its derivative and the
bimoment action at the intermediate sections. Asit can be seen observing the table
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of results, the degree of accuracy of the proposed approach is good, if the
procedure is applied to the case of high-rise buildings, being the per cent error
lower than 7%.

4.3 Numerical Examples

14.2

125,

25 15.6 1
Ground floor Top floor

Figure 4.11 — Presumed floor plan of the HSB Turning Torso (dimensionsin metres).

The developed numerical procedures can be easily adapted to the analytical
method proposed in Chapter 2 which allows to analyse the load distribution of
externa actionsin tall buildings, stiffened by different types of vertical bracings.

In order to highlight the adaptability of the Egns (4.21) and (4.22), two
numerical examples which take into account high-rise buildings stiffened by
twisted or tapered bracings are performed. Both of them are theoretica since any
structurd details have not been provided by the project managers.

The first model concerns the 54-storey HSB Turning Torso, design by
Calatravain Malmo (Sweden). It is a twisted skyscraper reaching 190 m of height
with arotation from the base to the top of 90 degrees (Fig. 4.2a).

It is assumed that the lateral stiffening relies on two concentric bracings: the
innermost element exhibits a circular hollow section which tapers upwards by
reducing its thickness from 2.5 to 0.4 m; the outermost has a mono symmetrical
section which twists anticlockwise around its shear centre. Since the latter does not
coincide with the barycentre, further torsional actions are expected in the
computation.
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Table 4.5 — Cross-section properties of the bracings constituting the HSB Turning Torso.

Circular hollow section Mono symmetrical section
Second moment J_ [mJ'] 2229.89(B)  209.35(T) 2070.00 (B)
Second moment Jov [mJ'] 2229.89 (B) 209.35(T) 4007.09 (B)
Torsional rigidity J, [m'] ~ 4459.79 (B)  418.70 (T) 3940.03
Global coordinate x, of the 0.00 0,60
shear centre [m]
Global coordinate y, of the b0 i

shear centre [m]
Angle @ [] * 0.00 0.00

(B) At the base of the building. (T) At the top of the building.
* Rotation of the local coordinate system with respect to the global coordinate one.

It is assumed that both the cantilevers are made of concrete, whose Young's
modulus is 4.5x10* and 2.5x10* MPa for the circular and mono symmetrical
section respectively, whereas Poisson’'s ratio is 0.18 for both. The influence of
creep and shrinkage is not taken into account in the analysis. The member cross-
section properties are given in Fig. 4.11 and Table 4.5.

Concerning the load, only wind actions are considered according to the
formulas indicated by the Italian Technical Regulations [82], which follow the
same method contained in Eurocode 1 [48]. Therefore, the wind action can be
reduced to a system of concentrated static loads, applied to the barycentre of the
pressure distribution. The size, shape and dynamic properties of the building as
well as the region and the altitude of the location affect the computation of the
intensity of the action. For the sake of smplicity, none of the mentioned properties
has been considered. Therefore, a wind pressure equal to 390.62 N/m? has been
adopted. The resultant system of forces acting along the principal directions is
reported in Fig. 4.12.

The results of the analysis are presented in Fig. 4.13 and 4.14. As regards Fig.
4.13a and 4.13Db, the displacements along the principal directions of the coordinate
system are reported, whereas Fig. 4.13c shows the rotations at the floor levels.

Similarly, in Fig. 4.14 the load distribution of the external actions between the
stiffeners highlights the resistant contribution of the twisted element compared to
the tapered one. In particular, the former plays a predominant role in the top part
of the building, whereas, in the bottom part, the latter constitutes the main
horizontal stiffening.



118 S. Cammarano — Static and Dynamic Analysis of High-Rise Buildings

53 e B! ]
49 T —————8
45 45 =_ |
41 BT P ——r 45 i i i
37— 37 |
33 33 SETIIG: U |
§ 29 § 79 . ]
5 25 = 25 i
21 Pl ———————————————— " - i
17 17 1
13 13 1
9 S 9 ¢
5 = __________ 5
1 e e— : I H |
] 20 40 60 80 0 20 40 60 80
F_ [kN] F, [kN]
€Y (b)
53 S
49
45
41
37
33
&% ; i
S 2 ———
17 —
3 —
9 —_—
5 ="
1
=300 -150 0 150 300
M, [kNm]
(©

Figure 4.12 — Wind actions applied to the floors: shear forces aong the X (a) and Y (b)
direction and torque (c).
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Figure 4.13 — Displacements of the floorsin the global coordinate system: translation in X
(@) and Y (b) direction and rotation (c).

It should be noted a discontinuity next to the constraint due to the different law
of variation which characterises the bracings. Such difference leads to an exchange
of high interaction forces in the bottom part of the building, which modifies the
trend of the shear.

The second numerical example is focused on the analysis of a conical structure
conceived by Norman Foster in 1989 for the city of Tokyo (Japan). The
Millennium Tower is an high-rise building composed by 170 storeys, which
correspond to atotal height of 840 metres (Fig. 4.15).

The present model is imaginary, because only a preliminary design has been
performed until now. Therefore no details on the floor layout or on the horizontal
stiffening has been found. Consequently the following structural choices as well as
geometrical properties can represent avalid proposal for its practical construction.
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Figure 4.14 — Loading distribution between the tapered and twisted element: shear in X (a)
and Y (b) direction and torsional moment (c).

The proposed horizontal stiffening is composed by seven thin-walled open
section shear walls which taper upwards, until the 170" floor (Fig. 4.16).
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Figure 4.16 — Hypothetical scheme of the horizontal stiffening for the Millennium Tower:
the structura members taper upwards, each having its own tapering law, and reach
different heights.
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Figure 4.17 — Hypothetical scheme of the horizontal stiffening for the Millennium Tower:
global coordinate system XY (a) and geometrical dimensions of the cross-sections at the
ground floor (in metres) (b).
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Figure 4.18 — External load condition for the Millennium Tower: shear actionsin X and Y
direction.
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Table 4.6 — Cross-section properties of the thin-walled open section bracings related to the
Millennium Tower.

Open section shear wall N. 1 2y 6,7

Ground floor Top floor Ground floor Top level Ground floor Top level

Second moment J_ [m'] 5560564  66.29 82.30 18.06 82.30 18.06
Second moment I, [m'] 2383099  66.29 148439  325.80 148439  325.80
Weirpitig constiitT, [i’] 632505937 - 590630 47168 590630  471.68
Torsionalwgidig 3, i’ 17958 1821 5.45 3.29 5.45 3.29
e 0.00 0.00  -20.15(2) -20.15(2)  0.00 0.00
barycentre [m]
Gicbal comdmslogoife: 0g 0.00 10.88 (2) 10.88(2) 30.38(6) 30.38(6)

barycentre [m]
Angle @ [°] * 0.00 0.00 0.00 0.00 0.00 0.00

(2) Open section shear wall N. 2; (6) Open section shear wall N. 6.
* Rotation of the local coordinate system with respect to the global coordinate one.

In particular, the inner section reaches the top level with a dimensiona
reduction of 80 per cent, whereas the others, defined by different heights
corresponding to the 50", 60", 70", 80™, 90™ and 100™ floor, show a reduction of
40 per cent. Nevertheless, in all cases the thickness of the walls remains constant.

Further details characterise the model: for the case of ‘ C'-shaped bracings, the
same top section has been considered; for the inner bracing, between the 130" and
170" floor, the initial section has been reduced to a cross-shaped one.

The levels, which correspond to a structural discontinuity, are shown in Fig.
4.16; the geometrical dimensions of the cross-sections are reported in Table 4.6
and Fig. 4.17. In this case, the materia properties are described by Young's
modulus equal to 5.0x10" MPa for the ‘ C'-shaped bracings and 7.0x10* MPa for
the inner element; Poisson’'s ratio for the entire structural skeleton is 0.18. The
creep and shrinkage effects are excluded from the anaysis. The same load
condition is taken into account for this numerical example, with awind pressure of
390.62 N/m? applied to the lateral surface of the building. The resultant system of
concentrated horizontal loads, acting along the principal directions of the global
coordinate system, is shown in Fig. 4.18. The results concerning the displacements
aong the principa directions of the global coordinate system are highlighted in
Fig. 4.19, whereas Fig. 4.20 reports the load distribution between the main
horizontal members.
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Figure 4.19 — Displacements of the Millennium Tower in X and Y direction.
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Figure 4.20 — Loading distribution between the inner (Sw N.1) and the ‘C’-shaped

bracings (Sw N.2-7): shear trend in X and Y direction.

A clear difference between the two principal directionsis observed with respect
to the shear distribution: on the one hand, the flexural stiffness of the inner section
along the Y axis is so large that the contribution of the ‘C’-shaped bracings is
amost negligible; on the other hand, with regard to the X axis, remarkable
discontinuities are evident due to the different heights of the ‘' C’-shaped elements.
In effect, along this direction, since the latter exhibit a flexural stiffness quite
comparable to that of the inner member, high interaction forces arise alowing the
*C'-shaped sections to absorb, in the bottom part of the building, about 25 per cent

of the total shear.
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These findings may suggest to the designer the possibility of considering
further structural arrangements or different solutions, such as outrigger systems or
tubular elements, in order to avoid to concentrate most of the load on a single huge
bracing.

In summary, the previous figures demonstrate the capabilities of the analytical
method in the evaluation of the gross displacements as well as in the detection of
the distribution of the external forces between the main horizontal bracings which
concur to stiffen high-rise buildings.

The method can be used to find out the optimal configuration of the structura
members, which allow to achieve the best performance in presence of static wind
loads. As a matter of fact, the choice of different heights with respect to the ‘C'-
shaped elements has been driven by the need of reducing the displacements,
without compromising the living space of the floors.

Thus, analytical methods prove to be adequate in the early stage of the
conceptua design of so complex constructions. With the qualities of a quick data
preparation and a more transparent evaluation of the results, they can play a prime
role in support of the designer’s judgment.






Chapter 5

Dynamic Analysis. Evaluation of Free
Vibrations and Mode Shapes

5.1 Introduction

Tdl buildings differ from short buildings in terms of the actions which are
predominant for the global resistance of the construction. In the case of short
buildings, the geometrical dimensions of the structural components are determined
evaluating the intensity of the vertical actions; on the contrary, the higher the
building, the more sensitive it becomes to latera actions coming from wind and
earthquakes[111].

As described in Chapter 1, when the total height exceeds 30-40 storeys, tubular
systems are usually employed, but, within 70 storeys, core wall structures are aso
designed to participate to the horizontal resistance, since they provide the adequate
lateral stiffness with a relatively low amount of construction material. Such
elements are present in tall buildings in the form of stairwells or shafts or in
addition to other shear wall systems, as a service ducts. The corresponding
geometrical dimensions aswell as the location in the floor plan are designed, at the
same time, to absorb part of the vertical actions and transfer the horizontal actions
from the superstructure to the foundation.

Usually these resistant systems are constituted by thin-walled open section
bracings, isolated in different position of the floor plan or connected together, with

127
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rigid lintel beams, to redlise a single element more resistant than the sum of its
single components.

In the design process, particular attention is focused on the determination of the
principal axes of the resistant skeleton. In effect, if the central axes of the whole
building coincides with the ones related to the resistant skeleton, lateral loads can
be assumed to act through these axes and the building is supposed to behave as a
cantilever structure, exclusively subjected to flexure along its principal directions
and torsion. On the contrary, when the axes of the building do not coincide with
those of the horizontal resistant system, combined bending and torsion occur.
Indeed, thisisthe effect that arisesin presence of asymmetrical core wall structure
if its shear centre is far from the centroid of the building floor. In these
circumstances, the response of the building to lateral actions becomes torsionaly
coupled and three-dimensional analyses are needed.

Even if, nowadays, most of the structural investigations are conducted by
means of Finite Element (FE) methods, with the aim of obtaining a preliminary
assessment of the dynamic behaviour of such structures, simplified analytical
procedures can represent a valid tool for the evaluation of the main parameters
which govern the dynamic response of the building.

In addition, being based on some chosen hypotheses, they guarantee reduced
times of modelling and analysis as well as a good accuracy of the results, if
compared to the ones obtained using FE programs.

The investigation can be directed considering two different configurations: the
dynamic analysis of a single core wall, which depends on its own mass, or the
total resistant skeleton of the building, where the contribution of mass is just due
to the presence of the floors. In both cases, the coupling between flexural and
torsional behaviour must be taken into account. In the first case, in effect, the
centre of mass, which coincides - by definition - with the centroid of the section, is
far from the shear centre and, therefore, since the resultant inertial forces are
eccentric with respect to the shear centre, torsiona actions are combined with
flexural ones. In the second case, thin-walled open section bracings are coupled
with other structura reinforcements to constitute a single resistant skeleton.

The mass considered in the dynamic analysis is concentrated in the building
floors, whereas the one related to the vertical bracingsis assumed negligible.

For the examination of these two configurations simplified procedures are
reported below. The unknown variables are expressed in terms of transversa
displacements of the section, in the case of a single core wall, or related to the
building floors, in the case of a system of vertical bracings.
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5.2  Coupling and Uncoupling Behaviour

From the analytical point of view, the evaluation of the dynamic response of thin-
walled open section profiles caught the attention of many researchers of the last
century. In the early 1970s, Timoshenko [115] synthetically resumed the last
findings about the coupled flexural and torsiona vibrations of beams defined by
sections in which the centroid did not coincide with the shear centre. He reported
the exact analytical solution in the case of smply supported beams, highlighting
that, in the case of different end conditions, the solution of the differentia
equations became more complicated and, therefore, it was necessary to refer to
approximate values by using energy methods. This was confirmed by Garland
[49], who analysed in 1940 the case of a cantilever beam exploiting the Rayleigh-
Ritz method. In his paper he reported a diagram showing the variation of the
natural frequencies of the beam with respect to some geometrical properties of the
section. Nevertheless, he himself recognised that the analytical solutions indicated
in the paper were approximate and did not alow to obtain the frequencies for
modes of high order, whereas the ones related to the modes of lower order
exhibited a reduced accuracy.

The drawback could be overtaken if additional terms in the expressions of the
displacement unknowns were considered. But this meant an extra labour of
computation, that was implausible for that time.

In the same direction, the papers by Gere [51, 52] extended the anaysis to
consider thin-walled profiles without any symmetry, with various end conditions.
In this case, in the equilibrium equations the warping rigidity was inserted. Design
curves were again proposed for each end condition analysed.

Further simplified approaches based on Vlasov’'s theory and Wagner-Kappus's
theory were proposed by Bishop et al. [10, 11]. The first attempts for the exact
determination of coupled bending and torsion vibration characteristics were
conducted by Dokumaci [44], who undoubtedly filled a significant gap in
understanding of the structural dynamics of thin-walled opens section profiles.

The method, later extended by Bishop [12] taking into account also the
warping of the section, was focused on the analysis of the typology of the roots of
the characteristic equation, to which the problem could be reduced. Once defined
the typology of the roots, the displacement unknowns could be represented by real
functions with which any end condition could be associated.

Later, Yaman [126] extended this formulation to analyse the forced vibrations
of these beams through the application of the wave propagation approach.
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Approaches based on FE methods dealt with the shape functions which
included the effect of cross-sectional warping: Zhang [128], Chen [29] and Hu et
al. [62] derived mass and stiffness matrices, considering also the contribution of
the rotary inertia.

The effects caused by the shear flexibility, neglected in Vlasov’s theory, the
rotatory inertia as well as the presence of variable cross-sectional properties were
examined in depth by Ambrosini et al. [3] by means of the state variable approach.
This method was later employed for the dynamic anaysis of a thin-walled
reinforced concrete core, designed to resist to lateral loads [4].

Finaly, Tanaka and Bercin [109] resumed the exact formulation proposed by
Dokumaci and Bishop and devised, using the computer algebra system
Mathematica, a compact program able to implement and solve the governing
differential equations describing the coupled bending and torsional vibrations of
uniform beams having no cross sectional symmetry.

In order to highlight the clearness and the effectiveness of the anaytical
method proposed by Dokumaci, a brief summary of the main passages is reported
below. Furthermore, some practical examples are proposed to evauate the
correctness of the results obtained by a compact program, which implements the
aforementioned analytical procedure and to verify the degree of accuracy through
the comparison of the results with a FE program.

521 Analytical Procedure

In Fig. 5.1 typical thin-walled open sections, defined by double, single and no
symmetry, are shown. In the last two cases, due to their geometrical properties, the
centroid G and the shear centre C do not coincide and, therefore, the
corresponding relative distance, in the dynamic phase, causes coupling between
bending and torsion. When bending vibrations in two perpendicular directions are
coupled with the torsional ones, that isin presence of no symmetry, we refer to the
case of triple coupling; on the contrary, if the section shows an axis of symmetry,
the bending in this direction remains independent from the other vibrations, which
are coupled instead. This is the case of double coupling. Finally, in the case of a
doubly symmetrical section, each vibration is independent from the others and,
thereby, the corresponding differential equations can be treated separately.

Considering a section free from axis of symmetry (Fig. 5.2), as described in
Chapter 3, opportune choices of the coordinate systems can conduct to the
following system of equilibrium equations for a beam subjected to distributed
transversal actions:



Chapter 5— Dynamic Analysis: Evaluation of Free Vibrations and Mode Shapes 131
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Figure 5.1 — Thin-walled open sections: double symmetry (&), single symmetry (b), no
symmetry (c).

Tn, dy

Figure 5.2 — Thin-walled open section beam subjected to distributed transversal actions.

EIEY = qy
EIXT]IV = Qy
El, 9V - GJ,9" =m (5.1)

Let’s suppose that the beam, free from external actions, begins to vibrate. Due
to its own mass, some inertia forces arise and oppose the transversal movements
of the sections (Fig. 5.3).
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Figure 5.3 — Inertial forces arising as a consequence of the vibration of the beam.

Defining the displacements of the centroid in terms of those related to the shear
centre and differentiating twice with respect to the time t, the accelerations of the
sections are computed:

& =§— YoV
NG = n + X090 (5.2)
E dtz (E Yo9)

fic = 25 (0 + x09) (53)

The inertial forces in X and Y direction can be obtained exploiting the
expressions of the accelerations of the centroid and considering the area A and the
mass density p [kg/m?:

fx ——pAdt2 € —vo9) (5.4)

f, = —pA-L (€~ yo9) (55)

The whole rotational inertial force is expressed taking into account the polar
moment of inertia I about the barycentre and the eccentricities of the force f, and
f, with respect to the shear centre:
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d? d? d?
f, = —plp 3 (0) + [pA S E—yo9)|yvo — [pATZ M+ x0)|x  (56)
Due to D’ Alembert’s Principle, the inertia forces can be considered as static
forces and, therefore, they can be added to the expressions (5.1):

dz
E 8" + pA— (§—yo9) = 0

dZ
ELn™ + pA—5 (E—yo9) =0

2 2 2
El,9" — GJe8" + plo 2= (9) — pAyo 35 (§) + pAxo 1) =0 (5.7)
where | is the polar moment of inertia about the shear centre.

As it can be seen, the equilibrium equations are coupled each other due to the
presence of the eccentricities X, and yo. If the section is defined by an horizontal
axis of symmetry, the term y, is null and the first equation becomes independent.
In the same way, if the section is doubly symmetrical, both the eccentricities are
null and the vibrations devel op separately.

A hypothesis of solution of the system (5.7) requires to write the displacement
unknowns &, m, O as a product of a function of the spatial coordinate z and a
function of the tempora one t: the former represents the deformation shape of the
beam, whereas the | atter the angular frequency of its free vibration.

§=Z(2)T(¢)
n=H(@T®)
9 =0(2)T(t) (5.8)
Replacing the previous expressions in the system (5.7), it is possible to adopt
the method of separation of the variables. Therefore, an identity between the
variables dependent on t and those dependent on z is acquired. Since the values of
t and z are arbitrary, the identity is always made possible if and only if both the
members are equal to a constant, here represented by the term (-p,”).
ERzV  fr
pA(—Ztyo@) T Pn
ELHY T _ 5
pA(H+x00) T Pn

El, 0V -GI0" _ T _ —pz
p(=1o0+AyoZ-AxoH) T n

(5.9)
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From the system (5.9) a differential equation related to the variable t is
obtained, whose solution is well-known and depends on the initial conditions of
the problem:

T+piT=0 (5.10)
T, (t) = A, cos(p,t) + B, sin(p,t) (5.11)

where the argument p, of the trigonometric functions represents the angular
frequency of the free vibration of the beam.
If we refer to the equations related to the variable z, the system (5.7) becomes:

EI,Z" + pApA(—=Z +y,0) = 0
ELLHY + pAp2(H + x,0) = 0
El,0"Y — GJ,0" — plyp20 + pAp2(yeZ — xoH) = 0 (5.12)

Exploiting the following expressions, the system (5.12) can be re-written in a
synthetic form.

Gl plopd
p=d A= A, = PloPi
/ dz © ~ gL, 0™ gp,

o, — PAPR o = PAPR .. = PAXoPq
y El, X Ely w El,
B, = pAyopd B, = pAXopE B, = pAyopd
y Ely X Ely ® El,,

(D* —ay)Z+B,0 =0
(D* — o )H—=B,0 =0
(D* —A,D? —20)0 + B,Z—a,H=10 (5.13)

Setting the determinant of the above system equal to zero conducts to an
ordinary differential equation of 12" order for each spatial function Z, H or @,
whichisgiven by:

D* — ay 0 By
det 0 D* — oy —By =0
Be —a, D*—2A,D%—2,

(D2 + a,D1% + a,D® + a3D® + a,D* + asD? + ag)F = 0 (5.14)
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inwhich:
a; = —Ay a; = —Ag—0x —Qy
az = Aw(ax + ay) ay = —Bwa + 7\0(0‘x + ay) + ayoy — O Bx
ag = —ax0yA, ag = 0xByBew — axayAg + a0ty By

and F denotes Z, H or ©®.
Taking for the spatial unknowns a solution similar to Ce” and introducing a

new variable s = r? Eqn (5.14) becomes
s®+a;s° +a,st +azs® +ass?+ass+tag =0 (5.15)

Dokumaci and Bishop demonstrated that the six roots of the variable s are real,
not null, different each other, three positive and three negative, al depending on
the value of the angular frequency p,, which is still unknown.

As a consequence of s, the roots of the variable r are acquired, together with
twelve integration constants for each transversal displacement.

Since the nature of the roots of s are known, the spatial variables Z, H and ©
can be written in the flowing form:

Z(z) = X; cos(s12) + X, sin(s;z) + X3 cos(s,z) + X, sin(s,z) +
X5 cos(s3z) + Xg sin(s3z) + X; cosh(s,z) + Xg sinh(s,z) +
Xq cosh(ssz) + X1 sinh(s5z) + X, cosh(sgz) + X, sinh(sgz)

H(z) = Y; cos(s,z) + Y, sin(s;z) + Y5 cos(s,z) + Y, sin(s,z) +
Y5 cos(s32) + Yg sin(s3z) + Y, cosh(s,z) + Yg sinh(s,z) +
Yy cosh(ssz) + Yy sinh(ssz) + Y;1 cosh(sgz) + Y, sinh(sg2)

0(z) = Ry cos(s1z) + Ry sin(s;z) + R cos(s,z) + Ry sin(s,z) +
R; cos(s3z) + Rg sin(s3z) + Ry cosh(s,z) + Rg sinh(s,z) +
Rg cosh(ssz) + Ry sinh(s5z) + Ry; cosh(sgz) + Ry, sinh(sgz) (5.16)
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The substitution of Z(z2) and ©(2) in Egn (5.128) allows to identify a
relationship between the integration constants X; and R;:

X;= ( - )Ri (5.17)

I‘i —(xy

In the same way, if H(2) and ©(2) are inserted in Eqn (5.12b) a similar relation
isfound between Y; and R;:

Yi = (F?B—XO(X) Ri (518)

The expressions (5.17) and (5.18) involves that the remaining unknowns
related to the integration constants are the terms R;. The latter can be easly
computed taking into account the boundary conditions of the beam.

For each end and for each transversal displacement, two boundary conditions
can be identified. Therefore, twelve boundary conditions referred to the spatial
variables Z, H and © alow to write twelve linear homogeneous equations, which
may be gathered in the following matrix form:

MR =0 (5.19)

being R the vector of the unknowns R;.

Nevertheless, since the coefficients of M depends on the unknown p, and the
trivial solution R = 0 has to be avoided, the annulment of the determinant of the
matrix M, that is the identification of specific values of p, which make the
determinant singular, isimposed.

Once avalue of p,isfound, the six roots of s aswell asthe twelve roots of r are
obtained and, exploiting the boundary conditions, by means of Egns (5.17) and
(5.18) the spatial functions Z, H and © are clearly derived.

Finally, the complete expressions of the transversal displacements &, n and ¢
can be written in terms of the infinite values of py:

§ = Xn=1Zn(2)[Ay cos(pyt) + By sin(p,t)]
N = Yn=1 Hn(2)[Ay cos(pnt) + By sin(pyt)]
9 = Y21 0,(2)[Ay cos(pat) + By sin(pyt)] (5.20)

The characteristics of the method permit to consider any boundary condition.
The latter can be static or kinematic. In general we can refer to clamped, hinged
and free end conditions:
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clamped end: displacements and rotations are constrained; in particular aso the
warping of the section, which is proportional to the first derivative of ¥, is
impeded;

Z=0 7'=0
H=0 H' =0
0=0 =0

hinged end: as kinematic conditions, the translations and the torsional rotation
are prevented, whereas, as static conditions, the flexura moments and the
bimoment, proportional to the second derivative of 19, are considered equal to
zero;

Z=0 7"=0
H=0 H'=0
0=0 0" =0

free end: only static conditions are employed, since the flexural moments, the
total torsional moment, the bimoment and the shears are null.

ZII — O ZIII — 0
HII — O HIII — 0
0"=0 GJ,0' —EI,0" =0

5.2.2 Numerical Examples

The analytical procedure is evaluated performing some examples regarding thin-
walled open section profiles defined by different end conditions.

The method is implemented with a program in Matlab environment and three

cases, coming from the existing literature, are analysed. For each case, a
comparison of results in terms of natura frequencies is carried out and a high
accuracy is found. The practical examples are also modelled in a FE program in
order to verify the effectiveness of the approach.

Three typologies of sections are examined in order to put the method on

probation: the first case is defined by a double symmetry, the second one by a
single symmetry and the last without symmetry.
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e Doubly symmetrical section.
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Figure 5.5 — Mode shapes of the I-section beam with various end conditions. simply
supported (a), cantilever (b), doubly constrained (c), constrained-hinged (d) and free ends

(e).

The first case is represented by a I-section beam shown in Fig. 5.4, whose
geometrical and mechanical properties are reported in Table 5.1. Various end
conditions are taken into account and the results, reported in Table 5.2, are
compared to the ones obtained through the exact solution proposed by
Timoshenko [115]. In Fig. 5.5 the first three mode shapes of the beam for each end
condition are highlighted.
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Table 5.1 — Geometrical and mechanical properties of the |-section beam.

E[N/m?] | 2.1x10% | I, [m"] | 5.33x10° | |, [m%] | 2.67x10°
v [-] 03 | I,[m% | 135x10" | p [kg/m’] | 2700
L [m] 3 J[m7 | 1.34x10° | I,[m"] | 5.46x10°

Table 5.2 — Natural frequencies [HZ] of the beam according to various end conditions.
Simply supported Cantilever Doubly constrained

X Dir. Y Dir. Rot. | XDir. YDir. Rot. | XDir. YDir. Rot.

26.75 168.03 36.93 | 9.53 590.86 1547 | 60.64 380.91 78.82

107.00 672.12 139.18| 59.72 375.14 80.30 | 167.15 1049.98 215.02

240.75 1512.27 309.46 | 167.22 1050.40 216.60 | 327.69 2058.38 419.60

Mode N.

Constrained - Hinged Free ends
X Dir. Y Dir. Rot. | XDir. YDir. Rot.
4179 26250 5539 | 60.64 38091 15.69
13542 850.65 174.95|167.15 1049.98 83.53
28254 1774.82 362.38|327.69 2058.38 218.01

Mode N.

e U-shaped section beam with one axis of symmetry.
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Figure 5.6 — U-shaped section beam having the Y axis as axis of symmetry.
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Figure 5.7 — Schemes related to the first three mode shapes of the U-shaped section beam,
in the case of simply supported end conditions.

Table 5.3 — Geometrical and mechanical properties of the U-shaped section beam.
E[N/n] | 6.89x10% | I, [m"] | 2.77x10° | 1,[m%] | 8.61x10™
v[] 0316 | 1,[m" | 1.41x107 | p [kg/m?] 2597
L [m] 1.016 | J[m" | 542x10% | I,[mY | 2.35x10°®

Table 5.4 — Comparison in terms of natural frequencies [Hz] between the proposed
method and a FE program.

Simply . Doubly Constrained -

Mode |  gypported Cantilever | trained Hinged Free ends Max Err.

N. FEM An. |FEM An. |FEM An. | FEM An. | FEM An. [%]

1 255 245 | 119 114 | 413 402 | 327 316 | 56.2 544 -4.2

2 658 65.0 | 240 232 (1027 101.2| 871 854 | 575 593 -35

3 734 715 | 43.6 427 [147.7 1474|1021 1016 | 116.2 1148 -2.6

4 1233 126.0| 575 583 |188.7 189.0|166.7 165.8|148.6 147.4 2.2

5 146.3 144.7 | 109.1 107.4 | 254.7 266.0 | 181.8 187.6 |198.4 1984 4.5
Err. [%] = (Analytical-FEM)/FEMx100

Uncoupled (Y direction) |

The geometry of the section of Fig. 5.6 is derived from the paper by Bishop et
al. [10, 11]. Since an axis of symmetry is present, coupling between bending in X
direction and torsion appears and, therefore, the corresponding natural frequencies

coincide; on the contrary, the bending behaviour in Y direction is independent
from the others.



Chapter 5— Dynamic Analysis: Evaluation of Free Vibrations and Mode Shapes 141

The geometrical and mechanical properties of the beam are described in Table
5.3, whereas Table 5.4 reports the results in terms of the first three natural
frequencies of the system. As regard the case of free ends, the results obtained by
the implementation of the method in Matlab are perfectly comparable with those
indicated first by Bishop [12] and, then, confirmed by Yaman [126].

Furthermore, in order to evaluate the effectiveness of the method, a comparison
with a FE program is proposed. As it can be seen in Table 5.4, the per cent error
remains less than 5% for all the considered schemes.

In Fig. 5.7 a scheme of the transversal displacements related to the case of
simply supported beam is shown for the first three natural frequencies.

e Generic thin-walled open section beam without any axis of symmetry.
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Figure 5.8 — Generic section beam having no axis of symmetry.

Table 5.5 — Geometrical and mechanical properties of the generic section beam.
E[N/m] | 7x10°° | I, [m] | 2.34x10° | |, [m] 5.82x10™
v [ 035 |I,[m7] | 4.1x10° | p[kg/m? | 2700

L [m] 1 J[m7 | 5.21x10™ | I, [m] 4.6x10°
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Figure 5.9 - Schemes related to the first three mode shapes of the generic section beam, in
the case of simply supported end conditions.

Table 5.6 — Comparison in terms of natura frequencies [Hz] between the proposed
method and a FE program.

o] ooy, | oo | o | e | e |
' FEM An. FEM An. FEM An. FEM An. FEM An. [%]
1 5153 4778 | 19.21 18.13 | 87.37 8203 | 69.50 65.06 | 70.04 71.26 |-7.28
2 66.41 64.38 | 30.56 30.26 |130.27 127.54| 93.21 9049 |114.81 107.19| -6.64
3 15555 146.07| 59.98 61.20 |211.18 202.31|181.87 172.45|147.29 143.44| -6.10
4 160.53 161.69|102.59 99.49 | 342.37 347.70|242.23 247.34|244.21 232.95| -4.61
5 229.56 225.33|133.49 132.20(347.71 355.25|285.56 282.91|356.25 35291 | 2.17

Error [%] = (Analytical-FEM)/FEMx100

Information regarding the geometry and the mechanical characteristics of the
generic section beam can be found in the paper by Yaman [126] and Arpaci [7].

The comparison with the results obtained by Yaman and Arpaci concerns the
case of simply supported beam. All the other end conditions are verified through
the definition of the model in a FE program. The results are reported in Table 5.6.

It is necessary to notice that the results indicated by Yaman and Arpaci are less

accurate than those acquired by the present formulation. In effect, as the previous
example, the per cent error related to the FE method proves to be very small, being
not more than 8%. In Fig. 5.9 the scheme of the displacements of the section for
the first three natural frequencies, in the case of smply supported beam, is
highlighted. It is evident that the beam is subjected, at the same time, to bending in
both principal directions and torsion.
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5.3 Three-Dimensional Formulation for the Dynamics of Tall
Buildings

In this section, a semi-analytica formulation for the evaluation of the free
vibrations of a three-dimensional tal building is proposed. The need of a
preliminary assessment of the free vibrations of such constructions in the phase of
conceptua design is essential, being these structures usually subjected to dynamic
actions. It is well-known that vibrations are of interest for the structura design,
but, especialy, for the living comfort of the occupants. Therefore, as demonstrated
by Stafford Smith and Crowe [100], Wang et al. [122] and Zalka [127], an
evaluation, even if approximate, of the predominant modes of vibration is
compulsory.

Several papers dealt with this kind of subject, relying on different formulations
and considering various vertica elements as horizontal bracing. Among all, the
papers by Pekau et al. [86, 87] are noteworthy. By means of this approach, called
Finite Storey Method (FSM), the global behaviour of the building depends on the
nodal displacements of two-storey substructures into which the whole construction
is split. As a result, a reduced number of nodes are considered so that the
computationa time turns out to be very short. Furthermore, the formulation allows
to consider both frames and shear walls, in a single scheme or composed to
represent a tube-in-tube configuration.

For the dynamic analysis of coupled shear walls, the continuum medium
technique is commonly used, because it permits to replace the discrete system of
connecting beams with an homogeneous medium of equivalent properties. The
application to high-rise structures can be found in Tso and Chan [116], Capuani et
al. [22] and Swaddiwudhipong et al. [105]. The anaysis of coupled open section
shear walls connected each other by means of rigid lintel beams is treated in the
papers by Mendelson and Baruch [78, 79], who examined in depth the response of
non-symmetrical multi-storey structures with or without damping effect. The same
subject was also studied by Meftah et al. [76] who applied the Galerkin technique
to formulate an approximate handy method for the evaluation of the free vibrations
of buildings braced by shear walls and open section elements.

In line with the mentioned formulations, the proposed method allows to
consider as components of the building resistant core severa types of bracings,
such as frames, braced frames and shear walls, having doubly symmetrical or
asymmetrical, hollow or open sections. It is directly derived from the papers by
Carpinteri et al. [24-28], in which only static analyses are computed.
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Figure 5.10 - Scheme of the j-th floor of atall building stiffened by M vertical bracingsin
the global coordinate system XY Z.

The present approach shows some advantages if compared to other
methodologies: first of all, the formulation is extremely clear and concise, limiting
in this way the risk of unexpected errors; furthermore, it allows to model the
resistant core as a three-dimensional body, avoiding to reduce it to a mere plane
problem; finally, the number of nodes is reduced to only floor displacements,
guaranteeing very short times of modelling and analysis, if compared to those of
FE programs[18].

531 Semi-Analytical Approach

The dynamic analysisis directly derived from the formulation proposed in Chapter
2, since the mass of the building floors, along with the corresponding acceleration,
appears in the global equilibrium equation (2.27).

Due to D’Alembert’s Principle, the inertial forces of the structure can be
considered as static forces and, therefore, they can be added to (2.27).

Since only free vibrations and mode shapes are evauated, in this formulation
no external actions are taken into account as well as no forced ground motion is
included in the analysis.

The dynamic forces are expressed in terms of the mass and the rotational
inertia of the floors; on the contrary, the mass corresponding to the structural core
is considered negligible and, therefore, it is not inserted in the equilibrium
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expression. As a consequence, the load vector is represented by the product of a
mass matrix and a vector containing the global accelerations of the building
storeys.

Let the point C; be the origin of the local coordinate system and, at the same
time, the shear centre of the section of the i-th bracing; its transversa
displacements can be written in terms of the global floor displacements &, n and ©
through the following expressions in aright-handed system (Fig. 5.10):

§ci =§—yid Nei =N+ x;9 (5.21)

where (x;; y;) are the coordinates of C; in the global coordinate system XY Z.
The equilibrium equation for the j-th floor in X direction is given by:

YH[kgi(u—y:0)] + m;(§; — ym;9;) =0 (5.22)
in which the following expressions are used:
. k;ij represents, for the j-th floor, the row of the local stiffness matrix of thei-
th bracing, conveniently rotated to be parallel to the global coordinate system,;
= uisthe vector including the floor displacementsé; in X direction;
= @ isthevector including the N rotations ; of the floors;

= m; isthe mass of thej-th floor;
* VY isthecoordinate, in'Y direction, of the centre of mass of thej-th floor.

Egn (5.22) can be extended to consider al the storeys of the building. The
concise expression is reported below:

Zlivil[Kxi(u - YiG))] + Mxxij + Mx\‘)é =0 (523&)
Similarly, in'Y direction, the global equilibriumis given by:
YKy (v +%;0)] + My, ¥ + Myg0 = 0 (5.23b)

whereas, for the rotational equilibrium, the following equation can be written:
— YN [Kyi(u—y;0)y] + T4 [Kyi (v + x,0)x;] +
+Mgii + Mypi + Mgg® = 0 (5.23c)

In Egns (5.23) some stiffness and mass matrices are shown. In particular mass
matrices include information regarding the mass, the coordinates of the centre of
mass as well as the polar moment of inertia of the floors. The latter, referred to the
global coordinate system, can be calculated by means of the mass density p
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[kg/m?], the geometrical polar moment of inertia |, the radial coordinate r of the
floor barycentrein the XY Z system and the floor area A:

Io = u(lg + Ar?) (5.24)
m; O 0 [z O 0
MXX == Myy - [ 0 O ] M‘L)‘L) = [ 0 0 ]
0 0 my 0 0 ION
MYy, 0 0 mXp,, 0 0
M,g = [ 0 0 l My, = [ 0 0 l (5.25)
0 0 —myymn 0 0 myXpn

Further simplifications can be adopted in the definition of Egns (5.23), through
the following relations:

Kyx = li\il Ky Kyy = ?11 Kyi
Koo =X Kuyi  Kyo =20 Kyixg
Koo = XM, Kyiy? + XM Kyix? (5.26)

Therefore Egns (5.23) become:

Ky u + Ky g0 + My ii + M0 = 0

Kyyv + Kyg0 + My, i + Mys0 = 0

Kyou + Kyov + Kgg© + Mypii + MgV + Mgy® = 0 (5.27)
If the displacement vectors u, v and ® are gathered together in the global

displacement vector 3, Egns (5.27) can be shown in a well-known and very
synthetic form:

M&+K8=0 (5.28)
in which the global mass and stiffness matrices are highlighted.
Mxx 0 Mxﬁ
l\_/[ = 0 Myy My\‘) (529)

Mys Mys Mgy
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Kxx 0 Kx\‘)
R =(0 Kyy Kyﬁ (530)
Kyxo Kyo Koo

Depending on the position of the origin of the global coordinate system XYZ,
the term K, or M, can be reduced to a block diagonal matrix, since the mixed sub-
matrices become null matrices. In particular, if the origin of the coordinate system
coincides with the centre of rigidity of the building or the centre of mass of the
floor, the expressions K, and K or M, and My, vanish respectively. In the first
case, the sum of the products K,y; and Ky;x; becomes equal to zero, wheresas, in
the second case, the coordinates (Xu; Ymj) disappear.

The solution of Egn (5.28) can be deduced supposing that the global
displacement vector § is given by the product of two terms: the first is a scalar
depending on the time t; the other is avector depending on the spatial coordinate z.
The latter represents the deformed configuration of the building or its mode shape.

8(z,t) = H@)f(t) (5.31)

Substituting the expression (5.31) in Egn (5.28) and pre-multiplying the
obtained relation with the transpose of the vector H, it is possible to adopt the
method of separation of the variables. Therefore an identity between the variables
depending on t and those depending on z is acquired. Since the values of t and z
are arbitrary, the identity is always made possible if and only if both members are
equal to a constant, here represented by the term (p?).

HTMHf + HTKHf = 0 (5.32)
HTKH f 2
WME -t P (533)

From Eqgn (5.33) two independent equations can be deduced, one related to the
angular frequency of the free vibration, the other to the mode shapes of the
building.

—
Japt=0 (5.34)
HT(R — p2M)H = 0

The solution of Egn (5.344) is well-known and can be written in the following
form:

f(t) = Acos(pt) + Bsin(pt) (5.35)
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where A and B are constants of integration, whose numerical value is found
considering the initial conditions of the problem.

Egn (5.34b) can be reduced to an eigenvalue problem, from which 3N
eigenvalues p? are extracted in order to define the natural frequencies p of the
structural system. This is developed imposing that the determinant of (K — p2M)
vanishes. Once a root p? is obtained, it is substituted back into the original set of
eguations, in order to acquire the corresponding eigenvector or mode shape H of
the system. At the end of the procedure, the displacement vector & can be
expressed in terms of all the roots p% consequently, a 3Nx3N matrix containing
the eigenvectors and a 3N vector composed by the functions f(t) can be defined:

W(z) =[H, .. Hayl T =[f, . fsx] (5.36)
8(z,t) = ¥(2)D(t) (5.37)

Eqgn (5.37) represents the solution of Eqgn (5.28). By means of it, together with
Egns (2.11) and (2.25), the displacements of thei-th bracing §; can be derived.

The proposed semi-analytical formulation proves to be clear and concise so
that errors of interpretation as well as calculation are absolutely minimised. In
addition, the method demonstrates to take into account a very small number of
degrees of freedom, ensuring competitive times of modelling and analysis.

In the next section two numerical examples highlight the flexibility and
effectiveness of the proposed approach.

5.3.2 Numerical Examples

The free vibrations of a high-rise building are evaluated performing two numerical
examples in which the horizontal resistance is provided by different types of
vertical bracings. Some of them are characterised by thin-walled open sections
and, therefore, are analysed by means of Vlasov's theory of the sectoria areas
[119]. The investigation is also performed through a computer program which
implements the FE method. In this way, a comparison regarding the obtained
results alows to appreciate the benefit provided by the semi-analytica
formulation.

The model structure is a 60-storey building, defined by a square floor plan. The
storey height ish =5 m, corresponding to a total height H = 300 m. Each floor is
0.5 m thick, with a mass density equa to 2.548 ton/m® or 25 kN/m®, if the
reference acceleration is 9.81 m/s’. The material constituting the resistant skeleton
is concrete having Y oung’s modulus E = 3x10* MPaand Poisson’sratio v = 0.18.
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Figure5.11 - Regular (a) and not regular (b) floor plan of the high-rise building.
Table 5.7 - Regular floor plan: geometrical properties of the stiffening elements.
Element type External Tube Internal Core
- Square hollow Open Open
Description section sectionN.1 | section N.2
Second moment I, [m?] 3600 72.9 72.9
Second moment I, [m’] 3600 6.75 6.75
Warping constant I, [m°] - 72.9 72.9
Torsional rigidity J [m’] 5400 0.38 0.38
Global coordinate x. of
the shear centre [m] 15 95 205
Global coordinate y, of
the shear centre [m] 15 15 15
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The stiffening elements show a constant section along the height and their
contribution to the inertial forces, in the dynamic anaysis, is considered
negligible, as supposed in the previous formulation.
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Figure5.12 - Regular floor plan: mode shapesN. 1, 3 and 5.

Table 5.8 - Regular floor plan: comparison of the results in terms of natural frequencies
[HZ].

Mode N. Analytical FEM Error [%0] Description
1 0.1394 0.1372 156 Flexurdl in
X direction

Flexural in
2 0.1419 0.1389 2.13 Y direction
Flexural in
3 0.8736 0.7531 16.00 X direction
Flexural in
4 0.8895 0.7692 15.64 Y direction

5 1.2278 1.1583 6.00 Torsional

Error [%] = (Analytical-FEM)/FEM %100
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Table 5.9 - Not regular floor plan: geometrical properties of the stiffening elements.

Element type Shear walls Internal core
I L -shaped L -shaped Open Open
Description sectionN.1 | sectionN.2 | sectionN.1 | section N.2
Second moment I, [m?] 12.51 12.51 6.75 6.75
Second moment |, [mf] 3.14 3.14 72.9 72.9
Warping constant |, [m°] - - 72.9 72.9
Torsional rigidity J [m?] 0.09 0.09 0.38 0.38
Global coordinate x, of
the shear centre [m] 0 30 15 15
Global coordinate y, of
the shear centre [m] 0 0 20 31
Angle o [°] 45 -45 0 0
*Theterm ¢ isthe angle between the central axes of the section and the global XY
axes.

The floor plan of the first numerica example is shown in Fig. 5.11a. Its
horizontal resistant system is composed by two devices. an externa tube covering
the perimeter of the building with an equivalent thickness of 0.2 m and an internal
core, constituted by two profiles having thin-walled open sections.

For the specific structural configuration, the centre of mass coincides with the
centre of rigidity, involving the uncoupling between flexura and torsional
behaviour.

The geometrical characteristics of the shear walls are reported in Table 5.7 as
well as the comparison in terms of natural frequencies between the proposed and
the FE method are highlighted in Table 5.8 and Fig. 5.12.

Asit can be seen, the per cent errors concerning the mode shapes N.1, 2, 5 just
reach 6%, while, for the second order flexural mode shapes N.3 and N.4, they
increase up to 16%. The latter is caused, in the FE program, by the shear lag which
affects the tube systems, inducing a non-linear distribution of the stresses in the
walls, as underlined in [111]. This corresponds to a lower global stiffness and a
lower natura frequency.
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Table 5.10 — Not regular floor plan: comparison of the results in terms of natural
frequencies[HZ].

ModeN. | Analytica FEM Error [%0] Description

Uncoupled
1 0.0125 0.0149 -15.96 flexura inY
direction
Torsional and
2 0.0239 0.0250 -4.62 flexura in X
direction
Torsional and
3 0.0447 0.0455 -1.56 flexura in X
direction
Uncoupled
4 0.0785 0.0816 -3.90 flexura inY
direction
Bending in X
5 0.1360 0.1364 -0.29 direction and

torsion

Error [%)] = (Anaytical-FEM)/FEM %100

In the second case, the stiffening system is formed by an eccentric core, similar
to the previous one, and two angular L-shaped section elements, which develop
from the ground to the top of the building (Fig. 5.11b).

Due to this structural configuration, the centre of mass is about 9 m far from
the centre of rigidity, determining the coupling of flexural and torsional
deformations.

Tables 5.9 and 5.10 summarise the information regarding the geometrica
properties of the shear walls and the natural frequencies acquired by the semi-
analytical and the FE method.

Also in this case, only the first five frequencies are reported (Fig. 5.13). With
the exception of the first frequency, corresponding to a flexural deformation in Y
direction, the results show a high accuracy of the proposed approach, since the per
cent errors are lower than 5%. On the contrary, the error related to the first natural
frequency is clearly due to a local stiffening effect caused by the out-of-plane
rigidity of the floorsin the FE program (Fig. 5.14).
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Figure5.13 - Not regular floor plan:

plane rigidity of the slabs.

In effect, as shown in [26], the latter reduces the relative vertical displacements
of the open section shear walls, producing, at the same time, the increase of the
global stiffness and, therefore, the growth of the corresponding natural frequency.

The proof is given by the second order flexural mode shape in Y direction,
where a reduction of the local gtiffening effect is observed and the corresponding
per cent error between the approaches decreases.






Chapter 6

Conclusions

In the design of high-rise buildings, the role of the vertical bracings, devised to
carry the horizontal actions coming from wind and earthquakes, is a crucia factor
which usually governs the structural and architectural choices of the professionals.

In the preliminary phase of the process, sophisticated tools, such as Finite
Element programs, are widely used because of their high level of accuracy as well
as their usability, aso in presence of very complex structures. Actualy, they can
aso hide some drawbacks. as the complexity increases, they make the process
more and more expensive and the displayed results demand a substantial degree of
experience to be understood. On the contrary, a simplified analytical formulation
can help the engineer find, under specific hypotheses, a clear solution from which
more thorough computations can start.

In this thesis, a synthetic three-dimensional approach, adoptable for static and
dynamic analyses and aimed for the evaluation of the structural behaviour of tall
buildings dtiffened by different types of vertical bracings, is proposed. The
structurd typologies, considered as independent components of the whol e resistant
skeleton, are represented by shear walls, frames, braced frames and thin-walled
open section profiles, whose stiffening contribution is evaluated according to
Vlasov's theory of sectorial areas. In this last case, an entire chapter is devoted to
their particular behaviour, being one of the most employed bracings in tall
constructions; their unusual deformation, called warping deformation, is carefully
studied and even an experimenta test is performed in order to measure, for the
first time, its effect on dender beams subjected to torsion.

Due to the leading role acquired by the aesthetics in the design of the modern

155
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high-rise buildings, such as the case of 30 St. Mary Axe (London) and Turning
Torso (Malmo), special attention is paid to twisting and tapering structures and, in
particular, synthetic expressions are proposed for the definition of their
corresponding stiffness matrices. In this way, the original approach can be
extended to consider also curved shapes apart from the traditional ones.

The characteristics of the approach allow the professiona to devise a simple
computer program aimed to perform preliminary analyses for the evaluation of the
structural behaviour of a tall construction subjected to transversal loads and
stiffened by various vertical bracings. Starting from basic information, such as the
geometry of the building, the number and the typology of the horizontal
reinforcements, the properties of the material and the intensity of the loads,
substantial data can be acquired: the deformed shaped of the entire system, the
digtribution of the loads between the components of the resistant skeleton, the free
vibrations, the modal shapes and the internal actions described by Saint Venant
and Vlasov' stheories.

Ultimately, the semi-analytical method proves to be an adequate support to the
designer’s judgement as well as can be considered as a complementary tool for
more advanced approaches during the preliminary phases: thanks to the reduced
number of degrees of freedom, the data preparation and the modelling time are
definitely faster and clearer and the corresponding analysis can evolve more
transparently, thus making the process less liable to unexpected errors.

Therefore, the design community has to become aware of the possibility to rely
on both advanced and simplified formulations, since they are aimed to two
different levels of the structural investigation: in the early stages, approximate
methods can help to quickly identify the key parameters of the project, whereas,
during the final ones, Finite Element programs allow to perform detailed analyses
by means of more thorough computations.
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