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Two-vortex equilibrium in the flow past a
flat plate at incidence
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2National Technical University of Ukraine“KPI”, 37 Pobedy av., 03056 Kiev, Ukraine.
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The 2D inviscid incompressible steady flow past an inclined flat plate is considered. A
locus of asymmetric equilibrium configurations for vortex pairs is detected. It is shown
that the flat geometry has peculiar properties compared to other geometries: i) In order
to satisfy the Kutta condition at both edges, which ensures flow regularity, the total
circulation and the force acting on the plate must be zero; and ii) the Kutta condition
and the free vortex equilibrium conditions are not independent of each other. The nonex-
istence of symmetric equilibrium configurations for an orthogonal plate is extended to
more general asymmetric flows.

Key words:

1. Introduction

According to Meleshko & Aref (2007), Joukowskii (1907) was the first to consider a
vortex pair in the steady flow past an orthogonal flat plate. He argued that the Kutta
condition, which ensures regular flow at the plate edges, cannot be satisfied if the vortex
pair is standing in equilibrium. Since then, a controversy arose that lasted for nearly
seventy years. Meleshko & Aref (2007) list nine references which alternately rejected and
confirmed that result. The dispute was closed by Smith & Clark (1975), who analytically
proved that Joukowskii was right.
The detection of equilibrium configurations of point vortices in 2D flows past bluff

bodies presents interests which go beyond the general theoretical ones. For instance, as
described by Gallizio et al. (2010) and references therein, point vortices can be continued
into vortex patches a la Prandtl-Batchelor and their equilibria are relevant to flow control
at high Re.
The problem of the existence of vortex pair equilibria in a regular flow past a flat

plate is considered here for the general case of asymmetric flow. The asymmetry in the
flow is created by the inclination of the plate, or by an asymmetric vortex pair. Loci of
equilibrium configurations exist when the plate is not orthogonal to the flow, that is,
when the angle of attack α is non-zero. As α goes to zero the solution symmetrizes, but
the distances from the plate to the vortices go to infinity. This implies that not only two-
vortex equilibria do not exist, as shown by Smith & Clark (1975), but also asymmetric
equilibria cannot realize at α = 0.
As shown below, the flat geometry involves aspects which set it apart from other 2D

geometries and which might not have been anticipated. Unlike other geometries, the flow

† Email address for correspondence: luca.zannetti@polito.it
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2 Luca Zannetti and Alexandre Gourjii

Figure 1. Schematic of physical and transformed planes.

regularity at the flat-plate edges, that is the enforcement of the Kutta condition, implies
a zero global circulation and a relationship between the vortex equilibrium equations.
Moreover, continuation arguments as in Gallizio et al. (2010), suggest that the topology
of the wake past a flat plate is incompatible with the asymptotic Batchelor flow model.

2. Governing equations

In this section, we derive the governing equations for more general geometries. We use
the same flow model as in Elcrat et al. (2014), which refers to results presented at the
IUTAM Symposium on Vortex-Dynamics held in 2013 at Fukuoka (Japan), where two
standing point vortices are used to model the wake past bodies with two sharp edges.
In general, for any body geometry, the flow can be expressed by conformal mapping. A

schematic is shown in figure 1, pertinent to a body shaped as a circular arc. Let z = f(ζ)
be the mapping that transforms the exterior of the unit circle of the complex ζ-plane onto
the exterior of the z-plane body, such that f(∞) = ∞. The complex potential, expressed
in the ζ-plane, is

w = Q∞

(

e−iβζ +
eiβ

ζ

)

+
1

2πi



γ0 log ζ +

2
∑

j=1

γj log
ζ − ζj

ζ − 1/ζj



 , (2.1)

where γj , ζj (j = 1, 2) are the circulations and locations of the free vortices, respectively,
Q∞ exp(−iβ) = q∞ exp(−iα)(dz/dζ)∞, with q∞ and α being the flow velocity and
incidence at infinity on the physical plane, and γ0 is the total circulation, that is, the
circulation along a line which encloses the body and all vortices.
The complex velocity ż of a flow particle is ż = (dw/dζ)/(dz/dζ), with

dw

dζ
= Q∞

(

e−iβ −
eiβ

ζ2

)

+
1

2πi





γ0
ζ

+

2
∑

j=1

γj

(

1

ζ − ζj
−

1

ζ − 1/ζj

)



 , (2.2)

and the complex velocity żj of a free vortex is

żj = lim
z→zj

(

dw

dz
−

γj
2πi

1

z − zj

)

,

that is

żj =

(

ζ
′

j −
γj
4πi

d

dζj
log

dzj
dζj

)

/
dzj
dζj

(2.3)
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Figure 2. Flow past a circular arc (b = −0.5) at α = 0. Left: γ0 = 0, γ1 = −γ2 = −7.01,
z1 = z2 = 0.49 + i 0.56. Right: γ0 = −0.38, γ1 = −6.99, γ2 = 7.63, z1 = 0.64 + i 0.69,
z2 = 0.50 − i 0.47

Figure 3. Schematic of the flow-pattern of figure 2b.

where

ζ
′

j = lim
ζ→ζj

(

dw

dζ
−

γj
2πi

1

ζ − ζj

)

= (2.4)

= Q∞

(

e−iβ −
eiβ

ζ2j

)

+
1

2πi

[

γ0
ζj

− γj
1

ζj − 1/ζj
+ γk

(

1

ζj − ζk
−

1

ζj − 1/ζk

)

]

,

with j = 1, 2 and k = 2, 1. Relationship (2.3) between żj and ζj
′ expresses how the vortex

velocity transforms under conformal mapping and is generally referred to as the“Routh
rule” (see, for instance, Clements (1973)).
We first consider a body shaped as a circular arc. With reference to figure 1, the arc

edges are located at zT = ±i and the vertex at zV = b. The Jukowskii transformation

z =
1

2

(

|i− b|ζ + b−
1

|i− b|ζ + b

)

(2.5)

maps the arc onto the unit circle of the ζ-plane.
The presence of two trailing edges requires that a regular flow has to satisfy two Kutta

conditions:
(

dw

dζ

)

ζT1

=

(

dw

dζ

)

ζT2

= 0 (2.6)

3. Degrees of freedom

Once reference values of length and velocity are set, Eq. (2.1) shows that the flow
depends on eight real parameters: the angle of attack α, the circulations γ0, γ1, γ2 and
the complex locations ζ1, ζ2 of the free vortices. If the vortices are required to stand in

Page 3 of 11



4 Luca Zannetti and Alexandre Gourjii

equilibrium, the degrees of freedom reduce to four, for the vortex complex velocities (2.3)
have to be zero, i.e. żj = 0. If two Kutta conditions are to be satisfied, two additional
degrees of freedom are subtracted from the flow. In conclusion, for a given angle of attack
α, in general the flow past a body with two sharp edges is expected to have a single degree
of freedom.
In Elcrat et al. (2014), this degree of freedom is represented by the global circulation

γ0, whose free selection results in different wake configurations. As an example, figure 2
shows two different flow fields past a circular arc, that are obtained using the same far
field boundary conditions (α) but different global circulations γ0. The left-hand side a)
of the figure shows the symmetric streamline pattern relevant to a zero global circulation
γ0, while the right hand side b) shows the asymmetric pattern obtained for γ0 = −0.38.
A schematic of the streamline pattern of figure 2b is presented in figure 3.
The flow patterns shown in figure 2 can be regarded as inviscid models of steady

wakes past bluff bodies. According to Batchelor (1956), in the limit as Re → ∞, the
wake should be formed by two vortex patches. By desingularizing the point vortices into
vortex patches, as in Elcrat et al. (2000), the above solutions could be considered as the
seeds from which the Batchelor flow solutions grow. In this respect, as pointed out in
Elcrat et al. (2014), the two patterns in the figure are not equivalent. Let the wake be
defined as the region bounded by the separating streamlines (dashed lines), in a) these
streamlines join up at the stagnation point S and bound a closed wake, while in b) they
do not join up and the wake is open. According to the Batchelor flow solution (Batchelor
(1956)), only the closed topology a) is allowed because an embedded vortex patch, such
as the one replacing the lower vortex in b), would be surrounded by a potential flow and
would violate the maximum principle for vorticity (see Lugt (1985)).
The flow past a flat plate is an exception. Below we show that for a flat plate the

satisfaction of the Kutta conditions requires that, for any angle of attack α, the global
circulation has to be zero, that is γ0 = 0. According to the above arguments, one would
expect that this flow has no degrees of freedom and that the number of solutions should
be finite or zero. The above cited non existence of solution for a symmetric normal plate
(α = 0, γ0 = 0) seems to confirm this conclusion. On the contrary, we show that the flow
past an inclined flat plate still retains one degree of freedom, that is, that there is a locus
of infinite equilibrium configurations which satisfy the Kutta conditions, all with γ0 = 0.
Consider the force L = Lx−iLy acting on the plate and the Magnus forcesMj =Mjx−

iMjy exerted on the point vortices, where the subscripts x, y denote x, y components.
The Magnus forces

Mj = i γj żj

are non-zero for vortices which are held to stand in non-equilibrium locations, where
żj (equation (2.3)) is the velocity they would have if freely drifted by the stream. The
resultant force F = Fx−iFy on plate and vortices can be obtained by applying the steady-
state Blasius formula to a closed line c which includes plate and vortices; according to
the residue theorem, it yields:

F = L+
N
∑

Mj = i/2

∮

c

(dw/dζ)2(dζ/dz) dζ = i q∞ e−iαγ0, (3.1)

where N is the number of point vortices. If the vortices are standing in equilibrium, the
Magnus forces are zero and the force L is orthogonal to the flow velocity at infinity. As
shown, for instance, by Katz & Plotkin (2001), the force L is the resultant of the pressure
acting on the plate sides, which provides a contribution orthogonal to the plate, and of
the“suction forces”, which are parallel to the plate and are due to the flow singularities
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5

Figure 4. Streamlines for α = 30o. A(ϑ1 = 0.86): z1 = 1.05 + i 1.43, z2 = 1.80− i 0.34,
γ1 = −11.24, γ2 = 12.87; B(ϑ1 = 0.64): z1 = 1.97 + i 1.59, z2 = 3.45 − i 1.01, γ1 = −18.72,

γ2 = 18.87.

Figure 5. Schematic of the flow pattern of figure 4, case B.

Figure 6. Equilibrium manifold for α = 30o. Points A, B are relevant to figure 4.

that take place on the edges when the Kutta condition is not satisfied. This yields the
following statement:

If the Kutta condition is satisfied on both edges, the suction contributions are zero and the
force L is orthogonal to the plate. As a consequence, it can only be L = 0 and, according
to eq. (3.1), γ0 = 0.

Saffman & Sheffield (1977) found that for a single standing vortex (N=1) at any
incidence there is no equilibrium configuration that satisfies the Kutta condition at both
edges. This result is confirmed by inspection of eqs. (2.6) which for N = 1, γ0 = 0 and for
any value of the vortex location ζ1, becomes a set of two incompatible linear equations
for the single unknown γ1.
The degree of freedom seemingly lost because of the constraint γ0 = 0, is recovered
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6 Luca Zannetti and Alexandre Gourjii

Figure 7. Angle of attack α = 30o; a): ∆ψ and vT2
versus ϑ1; b) vortex circulations γ1 and γ2

versus ρ1; c):ρ1 versus ϑ1. Label A and B refer to figure 4.

Figure 8. Minimum ρ1 versus angle of attack α.

considering that for a flat plate the vortex equilibrium equations (Mj = 0) and the Kutta
conditions are not independent. In any flow configuration, whether or not in equilibrium,
when γ0 = 0, eq. (3.1) yields F = 0, that is, L = −

∑N
Mj. When the Kutta conditions

are satisfied L is orthogonal to the plate. For a plate located on the imaginary axis,
Ly = 0, that is

∑N Mjy = 0. The latter is a relationship between the Magnus forces
which results from the fulfillment of the Kutta conditions.
Here we study the case of two vortices (N = 2). Let the plate be placed on the

imaginary axis by setting b = 0 on the mapping (2.5), and let the flow be normalized by
assuming the velocity at infinity q∞ as reference velocity and the half-length of the plate
as reference length. Once γ0 is set to zero, for a given angle of attack α the flow depends
on six parameters, namely γ1, γ2, ρ1, ϑ1, ρ2, ϑ2, where

ζ1 = ρ1 e
iϑ1 , ζ2 = ρ2 e

iϑ2

are the vortex locations on the ζ-plane. The equilibrium configurations are solutions of
the system of five independent equations which express fulfillment of the Kutta conditions
and vortex equilibrium. In fact, in addition to the two Kutta conditions (2.6), the vortex
equilibrium can be expressed in terms of zero Magnus forces, that is,M1 =M2 = 0. Since,
as stated above, the fulfillment of the Kutta condition implies Im(M1) = −Im(M2), the
system can be closed by adding to (2.6) the three real equations

Re(M1) = 0, Re(M2) = 0, Im(M1) = 0. (3.2)

which are sufficient to ensure vortex equilibrium.

4. Examples

According to the above analysis, for given far-field boundary conditions the system
(2.6),(3.2) has one degree of freedom, which can be expressed by the free selection of
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7

one of the six parameters γ1, γ2, ρ1, ϑ1, ρ2, ϑ2. In the following examples we will select
either ρ1 or ϑ1. Equilibrium configurations have been obtained by means of the Newton
method for different values of the angle of attack α. Two numerical procedures, based on
home-made FORTRAN codes and on the Mathematica (2012) software, have been used
to cross check the results.

An example of solution is shown in figure 4, where streamline patterns are presented for
α = 30o and for two values of the parameter ϑ1, that is ϑ1 = 0.86 (case A) and ϑ1 = 0.64
(case B). Figure 5 shows a schematic of the streamline pattern of case B. The locus of
equilibrium locations for α = 30o is shown in figure 6 for the range 0.60 6 ϑ1 6 1.02.
The patterns for case A and B are topologically different. The pattern A is typical of a
flow past a bluff body which separates at both edges, while in B the lower edge acts as a
leading edge with a smoothly approaching flow. In case A the Kutta condition plays its
proper role of inviscid asymptotic model for viscous separation on a sharp edge, while in
B it assures smoothness to an incoming flow in a less physically-grounded way.

The topology of the streamline pattern of case A is the same as for the schematic
shown in figure 3: the separating streamlines do not join up at the stagnation point S
and, as a consequence, do not bound a closed wake. As in Elcrat et al. (2014), the lack
of wake closure can be detected by the difference between the stream-function value at
the stagnation point S and at the plate ∆ψ = ψS − ψ0. The case B has been obtained
by choosing the value of the free parameter ϑ1 such that ∆ψ = 0 but, as said above, the
flow pattern has no longer the topology of a wake past a bluff body. The nonexistence
of a closed-wake solution for α = 30o can also be inferred from figure 7a, where the
y-component of the flow velocity at the lower edge, vT2

, and ∆ψ are plotted versus ϑ1.
The “bluff-body regime”, that is, the flow that separates at the edges, corresponds to
the range with vT2

< 0; as shown by figure 7a, in that range ∆ψ 6= 0. The flow velocity
vT2

at the lower edge has been computed by the equation

vT2
= −Im

(

lim
ζ→−i

dw/dζ

dz/dζ

)

= Im

(

d2w

dζ2
ζ3
)

ζ=−i

.

Figure 7b shows the vortex strengths γ1,γ2 as functions of the parameter ρ1 along the
equilibrium manifold and illustrates how the vortex circulations increase with the distance
from the plate.

In Figure 7c, the distance ρ1 of the upper vortex from the origin of the ζ-plane has
been plotted versus ϑ1. It shows that there is a minimum value ρ1min

= 3.1926 below
which our numerical procedure has been unable to find other equilibrium configurations.

In addition to α = 30o, we tested other angles of attack, namely: α = 2o, 5o, 10o,
20o, 45o. For all of these angles of attack the flow features are qualitatively the same as
figures 4 and 7 pertinent to α = 30o

In figure 8 ρ1min
is plotted versus α. The results suggest that for any angle of attack α

there exists a minimum value ρ1min
which tends to infinity as α tends towards zero. This

behavior confirms the result that for an orthogonal flat plate there exists no standing
vortex pair which satisfies the Kutta conditions at the edges (Smith & Clark (1975)).

The tendency of ρ1min
to infinity as α tends to zero is confirmed by figure 9, where the

equilibrium manifold for an almost orthogonal plate (α = 2o) is compared to the manifold
corresponding to α = 45o. An interesting outcome of the figure is that the equilibrium
manifold tends to be symmetric as α tends to zero. In their non existence proof, Smith
& Clark (1975) considered the flow configuration as symmetric. The above analysis of
the degrees of freedom of the flow seems to indicate that asymmetric solutions might in
fact exist as, for instance, in the case of a flow past a circular cylinder (e.g., Iosilevskii &

Page 7 of 11



8 Luca Zannetti and Alexandre Gourjii

Figure 9. Equilibrium manifold for α = 2o and for α = 45o.

Figure 10. a): ∆ψ and vT2
versus ϑ1 for α = 2o. The dots refer to ρ1 = ρ1min

. b): streamlines
for α = 2o, ρ1 = ρ1min

= 46.47, ϑ1 = 0.545, ρ2 = 47.18, γ1 = −147.14, γ2 = 147.15.

Seginer (1994), Elcrat et al. (2014)). Our results suggest otherwise: asymmetric solutions
are unlikely to exist as they simmetrize as α tends to zero, and thus there is no solution
for α = 0.
Figure 10a for α = 2o shows that the wake closure behavior for α = 2o is similar to

the behavior shown by figure 7a for α = 300, that is, in the bluff-body regime (vT2
< 0),

the wake never closes (∆ψ 6= 0). We have verified this behavior also for the other tested
angles of attack α.
Figure 10b shows the streamline pattern for ρ1 = ρ1min

. The corresponding values of
∆ψ and vT2

are marked by dots in figure 10a. The lack of wake closure is not visible at the
scale of the figure and the pattern appears similar to that of a free vortex pair. Indeed,
if the minimum vortex distance from the plate (|z1|min) is selected as reference length
instead of the half-plate length, the figure suggests that as α→ 0 the plate vanishes into
the front stagnation point of a vortex-pair flow.

5. Linear stability

In order to study the stability of the detected equilibria, we rewrite eqs. (2.3) as

γj żj = γj ẋj − i γj ẏj =
∂K

∂yj
+ i

∂K

∂xj
(5.1)

where the Kirchhoff-Routh path function K(xj , yj), with j = 1, 2, has been introduced
(see, for instance Saffman (1992)). Eq. (5.1) has the form of a two degree of freedom
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Figure 11. Vortex trajectories resulting from a perturbation of the equilibrium configuration
A of figure 4 (α = 30o, ϑ1 = 0.86).

Hamiltonian system withK being the Hamiltonian and (
√

|γj |sgn(γj)xj ,
√

|γj |sgn(γj) yj)
the canonical variables. An exhaustive treatment of point-vortex Hamiltonian dynamics
has been provided by Newton (2000), more recent developments have been given by
Crowdy & Marshall (2005), Zannetti (2006), Vasconcelos et al. (2011).
Let H be the Hamiltonian of the vortex system on the transformed ζ-plane. Lin (1941)

has shown that K can be derived from H according to the relationship

K = H +
1

4π

2
∑

j=1

γ2j log

∣

∣

∣

∣

dzj
dζj

∣

∣

∣

∣

. (5.2)

where

H =

2
∑

j=1

γj

[

Q∞(ηj cosβ − ξj sinβ)

(

1−
1

ξ2j + η2j

)

+
γj
4π

log(ξ2j + η2j − 1)
]

−
γ1γ2
4π

log
(ξ1 − ξ2)

2 + (η1 − η2)
2

(ξ1ξ2 + η1η2 − 1)2 + (ξ1η2 − ξ2η1)2
,

with ξ + i η = ζ.
Following Zannetti & Franzese (1994), it is convenient to avoid the inversion of the

mapping z = f(ζ) and to express K as an explicit function of (ξj , ηj). Equation (5.1)
then becomes

γj ζ̇j = γj ξ̇j − iγj η̇j =

(

∂K

∂ηj
+ i

∂K

∂ξj

)

/Jj , (5.3)

where the Jacobian Jj = |dzj/dζj |
2 and j = 1, 2.

The linear stability analysis consists in computing the eigenvalues of the stability
matrix A which is associated to the first variation of system (5.3).
The equilibrium perturbation expressed by the first variation consists in a perturbation

of the vortex locations while keeping the vortex circulations unaltered. In so doing, the
Kutta condition is violated by the perturbation and, from a physical point of view, vortex
shedding is expected to be triggered at the plate edges. For the sake of simplicity and as
argued by Cai et al. (2003), this effect is here neglected.
As a consequence of the Hamiltonian character of system (5.3), the eigenvalues λ of

A can only come in real pairs (λ = ±a, a ∈ R), imaginary pairs (λ = ±i b, b ∈ R) and
complex quadruplets (λ = ±a ± i b, a, b ∈ R) (see Arnold (1991)). Indeed, the quartic
characteristic equation expressing the eigenvalues is biquadratic for any two degree of
freedom Hamiltonian system; by applying the Cayley-Hamilton theorem (see Gantmacher
(1966)), it results:

λ4 −
1

2
tr (AA)λ2 + det(A) = 0. (5.4)

Along the above detected equilibrium manifolds, eq. (5.4) yields two real and two
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imaginary pairs of eigenvalues λ. Since there is a real positive eigenvalue, all the de-
tected equilibrium configurations are unstable. Note that the absolute values of the real
eigenvalues are rather small. For instance, the eigenvalues pertinent to the configurations
labeled A and B in figure 6 are λ1,2 = ±i 0.27, λ3,4 = ±3.28× 10−5 and λ1,2 = ±i 0.095,
λ3,4 = ±1.57 × 10−4, respectively. This behavior is typical of the straight geometry
of the plate. For instance, the eigenvalues pertinent to the equilibrium configurations
past the circular arc shown in figures 2a and 2b) are λ1,2 = ±i 0.87, λ3,4 = ±0.66 and
λ1,2 = ±i 0.77, λ3,4 = ±0.59 respectively, hence much larger real eigenvalues than for the
straight flat plate. This fact can be explained by the fact that the real roots of eq. (5.4)

λ23,4 = tr(AA)/4 +
√

tr(AA)2/16− det(A)

(tr(AA) < 0, det(A) < 0) are nonzero because of the frozen vortex circulation assump-
tion, which determines a small, non-zero value of det(A). Indeed, if the intensities of the
perturbed vortices were adjusted to satisfy the Kutta condition at the edges, the rank of
A would drop to 3 as a consequence of the relationship Im(M1) = −Im(M2) presented
in sec. 3, which yields δẋ1 = −γ2/γ1 δẋ2, and det(A) would be zero.
A numerical evidence of the equilibrium instability is illustrated in figure 11, which

shows the initial part of the vortex trajectories following a small perturbation of the
configuration A of figure 6.

6. Concluding remarks

The regularity of the steady flow past a flat plate at incidence can be achieved by a
minimum of two vortices which stand in equilibrium and satisfy the Kutta conditions at
the plate edges.
There is a locus of such vortex pairs for any angle of attack α. The minimum distance

of the vortex pair from the plate depends on the angle of attack |α| and tends to infinity
as |α| → 0, that is, for a plate orthogonal to the flow. This result is consistent with the
Smith & Clark (1975) proof of nonexistence of symmetric equilibrium configurations for
orthogonal plates and suggests that asymmetric equilibrium configurations do not exist
either.
For the flat geometry, the regularity of flows with any number N > 2 of standing

vortices implies that the force L acting on the plate is zero. This result applies to any
regular inviscid flow field with a compact support for vorticity. For instance, it applies to
the growing vortex patches which can be obtained by desingularizing the point vortices
(as in Elcrat et al. (2000)).
In the bluff-body regime, that is, for a flow separating at both edges, let the wake be

defined as the region bounded by the separating streamlines. In the range 2o 6 α 6 45o

the wake is not closed. This suggests an infinite wake as Re → ∞. In this case the
vorticity support is not compact and the force acting on the plate can be different from
zero.
Linear stability analysis shows that the detected equilibria are unstable.
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