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3D Face Recognition: an automatic strategy based on
geometrical descriptors and landmarks

Enrico Vezzetti, Federica Marcolin?, Giulia Fracastoro
Department of Management and Production Engineering
Politecnico di Torino, Italy

Abstract

In the last decades, several three-dimensional face recognition algorithms have been thought,
designed, and assessed. What they have in common can be hardly said, as they differ in
theoretical background, tools, and method. Here we propose a new 3D face recognition
algorithm, entirely developed in Matlab®, whose framework totally comes from Differential
Geometry. Firstly, 17 soft-tissue landmarks are automatically extracted relying on geometrical
properties of facial shape. We made use of derivatives, coefficients of the fundamental forms,
principal, mean, and Gaussian curvatures, and shape and curvedness indexes. Then, a set of
geodesic and Euclidean distances, together with nose volume and ratios between geodesic and
Euclidean distances, has been computed and summed in a final score, used to compare faces.
The highest contribution of this work, we believe, is that its theoretical substratum is
Differential Geometry with its various descriptors, which is something totally new in the field.
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1 Introduction

Automated human face recognition (FR) is a non-trivial computer vision problem of
considerable practical significance. It has applications including automated secured access,
automatic surveillance, forensic analysis, fast retrieval of records from databases in police
departments, automatic identification of patients in hospitals, checking for fraud or identity
theft, and human-computer interaction (Gupta et al. 2010).

Literature on FR is wide and various. We have selected among the numerous
contributions the most significant ones that, similarly to us, work in 3D with facial landmarks
and/or possibly employ geometrical concepts to the algorithm. Gupta et al. (2010) proposed
the new Anthroface 3D recognition algorithm after automatically detecting 10 landmarks
through the support of Gaussian and mean curvatures. The algorithm compares 123 distances
among a set of Euclidean and geodesic ones, performing significantly better than the well-
known eigensurfaces, fishersurfaces, and Iterative Closest Point (ICP) algorithms. In many
points this method is close to ours, although our landmarking procedures totally relies on
geometrical background. Zhao et al. (2010) used their Statistical Facial Feature Model (SFAM)
to perform facial Action Unit (AU) recognition. SFAM is a partial 3D face morphable model
containing both global variations in landmark configuration (morphology) and local ones in
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terms of texture and shape around each landmark. 19 landmarks were here considered.
Similarly to us, the Shape Index proposed by Koenderink and Van Doorn (1992) was
computed to describe local surface properties. Also Passalis et al. (2011) used the Shape
Index, that, together with Spin Images, was employed to support automatic landmarking. In
particular, in this work a new 3D FR method is proposed that uses facial symmetry to handle
pose variations. Then, an Annotated Face Model is registered and fitted to the scan. The result
is a pose-invariant "geometry image". inan and Halici (2012) proposed a 3D FR approach
based on local shape descriptors to discriminate three-dimensional face scans of different
individuals. Uniformly resampled 3D face data are used to generate Shape Index, curvedness,
Gaussian and mean curvature values on each point of the data. Hence, they obtained bi-
dimensional matrices of these descriptors representing three-dimensional geometry
information.

Following Bronstein et al's (2005[a]; 2005[b]; 2006) idea that different facial
expressions of the same person are isometrics, namely geodesic distances between facial
reference points are equal for all emotional expressions of the same person, other researchers
worked with geodesic distances as features to be compared between faces to perform FR.
Berretti et al. (2006; 2010) proposed a 3D FR solution in presence of expression variations. 3D
face models are represented by identifying the iso-surfaces originated by the set of points
which are at the same geodesic distance from the nose tip. The iso-geodesics and their
relationships are then described by developing through the modeling technique of three-
dimensional Weighted Walkthroughs (3DWWs) capable to quantitatively represent spatial
relationships between 3D surfaces. Similarly, Feng et al (2007) presented a 3D face
representation and recognition approach. 3D face is represented by a set of level curves of
geodesic function starting from the nose tip, which is invariant under isometric
transformation of the surfaces. Ouji et al. (2007) presented a FR approach based on
dimensional surface matching. The presented matching algorithm relies on ICP that rigidly
aligns facial surfaces and perfectly provides the posture of the presented probe model. Then,
the similarity metric consists in computing geodesic maps on the overlapped parts of the
aligned surfaces. Mpiperis et al. (2007) proposed a geodesic polar parameterization of the
facial surface aimed at 3D FR. Face matching is performed with surface attributes defined on
the geodesic plane. Li and Zhang (2007; 2009) investigated the use of multiple intrinsic
geometric attributes, such as angles, geodesic distances, and curvatures, for 3D FR. Geodesic
distances, and Gaussian and mean curvatures are then employed as descriptors for faces.
Jahanbin et al. (2011) introduced a multimodal framework for FR based on local attributes
calculated from range and portrait image pairs. They applied statistical feature analysis to 2D
and 3D Gabor, and Euclidean and geodesic anthropometric feature sets to select the most
discriminative features while discarding redundancies.

The paper is structured as follows. Section 2 deals with methodology: section 2.1 is the
landmarking phase; in sections 2.2-2.4 geodesic and Euclidean distances between landmarks,
and other extracted features are presented; sections 2.5 and 2.6 concern evaluation of
geometrical features and final score for matching, respectively. Results are exposed in Section
3. Then, some conclusion are drawn, and, after references, an appendix is added to figure out
the geometrical background of the work.

2 Method



To perform face recognition, we used different geometrical information of the face, extracted
in correspondence to the position of automatically extracted landmarks. Landmarks, originally
introduced by Farkas (1981), are defined as precise locations on biological forms that hold
some developmental, functional, structural, or evolutionary significance (Smeets et al., 2010).
Among the facial features to be compared between faces, geodesic distances are the core ones.
Then, in order to increase the accurateness, we added Euclidean distances, and, after having
obtained nose volume, some ratios between Euclidean and geodesic distances and the
behavior of the Shape Index in the pronasal. The entire process has been programmed in
Matlab®.

The correctness of landmark localization process has been tested by the support of a plastic
surgeon, who manually identified correct landmark positioning. The “true landmark”
identification has been gained in both visual and contact terms by the surgeon. Once a
landmark is found, the surgeon marks it with a point directly on the person’s face. Afterwards,
through texture mapping (Heckbert, 1986), overlapping on 3D model is performed and the
Euclidean distance between the real landmark and the respective point given by the algorithm
is computed.

In Figure 1 we have summarized the whole process of our FR algorithm.

Automatic landmark Evaluation of the geometrical
localization features

Rescaling of all the scores For each geometrical feature

obtained by the comparison of considered, comparison with
each geometrical features. the corresponding feature of
each one of the neutral faces.

For each neutral face, sum of
all the corresponding rescaled
scores. In order to find the best
match, minimize the sum.

Fig. 1 The whole process of our face recognition algorithm.

2.1 Landmark extraction



The method used for automatic landmarking is explained in Vezzetti and Marcolin (2013).
Considering the morphological features of the face, in order to extract the landmarks, it was
necessary to employ a refining procedure that firstly identifies the region, then extracts the
specific landmarks maximizing or minimizing one appropriate descriptor. Relying on the
different peculiarities of the different facial regions where the landmarks are located, different
combinations of the first, second and mixed derivatives (Fig. 2 and 3), the Coefficients of the
Fundamental Forms E, F, G, e, fand g (Fig. 4 and 5), the curvatures K, H, k; and k: (Fig. 6 and 7)
and Shape and Curvedness Indexes S and C (Fig. 8) have been employed as descriptors. The
following figures (Fig. 2-8) represent these descriptor applied point-by-point to facial shells.
The meaning of these geometrical descriptors is reported in the Appendix.

Fig. 2 The first derivatives Dx and D.

Fig. 3 The second derivatives Dxx, Dyy and Dxy.

Fig. 4 The coefficients of the first fundamental form E, F and G.



Fig. 5 The coefficients of the second fundamental form e, fand g.

Fig. 6 The mean curvature H and the Gaussian Curvature K.

Fig. 7 The principal curvatures k; and ka.

Fig. 8 The Shape and Curvedness Indexes.

The accurateness of the method explained in Vezzetti and Marcolin (2013) has been enhanced
and eight other landmarks were added, reaching a total of 17 landmarks extracted (Figure 9):
the pronasal (PN), the subnasal (SN), the two alae (ALA), the two endocanthions (EN), the two
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exocanthions (EX), the nasion (N), the two inner eyebrows (IE), the two outer eyebrows (OE),
the two chelions (CH), the labrum superior (LS) and the labrum inferior (LI).

Fig. 9 The 17 landmarks used for face recognition.

Similar procedures have been employed to extract these new landmarks. For length reasons,
we do not report here the whole procedure, but, in order to evaluate the accurateness of our
method, we computed the distance between the landmark localized with our algorithm and
the correct landmark position. In Table 1 the mean error distance and its standard deviation
are shown for each landmark, the unit of measure is the millimeter.

To obtain mean errors and standard deviations, we used only a subset of our dataset,
considering only the scans of 5 people, in total 35 scans (for each person we considered 7
different facial expressions).

Landmark Mean Standard deviation
PN 0.38 0.62
SN 0.75 0.87

ALAdx 1.56 1.25
ALAsx 1.41 1.19
ENdx 1.29 1.14
ENsx 1.82 1.35
EXdx 3.26 1.81
EXsx 3.41 1.85
N 1.04 1.02
IEdx 2.11 1.45
IEsx 2.13 1.46
OEdx 2.74 1.60
OEsx 3.40 1.84
CHdx 3.65 1.96
CHsx 2.99 1.73
LS 2.61 1.62
LI 2.06 1.43

Table 1 The error mean and standard deviation computed for the 17 landmarks.
2.2 Geodesic distances

The motivation for employing geodesic distances was that, when a surface is isometrically
deformed, intrinsic properties of the surface, including geodesic distances, are preserved (Do
6



Carmo 1976). Bronstein et al. (2005-2006) proposed to model facial expressions (except
when the mouth is open) as isometrics of the facial surface. Hence, algorithms based on
geodesic distances are likely to be more robust to changes in facial expressions. We have
computed geodesic distances between the extracted landmarks using Dijkstra's shortest path
algorithm.

Among all the possible geodesic distances between the 17 extracted landmarks, we
selected a subset of the most discriminatory distance features. We decided to exclude the
landmarks of the mouth region, because they are too much dependent on facial expressions,
e.g. mouth open or close. Moreover, we preferred the distances that do not cross the symmetry
line of the face and that lie in the same region of the face, in order to construct a triangulation.
Using these criteria we have detected 28 distances, represented in Figure 10.

Fig. 10 The detected subset of 28 geodesic distances.

Since the landmarks are automatically extracted, the accurateness of the localization varies
from one landmark and another. Moreover, the position of some landmarks is influenced by
the facial expression. Therefore, we introduced two coefficients, a and (3, that take into
account these two aspects. The coefficient a describes the accurateness of each landmark; its
values are inversely proportional to the mean error values of Table 1. In Table 2, the values of
a for each landmark are shown; as can be seen they are in the range [0, 0.8].

PN SN ALA EN EX N IE OE

o 0.8 0.4 0.2 0.2 0.1 0.3 0.14 0.1

Table 2 Values of the coefficient a for each landmark (the mouth region is not considered).

The coefficient  describes how much a distance is influenced by facial expressions. In order
to compute the value of {3 for each distance, we computed all the 28 geodesic distances using
the true landmarks localized by the plastic surgeon, not the ones extracted with the algorithm.
In this case we used the same subset used for the computation of mean error distances and
standard deviation, i.e. considering only the scans of 5 people, each of them performing 7
facial expressions (35 scans, overall). Later, for each person of this subset, we compared the
value of each distance in the shell with neutral expression with the corresponding values in
the non-neutral shells. Then, for each distance, we computed the mean variation, as explained
by the following formula:

() )
d;”"’ —d; V-

N
— VN
E =YY,



wheredi(j) is the value of the distance d; in a shell of the j-th person with a non-neutral facial

expression andd(™” is the value of the distance d; in the shell with neutral expression of the
same person. Using the mean values E;, we have classified the 28 distances in four classes.
Each class corresponds to a different value of 8 included in the range [0, 0.5], and in each class
there are seven distances. In Table 3, the different classes are shown.

Class Value of 3 Distances
1 0 PN-SN, SN-ALA, IE-OE, OE-EX
2 0.167 EN-ALA, IE-IE, EX-IE, OE-EN
3 0.33 PN-ALA, N-IE, IE-EN, EX-EN
4 0.5 PN-N, PN-EN, N-EN, EN-EN

Table 3 Classification of the distances with the corresponding 3 value.
After having computed a and 3, we combined them in order to obtain the coefficient

(ain + a;2)

Ci=0'5+ )

+ Bi

where a;;and aq;,are the a coefficients of the two landmarks of distance d.. The formula is
defined in such a way that all the coefficients c;range from about 0.5 to 1.5. Each c;represent
the weight for which we have to multiply the corresponding distance d;. Then, the total
difference between the geodesic distances of two faces is computed with the /; norm as

N
1 2
dgeo = 2 Cidi( ) Cidlg ) v

i=1
™ @
i’ di

where N is the number of geodesic distances used and d are respectively the i-th

geodesic distance of face 1 and the i-th geodesic distance of face 2.



Lastly, examining the raw data for these distances, we found that for some of them the value
range in all subjects was relatively similar and that the variation between subjects was not
very different from the variation within subjects, making these distances of little use in
recognition. So we decided to exclude these distances, obtaining a final set of 24 geodesic
distances, as shown in Figure 11.

Fig. 11 The subset of 24 geodesic distances used for face recognition.
2.3 Euclidean distances

In order to improve the accurateness of the algorithm, Euclidean distances were also used. As
done for the geodesic distances, we excluded the distances of the mouth region. In order to
define a subset of the 28 distances presented before useful for recognition, we used the same
method adopted in the previous section. We identified a subset of six distances, all quite short
and in the central part of the face, as shown in Figure 12.

Fig. 12 The subset of 6 Euclidean distances used for face recognition.



The total difference between the Euclidean distances of two faces is computed in the same
way used for the geodesic ones:

1 2
doy =YV, d® - d® v,
where c;are the coefficients calculated in the previous section, N is the number of distances
used and dl.(l), dl@are respectively the i-th Euclidean distance of face 1 and the i-th Euclidean
distance of face 2.

2.4 Other geometrical features

Geodesic and Euclidean distances cannot give a complete description of the face surface.
Therefore, other geometrical information were added. Firstly, we introduced the computation
of the nose volume. In this way we can have a general information about shape and dimension
of the nose. In Figure 13 the volume computed is represented.

Fig. 13 The computed volume of nose.

Moreover, in order to have some information about the curvature of the nose, we introduced
the following ratios between geodesic and Euclidean distances:

geo geo geo geo
dPN—N dEN—EN dALAdx—PN+dALAsx—PN
deu, deu § qev .
PN-N EN-EN ALA-ALA

The last information that we used concerns the behavior of the Shape Index. We decided to
compare the value of this descriptor in the pronasal, because is the most stable landmark. We
chose the Shape Index because is the unique descriptor giving us a complete information
about the shape of the surface.

For each one of the geometrical features introduced in this paragraph, the comparison
between the feature values of two faces is made by computing the difference between the two
values.

2.5 Evaluating the geometrical features

In order to be useful in automatic face recognition, the chosen features must ideally satisfy

two criteria (Gordon 1992). (1) The first one is the repeatability; their measurement must be

consistent for the same face over reasonable variation in view position and expression. (2)

The second criteria is the distinctiveness; their values must vary distinctly over the range of

different individuals. We evaluated these two properties for the chosen geometrical features.

We computed the discriminating power of a given feature ¢ by considering the ratio of
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between-class variance to within-class variance, where each person is considered as a class.
We can express this ratio as

>, (my —m)?
Y E g m?

i=1"4

where c is the number of classes (in this case, subjects), ¢;is the set of feature values for class
i, n;is the size of ¢;, m;is the mean of ¢;and m is the total mean of the feature over all classes.
Higher are the values of this criterion, more discriminating is the power. Table 4 shows the
features presented above, organized from best discrimination to worst. We have evaluated
these ratios using a subset of our database. The usefulness of a feature in discrimination is by
nature a function of the particular dataset considered.

Feature Between/within cluster variation

Ratio EN-EN 25.24
Geodesic distances 12.65
Volume of the nose 8.35
Euclidean distances 7.51
Shape Index 4.52
Ratio PN-N 3.84
Ratio ALA-ALA 3.41

Table 4 Ratio of between-cluster variance to within-cluster variance for each feature, ordered from best discrimination
between subjects to worst.

2.6 Evaluating final match score

In order to obtain a final match score between two faces, we rescaled all the scores obtained
by the comparison of each geometrical feature described above. Rescaling has been performed
by multiplying each distance for a weight, so that all the distances have the same order of
magnitude. The geometrical features used to perform recognition are also called 'matchers'.
Then, for the final match score we used the Simple-Sum (SS), one of the most common
technique of biometric fusion (Snelick 2005). So, the final score of the comparison of shell i
with a neutral face is computed as

N
fi=
s=1

where nirepresents the rescaled score for matcher s and N is the total number of marchers.
Then, the recognition is performed identifying the neutral shell that minimizes the score f;.

3 Results

The algorithm was tested on a set of 217 faces that we obtained through the 3D laser scanner
Minolta Vivid 910, plus a set of 27 faces taken from the public Bosphorus database. In Figure
14 three faces of this database are shown.
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Fig. 14 Three faces of the Bosphorus dataset, performing anger, disgust, and happy expressions, respectively.

Concerning the acquired faces, 31 people have been scanned performing seven facial
expressions each: serious (standard expression), anger, disgust, fear, happiness, sadness, and
surprise. This choice relies on the theory of “basic emotions” of Ekman, whose studies showed
that these were the six main emotional expressions (Ekman, 1970; Ekman and Keltner, 1997).
The comparison process and its accurateness is obviously sensitive to which features we
choose to represent the face. As we have shown above, there is wide variation in the
discriminating power of our features. We tested five different sets of features. The basic set,
denoted by I, includes the top 3 features of Table 3: the ratio EN-EN, the geodesic distances
and the volume of the nose. The other four sets include increasing number of features added
in order of discriminating power: II includes the basic set plus the Euclidean distances, III
includes features from II plus the Shape Index, IV includes features from III plus the ratio PN-
N, Vincludes features from IV plus the ratio ALA-ALA.

As previously said, we have tested our algorithm using two face sets: one with serious
pose faces, 31 belonging to the faces acquired by us and 7 from the Bosphorus, that
correspond to our face gallery, and one with 186 plus 20 expression-based faces of the same
31 plus 7 considered persons, respectively, that correspond to the probe set. Table 5 and
Figure 15 show, for each feature set we considered, the percentage of targets for which the
best match was correct.

Feature set Accurateness
| 80.10%
II 85.92%
111 87.38%
1A% 88.84%
Vv 90.29%

Table 5 Accurateness of the algorithm with the different feature sets.
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Fig. 15. Accurateness of the algorithm with the different feature sets.

The best accurateness was achieved with set V, with a percentage of 90.29%, which means
186 correct recognitions over a total of 206 recognitions performed. Furthermore, if we
consider not only the best match, but the two best matches, the algorithm achieves an
accurateness of 95.15%. In Table 6 it is possible to see how the accurateness changes
considering from one to four best matches, we can see that, in almost all performed
recognitions, the correct match is in the set of the most similar ones. In Figure 16 the
Cumulative Matching Curve (CMC) from rank 1 to 10 is represented.

Best matches considered Accurateness
1 90.29%
2 95.15%
3 96.12%
4 97.09%

Table 6 Accurateness of the algorithm considering from one to four best matches.
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Fig. 16 The Cumulative Matching Curve (CMC) from rank 1 to 10.
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4 Conclusions

This work is a totally Geometry-based 3D face recognition method. The first phase of the
algorithm, entirely developed in Matlab®, consists in automatic landmarking, performed
through application of Differential Geometry descriptors conditions. These descriptors are
derivatives, coefficients of the fundamental forms, different types of curvatures, and Shape
Index. After the landmarking phase, geodesic and Euclidean distances between landmarks,
nose volume, and ratios between geodesic and Euclidean distances are computed and
summed to obtain a final score to be compared between a set of 38 straight faces and a set of
206 expression-based faces of the same 38 people. Considering the best match, the
accurateness of the FR algorithm is 90.29%.
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Appendix

The First and Second Fundamental Forms are used to measure distance on surfaces and are
defined by

Edu? + 2Fdudv + Gdv?,
edu? + 2fdudv + gdv?,

respectively, where E, F, G, e, f and g are their Coefficients. Curvatures are used to measure
how a regular surface x bends in R3. If D is the differential and N is the normal plane of a
surface, then the determinant of DN is the product (—k;)(—k,) = k,k,0f the Principal
Curvatures, and the trace of DN is the negative —(k; + k;)of the sum of Principal Curvatures. In
point P, the determinant of DNpis the Gaussian Curvature K of x at P. The negative of half of the
trace of DN is called the Mean Curvature H of x at P. In terms of the principal curvatures can be
written

K= klkZI

_ k1+k2
= 2 .

H

Some definitions of these descriptors are given. These are the forms implemented in the
algorithm:

E=1+h3

F = hyh,,

G=1+h;},

e = hxx

)
1+hZ+h3

H

f=—2
- )
1+hi+h3

H

-h
— yy
9

4
1+h2+h3

H

_ hxxhyy—h%y
(1+h2+h2)"

_ (1+hZ)hyy—2hyxhyhyy+ (1473 ) hyy

H )3/2 ,

(1+nZ+n2

k, = H+VH? — K,
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k, = H—VHZ - K,

where h is a differentiable function z = h(x,y). It is, therefore, convenient to have at hand
formulas for the relevant concepts in this case. To obtain such formulas let us parametrize the
surface by

x(wv) = (u,v,h(w,v)), (Wv)€eU,

whereu =x,v=y.

The most used descriptors are surely the Shape and Curvedness Indexes S and C, introduced
by Koenderink and Van Doorn (1992):

-2 kq+k
S =Zarctan¥2 s [-11], ki, >k,
s kl_kZ

C= k2+k2
’—2 .

For the role they play in the work, a little digression about their significance is needed. Their
meaning is shown in Figures 17-19 and in Table 7.

.__;H o = rJ }é ____‘- :_ o /
e == e = =
Sphencal cup Saddie na Saddle Saddle ridgs Fidge Dome
] ) L) T L] L} T T
1 -615 -0375 -0rs o 125 375 0615

Figure 17. Illustration of Shape Index scale divided into seven categories. Different subintervals of its range [-
1,1] correspond to seven geometric surfaces.

Class S Type H | K

cup/pit [-1,-0.625) elliptical convex + | +

rut/valley [-0.625,-0.375) | cylindrical convex |+ |0

saddle [-0.375,-0.125) | hyperbolic convex | + | -

rut/saddle

valley

saddle [-0.125,0.125) | hyperbolic 0 |-
symmetric

saddle ridge | [0.125,0.375) hyperbolic - |-
concave

ridge [0.375,0.625) cylindrical - 10
concave

dome/peak | [0.625,1) elliptical concave | - | +

Table 7. Topographic classes.
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Figure 18. Curvedness Index scale, whose range is (—0, ©0).
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Figure 19. Indexes (S,C) are viewed as polar coordinates in the (k;, k,)-plane, with planar points mapped to the
origin. The effects on surface structure from variations in the curvedness (radial coordinate) and Shape Index
(angular coordinate) parameters of curvature, and the relation of these components to the principal curvatures
(k4 and k). The degree of curvature increases radially from the centre.



