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Introduction

Nuclear reactor design and safety analysis require an accurate assessment of the power
distribution inside the core region and in the surrounding structures. The high level of def-
inition is imposed by the heterogeneity of the materials constituting the fuel assemblies
with respect to their neutron transport properties; the characteristic length-scale of power
variations inside the calculation domain may vary locally, introducing gradients that are to
be correctly taken into consideration. When a fine characterization of the nuclear power
is not viable, extremely expensive provisions have to be taken into account at the design
phase as well as during operation; in case of commercial reactors, this results in substan-
tial reductions of the profitability of the system. Moreover the national safety authorities
impose to the enterprises and research centers a continuous revision of their simulation
tools in order to minimize their uncertainties, task that can be achieved mainly by the im-
provement of the models and, secondly, of the numerical schemes.

Anyway, especially in the industrial framework, the quest for continuous modeling en-
hancements is in conflict with practicability issues.

The distribution of the power induced by fission may be described in terms of a single
equation, the linear Boltzmann equation for neutrons, whose structure does not allow a
direct numerical solution even with today’s computational resources and after decades of
advances in numerical schemes. Several approximations have been produced by reactor
physicists so far, but nowadays they still receive a meager welcome among nuclear profes-
sionals because of their complexity compared to simpler but more robust techniques. Time
consumption is still the first criterion for industry when evaluating an analysis method,
trivially because order millions of full-core flux assessments have to be performed for each
commercial nuclear reactor for its design phase, licensing and operation surveillance.

The objective of this thesis, which in clearly inspired by an industrial framework, is to
try and narrow the gap between theoretical neutron modeling and application; of course,
this ambitious plan is only partly accomplished here, but the aim is to introduce a set of
research topics which might be further developed in the future.

Even if the extent of the present work is to study innovative numerical methods in neu-
tron transport, for a more realistic research approach the same limitations as the industrial
framework are taken into account.

First, even if modern and fast computers are available to the scientific community through
the research centers, only limited computational resources were available to the author,
mimicking the actual conditions of the industrial world where the number of core-hours
per user are limited by the large amount of assessments to be performed simultaneously.
Moreover, as for all budget-constrained developments, an ideal applicability target in the
short-medium future is envisaged.

To respect these restrictions and accomplish the initial task, simple and practical solu-
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tions have been preferred for this thesis, both for the modeling aspect and for the imple-
mentation. The extensive use of second-order transport is due to these limits. Of course,
since there is no free lunch, the use this kind of approximation leads to results which do not
show the robustness of a consistent numerical scheme applied directly on the exact model;
these deviations are isolated and discussed.

This thesis is divided into three main chapters, preceded by a general overview. This
structure reflects the three main topics which were chosen for this research project.

Chapter 1 provides an introduction to some key topics which are needed to understand
the rest of the work. This part is intended to make the thesis self-consistent, so the author
recommends reading it to those which are not accustomed with high-order discretization
methods for differential equations and second-order transport approximations. Section
1.1 gathers basically all the models used in the chapters that follow, trying to derive them,
avoiding much of the details, from the transport equation for neutrons in order to under-
line their consistency or inconsistency when this is the case. Section 1.2 is devoted to the
introduction of the basics of the Spectral Element Method (SEM), which is the object of
Chapter 2. Leaving the analytical aspects to the works cited in the references, a simple ex-
ample of SEM implementation is given and commented step-by-step. These two sections
should also help the reader in familiarizing with the notation.

Chapter 2 develops the SEM approach and its use in conjunction with transport approx-
imations. As it is documented in the specialized numerical analysis handbooks and in
the MSc thesis of the author [Barbarino, 2010], the method has an excellent convergence
rate which outperforms most classical schemes, but it has also some important drawbacks
which sometimes seem to discourage its use for linear transport problems applied to non-
trivial benchmarks. In order to elaborate the methodology of the specific problems en-
countered in reactor physics, three aspects are addressed looking for improvements. The
first topic analyzed is related to the convergence order, whose value is less straightforward
to define a priori by means of functional analysis than other numerical schemes. The ad-
jective “spectral” refers in fact to the maximum order claimed, exponential with respect
to the average size of the mesh. A comprehensive set of convergence tests is carried out
in section 2.1, applying SEM to a few transport models and with the aid of manufactured
solutions, thus isolating the numerical effects from the deviations which are due only to
modeling approximations. Section 2.2 relaxes the hypothesis of grid conformity, replac-
ing the classical Galerkin variational formulation with the Discontinuous Galerkin theory,
characterized by a more flexible treatment of the mesh interfaces; this scheme allows lo-
cal grid refinement and opens the way, in perspective, to mesh adaption. Finally, section
2.3 presents a simple and sufficiently flexible technique to deform the boundaries of each
mesh, in order to adapt the grid to curved geometries. In this way, the advantages of SEM

can be applied to a vast class of common problems like lattice calculations. Moreover,
thanks to a change of the basis functions used in SEM, it is possible to obtain elements
with three sides (straight or deformed), that are a typical war horse of the Finite Element
approach.

Chapter 3 is essentially devoted to the most “industrial” part of the thesis, developed en-
tirely during the stay of the author in the AREVA NP headquarters in Paris. In AREVA, and
in all other nuclear engineering enterprises, neutron diffusion is still the preferred neu-
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tronic model for full-core studies. Better approximations are reserved for library prepa-
ration, fuel studies and code validation, none of these being typically too much time or
budget-constrained. Today needs start to require a certain level of improvement also in
full-core analyses, trying to fitly model localized dis-homogeneities and reduce the penal-
izing engineering margins which are taken as provisions. On the other hand, a change in
the model does not mean only an effort to write a new code, but has huge follow-ups due to
the validation processes required by the authorities. Second-order transport may support
the foreseen methodology update because it can be implemented re-using diffusion rou-
tines as the computational engine. The AN method, a second-order approximation of the
transport equation, has been introduced in some studies, and its effect is discussed. More-
over, some effort has been reserved to the introduction of linear anisotropy in the model.

The last topic is addressed in chapter 4, dealing with ray effects; they are a known issue of
the discrete ordinate approach (SN methods) which is responsible for a reduction in the ac-
curacy of the solution, especially in penetration problems with low scattering, like several
shielding calculations performed for operator safety concerns. Ray effects are here char-
acterized from a formal point of view in both static and time dependent situations. Then,
quantitative indicators are defined to help with the interpretation of the SN results. Based
on these studies, some mitigation measures are proposed and their efficacy is discussed.

Some of the topics are to be regarded as first approaches in reactor physics. The extent
of the PhD work does not allow a complete treatment of all aspects, which would require
a complete implementation and a long validation phase on a suitable benchmark base,
lasting years. The scope is to explore these rather innovative fields and suggest interesting
research topic to the scientific community.

This thesis is complemented by several tenth of hundreds of lines of codes, gathered
in a few demonstrative packages implementing the theoretical developments presented.
For the SEM part no “professional” dedicated libraries are available for the moment: three
different solvers have been created basically from scratch by the author. The first is a one-
dimensional code able to cope with multi-slab problems in an arbitrary number of energy
groups, for both critical and source-driven configurations. For a direct comparison of SEM

with other classical algorithms, also PN and SN solvers are available within the same en-
vironment. Envisaging a didactic purpose, this code has been equipped with a MATLAB®

GUI interface for launching and post-processing. Nonetheless, this solver may be promptly
used for instance for reflector homogenization. The Discontinuous Galerkin approach has
been implemented in a transport solver for non-conformal Cartesian grids (i.e. grids com-
posed by rectangles) able to cope with multi-group second-order transport in source and
critical mode. This code is written in Fortran 95, and is configured to run together with
Gnuplot to provide a graphical output. Advanced features like convergence acceleration
are available for critical calculations. Problems on deformed non-conformal grids are han-
dled with another solver, customized for specific domains. The realization of a general pur-
pose solver would have required too much time and would have largely passed the coding
skills of the author. The package is capable to solve source problems (extension to critical
ones is nonetheless simple) applying second-order transport.

The developments on the industrial core analysis are in form of modifications to exist-
ing code packages belonging to the AREVA production suite. Without disclosing sensible
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pieces of information about the software architecture, these codes are written in Fortran
interfaced with customized scripting languages; their structure is extremely complex and
results from many decades of continuous optimization driven by the specific activities per-
formed. The actions on these codes have touched only the static neutronic solvers, even-
tually modifying some cascades of classes to allow more cross sections to be passed from
the external libraries to the inner solvers. For the 1D cases and the part on anisotropy,
separated routines were developed in Fortran and SCILAB® frameworks.

The part on ray effect is pretty theoretical and the coding part has little relevance: just a
few hundreds lines of straightforward listings helped studying the different discretizations
by means of standard numerical tools.

Three articles have been published so far as a result of this work; they are reported in the
bibliography under the names of Barbarino et al. [2013c], Barbarino et al. [2014] and Dulla
et al. [2014]. In addition, a book chapter has been written and is available as Barbarino et al.
[2013b]. One more article concerning SEM is in preparation. Several proceedings, namely
Barbarino et al. [2011, 2012] and Barbarino and Tomatis [2013a,b], gather some additional
material presented during the international conferences attended. Finally, a few AREVA
technical reports have been produced, but they are not available to the public.
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1 Background concepts

This chapter is an introduction to the two main mathematical tools that provide the back-
ground of this thesis: second order transport approximations and the Spectral Element
method (SEM). The chapter is intended to make the reading of this thesis self-sustaining,
defining the notation and establishing concepts which will be used in all the following
chapters.

Section 1.1 introduces the Boltzmann neutron transport equation and its approxima-
tions. The aim is certainly not to provide a theory manual for neutronic specialists, but to
contextualize correctly the second order transport models, which are used throughout the
text; according to the author, the best way to accomplish this task is to draw the path of
successive hypotheses and simplifications from the integro-differential neutron transport
equation, and proceed in a deductive way. Of course, this process is done without linger-
ing on the details; the interested reader is strongly advised to consult the reference litera-
ture (for instance the books by Meghreblian and Holmes [1960], Lewis and Miller [1993] or
Hébert [2009]), which present the topic from a rigorous point of view.

Section 1.2 makes an overview of the basic concepts of the Spectral Element Method
(SEM) for elliptic problems, a numerical technique for the discretization of spatial trans-
port operators. The combined use of SEM and transport approximations has already been
covered partly in the master thesis of the author [Barbarino, 2010]; only the basic concepts
are here recalled, reduced to a few pages and directly applied to the solution of a simple
elliptic problem, in order to see the methodology in action. Nonetheless, notation is in-
troduced as well as some operators which are used in chapter 2, where the methodology
is extended; for this reason the reading of this section is quite compulsory for non spe-
cialists. This chapter does not contain all the theoretical developments which explain the
subtleties of the method; this is due both to the scope of the thesis – to provide a prac-
tical background for SEM implementation in neutron transport – and the complexity of
the topic, which requires a deep knowledge of functional analysis. The interested reader
should refer to Canuto et al. [2006, 2007] for an exhaustive presentation of the topic and to
Deville et al. [2002] for a more direct approach, mainly intended for engineers.

1.1 Transport

The starting point for all transport formulations and approximations is the Boltzmann
transport equation. This extremely general model can be adapted according to the type
of particle considered: for neutrons in matter one can suppose that no forces are acting on
them (no charge) and scattering is just the result of physical collisions in the background

11



1 Background concepts

medium. In the next section all the simplifying hypotheses are introduced, in order to de-
lineate correctly the descriptive limitations of the derived models, long before the accuracy
loss introduced by the numerical scheme chosen for the solution.

1.1.1 The Boltzmann equation for neutrons

All the present work is an effort to address the problem of solving a single equation, the
Boltzmann transport equation for neutrons. This model is the reference for the study of
the neutron distribution in phase space in presence of nuclear reactions. The derivation of
this equation is not introduced here (any transport textbook, like Prinja and Larsen [2010],
cover this topic); the equation is:

1

v(E)

∂Φ (r,E ,Ω, t )

∂t
+Ω ·∇φ (r,E ,Ω, t )+Σ (r,E , t )φ (r,E ,Ω, t ) =

=
∫

dE ′
∮

dΩ′Σs
(
r,E ′, t

)
φ

(
r,E ′,Ω′, t

)
fs

(
r,E ′ → E ,Ω′ ·Ω)+S (r,E ,Ω, t ) . (1.1)

The notation is standard; the unknown function is the angular flux φ, which represents
the density of neutrons traveled paths in a certain region of the phase space at time t . The
independent variables defining the phase space are the position r, the total energy E (or
alternately the speed v) and the direction assumed by the flight of the particles Ω. The
material in which the neutrons are being transported is defined by means of a set of proba-
bilities of interaction per unit path between the atoms of the matter and particles streaming
sufficiently close; for the moment they are the total cross section Σ (any interaction) and
the scattering cross sectionΣs; the latter is responsible for the streaming of neutrons across
regions of the phase space according to the scattering kernel fs. An external source S can
inject or remove particles in any point of the phase space.

For practical purposes, the scalar flux, whose definition is

Φ (r,E , t ) =
∮
φ (r,E ,Ω, t ) dΩ, (1.2)

is handier than the angular flux, being linked to the thermal power that can be extracted
from the medium.

Equation (1.1) has both a differential and an integral connotation (belongs to the class
of the integro-differential models), and so special numerical techniques were developed.
Typically they tend to eliminate one of the two features, as it will be clear later.

In case of fissionable material, if a particle undergoes fission (with probability per unit
length Σf it may emit a certain number of neutrons in a different point of the phase space.
This number follows a statistical distribution having ν as expected value. As in scattering,
all contributions from the other points of the phase space have to be considered. A simpli-
fication comes from the observation that fission always produces an isotropic emission of
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1.1 Transport

particles. So, the Boltzmann equation for a multiplicative medium is:

1

v(E)

∂φ (r,E ,Ω, t )

∂t
+Ω ·∇φ (r,E ,Ω, t )+Σ (r,E , t )φ (r,E ,Ω, t ) =

=
∫

dE ′
∮

dΩ′Σs
(
r,E ′, t

)
φ

(
r,E ′,Ω′, t

)
fs

(
r,E ′ → E ,Ω′ ·Ω)+

χ(r,E)

4π

∫ ∞

0
dE ′

∮
dΩ′νΣ f (r,E ′)φ(r,Ω′,E ′, t )+S (r,E , t ) . (1.3)

Finally, in steady state and in the absence of external sources, the balance between ab-
sorption and multiplication may damp the overall neutron population, keep it constant or
make it diverge. Introducing the multiplication factor k, the eigenvalue of the system, one
has

1

v(E)

∂φ (r,E ,Ω, t )

∂t
+Ω ·∇φ (r,E ,Ω, t )+Σ (r,E , t )φ (r,E ,Ω, t ) =

=
∫

dE ′
∮

dΩ′Σs
(
r,E ′, t

)
φ

(
r,E ′,Ω′, t

)
fs

(
r,E ′ → E ,Ω′ ·Ω)+

1

k

χ(r,E)

4π

∫ ∞

0
dE ′

∮
dΩ′νΣ f (r,E ′)φ(r,Ω′,E ′, t ). (1.4)

Boundary and interface conditions

Let the equation be defined on a finite region of space r ∈V . There are five basic boundary
conditions that may be imposed to the transport equation [Hébert, 2010]:

Albedo The known outgoing flux is related to the incoming flux by the following Robin
type condition

φ(rs,E ,Ω) =βφ(rs,E ,Ω′) Ω ·ns < 0, (1.5)

where ns is the outbound normal to the surface of V at the boundary point rs . if
β = 0, any outgoing particle will not re-enter, modeling the behavior at a vacuum
convex (non re-entrant) boundary. If β = 1, the particle is reflected; specular reflec-
tion satisfies the additional constraints Ω ·ns = −Ω′ ·ns and (Ω×Ω) ·ns = 0. Void
and reflective boundary conditions are almost the only boundary conditions used in
reactor analysis.

White It is a particular case of albedo condition where all particles bounce at the boundary
and are re-emitted inward with an isotropic angular distribution.

φ(rs ,E ,Ω) = β

π

∫
Ω·ns>0

d2Ω′ [Ω′ ·ns
]
φ(rs ,E ,Ω′), Ω ·ns < 0. (1.6)

Periodic The particle coming to one boundary is translated to a parallel boundary, emu-
lating a periodic lattice. If ∆r is the lattice pitch, one has

φ(rs ,E ,Ω) =φ(rs +∆r,E ,Ω). (1.7)
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1 Background concepts

Zero flux No particles are present of the boundary of V , i.e.

φ(rs ,E ,Ω) = 0. (1.8)

This condition is not physical, but quite used in the diffusive approximation.

Inside V , the angular flux is continuous alongΩ except if the source density contains a
Dirac delta contribution in space.

The energy discretization

The energy variable E is often discretized [Hébert, 2010], and the energy range is divided
into energy groups. All the distributions of interest are reformulated as averages over the
extension of each energy group:

φg (r,Ω, t ) =
∫ Eg

Eg−1

φ(r,E ,Ω, t )dE , (1.9a)

Φg (r, t ) =
∫ Eg

Eg−1

φ(r,E , t )dE , (1.9b)

Sg (r,Ω, t ) =
∫ Eg

Eg−1

S(r,E ,Ω, t )dE , (1.9c)

where Eg−1 and Eg identify the limits of the energy group g . The definition of the multi-
group cross sections introduce a non linearity in their definition, since they require the
knowledge of the scalar flux in order to conserve the reaction rate during the discretiza-
tion.

Given a certain set of condensed multigroup cross sections, the transport equation is
often solved in each energy range, where particles are then supposed to move with a sin-
gle energy. This simplifies the treatment, and do not interfere with the analytical nature
of the other integro-differential operators; for this reason quite often the numerical tech-
niques are presented applied over one-energy models only, as done in this thesis, with no
limitations on the generality of the approaches used.

Other techniques are available; for instance the migration mode method [Tomatis, 2010]
projects the energy dependence on a polynomial approximation space.

The equation in one and two-flat dimensions

Throughout the thesis some simplified models are developed, which may consider only a
subset of the spatial and angular scalar variables.

The one-dimensional version of the transport approximation is used to model the be-
havior of neutrons in slabs of material, where only a dimension is relevant. To obtain it, it
it sufficient to remember that in Cartesian coordinates the angular directionΩ is typically
written as

Ω=µex +cosϕ
√

1−µ2ey + sinϕ
√

1−µ2ez , (1.10)
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1.1 Transport

where µ is the cosine of the latitude θ and ϕ is the longitude. Integrating the angular flux
on ϕ one simply obtains:

1

v

∂φ(x,µ,E , t )

∂t
+µ∂φ(x,µ,E , t )

∂x
+Σ(x,E , t )φ(x,µ,E , t ) =∫

dE ′
∫ +1

−1
dµΣs(x,µ,E ′, t ) fs(x,µµ′,E ′ → E)+S(x,µ,E , t ), (1.11)

where the generic source may be also a fission term. For many simplified calculations,
like those in chapter 2, scattering is assumed isotropic with perfectly elastic collisions. In
addition to a monochromatic source, the equation reduces to

1

v

∂φ(x,µ, t )

∂t
+µ∂φ(x,µ, t )

∂x
+Σ(x, t )φ(x,µ, t ) = Σs(x, t )

2

∫ +1

−1
dµ′φ(x,µ′, t )+S(x,µ, t ). (1.12)

The equation in two dimensions is trivially found with a similar procedure. Indeed, in
the chapter dedicated to ray effect (chapter 4) a flat1 2D model is used to simplify some
developments:

cosθ
∂φ

∂x
+cosϕ

∂φ

∂y
+Σφ= Σs

2
Φ+S, (1.13)

where all dependencies are omitted. This formula models a steady-state population of neu-
trons which may only move in two directions in space, with always zero component in the
third one (z in this case). This is a different framework compared to a 2D model: this equa-
tion is not the projection of the transport equation on plane, but is endowed with a different
physics, which anyway is a sufficiently representative trade-off between reality and simple
analytical treatment.

1.1.2 The integral form of the transport equation

An alternative form of the neutron transport equation (1.1) can be obtained by a spatial
integration along the characteristic line of motion of neutrons, for both steady-state and
time-dependent situations [Prinja and Larsen, 2010; Barbarino et al., 2013b].

Using (1.1), the spatial dependency can be reformulated including the line along which
particles are moving:

1

v

∂φ (r,E ,Ω, t )

∂t
− ∂φ (r− sΩ,E ,Ω)

∂s
+Σ (r− sΩ,E , t )φ (r− sΩ,E ,Ω, t ) =Q (r− sΩ) , (1.14)

where s is the coordinate on the system of reference of the trajectory and Q gathers the
scattering term and the fixed and/or fission source. Equation (1.14) is also called charac-
teristic form of the transport equation. The streaming term ∇· (Ωφ) =Ω ·∇φ has become
a simple directional derivative in this reference. The Laplace transform is applied on t in

1To be considered an absolutely informal notation, suggested by the satirical novella “Flatland” by Abbott
[1884]. The characters of the book populate a fictional world where one Cartesian direction is forbidden.
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1 Background concepts

order to get rid, for the time being, of the time derivative, and the the integration on s is
performed. One obtains:

φ?
(
r,E ,Ω, p

)=φ? (
r− sΩ,E ,Ω, p

)
exp

[
−

∫ s

0
Σ

(
r− s′Ω,E

)
ds′

]
exp

(
−p

v
s
)

+
∫ s

0
Q

(
r− sΩ, p

)
exp

[
−

∫ s

0
Σ

(
r− s′′Ω,E

)
ds′′

]
exp

(
−p

v
s′

)
ds′. (1.15)

Then, the inverse Laplace transform is carried out and, extending the s coordinate up to
the non re-entrant boundary sB (r,Ω) of the domain, and waiting for the system to diffuse
all the initial distribution of particles, one obtains

φ (r,E ,Ω, t ) =
∫ sB (r,Ω)

0
Q

(
r− s′Ω,E ,Ω, t − s′

v

)
exp

[
−

∫ s′

0
ds′′Σ

(
r− s′′Ω,E

)]
ds′. (1.16)

Physically, the term

exp

[
−

∫ s′

0
ds′′Σ

(
r− s′′Ω,E

)]
(1.17)

has the meaning of the probability that the particles moving between r− s′Ω and r under-
goes a collision. The integral is also called optical path length, the distance measured in
terms of the local mean free path. Then, it is intuitive to see that equation (1.16) collects,
by integration along the points on the segment connecting r to the boundary and lying on
Ω, the contributions to the flux by all neutrons emitted or scattered in directionΩ that are
capable to reach r without undergoing collision.

In the particular case where all sources can be considered isotropic, i.e. Q(r,E ,Ω, t ) =
Q(r,E , t )/4π, the equation can be integrated over all directions, thus leading to an integral
expression for the scalar fluxΦ, called Peierls equation [Duderstadt and Martin, 1979]:

Φ (r,E , t ) = 1

4π

∫
Q

(
r′,E , t −

∣∣r−r′∣∣
v(E)

) exp

[
−

∫ |r−r′|
0

ds′Σ
(
r− r−r′

|r−r′| s′,E

)]
(r−r′)2 dr′, (1.18)

that in steady-state becomes:

Φ (r,E) = 1

4π

∫
Q

(
r′,E

) exp

[
−

∫ |r−r′|
0

ds′Σ
(
r− r−r′

|r−r′| s′,E

)]
(r−r′)2 dr′. (1.19)

This model will be used later as starting point to obtain a differential model, the AN model,
that will be used through the thesis. Nonetheless, it is the basis for many efficient transport
solvers used nowadays for lattice calculations.

1.1.3 Quick overview of some angular treatment methodologies

Several deterministic methods are available to treat the angular dependence of the neu-
tron transport equation. The most known are the spherical harmonics method, the dis-
crete ordinates method, the collision probability method and the method of characteristics
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1.1 Transport

[Hébert, 2010]. Some of them address the integro-differential form, others the integral one.
A huge literature is available on each of these algorithms; here, the fist two are very briefly
reviewed since they are used in the following.

The spherical harmonics method The spherical harmonics method, or PN method, ad-
dressed the integro-differential form in equation (1.1), by representing the angular flux as
a truncated series expansion in terms of spherical harmonics [Abramowitz and Stegun,
1972]. The use of weighted residual techniques allows then to get a finite set of differential
equations which can be solved with standard techniques.

The derivation of the method can be found for instance in Hébert [2006]. For what fol-
lows, it is worth just introducing the 1D slab formulation. One starts from the 1D transport
equation (1.12) and expands the flux as:

φ(x,µ) =
N∑
`=0

2`+1

2
φ`(x)P`(µ), (1.20)

where P` is the `-th order Legendre polynomial andφ` are the moments of the angular flux

φ`(x) =
∫ +1

−1
P`(µ)φ(x,µ)dµ.

The moments
{
φ`

}
with ` = 0, . . . , N become the new unknowns to be determined. Also

the source can be expanded in moments, {S`}. Then, one substitutes these expansions into
(1.12) and applies the weighted residual technique multiplying by Pm(µ) and integrating in
[−1,+1]. After some algebraic elaborations one obtains

`

2`+1

dφ`−1(x)

dx
+ `+1

2`+1

dφ`+1(x)

dx
+Σ(x)φ`(x) =Σs(x) f`Φ(x)+S`(x). (1.21)

Albedo boundary conditions can be imposed, in the approximation used by Marshak. It
can be written as (

1+β)
φ`(x±)± (1−β)

N−1∑
m=0

M`,mφm(x±) = 0, (1.22)

where x± is the left or right boundary, ` is odd and 1 ≤ ` ≤ N , m is even and the elements
of the M matrix are

M`,m = (2m +1)
∫ 1

0
P`(µ)Pm(µ). (1.23)

The discrete ordinate method The disrcrete ordinates method, or SN method, solves the
transport equation along the directions identified by a finite set of values Ωn (or equiva-
lently by a set of director cosines), always in even number.

According to the type of geometry, the director cosines are chosen so as to integrate
polynomials with maximum accuracy [Hébert, 2010]. In 1D slab geometry, they are triv-
ially identified by the nodes of the Gauss Legendre quadrature formula [Abramowitz and
Stegun, 1972]. The 1D SN transport equation is then

µn
dφn(x)

dx
+Σ(x)φn(x) = Σs

2

2N∑
m=1

wmφm(x)+Sn(x), (1.24)
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1 Background concepts

where {µn} and {wn} are the nodes and weights of the chosen quadrature formula, φn(x) =
φ(x,µn) and Sn(x) = S(x,µn).

Void boundary conditions are usually imposed by Mark formalism, requiring that all φn

whose director cosine is inbound at a certain boundary point to vanish. Reflection is im-
posed by equating the φn with opposed director cosines.

1.1.4 Second-order transport

The use of second-order methods, also called even-parity methods, for the solution of neu-
tron transport problems has increased in the last two decades [Lewis, 2010]. The eye-
catching differences stand in the second-order streaming operator, opposed to the first
order which is observed in (1.3), and in the fact that the angle is solved in half of the do-
main. First and second-order transport approximations may be cast in differential form,
but the nature of the equations obtained and the solution methods for large engineering
problems are contrasting.

From an historical point of view, diffusion theory is the first second-order transport ap-
proximation to be used, and general even parity transport and the variational framework
are well-known at least since 1961 with the work by Vladimirov [1961]. However, computers
used in early computational transport did not have sufficient memory to cope with large
differential problems, and other methods, especially those able to “march” in space with-
out too much memory footprint, were largely preferred. With the advance of computer
performances in the 1990s, second-order transport started to be applied on larger prob-
lems, and now it is a tool for specific engineering tasks.

In this very short section the general second-order transport equation is introduced.
Then, the PN and SN methods presented in section 1.1.3 are applied in the 1D case, leading
to two equivalent formulations (but they may differ according to the numerical method
used for the space discretization) which will be object of chapter 2. The SPN model is also
presented, which cannot be directly linked to the second-order transport equation, but
is by far the election second-order model for more than one dimension. Finally, the AN

model is introduced, following a peculiar derivation from the integral transport equation
(1.19) and suggesting its equivalence to SPN .

General second-order neutron transport equation

Consider the steady-state, one-energy, transport equation in the isotropic medium (for
simplicity), namely equation (1.4); then, all neutrons have the same energy E = const.. In
this framework only the zeroth-order moment of scattering is non vanishing, leading to:

Ω ·∇φ(r,Ω)+Σ(r)φ(r,Ω) = Σs(r)

4π

∫
φ(r,Ω′)dΩ′+S(r). (1.25)

Defining the even and odd components of the angular flux [Lewis, 2010] respectively as:

φ+(r,Ω) = 1

2

[
φ(r,Ω)+φ(r,−Ω)

]
,

φ−(r,Ω) = 1

2

[
φ(r,Ω)−φ(r,−Ω)

]
,

(1.26)
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1.1 Transport

one may write (1.25) for Ω and −Ω; adding and subtracting the two versions one obtains
a set of first-order equations in φ+, φ− and the scalar flux Φ. Finally, eliminating φ− one
obtains the even-parity transport equation:

−Ω ·∇ 1

Σ(r)
Ω∇φ+(r,Ω)+Σ(r)φ+(r,Ω) = Σs(r)

4π
Φ(r)+S(r), (1.27)

where the scalar fluxΦ is formulated as dependent on the even parity flux

Φ(r) =
∫
φ+(r,Ω)dΩ. (1.28)

Eliminating φ− in place of φ− brings the odd-parity equation, where the neutron current
appear.

Since it is extensively used in chapter 2, it is worth introducing and elaborating the 1D
version of the equation. From (1.27) one obtains

−µ2 ∂

∂x

( 1

Σt(x)

∂φ+(x,µ)

∂x

)
+ Σ(x)φ+(x,µ) = Σs(x)

2
Φ (x) +Q(x,µ), (1.29)

where the scalar flux may be simplified to

Φ(x) =
∫ +1

−1
φ+(x,µ)dµ= 2

∫ +1

0
φ+(x,µ)dµ, (1.30)

because of the parity required to φ+. Moreover, if the even and odd-parity sources are
defined similarly to (1.26), the source term may be decomposed as follows

Q(x,µ) = S+(x,µ)− µ

Σ(x)

∂S−

∂x
(x,µ). (1.31)

The equation must be supplied with proper boundary conditions, which must be formu-
lated to include the even parity flux. For a 1D problem with x ∈ [a,b], void boundary con-
ditions on the angular flux are

φ(a,µ) = 0, ∀µ ∈ [0,1]; ψ(b,µ) = 0, ∀µ ∈ [−1,0]. (1.32)

Assuming that no emission from the external source is taking place on the boundary, i.e.
S(a,µ) = S(b,µ) = 0, one can write (1.29), impose (1.32) and elaborate using the definitions
of φ+ and φ−, obtaining the following Robin type boundary conditions:

µ
∂φ+

∂x
(a,µ) − Σ(a)φ+(a,µ) = 0, ∀µ ∈ [0,1],

µ
∂ψ+

∂x
(b,µ) + Σ(b)ψ+(b,µ) = 0, ∀µ ∈ [−1,0].

(1.33)

For the reflective boundary conditions, one has simply to put to zero the derivatives of φ+

at the boundaries.
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1 Background concepts

Even-parity SN and PN formalisms

The discrete ordinate model A discrete ordinate model can be derived easily from the
second-order transport equation (1.29) with boundary conditions given by (1.32), assum-
ing piece-wise constant cross sections. For brevity, it is useful to set the following defini-
tions:

ϕ`(x) :=ψ+(x,µ`) and Q`(x) :=Q(x,µ`). (1.34)

Assuming a domain with homogeneous material properties, and choosing a set of N sym-
metric angular directions {µ`}N

`=1, one can write (1.29) for each direction µ` > 0, obtaining
the following system of coupled differential equations:

−
µ2
`

Σt

d2ϕ`(x)

dx2 +Σtϕ`(x) = Σs

2
φ(x)+Q`(x), `= 1, . . . , N /2. (1.35)

Recalling (1.32), at the boundary points a and b one can write:

µ`
dϕ`
dx

(a) − Σt(a)ϕ`(a) = 0,

µ`
dϕ`
dx

(b) + Σt(b)ϕ`(b) = 0, `= 1, . . . , N /2.
(1.36)

Interface conditions need also to be imposed at points x∂ between two different homoge-
neous sub-domains:

ϕ`(x−
∂ ) =ϕ`(x+

∂ )

1

Σt(x−
∂

)

dϕ`(x−
∂

)

dx
= 1

Σt(x+
∂

)

dϕ`(x+
∂

)

dx
, `= 1, . . . , N /2.

(1.37)

If the directions are chosen as the nodes of a suitable quadrature formula, the scalar flux
can be written as:

φ(x) = 2
N /2∑
`=1

w`ϕ`(x), (1.38)

where {w`}N
`=1 is the set of quadrature weights. Note that, for the even parity approach,

one needs to use only half of the nodes and weights of a quadrature set to evaluate the total
flux, since ψ+(x,µ) =ψ+(x,−µ).

Using a compact matrix notation, the set of N /2 ordinary differential equations given
in (1.35) and the two boundary conditions given in (1.36) become for each homogeneous
subdomain:

− 1

Σt
D

d2ϕ

dx2 +Σtϕ(x) =ΣsWϕ(x)+Q(x), (1.39)

and

D1/2 dϕ

dx
(a)−Σt(a)ϕ(a) =0,D1/2 dϕ

dx
(b)+Σt(b)ϕ(b) =0, (1.40)

withϕ(x) := {ϕ1(x), . . . ,ϕN /2}T andQ(x) := {Q1(x), . . . ,QN /2(x)}T . The (N /2)× (N /2) diago-
nal matrix D has the non-zero elements equal to µ2

`
, while W contains N /2 identical rows

with one Gaussian quadrature weight w` per column. Matrix D1/2 is clearly diagonal with
non-zero elements equal to µ`.
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1.1 Transport

The even-parity spherical harmonics approach The angular treatment can be dealt with
adopting the spherical harmonics approach, that amounts to an expansion in terms of Leg-
endre polynomials in plane geometry, thus leading to a set of coupled equations for the
even moments of the flux. The angular even parity flux and source are expanded as:

φ+(x,µ) =
∞∑
`=0

4`+1

2
φ2`(µ), (1.41)

S+(x,µ) =
∞∑
`=0

4`+1

2
S2`(x)P2`(µ),

S−(x,µ) =
∞∑
`=0

4`+3

2
S2`+1(x)P2`+1(µ).

(1.42)

It can be easily noticed that the zeroth-order moment of the angular flux φ0 coincides with
the scalar flux Φ defined by (1.30). Inserting (1.41) and (1.42) into (1.29) and (1.31) and
using the Legendre polynomial orthogonality property and the three term recurrence rela-
tionship [Abramowitz and Stegun, 1972], an infinite set of coupled second-order differen-
tial equations is obtained. An approximation scheme follows after truncation at, say, `= N ,
setting d2φ2N+2/dx2 = 0. This leads to the P2N+1 approximation to the transport equation.
In compact matrix notation, for a homogeneous region one has:

− 1

Σ
D

d2φ

dx2 +ΣIcφ(x) =Q(x), (1.43)

where D is an unsymmetrical tri-diagonal matrix and Ic is the identity matrix where the
first element is changed to (1−Σs/Σ); the two vectorsφ(x) andQ(x) gather all the unknown
moments of the flux and the known moments of the source, respectively:

φ(x) = (
φ0(x),φ2(x), . . . ,φ2N (x)

)T , Q(x) := (Q0(x),Q2(x), . . . ,Q2N (x))T . (1.44)

The vacuum boundary conditions (1.5) cannot be fulfilled exactly and one must extend
the classical conditions of Mark or Marshak type, developed for the first-order transport
formulation. Using the formulation by Mark, for instance, at the left boundary of the do-
main, one imposes

µn
∂ψ+

∂x
(a,µn)−Σtψ

+(a,µn) = 0, n = 1,2, . . . , N +1, (1.45)

with

P2N+1(µn) = 0, µn > 0. (1.46)

The simplified spherical harmonics method (SPN )

The SPN method is an annular discretization which is based on an incomplete basis of or-
thogonal functions, with the advantage of bringing a system of differential equations with
diffusive structure and a limited number of unknowns, that can be solved in 2D and 3D

21



1 Background concepts

situations where the “parent” (in a very broad sense) method PN cannot be used basically
for memory reasons [Hébert, 2010; Lewis, 2010].

The derivation is due to Gelbard [1960] in a quite heuristic form, later consolidated by
several authors (for instance Pomraning [1993] and Larsen et al. [1996]). Basically, Gelbard
took the 1D PN equation (1.21) and replaced the total derivatives with a divergence for the
even equations and a gradient for the odd ones, obtaining:

2n +1

4n +1
∇·φ2n+1 +

2n

4n +1
∇·φ2n−1 +Σtr,2nφ2n = 1

k
νΣ f f0δn0,

2n +2

4n +3
∇φ2n+2 +

2n +1

4n +3
∇φ2n +Σtr,2n+1φ2n+1 = 0,

(1.47)

where Σtr,n =Σt −Σs,n is called n-th order transport cross section.
Even though this derivation starts from the spherical harmonics method, there is no for-

mal link between PN and SPN . A few remarks should be done in the use of the SPN method
for transport calculations [Hébert, 2010]:

• SP1, the lowest order approximation, is equivalent to P1 in all dimensions; moreover,
if scattering is isotropic, it is equivalent to diffusion.

• In 1D, the SPN , PN and SN+1 methods are equivalent

• SPN uses an incomplete basis to expand the angular flux. This means that the numer-
ical results generally do not converge to the real transport solutions. Anyway, there
is a good quantity of literature supporting the improvement of accuracy with higher
orders N , at least for the configurations where transport effect are not paramount.

The AN approximation

By substitution in (1.47) of the odd moments φ2n+1 and φ2n−1 in the even equations, one
obtains a general second-order form:−∇

2


v0 w0 0 · · · 0
u2 v2 w2 · · · 0
...

...
...

...
...

0 · · · uN−3 vN−3 wN−3

0 · · · 0 uN−1 vN−1

+diag


Σtr,0

Σtr,2

. . .
Σtr,N−3

Σtr,N−1






φ0

φ2
...

φN−3

φN−1

= 1

k


νΣ f φ0

0
...
0
0

 , (1.48a)

where

um = 1

Σtr,m−1

m(m −1)

(2m +1)(2m −1)
,

vm = 1

Σtr,m−1

m2

(2m +1)(2m −1)
+ 1

Σtr,m+1

(m +1)2

(2m +1)(2m +3)
,

wm = 1

Σtr,m+1

(m +1)(m +2)

(2m +1)(2m +3)
,

(1.48b)
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1.1 Transport

for m = 0,2, . . . , N −1.
Moreover, to the extent of this section, isotropic scattering will be considered, i.e. Σtr,n =

Σ, for n > 0 (trivially Σtr,0 =Σ−Σs). In this case, system (1.48) can be simplified as

− 1

Σ
∇2 (

Aφ
)+Σφ= q, (1.49)

where matrix A contains only the numerical coefficients (1.48b), the transport cross sec-
tions being gathered outside since they are all equal to Σ; the source q contains both iso-
tropic scattering and fission (or possibly a fixed source), i.e. q =Σsφ0 + (1/k)νΣf.

Matrix A has some interesting properties which are demonstrated in Ciolini et al. [2002]:
first, its N eigenvalues are real, distinct and correspond to the first N zeros µα, α= 1, . . . , N
of the Legendre Polynomial of order 2N , all elevated to the second power. Moreover, its
eignvectors can be easily written by taking the set of even Legendre polynomials from order
0 to 2N −2: the components of each eigenvector are the values of the polynomials in one
of the aforementioned zeros, i.e.

ψα = (
P0(µα),P2(µα), . . . ,P2N−2(µα)

)T , α= 1,2, . . . , N . (1.50)

The presence of the tridiagonal second-order operator ∇2A·, and thus of the coupling of
the equations through the differential term, is a limiting feature from the implementation
point of view because it requires a specific solver. It is possible to diagonalize this operator
and shift the coupling to the linear terms, obtaining a set of diffusion-like equations, with
just one ∇2 operator for each line.

The procedure is quite straightforward. First, matrix A is decomposed according to the
definition of diagonal matrix:

A = GDGT , (1.51)

where G is a square matrix whose columns are the eigenvectors ψα of A, while D is a di-
agonal matrix containing the eigenvalues, i.e. D = diag(µ2

1,µ2
2, . . . ,µ2

N ). Second, the flux is
projected on the basis formed by the eigenvectors

φ= Gϕ, (1.52)

where vectorϕ(r) contains the pseudo-fluxes, a set of N scalar functions

ϕ= (
ϕ1,ϕ2, . . . ,ϕN

)T , (1.53)

and constitutes the new unknowns of the problem. In particular, the scalar flux Φ(r) =
φ0(r), usually the only component of practical interest, may be expressed as

Φ(r) =
N∑
α=1

wαϕ(r), (1.54)

where wα are the first components of each eigenvector (the first row of G).
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Equations (1.51) and (1.52) are then substituted into (1.49), which is then left and right
multiplied by G−1. Imposing a specific normalization to G which causes the first row of G
to be filled with ones, one obtains

− µ2
α

Σ
∇2ϕα(r)+Σϕα(r) =Σs

N∑
β=1

wβϕβ(r)+q(r), (α= 1,2, . . . , N ) , (1.55)

where wβ are now equal to the weights of the Gauss-Legendre formula of order 2N , having
as nodes the same µα appearing in front of the differential operator. System (1.55) is called
the AN approximation [Coppa and Ravetto, 1982].

The evaluation of φ1 leads to the computation of the current. By inserting the AN solu-
tion into (1.47) one has

J (r) =− 1

Σ

N∑
α=1

wαµ
2
α∇ϕα. (1.56)

It is interesting to note that this relation may be obtained by the weighted sums of the
pseudo-currents, the quantities obtained in direct analogy to the diffusion currents accord-
ing to Fick’s law

J (r) =
N∑
α=1

wαjα(r) =
N∑
α=1

wα

(
−µ

2
α

Σ
∇ϕ(r)

)
. (1.57)

In the form (1.55) the model is amenable only to homogeneous domains. In the cited
references it is shown that the suitable interface conditions to be enforced at ri j where two
homogeneous regionsΩ(i ) andΩ( j ) meet are:

ϕ(i )
α

(
ri j

)=ϕ( j )
α

(
ri j

)
. (1.58)

On the outer boundary r∂, one can use a reflective condition for each pseudo-flux (Neu-
mann type)

dϕα
dn

(r∂) = 0, (1.59)

or the vacuum Mark boundary condition

− dϕα
dn

(r∂) = Σ

µα
ϕα (r∂) . (1.60)

Each condition involves only a single pseudo-group.
For multigroup calculations, there is a set like (1.55) for each group. For G groups, the

AN model is

µ2
α

Σg
∇2ϕα,g (r)−Σgϕα,g (r)+

G∑
g ′=1

(
Σs,0,g ′ +χg

1

k
νΣf,g ′

) N∑
β=1

wβϕβ,g ′ (r) = 0, (1.61)

for g = 1, . . . ,G and α = 1, . . . , N . Interface and boundary equations are modified accord-
ingly, still being a set of coupling relations involving only a condition on a single pseudo-
flux of each group.
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1.1 Transport

The AN formalism is just a projection of the SPN transport approximation on a differ-
ent basis, and models the transport phenomena in the same way (under the conditions
of isotropy of scattering)2. The added value is that it is formally equivalent to a set of
multigroup diffusion equations (including boundary and interface conditions), and thus
in principles any multigroup solver should be able to cope with these calculations without
any major modification. Chapter 3 deals with the industrial implementation of this model.

Derivation from integral transport The AN approximation may also derive directly from
the neutron transport equation recast in integral form, under some simplifying conditions.
This derivation helps unveiling some of the meaning of each AN pseudo-fluxϕα; moreover,
it provides a consistency proof for the validity of the SPN model, which was questioned at
its appearance because of its heuristic derivation by Gelbard [1960].

The integral transport equation (1.18) can be simplified in case of homogeneous medium
and isotropic scattering simply as

Φ(r) = e−Σ|r−r
′|

4π|r−r′|2
[
ΣsΦ(r′)+ 1

k
νΣ f Φ(r′)

]
dr′. (1.62)

The kernel of this integral may be considered as the result of the following integration

e−sΣ

4πs2 = 1

4πs

∫ 1

0
Σe−sΣ/µ dµ

µ2 , (1.63)

and thus it may be approximated by a Gauss-Legendre quadrature formula of degree N
(having weights w and nodes µ) on [0,1], as follows

e−sΣ

4πs2 ≈
N∑
α=1

wα
Σe−sΣ/µα

4πsµ2
α

. (1.64)

It should be noted that the terms in the summation have the formal structure of kernels of
the diffusion equation in integral form [Coppa et al., 2011]. By substitution one has

Φ(r) =
N∑
α=1

wα

∫
D

e−Σ|r−r
′|/µα

4π|r−r′|µ2
α

[
ΣsΦ(r′)+ 1

k
νΣ f Φ(r′)

]
dr′

=
N∑
α=1

wαϕα (r) .

(1.65)

Given the following identity, demonstrated in Coppa and Ravetto [1982]:

(∇2
r −a2) e−a|r−r′|

|r−r′| +4πδ
(
r−r′)= 0, (1.66)

2 As SPN in isotropic conditions, at lowest order the AN formulation is equivalent to diffusion. In fact the
Gauss-Legendre formula of order 2N = 2 has two nodes at ±1/

p
3, with unitary weights. The only equation

of the A1 model is then

− 1

3Σ
∇2ϕ1(r)+ (Σ−Σs )ϕ1(r) = S(r),

where φ1 =Φ for (1.54), and the diffusion coefficient is defined as D = 1/(3Σ).
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1 Background concepts

one gets back to the differential AN operator.
The derivations helps highlighting the fact that the neutron flux is approximated by a su-

perposition of N fictitious neutron population following a diffusive behavior, with adjusted
parameters.

Anisotrpic AN

In order to obtain a more general form of equation (1.55), a step backwards in the deriva-
tion is necessary. Starting from (1.48), it is now supposed that scattering is linearly anisotro-
pic, i.e. Σtr,n =Σ, starting from n = 2, while Σtr,0 and Σtr,1 have non-zero values. Using then
the same procedure outlined in the previous sections, one obtains [Coppa and Ravetto,
1982]

µ2
α

Σ
∇2ϕα−Σϕα+

(
Σs,0 +

1

k
νΣ f

)
Φ−3Σs,1

µ2
α

Σ
∇·J = 0, (1.67)

where Σs,1 = Σ−Σtr,1 is the first moment of scattering and the current J is defined after
(1.48) as:

J =−
N∑
α=1

wα
µ2
α

Σtr,1
∇ϕα. (1.68)

The multigroup version of (1.67) is

µ2
α

Σt ,g
∇2ϕα,g −Σgϕα,g +

G∑
g ′=1

[
Σs,0,g ′→g +

1

k
χg νΣ f ,g ′

]
Φg ′ −3Σs,1,g

µ2
α

Σt ,g
∇·Jg = 0, (1.69)

the current being simply

Jg =−
N∑
α=1

wα
µ2
α

Σtr,g
∇ϕα,g . (1.70)

Some methods were studied for the solution of this model, and some results were pro-
duced. This activity is part of the PhD program and is introduced in chapter 3, together
with the implementation of the isotropic AN formulation in core simulators.

1.2 The Spectral Element method

Simulation of reactor physics requires the solution of the multi-group Boltzmann equation
in complicated geometries. Approximate models, such as classic PN and SN or AN meth-
ods, reduce the problem to a system of coupled partial differential equations in the space
variables. Depending on the approximation, the equations are first or second-order. After-
wards, the problem is handled by a space discretization scheme. Several approaches have
been developed in the past for the space discretization of the problem, and have been im-
plemented in reactor codes [Lewis and Miller, 1993]. The spectral element method (SEM)
is a new space discretization scheme in this context, deserving careful attention.

Like the Finite Element Method (FEM), SEM is a variational technique ideally suited for
second-order problems and it is highly accurate when applied to fairly regular problems
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1.2 The Spectral Element method

[Deville et al., 2002]. The error reduction as a function of the number of degrees of free-
dom in the most favorable cases shows exponential behaviour which is much better than
the polynomial error reduction characterizing the use of low-order methods such as finite
differences (FD) or Lagrangian FEM. The one dimensional SEM discretization technique
is quite simple: the problem domain is partitioned into fairly large sub-domains, and into
each sub-domain one introduces Lagrange interpolation polynomials of degree k on a con-
venient (i.e Gauss-Lobatto) grid with (K +1) nodes including the end points to ensure con-
tinuity, as it will be explained in section 1.2.1. Using the nodal values and the associated
interpolation polynomials one builds a trial function that is introduced into the weak for-
mulation of the problem. All quadratures involved in this process (namely the inner prod-
ucts of the basis functions or of their derivatives) are performed on the Gaussian grid. The
resulting algebraic system is solved using one of the common iterative techniques (like pre-
conditioned GMRES [Saad and Schultz, 1986; Deville et al., 1987]) to deal with side-effects
such as the large number of unknowns or ill-conditioning of the associated linear system.
An interesting and convenient aspect of the method lies in the fact that multi-dimensional
problems are systematically handled in quadrangular geometry (even deformed ones as
shown later on), with the help of tensor products. Finally, refinement of the computation
comes either by increasing the number of sub-domains (reminding the h-version of FEM)
or by increasing the degree of the Gaussian grid (reminding the p-version of FEM).

This section is an introduction to the method of the spectral elements for transport ap-
plications. Most of the material comes from the MSc thesis of the author, defended in
November 2010 at the Politecnico di Torino [Barbarino, 2010]; other sources are reference
books and articles. The developments on this subject carried out during the PhD program
are addressed in chapter 2, but it is mandatory to become familiar with the following few
concepts in order to read it profitably.

1.2.1 Some generalities of the method

Spectral Element Methods (SEM) are one of the families of numerical methods obtained
from the application of the Galerkin variational procedure. The first formalization of SEM

is dated back to 1984, in the article by Patera [1984]. They have a tight relation with finite
element discretization (FEM), including features of both p and h-versions.

The connection with the h-version of the finite element method stands in the use of a
Lagrangian interpolation basis; it should be noted that all basis functions have essentially
local support, restricted to the element’s domain. The SEM shares with the p-version, in-
stead, the predilection for high order polynomials on a fixed (and often quite coarse) grid.

The specific feature of SEM is the synergy between orthogonal polynomials and Gaussian
quadrature. The orthogonality of typical basis functions of FEM is mainly due to the fact
that local superimposition is avoided, while in the SEM this property is induced both by
their topological nature (no trans-element extension) and analytical form.

From the first attempts to consolidate this method, two main variants have been pro-
posed, based respectively on Chebyshev and Legendre polynomials. In both cases these
polynomials are used to write a set of Lagrangian interpolants on a special grid, generated
according to the nodes of the Gauss-Lobatto-Legendre (GLL) quadrature formula. Cheby-
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shev polynomials were introduced first, because of the possibility to exploit fast transform
techniques; moreover, the quadratures needed to evaluate the basic operators (stiffness
and mass matrices) have also analytical form. Even if the results showed the expected ex-
ponential behavior of the error for smooth problems, the implementation was not straight-
forward and was abandoned if favor of the Legendre version.

A priori error estimates and advantage over FEM A complete treatment of the basics of
the SEM method is definitely out of the scope of this thesis; excellent references for a com-
plete overview of the mathematical justification of the method and its performances are
the books by Canuto et al. [2006, 2007] and Quarteroni [2009]. A simplified approach, in-
tended for implementation, is presented by Deville et al. [2002] and Karniadakis and Sher-
win [2005].

In what follows a simple comparison between SEM and FEM is introduced, based on the
a priori error estimates that are obtained with some notions of functional analysis.

As known, all the numerical methods based on the Galerkin procedure do not address
directly the given differential problem, but transform it into a variational problem whose
solution is in general weaker, meaning that the regularity requirements are relaxed com-
pared to those requested by the original form.

Consider a simple elliptic problem on the domainΩ. If u ∈ H r+1(Ω) is the exact solution
of the associated variational problem (where H denotes a Sobolev space) and uh is the
approximated solution obtained using FEM of order r and mesh average size h, one can
affirm that

‖u −uh‖H 1(Ω) ≤C hr |u|H r+1(Ω) . (1.71)

Thus, the error can be reduced by decreasing h, i.e. refining the grid, or increasing r , using
elements with higher order, always if u has a sufficient regularity. In any case, the error is
reduced by the parameters of the method only.

Indeed, if SEM is used with elements of order N and size h, it is true that

‖u −uh‖H 1(Ω) ≤Cr hmin(N ,r )N−r ‖u‖H r+1(Ω). (1.72)

It is clear that the regularity of the solution, represented by the order r of the Sobolev space
to which u belongs, acts directly on the magnitude on the error: besides the possibility to
reduce the mesh size h and increase the order N , a more regular solution will make SEM

converge faster.
In case the solution is analytical (i.e. with infinite regularity), the order of convergence

becomes exponential; in the more common case of finite regularity, SEM is able to reach
anyway the maximum convergence speed allowed by the regularity of the exact u. Fur-
thermore, similar estimates are given when numerical integration is used to evaluate the
variational operators, that is the most common approach for both SEM and FEM.

Similar considerations can be made for other types of differential problems, but the asso-
ciated estimates are not introduced here. Of course, these performances are paid in terms
of limitations on the geometry flexibility (this is one of the topics developed in Chapter
2), the high number of elements in the algebraic matrix and its bad conditioning, which
reduce the effectiveness of sparse matrix solvers.
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1.2 The Spectral Element method

x

a bc

Ωc Ωr

Figure 1.1: The 1D domain which is used in section 1.2.2.

1.2.2 Application of the method to 1D elliptic equations

What follows is the implementation of the SEM method for the solution of the diffusion
equation. This introduction, which proceeds step-by-step sacrificing formal elegance for
clarity, is required to non-experts to handle correctly the SEM operators and understand
all the developments contained in the next chapter, which focuses on the advances cov-
ered during the PhD activity. Much of this work reflects the first implementation by Mund
[2011b], who firstly ported the methodology to second-order equations in neutron trans-
port (even-parity PN ).

Weak form Be the one-energy one-dimensional diffusion equation:
−D(x)

d2Φ(x)

dx2 +Σ(x)Φ(x) = f (x) x ∈ [a,b]

dΦ

dx
= 0 x = a,b,

(1.73)

where the notation is standard. The model is source-driven, but the extension to the case
of eigenvalue problems is straightforward, and does not affect the SEM operators nor the
convergence properties with respect to the spatial discretization.

This problem is solved in a simple cell problem, where different material properties char-
acterize regions Ωc := x ∈ [a,c] and Ωr := x ∈ [c,b], represented in Figure 1.1. Reflective Figure 1.1

boundary conditions are imposed at both boundaries: like in FEM, the homogeneous Neu-
mann condition is natural at all contours, and this simplifies the developments.

In order to apply a variational procedure, (1.73) is tested in the distributional sense against
a set of functions, called test functions {θ(x)}, belonging to a suitable functional space in
which the solution will be represented. A classical choice is the Sobolev space V = H 1,
where functions are square integrable together with their derivatives at least on the do-
main of the problem.

The problem obtained is called weak form of (1.73):∫ b

0
dx

[(
D(x)

dφ

dx

)
· dθ

dx
+σt

(
φ(x)

) ·θ(x)

]
=

∫ b

0
dx [s(x)θ(x)] . (1.74)

The solution of this problem is the onlyφwhich satisfies (1.74) for any choice of θ ∈ H 1(a,b).
The integration by parts responsible for the first term in (1.74) brings also a second term
containing the derivative evaluated in x = a,b, which is used to impose Neumann and
Robin type boundary conditions; in this case they vanish because a zero derivative condi-
tion is required by the problem at both extremes.
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s

-1 +1

Figure 1.2: The reference element Ω̃ in 1 dimension, with the internal positioned according to the
GLL formula with K =6.

Choice of the approximation space and integration Sobolev space V = H 1(a,b) is in-
finitely dimensional. A finite Γ-dimensional approximation space VΓ is used instead, de-
scribed by a set of finite basis functions

{
θ̃γ(x)

}
, i.e.

VΓ := span
{
θγ, γ ∈ [1,Γ]

}
. (1.75)

This also implies that the unknown of the discretized problem is no more the continuous
function Φ(x), but the coefficients of its approximate representation on VΓ, i.e. the {Φk }
terms in

Φ(x) ≈
Γ∑
γ=1

Φγθγ(x), (1.76)

whereΦγ terms are the coefficients to be determined.
Galerkin theory, a classical argument in all numerical methods textbook, states the con-

ditions for the stability and consistency of the approximation [Quarteroni, 2009]. The test-
ing procedure is now the same, but it produces a finite set of equations which, normally by
means of numerical integration (Galerkin with Numerical Integration method, GNI) is of
algebraic type. Notably, the conditioning number of this set depends on the basis functions
used and on the dimensionality of the approximation space, which become the distinctive
feature of each single Galerkin type method.

For standardization and an easier implementation, the actual domain chosen for the
approximation space is not, to begin, the physical domain, but a reference domain. The
typical choice for SEM methods in 1D is Ω̃ := s ∈ [−1,+1] (Figure 1.2).Figure 1.2

In this way a set of reference matrix operators are produced, which are then adapted with
suitable coordinate transformations to the physical domain, reducing the number of com-
putations in general multi-mesh configurations. In Ω̃ the dependence of the parameters
on the spatial coordinate is typically assumed smooth, in order to use classical quadrature
formulas; this may not be the case for the entire physical domain (in this problem, for in-
stance, in x = a all parameters have a sharp discontinuity). For this reason, the physical
domain is partitioned into subdomains ΩE (sometimes called improperly elements), and
continuity relations are imposed to some basis functions (the boundary adapted ones) in
order to join the solution in a consistent way. In order to be mathematically consistent,
the basis functions ascribable to each element cannot be undefined out of it: they are then
extended with null value throughout the domain (they have local support on the element
itself, and on an adjacent one if they are boundary adapted).

The basis functions on the reference domain are K +1 Lagrange interpolation polynomi-
als (Figure 1.3)Figure 1.3

χk (ξ) =− 1

K (K +1)

1

LK (ξk )

(1−ξ2)LK (ξ)

(ξ−ξk )
χk (ξ) ∈PK (D I

x ). (1.77)
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Figure 1.3: Lobatto basis in 1D, for K = 4.

where K ∈ N+ is the common order of all basis functions; thus, also the solution will be
polynomial of the same order, i.e. it is assumed that the unknown can be represented by

Φ(x) ≈
K+1∑
k=1

Φkχk (x). (1.78)

Abscissas ξk ,k ∈ [1,K +1] are the nodes of the Gauss-Lobatto-Legendre (GLL) quadrature
formula, a Gaussian formula defined on [−1,+1]: the extremes are included in the set, lim-
iting the accuracy to order 2K −1. Nodes are tabulated or easily obtained solving(

1−ξ2
k

)
P ′

N (ξ) = 0 1 ≤ k ≤ K +1. (1.79a)

The associated weights are

ρk = 2

K (K +1)

1

P 2
K (ξk )

1 ≤ k ≤ K +1. (1.79b)

The same basis functions are then used also as test functions {θ} =
{
χk

}
.

Looking at the definition (1.77), each basis function is worth exactly 1 at the correspond-
ing ξk , and 0 in all the others. So, the unknown coefficients Φk are nothing but the values
of the interpolated solution at the nodes of the GLL grid. Moreover, using the GLL formula,
is immediate to verify numerically that∫ +1

−1
χk ds = ρk , (1.80a)

∫ +1

−1
χkχ`ds ≈ ρkδk`, (1.80b)∫ +1

−1
f (s)χk ds = ρk f (ξk ). (1.80c)
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The derivatives of (1.77) are available analytically for the set of ξk nodes, and are gathered
in the derivation matrix D, whose elements are:

Di j =
dχ j

ds

∣∣∣∣
s=ξi

=



PK (ξi )

PK (ξ j )

1

ξi −ξ j
, i 6= j ,

− (K +1)K

4
, i = j = 1,

(K +1)K

4
, i = j = K +1,

0, otherwise.

(1.81)

It is worth noting that an easy way to evaluate the derivative in any point of the reference
domain consists in interpolating the nodal values of the derivative using the same basis of
interpolation polynomials

{
χk

}
, as follows3:

dξ`
ds

=
K+1∑
k=1

Dk`χk (s). (1.82)

This feature is not used in this chapter, but will be useful to assemble the operators using
the Discontinuous Galerkin formalism (chapter 2).

At this point, the weak form is tested against all basis functions, expanding the unknowns
as in (1.78) and using the GLL formula as needed. After some algebra (for a step-by-step
derivation see Barbarino [2010]; Deville et al. [2002]; Mund [2011b]) if cross sections are
constant on each element4 one obtains the following set of algebraic equations:(

DK̃+ΣM̃
)
Φ= M̃f , (1.83)

where

K̃ =
{

K̃kl =
∫ +1

−1
ds

dχk

ds

dχl

ds

}
= diag(ρ)DDT , (1.84a)

M̃ =
{

M̃kl =
∫ +1

−1
dsχkχl

}
= diag(ρ). (1.84b)

which are called reference stiffness matrix and reference mass matrix respectively.
Using a coordinate transformation from the reference domain to a generic physical ele-

mentΩe := x ∈ [xinf, xsup],

x(s) = xe
inf

1− s

2
+xe

sup
1+ s

2
, (1.85)

3It is also an exact representation, because the polynomial order of the derivative is K −1, and so no approxi-
mation error is introduced if a K order basis is used.

4Non-constant cross sections can be easily inserted in this type of schemes, provided they are sufficiently
smooth to be represented by an interpolation with the same set of basis functions {χk } used for the flux.
The approximation

Σ(x) ≈
K+1∑
k=1

Σkχk (x),

is then inserted into the weak form, and integrals are carried out numerically as usual. It is possible to write
the SEM operators for this case explicitly still using the reference matrices K̃ and M̃, with little effort.
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and the Jacobian is

J e =
xe

sup −xe
inf

2
= he

2
. (1.86)

Thus, if the weak form had been tested on the physical element, the algebraic system to be
solved would have been (

DKe +ΣMe)Φ= Mef , (1.87)

where

Ke = 1

J e K̃, (1.88a)

Me = J e M̃. (1.88b)

In order to attach more elements, one writes a set of equations for each of them, and then
imposes suitable interface conditions. Within the Continuous Galerkin (CG) framework,
the continuity of the unknowns is imposed, i.e.:

Φe−1
K+1 =Φe

1. (1.89)

This results in a partial superposition of the single-element matrices while assembling the
final algebraic system, and for this the technique is often referred to as direct stiffness sum-
mation.

Figure 1.4: Assembled matrix for a domain with 2 elements, each with the same polynomial.

1.2.3 Application of the method to 2D elliptic equations

The procedure outlined in the previous section is now adapted to cope with 2 spatial di-
mensions. Extension to 3 dimensions is straightforward analytically, but heavier from an
implementation point of view for numerical reasons.

Again, for simplicity, the problem solved is of diffusive type, with reflection on all sides: −D(x, y)∇2Φ(x, y)+Σ(x)Φ(x, y) = f (x, y) onΩ

∇Φ ·n= 0 on ∂Ω,
(1.90)
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wheren is the outward normal versor to the boundary ∂Ω.
Some hints on the construction of multidimensional SEM operators are given in the fol-

lowing, using some concepts already defined for the 1D case; for a complete derivation one
may refer to Barbarino [2010].

Domain The domain Ω is meshed with E non-overlapping volumes Ωe (quadrilaterals in
two dimensions), such that

Ω=
E⋃

e=1
Ωe . (1.91)

On the external boundary ∂Ω one assumes the existence of a set of non-overlapping
surfaces Γ(D)

i , i = 1, . . . , ND , on which a Dirichlet boundary condition applies. Non-

overlapping surfaces Γ(N )
j , j = 1, . . . , NN exist also where Neumann (or Robin) bound-

ary conditions apply. Of course, the union of all these surfaces covers the whole ex-
ternal boundary, as:

∂Ω=
(

ND⋃
i=1

Γ(D)
i

)
∪

(
NN⋃
j=1

Γ(N )
j

)
. (1.92)

The reasons for the decomposition are two: as in the 1D case, one looks for regions
where parameters vary smoothly with the spatial coordinate and, in addition, one
tries not to deform too much the grid, especially trying to adapt to skewed bound-
aries. For this first (classical) approach, the domain is decomposed into rectangular
domains only, in a fully structured mesh. Chapter 2 will introduce more flexibility in
the design of the grid.

Weak form The integration of the laplacian is handled with the Green’s theorem, giving
rise to a volume integral and a surface integral, which is used to impose Neumann
and Robin boundary conditions.

Reference domain the reference domain is the square [−1,+1]2. It is the tensor product of
two 1D reference segments.

Approximation space The basis functions of the approximation space are all separable in
each variable, being products of 1D basis:

θn =χkχp k, p ∈ [1,K +1]. (1.93)

so, it is clear that on the reference domain a grid on internal nodes is created, and it
is the result of the tensor product of a GLL grid on the s coordinate and a grid on the
t coordinate (Figure 1.5).Figure 1.5

For convenience during the operator assembly, basis functions, nodes and nodal val-
ues have two numbering systems: one (using k and p in this example) with two in-
dices which refer to the original 1D grids, and one with just a single index (n) which
follows a lexicographical convention, i.e. n = (k −1)∗ (K +1)+p. This constructions
preserves the fact that θn functions are still Lagrangian interpolators built on the two
dimensional grid of internal nodes, and properties (1.80) are maintained.
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Figure 1.5: The reference element Ω in 2 dimensions, with the internal nodes formed by the tensor
product of the GLL grids on s and t (K =6).

As before, for simplicity the problem is first set on a single rectangular domain, and then
joined through the direct stiffness summation procedure. For a single element with con-
stant input parameters D and Σ, the Galerkin procedure brings the following operators

(DK+ΣM)Φ= Mf , (1.94)

where, considering again the definitions (1.84):

Ke =
Le

y

Le
x

(
M̃⊗ K̃

)+ Le
x

Le
y

(
K̃⊗M̃

)
, (1.95a)

Me =
Le

x Le
y

4

(
M̃⊗M̃

)
, (1.95b)

Φ= {
Φn =Φk,p

}
f = {

fn = fk,p
}

, (1.95c)

and the tensor product operation ⊗ between matrices is defined as

A⊗B =


a11B a12B · · · a1`B
a21B a22B · · · a2`B

...
...

...
ak1B ak2B · · · ak`B

 . (1.96)

If solved as it is, reflection boundary conditions are used on all 4 sides, because they are
natural in this approach. Continuity of the unknowns across different elements is enforced,
but different strategies are now possible; here the Continuous Galerkin (CG) approach is
introduced. The CG scheme assumes that the solution is represented by the same number
of basis on each element, and imposes that a strong continuity of the interpolation of the
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solution across adjacent edges. In turn, this means that all edges have the same number of
degrees of freedom and that they are all superimposed (for the GLL grid and the structured
grid): the corresponding nodal values are imposed equal.

The working principle is the same as in 1D, but of course implementation is slightly more
complex. Details are available in Barbarino [2010] and Deville et al. [2002].

In the end, the result can be written as a single set of equations comprising all elements
and all unknown coefficients.

The extension of the equation building process to three space dimensions is straightfor-
ward. For instance, the elemental stiffness matrix (1.95a) of a subdomain with edge lengths
Le

x , Le
y and Le

z writes

Ke =
Le

y Le
z

Le
x

(M⊗M⊗K)+ Le
x Le

z

Le
y

(M⊗K⊗M)+
Le

x Le
y

Le
z

(K⊗M⊗M) . (1.97)

Chapter 2 introduce a new paradigm in the treatment of interfaces, which allows un-
structured grids, different orders of interpolation across elements and edge deformations.

1.2.4 Application to the AN set

The diffusive problem seen in the previous two sections is used to assemble a scheme able
to solve the AN set, since it is formed by a set of equations which are of elliptic type.

Application of the spectral element discretization requires every equation of the AN prob-
lem (1.55) to be cast in variational formulation. Using for each of the N unknowns the same
approximation space used in the previous example on the diffusion model, one gets:

∫
D

µ2
α

Σ(r)
∇ϕα(r) ·∇θ(r)dr−

∫
∂D

µ2
α

Σ(r)
θ(r)

∂ϕα

∂n
ds +

∫
D
Σ(r)ϕα(r)θ(r)dr−

N∑
β=1

wβ

∫
D
Σs(r)ϕβ(r)θ(r)dr =

∫
D

S(r)θ(r)dr. (1.98)

With these notations, one may write the variational formulation of the problem in the
following expanded form:

E∑
e=1

(∫
De

µ2
α

Σ(r)
∇ϕα(r) ·∇θ(r)dr+

∫
De

Σ(r)ϕα(r)θ(r)dr

)

−
E∑

e=1

N∑
β=1

wβ

∫
De

Σs(r)ϕβ(r)θ(r)dr−
ND∑
i=1

∫
Γ(D)

i

µ2
α

Σ(r)
θ(r)

∂ϕα

∂n
ds

−
NN∑
j=1

∫
Γ(N )

j

µ2
α

Σ(r)
θ(r)

∂ϕα

∂n
ds =

E∑
e=1

∫
De

S(r)θ(r)dr

ϕα = g (D)
i (s) on Γ(D)

i i = 1, . . . , ND

∂ϕα

∂n
= g (N )

j (s) on Γ(N )
j j = 1, . . . , NN .

(1.99)
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1.2 The Spectral Element method

A full algebraic problem could be assembled, trying to solve at once for all nodal values
of all pseudo-fluxes; the resulting matrix would have an extremely sparse pattern, requiring
a specific solver. Another path is pursued here: a SEM matrix is assembled considering as
unknowns only the coefficients related to the pseudo-flux appearing in the streaming and
collisional terms; the others contribute to the right hand side. A block Gauss-Seidel scheme
is then used: pseudo-fluxes are initialized, then each discretized AN equation is solved
and the updated coefficents are used to update all right hand sides, till convergence. This
algorithm is widely used when dealing with multigroup models, and exploits the analogy
between AN and multigroup diffusion.
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2 Application of the Spectral Element
Method to second order neutron
transport

In this chapter, the Spectral Element Method (SEM) approach for neutron transport prob-
lems is developed.

Section 1.2 of the introductory chapter makes a first overview of the early developments
by Mund [2011b], with additional contributions by the author [Barbarino, 2010]. Further
methodological developments took place during this PhD activity, in order to better under-
stand the behavior of the scheme and allow more flexibility in the types of problems it is
able to cope with.

Section 2.1 deals with some assessments of fundamental type aimed at testing the con-
vergence properties of the scheme; the method of the manufactured solutions allows iso-
lating and evaluating the error introduced by the discretization of the spatial operators.

As discussed in section 1.2, the original version of SEM requires a conformal grid (i.e.
a grid with no hanging nodes) and the same interpolation base on each mesh; these fea-
tures greatly simplify the implementation and open the way to efficient solution algorithms
[Deville et al., 2002], but such a scheme does not let the user perform a local refinement.
For this reason section 2.2 introduced the Discontinuous Galerkin (DG) framework, thanks
to which it is possible to create Cartesian grids where the number of degrees of freedom
can vary from an element to another, and the conformity constraint is relaxed, too.

Finally, section 2.3 adds the possibility to deform the grid using a simple technique called
transfinite interpolation to limit the numerical evaluations in this phase in favor of a highly
accurate analytic node placement.

The combination of the tools in sections 1.2, 2.2 and 2.3 should be enough to cope, in
perspective, with a wide class of involved reactor configurations.

The complement to each section should be a comment on the coding of the features of
the method, since most is constituted by original work. No SEM dedicated libraries have
been used because they are not available at the moment. All the code details could not
fit a single chapter, nor are indicated for a PhD dissertation, but its worth remembering
that code engineering has a paramount importance for this kind of applications. Some
configurations were analyzed with such tools, and a selected set of results are present at
the end of each part. Their aim is mainly to benchmark the method on literature examples
in order to highlight its advantages compared to other classical approaches.
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2 Application of the Spectral Element Method to second order neutron transport

2.1 Convergence studies

In this section, the numerical performance of the SEM method is investigated in detail. In
order to carry out an accurate monitoring of the behavior of the error up to levels close
to numerical round-off, it is necessary to have an exact reference solution. Exact bench-
marks are available either through fully analytical solutions [Ganapol, 2008] or through a
manufactured solution process [Warsa et al., 2010]. Manufactured solutions can be easily
obtained for source-injected neutron transport problems, by tailoring the external neutron
source and the boundary conditions to a prearranged analytical neutron distribution in a
given system. In what follows, manufactured and analytical solutions are derived and the
performance of SEM is assessed by direct comparisons and error studies.

Even if the interest in the SEM approach lies mainly on multidimensional configurations,
the convergence studies in this section are focused on simpler 1D cases, in order to com-
pare the results with the ones obtained by applying other standard approximations such as
spherical harmonics (section 2.1.2) and discrete ordinate (section 2.1.1) formulations. This
allows a more consistent evaluation of the error, eliminating differences associated to the
angular treatment adopted and focusing on the spatial discretization schemes only.

2.1.1 Spectral elements applied to the discrete ordinate equations

The discrete ordinates even-parity formulation of the transport equation (section 1.1.4) is
used as a first approach with SEM, followed by the spherical harmonics expansion. Basi-
cally, any second-order, 1-dimensional transport model could be adopted with the same
result. This section is devoted to the first scheme. Anyway, the possibility to have both
PN and SN formalism solved with the same numerical technique helps also demonstrating
numerically their equivalence, which is proven formally.

The SEM approach can be applied along the same line established previously. Let θ(x) ∈
(H 1(a,b))N /2 denote any suitable N /2-dimensional test vector defined on the domain Dx =
x ∈ [a,b]. We take the inner product of (1.39) by θ(x) which, after integration by parts and
application of the boundary conditions, (1.36), yields:∫ b

a
dx

[
1

Σt(x)

(
Y

dϕ

dx

)
· dθ

dx
+Σt(x)ϕ(x) ·θ(x)

]
+D1/2ϕ(a) ·θ(a)+D1/2ϕ(b) ·θ(b) =

=
∫ b

a
dx

[
Σs(x)(Wϕ(x)) ·θ(x)+Q(x) ·θ(x)

]
. (2.1)

Then, the spatial domain Dx is partitioned into E adjacent elements De
x (e = 1, . . . ,E) and

inside each element a GLL quadrature grid is imposed with its associated Lagrange inter-
polation polynomials of degree (K +1). By this process a (EK +1)-dimensional subspace
of H 1(a,b) is built, say VEK+1. For each element e, the even parity unknown fluxes can be
written as:

ϕe
`(x) =

K∑
k=1

ϕe
`(xe

k )χe
k (x), `= 1, . . . , N /2, e = 1, . . . ,E , (2.2)

where χe
k (x) belongs to the set of GLL Lagrangian interpolation polynomials mapped from

the reference domain onto the element e.
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2.1 Convergence studies

The approximation scheme looks for the unique vectorϕ(x) ∈ (VEK+1)N /2 such that (2.1)
holds for any vector θ(x) ∈ (VEK+1)N /2. Thus, ϕ(x) and θ(x) are taken according to the
same approximation shape and share the same basis functions, in line with Galerkin-type
schemes. Introducing the stiffness and mass matrices K and M as calculated in section
1.2, one can easily show that the linear system induced by the spectral element Galerkin
approximation of (1.39) with element constant cross sections writes:

LΦ := (Y⊗K+ I⊗M− cW⊗M)Φ= Mq. (2.3)

Here, the (EK +1)N /2 unknown quantities appearing in the expansions of (2.2) have been
assembled into vector Φ respecting the order of the indices. The matrix tensor product
Y⊗K has a block diagonal structure, explicitly:

Y⊗K =


µ2

1K
µ2

2K
. . .

µ2
N /2K

 . (2.4)

The elements responsible for the scattering terms are tensor-multiplied with the mass ma-
trix and their product,W⊗M, can be written as:

W⊗M =


w1M w2M . . . wN /2M
w1M w2M . . . wN /2M

...
...

...
...

w1M w2M . . . wN /2M

 . (2.5)

Matrix M shows a diagonal structure. This fact leads to have a rather sparse structure
for matrix L, ans this feature is conserved for the PN formulation which will be addressed
shortly.

2.1.2 The even-parity SEM-PN formulation

Second-order 1D PN has already been derived and analyzed in chapter 1 at section 1.1.4.
The derivation is similar to that for SN , then it will quickly introduced.

The weak formulation of the problem looks for the unique vector φ(x) ∈ (
H 1(a,b)

)N+1

such that ∀θ(x) ∈ (
H 1(a,b)

)N+1
one has:

∫ b

a
dx

[
1

Σt

(
D

dφ

dx

)
· dθ

dx
+Σt

(
Icφ(x)

) ·θ(x)

]
− 1

Σt

(
D

dφ

dx

)
·θ

∣∣∣∣x=b

x=a
=

∫ b

a
dxQ(x) ·θ(x). (2.6)

Then, the problem is solved in the finite dimensional subspace VEK+1, having the same
dimension of the SN case (the solution will be defined in terms of polynomials of the same
order, but only for the spatial part). As it is customary in Galerkin-type approximations, the
same Lagrangian polynomials will be used for test and trial functions.
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2 Application of the Spectral Element Method to second order neutron transport
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φ0(x)

φ2(x)

φ4(x)

(a) P5 formulation.
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ϕ1(x)

ϕ2(x)

ϕ3(x)

(b) S6 formulation.

Figure 2.1: Comparison of the structure of matrix L for P5 and S6 formulations; the integration do-
main is split into two elements, and in each element the GLL basis functions is of degree
5. The terms φn denote the angular moments of the flux.

After all quadratures, still using the K and M building blocks, the linear system induced
by the spectral element Galerkin approximation of (1.43) tuns out to be:

Lϕ := (
D⊗K+ Ic ⊗M

)
ϕ= Mq. (2.7)

Also in the PN case matrix L is sparse due to the diagonality of M (valid for both the
reference domain and for each single element). However, since the scattering term involves
all discrete ordinates, the bandwidth of L is in the SN case relatively larger than in the PN

case. Figure 2.1 displays the algebraic structure of the matrices resulting from the spectralFigure 2.1

element formulation with the same discretization parameters for the equivalent P5 and S6

models [Bell and Glasstone, 1970], except for the boundary conditions.

2.1.3 Results

The spectral element results are compared to selected manufactured solutions, appropri-
ate to isolate the convergence error from the approximation error of the model [Barbarino
et al., 2014]. In these comparisons the exact solution of each transport approximation is
thus known, allowing to appreciate the numerical features of the scheme in a clear way.
Comparisons with other schemes [Lewis and Miller, 1993], namely diamond difference
discrete ordinates (DD) and finite difference spherical harmonics (FD), can help in eval-
uating the advantages in the use of spectral elements. Furthermore, also some physically
significant configurations are considered, and results are compared to available analytic
solutions.
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2.1 Convergence studies

In order to quantify the discrepancy between the reference solution for the angular flux
ψ(x,µ) and the total flux Φ(x) (be it determined through manufactured or analytical solu-
tion) against a numerical calculation that yields the solution for Φ̂ and ψ̂ only at the given
spatial grid nodes xi , four different error definitions are introduced:

δ(xi ) = abs
[
Φ(xi )− Φ̂(xi )

]
, (2.8a)

ε(xi ) = abs
[
Φ(xi )− Φ̂(xi )

]
Φ(xi )

, (2.8b)

Ξ=

√√√√√√√
∑

i

(
Φ(xi )− Φ̂(xi )

)2

∑
i

[Φ(xi )]2 , (2.8c)

ξ(µ) =

√√√√√√√
∑

i

(
ψ(xi ,µ)− ψ̂(xi ,µ)

)2

∑
i

[
ψ(xi ,µ)

]2 . (2.8d)

Beside the classical absolute and relative errors δ and ε, the discrete L2 norms Ξ and ξ are
also used, as indicators of the performances of a method on a global rather than a point-
wise scale [Deville et al., 2002].

Benchmarks using manufactured solutions

Exact solutions can be manufactured by determining the source that produces a given an-
gular flux. This can be easily done by direct substitution into the transport equation if the
flux is assumed to be given by an analytic expression [Warsa et al., 2010]. Such manufac-
tured solutions constitute useful references to test the performance of numerical methods
by direct comparisons. It is worth noticing that, given a manufactured solution to the trans-
port problem, the associated source may turn out to be not physically meaningful (i.e., it
may take negative values over the phase domain). Therefore, these exercises may only be
regarded as useful tools to verify and assess the algorithm being studied.

In the following, for all cases presented and unless specified, the number of secondary
neutrons per collision c is assumed to be 0.5.

The first manufactured solution adopted in the present work is the following:

ψ1
(
x,µ

)= f (x) g
(
µ
)= (

1−x2)2 (
1+3µ2) , (2.9)

over the spatially homogeneous domain x ∈ [−1,1], µ ∈ [−1,1] characterized by a unitary
cross section. By direct substitution into the one dimensional transport equation in the
form (1.12), one can easily find out the source to be assumed in order to produce such a
solution is:

S1(x,µ) =−4x
(
1−x2)µ+Σ (1− c)

(
1−x2)2

. (2.10)

The angular flux is factorized into a space and an angular polynomial factors (see Figure
2.2, where the source is also represented graphically). As far as the space part is concerned, Figure 2.2
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2 Application of the Spectral Element Method to second order neutron transport
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(a) Angular flux
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(b) Source

Figure 2.2: Left: the manufactured solution ψ1(x,µ) for some values of the direction µ (µ = ±1 and
µ=± 1

2 are indistinguishable). Right: the source term S1(x,µ) of (1.12) which reproduces
ψ1(x,µ).

the function ψ1 is expected to be an easy benchmark for every scheme based on spatial
polynomial interpolation (like SEM), since it is represented exactly also in the approxima-
tion space. For the angular part, a polynomial nature assures that the number of angular
moments necessary for its representation is limited. One can then foresee that for certain
schemes the error should drop close to round-off, thus allowing a further check for imple-
mentation mistakes.

It is easy to verify that the boundary conditions can be set indifferently to homogeneous
Dirichlet (ϕ`(x =±1) = 0,∀`) or to homogeneous Neumann (dϕ`/dx(x =±1) = 0,∀`). For
practical purposes, homogeneous Neumann boundary conditions are preferred since they
turn out to be simpler then in the Dirichlet case for the assembly of the operators, as ex-
plained in the previous sections. In the Dirichlet case, indeed, one has to prune the matri-
ces by two rows and two columns.

Calculations are performed using both PN and SN methods (up to P7 and S8). For each
scheme and each approximation, L2-type errors are calculated for grids with an increas-
ing number κ of nodes (equally spaced for the SN DD scheme, and aligned to the GLL
quadrature grid for SN SEM), which can be assumed as a measure of the computational
burden associated to the scheme. For SEM schemes, one can easily retrieve the order κ of
the Lagrange polynomials used, since K = κ−1 for one dimensional domains. Results for
the angular flux at µ = 0.5 are reported in Table 2.1. For the discrete ordinate approachTable 2.1

an interpolation procedure is needed to reconstruct the solution at the required direction.
Details on the angular flux reconstruction are given in Barbarino et al. [2014].

As expected, the SEM SN results are all at double precision round-off level even at the
lowest order S2, since this manufactured solution is polynomial as the SEM interpolating
functions. Slight increases in the values observed throughout Table 2.1 are only due to error
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2.1 Convergence studies
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2 Application of the Spectral Element Method to second order neutron transport
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Figure 2.3: Left: the manufactured solution ψ2(x,µ) for some values of the direction µ (µ = ±1 and
µ=± 1

2 are indistinguishable). Right: the source term S2(x,µ) of (1.12) which reproduces
ψ2(x,µ).

accumulation. The P1 model fails to correctly represent the solution because, obviously,
the quadratic angular part cannot be resolved by truncating the angular expansion to the
first order. Table 2.1 clearly shows that SEM schemes outperform DD, which in turn has a
much better performance when compared to FD on the same grid.

The second manufactured solution adopted is still factorized but no more polynomial in
space, having the following form (see also Figure 2.3):Figure 2.3

ψ2
(
x,µ

)= f (x) g
(
µ
)= (

1−x2)2
exp

(−0.2x2)(3µ2 +5µ4) , (2.11)

over the spatially homogeneous domain x ∈ [−1,1], µ ∈ [−1,1] characterized by a unitary
cross section. The corresponding source is the following:

S2(x,µ) = exp

(
x2

5

)(
1−x2)×{

2

5
xµ

(
3µ2 +5µ4)(x2 −11

)+ (
1−x2)[Σ(

3µ2 +5µ4)−2cΣ
]}

. (2.12)

Both factors defining the flux belong to C∞, hence one expects to obtain more accurate
spatial results by increasing the number of the basis polynomials used. All ξ errors are
shown in Table 2.2.Table 2.2

In this case, the S2-P1 models cannot handle the quartic behavior with respect to the an-
gular variable. Results can be improved only by increasing the order of the angular approx-
imation; for sufficiently high-order angular models, by increasing the order of the spatial
approximation (up to 21 grid points), SEM results can again be pushed to round-off levels
for both PN and SN . On the other hand, standard discretization schemes show a much
slower convergence rate (second-order for DD, first-order for FD).
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2.1 Convergence studies
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2 Application of the Spectral Element Method to second order neutron transport
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Figure 2.4: Left: the manufactured solution ψ3(x,µ) for some values of the direction µ (µ = ±1 and
µ=± 1

2 are indistinguishable). Right: the source term S3(x,µ) of (1.12) which reproduces
ψ3(x,µ).

The last manufactured solution considered belongs only to C2 as far as its space behav-
ior is concerned, and to C∞, although not polynomial, with respect to the angular variable.
However, in a spatial sub-domain the space function is assumed to be polynomial. This
feature of the spatial dependence is an expedient adopted to assess the behavior of the
solver when dealing with a non-Taylor-expandable function, which is a particularly severe
test case for any quadrature rule based upon polynomial interpolation. Moreover, the do-
main is composed by a single element, simulating a case when the mesh is not sufficiently
accurate to isolate regions with high smoothness.

Even if the physical significance of this function is questionable, it is worth noting that it
lies on the solution space of the original transport model (the even parity model requires
also the continuity of the second derivative of the solution) and, as such, it is definitely a
valid neutron transport solution. Its analytical form is:

ψ3
(
x,µ

)= [
2−cos

(πµ
2

)][(
− 1

18
x3 + 1

12
x2 + 1

3
x + 7

36

)
θ

(
1

2
−x

)
+(

−1

2
x3 + 3

4
x2 + 1

4

)
θ

(
x − 1

2

)]
(2.13)

over the spatially homogeneous domain x ∈ [−1,1], µ ∈ [−1,1] characterized by a unitary
cross section, as usual; symbol θ stands for the Heaviside step function. The space and an-
gular factors are shown in Figure 2.4, where also the source given by the following analyticalFigure 2.4

formula is drawn as:

S3
(
x,µ

)= SL
3

(
x,µ

)
θ

(
1

2
−x

)
+SR

3

(
x,µ

)
θ

(
x − 1

2

)
, (2.14)
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2.1 Convergence studies

Table 2.3: Errors ξ for the case of the manufactured solution ψ3: only SEM results are reported. The
direction is µ= 0.5.

κ S2 S4 S6 S8 S10 S12 S14

6 8.189E-2 2.335E-3 3.234E-3 3.237E-3 3.235E-3 3.234E-3 3.234E-3
11 8.453E-2 2.138E-3 5.887E-4 5.769E-4 5.755E-4 5.748E-4 5.743E-4
16 8.386E-2 1.657E-3 1.276E-4 1.338E-4 1.335E-4 1.333E-4 1.337E-4
21 8.379E-2 1.688E-3 3.965E-5 4.502E-5 4.499E-5 4.494E-5 4.490E-5
31 8.371E-2 1.700E-3 1.230E-5 1.496E-5 1.499E-5 1.498E-5 1.497E-5
41 8.367E-2 1.713E-3 2.070E-5 8.207E-6 8.147E-6 8.143E-6 8.141E-6
51 8.363E-2 1.704E-3 1.236E-5 2.347E-6 2.384E-6 2.383E-6 2.382E-6
76 8.359E-2 1.704E-3 1.304E-5 8.019E-7 8.508E-7 8.507E-7 8.505E-7

101 8.357E-2 1.704E-3 1.409E-5 5.626E-7 5.050E-7 5.047E-7 5.045E-7

where

SL
3

(
x,µ

)=µ[
x

6
(1−x)+ 1

3

][
2−cos

(πµ
2

)]
+

(
7

36
+ x

3
+ x2

12
− x3

18

)
×{

Σ
[

2−cos
(πµ

2

)]
−2Σs

(
1− 1

π

)}
,

and

SR
3

(
x,µ

)=µ[
3

6
x (1−x)

][
2−cos

(πµ
2

)]
+

(
1

4
+ 3

4
x2 − x3

2

)
×{

Σ
[

2−cos
(πµ

2

)]
−2Σs

(
1− 1

π

)}
.

Results obtained with SEM are presented in table 2.3 only for SN calculations, since the Table 2.3

numerical equivalence with the PN scheme has already been established in the previous
examples. The spatial convergence rate is dropping to about order three. It is again very
interesting to compare the results with the two classical approaches, as can be seen in ta-
ble 2.4, for the S8 model. The convergence rate for the SEM is now quite close to the one Table 2.4

observed with diamond differences (the finite difference scheme soon reaches saturation),
but the absolute value of the error stands two orders of magnitude below. The point-wise
spatial error is reported in 2.5; as expected, it decreases with an increasing order of the SEM Figure 2.5

scheme and it maintains about the same magnitude throughout the domain, even though
some difficulties seem to appear close to the boundaries.

One-dimensional analytical periodic problem

The domain is constituted by an infinite homogeneous material in planar symmetry, in-
jected by a spatially periodic step function source. The period is assumed to be 7.5 m.f.p.
and the source is isotropic, constant and unitary over a thickness of 2.5 m.f.p. This physical
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2 Application of the Spectral Element Method to second order neutron transport
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Figure 2.5: Spatial distribution of the relative and absolute errors on the scalar flux using SEM for the
case of the manufactured solution ψ3.
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2.1 Convergence studies

Table 2.4: Errors ξ for the SEM scheme, using the manufactured solution ψ3: comparison with the
classical schemes DD and FD. The direction is µ= 0.5.

κ S8 S8 DD P7 FD

6 3.237E-3 3.265E-1 1.832E-1
11 5.769E-4 3.820E-3 1.157E-1
16 1.338E-4 1.858E-3 1.189E-1
21 4.502E-5 1.096E-3 1.218E-1
31 1.496E-5 4.924E-4 1.258E-1
41 8.207E-6 2.860E-4 1.281E-1
51 2.347E-6 1.827E-4 1.295E-1
76 8.019E-7 8.271E-5 1.313E-1
101 5.626E-7 4.696E-5 1.323E-1

configuration recalls the well-known cell problem in reactor physics [Silva et al., 2013]. The
analysis is carried out for different values of the number of secondaries per collision c.

The results presented are obtained by the SEM-PN solver applied to the P1, P3, P5 and
P7 models. As far as the reference calculations are concerned, two approaches are used.
For P1 and P3, the fully analytic solutions to the equivalent A1 and A2 models have been
determined in a preceding work by Barbarino [2010] and thus the results can be compared
to the exact solution allowing to accurately evaluate the convergence rate of the numeri-
cal scheme. In order to check the results against the true transport solution, use is made
of the exact transport Green function in the plane infinite medium [Case et al., 1953; Case
and Zweifel, 1967], injected by an isotropic source spatially distributed as a periodic step
function. Of course, one has to truncate the number of the step-function source contri-
butions to be taken into account. However, the convergence rate of the procedure may be
estimated by evaluating the role of the first neglected term.

Tables 2.5, 2.6 and 2.7 show the convergence in terms of the error Ξ for different values Table 2.5

Table 2.6

Table 2.7
of the parameter c and for different polynomial orders for the SEM PN solver. Comparisons
between the SEM solution and the transport one are characterized by the error ΞTR; errors
with respect to the analytic solution of the PN model are indicated by ΞAN, in order to iso-
late the impact of the spatial discretization alone.

In all cases, except for the lowest orders which are considerably affected by the space ap-
proximation, Ξ errors are basically constant for increasing κ, for all values of c. The slight
increase in the numerical values for some cases is due to the accumulation of numerical
errors in the computation. This saturation in the resolution capabilities of the scheme is to
be ascribed to the simplified transport model adopted; in fact, refining the angular detail
considered by the formulation (thus increasing N ), the asymptotic value of ΞTR decreases.
As a further confirmation, ΞAN decreases very rapidly with increasing polynomial order,
assuring that the SEM scheme adds only a negligible contribution to the error ΞTR. As the-
oretically expected, the reduction of the parameter c causes a subsequent reduction of the
convergence speed for ΞTR, for the dominance of transport effects. Therefore, the results
for the highly scattering cell reported in Table 2.7 are the closest to the real transport solu-

51



2 Application of the Spectral Element Method to second order neutron transport

Table 2.5: Error Ξ for the periodic source problem using the PN model; the number of secondaries
per collision is c = 0.1.

P1 P3 P5 P7

κ ΞTR ΞAN ΞTR ΞAN ΞTR ΞTR

5 3.205E-02 4.240E-03 1.522E-02 1.145E-02 1.617E-02 1.769E-02
7 3.886E-02 1.603E-04 1.469E-02 9.685E-04 7.851E-03 5.768E-03
9 4.111E-02 5.123E-06 1.737E-02 7.278E-05 9.597E-03 6.045E-03

11 4.173E-02 1.241E-07 1.845E-02 4.692E-06 1.085E-02 7.153E-03
13 4.197E-02 1.940E-08 1.883E-02 2.412E-07 1.140E-02 7.798E-03
15 4.209E-02 1.610E-08 1.899E-02 9.958E-09 1.163E-02 8.097E-03
21 4.225E-02 6.751E-09 1.914E-02 2.197E-13 1.182E-02 8.340E-03

Table 2.6: Error Ξ for the periodic source problem using the PN model (c = 0.5).

P1 P3 P5 P7

κ ΞTR ΞAN ΞTR ΞAN ΞTR ΞTR

5 2.783E-02 1.650E-03 9.819E-03 5.822E-03 9.309E-03 1.031E-02
7 3.216E-02 3.866E-05 1.079E-02 3.815E-04 5.301E-03 3.533E-03
9 3.323E-02 7.063E-07 1.240E-02 2.318E-05 6.512E-03 3.970E-03

11 3.354E-02 9.550E-09 1.295E-02 1.154E-06 7.234E-03 4.649E-03
13 3.367E-02 1.458E-10 1.314E-02 4.506E-08 7.525E-03 5.011E-03
15 3.375E-02 6.633E-11 1.322E-02 1.402E-09 7.642E-03 5.171E-03
21 3.386E-02 7.841E-11 1.331E-02 3.757E-14 7.742E-03 5.301E-03

tion. Not surprisingly, the same influence is found also when analyzing the fully numerical
error ΞAN, indicating that, at least for this case, c has an effect also on the conditioning of
the numerical scheme.

The behavior of the spatial error is reported in 2.6 and 2.7, for c = 0.1 and c = 0.9 andFigure 2.6

Figure 2.7 the approximations P1 and P3. In the source-less region (5 m.f.p. thick, on the left in the
graphs) the level of discrepancy is higher, with respect to the region where the source is
located. Moreover, the spatial error distribution is not affected by the amount of scattering
of neutrons.

2.1.4 Remarks on converge studies

This section has addressed the convergence properties of the Spectral Element Method
applied to some standard transport models. In particular, the spherical harmonics and
discrete ordinate formulations have been considered.

In all the cases examined, SEM applied to transport models confirms the high conver-
gence rates which are postulated by the fundamental analysis with minor interactions with
the type of transport problem, namely the amount of scattering in the medium. Lower
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2.1 Convergence studies

Table 2.7: Error Ξ for the periodic source problem using the PN model (c = 0.9).

P1 P3 P5 P7

κ ΞTR ΞAN ΞTR ΞAN ΞTR ΞTR

5 1.833E-02 7.340E-05 3.036E-03 9.100E-04 2.077E-03 2.319E-03
7 1.903E-02 3.660E-07 3.752E-03 4.645E-05 1.609E-03 9.530E-04
9 1.916E-02 1.338E-09 4.114E-03 2.177E-06 1.952E-03 1.134E-03

11 1.921E-02 3.638E-12 4.220E-03 7.955E-08 2.117E-03 1.306E-03
13 1.923E-02 6.529E-14 4.255E-03 2.250E-09 2.178E-03 1.389E-03
15 1.924E-02 4.884E-14 4.271E-03 5.034E-11 2.203E-03 1.424E-03
21 1.926E-02 6.408E-14 4.289E-03 3.824E-14 2.223E-03 1.451E-03
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(a) P1 approximation with c = 0.1.
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(b) P1 approximation with c = 0.9.

Figure 2.6: Spatial relative errors ε(xi ) for the scalar flux of the periodic source problem, P1 approx-
imation.
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Figure 2.7: Spatial relative errors for the periodic source problem, P3 approximation.
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2.2 On the way to local refinement: the Discontinuous Galerkin approach

values of c tend to slow down the convergence rate of the scheme, but this drawback is in
common with all other combined angular/space discretizations since the mean free path
of neutrons is numerically altered and, thus, the ability of a certain spatial mesh to cor-
rectly approximate the solution may be reduced. Moreover, as it is clear from the results,
the high order polynomials and the automatic combined refinement of their order and the
mesh size (endowed in the SEM structure) makes this aspect of less concern, becoming the
angular discretization the weak point of the scheme.

In general, SEM outperforms low-order classical approximation schemes; its implemen-
tation is not shown explicitly in these pages, but can be inferred by the listings of the solver
prepared to accomplish these studies: the scheme is close to a typical finite element solver,
especially in this 1D case where, for both FEM and SEM, the pattern of the algebraic matrix
can be easily foreseen and dedicated solution strategies are naturally implemented. This
aspect is partially true also for higher dimensions, and this constitutes an advantage of SEM

over FEM as it will be clear in what follows.
Concerning the applicability of this studies, they are basically numerical tests on ideal-

ized configurations aiming at checking and confirming a behavior more than giving prac-
tical results. Nonetheless, nowadays in industrial reactor analysis a number of calculation
schemes still rely on one-dimensional analysis as in reflector calculations, fast shape re-
construction in transients and deep penetration problems for radiation protection. The
SEM solver coded for this study could be used almost as it is in this framework.

2.2 On the way to local refinement: the Discontinuous Galerkin
approach

In this part of the work the SEM approach is applied to the AN approximation to multidi-
mensional problems. Opposed to the developments that can be found in Barbarino [2010],
the interfaces are treated with the Discontinuous Galerkin method (DG), which relaxes the
grid continuity across the elements and allows, in perspective, a certain degree of local
mesh refinement. This feature could be particularly relevant for the simulation of some
advanced nuclear systems and for some instrumented assemblies in present light water
reactors. Calculations on some benchmark cases are performed.

2.2.1 Discontinuous Galerkin approach

The main limitation deriving from the use of the Continuous Galerkin approach is the fact
that all the elements of the domain are required to have the same number of degrees of
freedom. In fact CG imposes the continuity of all the points of the trace of the solution on
each interface; being the solution an interpolating function of nodal values, and being the
basis the same, this immediately implies that the interface nodes must be coincident and
carry the same value. The constraint on the same number of degrees of freedom in each
mesh, regardless of its dimension, of the shape of the solution and of the behavior of the
flux in that region, is a feature that limits the possibility to tailor the scheme to the physical
problem and to optimize the computational effort.
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2 Application of the Spectral Element Method to second order neutron transport

The additional flexibility of the scheme allows the use of non-conformal grids and a free
choice of the polynomial degree of the basis functions in each element. The final target
should be to open the way to fully adaptive algorithms.

There are some techniques available to cope with such problems [Deville et al., 2002;
Quarteroni, 2009]. One may cite the mortar patching, where particular sub-elements are
created in order to “glue” several elements, or the overlapping Schwartz procedure, which
are widespread in FEM applications and implemented in many codes.

In this work, the Discontinuous Galerkin method is introduced. The main difference
stands in the fact that the function is no more compelled to be continuous on the inter-
faces; indeed, an integral relation joins the solution. Some details are given, in order to
help in the interpretation of the results; for a complete derivation of the method and the
associated properties one can refer to Rivière [2008] or Quarteroni [2009]. This approach,
thanks to recent achievements in the consolidation of the knowledge of its convergence
and stability, is a prominent candidate for next generation FEM industrial codes.

Some advantages of DG compared to CG approaches

A non-exhaustive list of advantages and disadvantages of the DG method compared to the
CG approach previously used may be drawn from literature (especially from Rivière [2008]):

Hanging nodes In CG, sides touch sides and vertices touch only vertices. In DG, the vertex
of an element may lie on the side of a neighboring element, thanks to the additional
integral interface terms in the weak form.

Polynomial degree and basis functions It is relatively easy to implement a code where the
polynomial degree of each element is chosen arbitrarily, or possibly with a refine-
ment algorithm, and it is also possible to combine different basis functions or even
different approximation schemes (SEM and FEM mixed grids, even with triangular el-
ements).

Mass conservation It can be demonstrated that DG assures the conservation of the num-
ber of neutrons in each cell, property that is an appreciated feature of the Finite Vol-
ume Method, reason why all current nodal methods for full core and pin-by-pin anal-
ysis are based [Tomatis, 2010]. Continuous Galerkin can only guarantee a conserva-
tion in the entire calculation domain. Thus, higher accuracy in the computation of
reaction rates is expected from DG.

Number of degrees of freedom For SEM tensorial grids the number of degrees of freedoms
may be higher or lower than in the CG case. If the polynomial degree is the same in
the two cases (and thus is the same in the whole grid), the interface unknowns su-
perimpose spatially in the DG case, but their value do not. Thus, they are represented
by two distinct nodes, and the algebraic set should have equations to describe them.
So, in this case DG requires more computational effort. Anyway, if the polynomial
degree is lowered in some elements, the balance may turn favorable.
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2.2 On the way to local refinement: the Discontinuous Galerkin approach

Variational formulation of an elliptic problem in DG

Some basic concepts about the DG method are illustrated using the diffusion equation as
elliptic model problem. The extension to AN and other general second order differential
transport models is straightforward and it is carried out in the following sections.

The DG approach accepts jumps of the function at the inner interface between elements.
This is attained by adding some terms to the original variational form of the problem in
equation (1.99). Let a general second-order model problem be

−∇ (D(r)∇Φ)+ΣΦ= f r ∈Ω,

Φ= gD r ∈ ΓD ,

D(r)∇Φ ·n= gN r ∈ ΓN .

(2.15)

The nomenclature has already been introduce in chapter 1. Dirichlet boundaries are con-
sistently solved by the DG approach with the usual shift procedure [Quarteroni, 2009]; any-
way they will not be considered in the following developments, nor in the solver implemen-
tation, because of their little interest in direct transport calculations, meaning an imposed
flux on the boundary.

The weak form of the problem turns out to be∫
Ω

(D∇Φ ·∇v +ΣΦv) =
∫
Ω

f v +
∫
ΓN

v, ∀v ∈ H 1(Ω). (2.16)

Function Φ, from now on, denotes the weak solution to problem (2.15), and its existence
and uniqueness can be proven verifying that the weak problem satisfies the hypotheses of
the Lax-Milgram theorem [Quarteroni, 2009; Rivière, 2008].

Restricting for simplicity to 2 dimensions, Ω is then subdivided into E quadrilateral ele-
mentsΩe , globally forming the meshed domainΩE

Ω=
E⋃

e=1
Ωe , (2.17)

which should be regular by construction1. The approximation spaceV is a broken Sobolev
space rigorously defined by

V≡ H s(ΩE ) = {
v ∈ L2(Ω) : ∀E ∈ΩE , v |E ∈ H s(E)

}
. (2.18)

This choice do not pose constraints on the continuity of the functions across the elements,
so they are let free to be discontinuous outside each element E .

1In FEM jargon, a regular mesh implies that, if hE is the diameter of the element E and ρE is the maximum
diameter of all circles inscribed in E , there exists a constant ρ > 0 such that

∀E ∈ΩE ,
hE

ρE
≤ ρ.
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2 Application of the Spectral Element Method to second order neutron transport

On the external boundary of Ω, say ∂Ω, one assumes the existence of a set of non-
overlapping curves Γ(N )

j , j = 1, . . . , NN where Neumann or Robin boundary conditions ap-
ply. The union of all these curves (of course, in more dimensions they are surfaces) covers
the whole external boundary, as:

∂Ω=
(

NN⋃
j=1

Γ(N )
j

)
. (2.19)

The set of all interior edges Γi of ΩE is indicated by Γh , each of them endorsed with a unit
normal vectorni . The orientation of such vector is not significant for the edges in Γh , while
conventionally it always points outward for the boundary edges belonging to ∂Ω.

If a function v belongs to the approximation spaceV, considering that it is allowed to be
discontinuous on each edge, in the simpler case2 there are two traces of v on each interface
Γi . Naming them v+

Γi
and v−

Γi
, it is possible to define the average of v on Γi as

{v}Γi =
1

2
v+
Γi
+ 1

2
v−
Γi

, (2.20a)

where the sign + or − is attributed to each section of v according to the orientation of the
normal to Γi ; similarly the jump is

[v]Γi = v+
Γi
− v−

Γi
. (2.20b)

On the boundary there is just one trace, but both the average and the jump are convention-
ally defined as

{v}Γ(N )
i

= [v]Γ(N )
i

= v−
Γ(D,N )

i

(2.20c)

in order to use a consistent notation for all edges.

Assuming now s > 3/2 in (2.18), it is possible to introduce the two bilinear forms Jσ0,β0

0

and Jσ1,β1

1 with values in H s(ΩE )×H s(ΩE ) →R acting as penalty operators on the averages
and jumps of both function v and derivatives:

Jσ0
0 (v, w) =

∑
Γi∈Γh

σ0
i

|Γi |

∫
Γi

[v][w], (2.21a)

Jσ1
1 (v, w) =

∑
Γi∈Γh

σ1
i

|Γi |

∫
Γi

[D (r)∇v ·ni ][D (r)∇w ·ni ], (2.21b)

where σ0
i and σ1

i are called penalty parameters, while |Γi | stands for the length of side Γi .
The DG bilinear form aε : H s(ΩE )×H s(ΩE ) →R:

aε(v, w) =
E∑

e=1

(∫
Ωe

D(r)∇v ·∇w +
∫
Ωe

Σv w

)
−

∑
Γi∈Γh

∫
Γi

{D(r)∇v ·ni } [w]

+ε
∑
Γi∈Γh

∫
Γi

{D(r)∇w ·ni } [v]+ Jσ
1
i (v, w)+ J

σ1
i

1 (v, w) (2.22)

2This is the case of conformal grids, without hanging nodes. In case of non conformal grids this argument
can be extended.
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2.2 On the way to local refinement: the Discontinuous Galerkin approach

The parity parameter ε may assume values −1,0 or +1. In the first case, aε is symmetric
ans so will be the algebraic system obtained from its discretization. The linear form L(v) :=
H s(Ω) →R is defined as:

L(v) =
∫
Ω

f v +
∑

Γi∈ΓN

v gN . (2.23)

All the integrals in (2.22) and (2.23) make sense thanks to the Chauchy-Schwarz inequality
and trace inequalities [Rivière, 2008; Quarteroni, 2009], provided s > 3/2 as already stated.
Then, the general DG variational formulation for problem (2.15) is

FindΦ ∈V := H s(ΩE ), s > 3/2 such that ∀v ∈V, aε(Φ, v) = L(v) (2.24)

A DG-SEM scheme to solve AN equations

A DG variational formulation can be easily derived using the original istropic model (1.55),
the functionals (2.22) and (2.23) combined with proper boundary conditions. The deriva-
tive penalty term (2.21b) is typically considered of lower order with respect to (2.21a), then
σ1

i is set to zero for any interface. After the choice of a suitable meshingΩE , one obtains:

E∑
e=1

∫
Ωe

µ2
α

Σ(r)
∇ϕα(r) ·∇θ(r)dr−

NN∑
i=1

∫
Γi

µ2
α

Σ(r)
θ(r)

∂ϕα(r)

∂n
ds +

E∑
e=1

∫
Ωe

Σ(r)ϕα(r)θ(r)dr−

N∑
β=1

wβ

E∑
e=1

∫
Ωe

Σs(r)ϕβ(r)θ(r)dr−
Nh∑
j=1

∫
Γ j

µ2
α

Σ(r)
{∇ϕα(r) ·ni |Γ j }[θ(r)|Γ j ]ds+

ε
Nh∑
j=1

∫
Γ j

µ2
α

Σ(r)
{∇θ(r) ·ni |Γ j }[ϕα(r)|Γ j ]ds +

Nh∑
j=1

σ0
i

|Γ j |

∫
Γ j

[ϕα(r)|Γ j ][θ(r)|Γ j ]ds =

E∑
e=1

∫
Ωe

S(r)θ(r)dr+
NN∑
i=1

∫
Γi

θ(r)g (N )
i ds, ∀α= 1,2, . . . , N . (2.25)

This is the form to be implemented in solvers, though the scheme already used for one
and two-dimensional computations in chapter 1. In order to try and assemble a solver, the
formula (2.25) has been further elaborated, in order to include the quadratures needed to
evaluate each term. The next section deals with the algebraic details of this operation.

Implementation strategy

The main effort for the successful implementation of Eq. (2.25) clearly stands in the nu-
merical approximation of (2.25) with its transformation into an associated linear system
(to be properly stored and solved), once the basis has been defined.

Equation (2.25) defines each term of the matrix and of the right-hand-side of the system.
Nonetheless, implementing each element as it is would waste much time in evaluating
many terms which turn out to be null for the sparsity of the matrix, even introducing noise
in case of cancellations. Moreover, space would be allocated also for null terms, reducing
the amount of memory available for the solution algorithms, which are generally demand-
ing in this sense, and further processing.
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Figure 2.8: A schematic representaition of two adjacent elements A and B joined by the interface Γi ,
used in the derivation of the DG-SEM matrices.

It is recommended to elaborate the weak form and evaluate only the non vanishing
terms, storing them in sparse form, for instance through the PETSc interface [Balay et al.,
2013] used in this work. This practice is quite established in FEM, and it is even more re-
quired in SEM. Essentially, this is already done in the CG version [Barbarino, 2010] where
the tensor product form of the SEM operators allow to build only the matrix blocks which
are strictly needed; in addition, the quadrature formula is embedded into the reference
operators.

In DG, the tensor form of the operators is lost, and with it goes the possibility to exploit
some clever strategies for a fast assembly and numerical resolution of the system [Deville
et al., 2002]. In what follows a strategy for the matrix construction is addressed: the DG

weak form is fully developed using the SEM basis set and, again, the GLL formula for all
quadratures3, gaining an explicit representation of each single element of the matrix.

Inter-element terms The terms appearing in equation (2.25) are split into two categories.
Setting ε andσ0

i to zero, one simply obtains the same expression used in CG in case of a sin-
gle element problem with natural boundary conditions summed over all elements. Since
the are no boundary adapted basis functions in the DG formulation, with their support
strictly localized on a single element, the solution would be the union of single element
solutions each one surrounded by an infinitesimally thin reflective wall. These terms then
solve the problem using only the information about the element itself and neglecting any
interaction with the adjacent ones.

The other contributions appearing in equation (2.25) are, according to the spatial di-
mensionality of the problem, line or surface integrals and include jumps and averages of
both unknown and test functions.

For clarity, a simple example with two adjacent elements is introduced in Figure 2.8 andFigure 2.8

3It is not compulsory to use the GLL formula also for the line quadratures on the edges. Using the same
quadrature is advantageous when the grid is conformal, so there are not hanging nodes; in this case the
nodal values on the trace corresponds to the boundary values of each node, thus no additional “service”
nodes are needed. In case of adjacent edges with different lengths, the quadrature domain has to be scaled,
and thus all nodes are evaluated by interpolation again: in this case the change of quadrature may be prof-
itable, especially if the number of points to be interpolated is reduced.
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2.2 On the way to local refinement: the Discontinuous Galerkin approach

(a) Stiffness matrix (b) Mass matrix

Figure 2.9: Assembly of the algebraic matrix. Contribution of the inter-element terms associated to
element A

(a) Stiffness matrix (b) Mass matrix

Figure 2.10: Assembly of the algebraic matrix. Contribution of the inter-element terms associated
to element A

will be used form now on. Matrices in Figures 2.9 and 2.10 are the stiffness and mass ma- Figure 2.9

Figure 2.10trices coming out from the first part of the assembly in case element A is solved with SEM

of order K = 3, while K = 2 holds for element B .

The first group of terms are treated exactly as it is done in CG case, defining reference
stiffness and mass matrices, performing the integrals numerically and then going back to
the physical element with the coordinate transformations (see section 1.2.3 and Barbarino
[2010] for step-by-step instructions). As noted early, at the end of the process no direct
stiffness summations is used, regardless of the presence of the superposition of the inter-
faces (and, even if nodes are superimposed, they are represented by different degrees of
freedom in DG and in general they will be associated to different values of the solution).
Each elemental matrix is then placed on the diagonal of the final assembly matrix, which
will maintain this block structure even after the addition of the other DG terms. The right
hand side follows the same rationale4.

4In case of Dirichlet boundary conditions there would have been an additional term involving averages and
jumps, requiring a special treatment. The outlined procedure could be easily adapted to include this term
if needed.
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2 Application of the Spectral Element Method to second order neutron transport

Interface terms For all the other terms, it is necessary to expand both test and trial func-
tions on the elemental basis and perform as many computations as possible on the refer-
ence element, following the idea of the general procedure outlined for the CG approach.
The target is to find some matrix operators which will join the domains through the pe-
nalized discontinuous interface conditions; it will be evident that the terms concerning a
single internal interface will populate with coefficients four blocks of the final matrix, two
of them being on the block-diagonal. At the end of this section it will not seem possible
to cast the coefficients found in the form of products of sub-matrices and vectors (at least
without vectors of one non-null elements), nor this is the scope of the development. It will
rather be found a set of handy specifications for the few lines and columns that are sup-
posed to contain values, which is already of great interest for a sufficiently efficient imple-
mentation. All developments are in two dimensions, since this is the dimensionality of the
problems which are managed by the companion DG-SEM solver written in the framework
of the thesis.

For a generic interface Γi between the two elements A and B always of figure 2.8, the
three terms of the weak form (2.25) not yet considered are:

T =−
∫
Γi

k{∇ϕ ·ni } [v]+ε
∫
Γi

{k∇v ·ni }
[
ϕ

]+ σ0
i

|Γi |

∫
Γi

[
ϕ

]
[v] (2.26)

where k stands for µ2
α/Σ and all α indexes and differentials are dropped for clarity.

Let it be v(x, y)A and v(x, y)B two generic basis functions belonging to the approxima-
tion spaces of element A and B respectively. Also, for clarity, the restriction of the solution
to each element is indicated in the following by ϕA and ϕB ; please remember that these
two functions are both defined on the interface Γi at the same time with generally different
values. Once the definitions of jumps and averages are substituted, the term T appears as
the sum of four other terms in the 2D case, as:

T = m A A +mBB +m AB +mB A , (2.27)

where, ∀v A , vB ,

m A A =−1

2

∫
Γi

k∇ϕA ·ni v A + ε

2

∫
Γi

k∇v A ·niϕA +
σ0

i

|Γi |

∫
Γi

ϕA v A , (2.28a)

mBB =+1

2

∫
Γi

k∇ϕB ·ni vB − ε

2

∫
Γi

k∇vB ·niϕB +
σ0

i

|Γi |

∫
Γi

ϕB vB , (2.28b)

m AB =−1

2

∫
Γi

k∇ϕB ·ni v A − ε

2

∫
Γi

k∇v A ·niϕB −
σ0

i

|Γi |

∫
Γi

ϕB v A , (2.28c)

mB A =+1

2

∫
Γi

k∇ϕA ·ni vB + ε

2

∫
Γi

k∇vB ·niϕA −
σ0

i

|Γi |

∫
Γi

ϕA vB . (2.28d)

These terms represent the interactions between function and basis on the interface inside
or across the elements. As they are tested against each basis function v A and vB , these
terms bring four matrices MA A , MBB , MAB and MB A ; the number of rows and columns is
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2.2 On the way to local refinement: the Discontinuous Galerkin approach

equal to the number of degrees of freedom in the first and the second element in super-
script; regardless of the nature and the order, MA A and MBB are then always square ma-
trices, representing the interaction of the values at the interface with the basis functions
inside each element.

Up to this point the choice of the basis is not explicit, and the procedure will work also
with FEM methods. As far as SEM is concerned, the basis functions used are always of tensor
Lagrangian type

vi j (x, y) =χi (x)χ j (y), (2.29)

where functions χ were already defined in section 1.2, equation (1.77) and they constitute
also the basis for the expansion of the flux

ϕ(x, y) =
∑
i j
ϕ̂i jχi (x)χ j (y). (2.30)

As for section 1.2, computations are preferably performed on a single reference ele-
ment for each polynomial order K , whose coordinates are s and t and extend in the range
[−1,+1]. Some other approaches for FEM elements, like Rivière [2008], tend at this point
to calculate the value of the basis functions χi (x) and χ j (y) at the interface, derive them
where necessary, and then perform the integrals by means of quadrature formulas in or-
der to transform them in linear combinations of the unknown coefficients ϕ̂i j . Indeed, for
SEM typical Lagrange basis functions the re-construction and the derivation on curvilinear
grids may be costly, due to the large number of degrees of freedom in each element. This
difficulty is overcome in the development here presented.

Assume that the transformation of coordinates between the reference element s, t and
the physical element x(s, t ) and y(s, t ) is known. The gradient of the unknown function ϕ

in any point of the physical element can be written as

∇ϕ(
x(s, t ), y(s, t )

)= (
∂ϕ

∂s

∂s

∂x
+ ∂ϕ

∂t

∂t

∂x
,
∂ϕ

∂s

∂s

∂y
+ ∂ϕ

∂t

∂t

∂y

)
, (2.31)

which avoids the direct computation of derivatives in the physical space, passing through
the coordinate transformation. Please note that the physical flux on the element, as well
as each basis v(x, y), can be easily mapped to the reference element with Lagrangian iter-
polators. In fact, the mapping procedure can be represented as a “shrinking” and “fitting”
operation which deforms the domain in order to fit the reference square, and the overlying
flux follows this transformation. The point values of the flux on corresponding coordinates
are the same, but this is not true for the gradients, which have to be re-calculated. So, the
expansion coefficients of the physical flux and those of the transformed ones are the same,
the transformation is charged on the basis functions only. One assumes that the terms

∂s

∂x
,

∂t

∂x
,

∂s

∂y
,

∂t

∂y
(2.32)

are known or easily evaluated from the transformation at least in the grid points of the
reference domain. In this work, this is done by the inversion of the Jacobian of the trans-
formation in each point of the grid (this operation is very cheap and can be performed also
analytically in 2D).
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2 Application of the Spectral Element Method to second order neutron transport

The remaining terms, the derivatives of the flux with respect to the reference coordinate
system, use the reference basis functions as follows:

∂ϕ

∂s
= ∂

∂s

∑
i j
ϕ̂i jχi (s)χ j (t ) =

∑
i j
ϕ̂i j

dχi (s)

ds
χ j (t ), (2.33)

∂ϕ

∂t
= ∂

∂t

∑
i j
ϕ̂i jχi (s)χ j (t ) =

∑
i j
ϕ̂i jχi (s)

dχ j (t )

dt
. (2.34)

As far as the derivatives of the reference basis functions are concerned, they are available
analytically on the nodes of the GLL grid through the derivation matrix in equation (1.81),
but in general these points are not sufficient since the function is needed on the whole
[−1,+1] segment. Then, the available derivative values are interpolated using again the
Lagrange functions, allowing to write:

dχ`(ξ)

dξ
=

∑
r

D`rχr (ξ), (2.35)

where D`r = dχ`(ξr )/dξ is the derivation matrix.

Putting together all assumptions introduced so far, one is now able to calculate for in-
stance the term ∫

Γi

∇ϕA ·ni v A . (2.36)

appearing in the definition of m A A . With reference to Figure 2.8, this integral is calculated
on the E side of the A element, which corresponds also to the W side of B . Clearly, each
side among N , S , E and W is the image of the corresponding side of the reference element
with t =+1, t =−1, s =+1 and s =−1 respectively.

To solve the curvilinear integral, one needs the parametric γi(t ) representation of the
interface Γi . It can easily be determined using the transformation s, t → x, y of the element
A by setting s = +1 or, equivalently, from B by setting s = −1. The parameter is then the
coordinate t of the reference element. Then, the integral is transformed into a classical
definite integral: ∫

Γi

∇ϕA ·ni v A =
∫ +1

−1

[∇ϕA ·nv A
]
Γi

(t )
∣∣γ ′

i (t )
∣∣ dt (2.37)

The term ρ(t ) =
∣∣γ ′

i (t )
∣∣ is easily obtained from the transformation. The argument of the

integral is reformulated as

∇ϕA ·n= ∂ϕA

∂s

(
∂s

∂x
nx (t )+ ∂s

∂y
ny (t )

)
+ ∂ϕA

∂t

(
∂t

∂x
nx (t )+ ∂t

∂y
ny (t )

)
= ∂ϕA

∂s
f (t )+ ∂ϕA

∂t
g (t ),

(2.38)

where f (t ) and g (t ) are functions containing only geometrical known data. Substituting
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the expansions and the derivatives

∫
Γi

∇ϕA ·ni vn,m =
∫ +1

−1
ρ(t )

[(∑
i j
ϕ̂i j

∑
r

D(r, i )χ j (t ) f (t )+

∑
i j
ϕ̂i jχi (s)

∑
r

D(r, j )χr (t )

)
χn(s)χm(t )

]
s=+1

dt (2.39)

for all m, n in 1, . . . ,K + 1. Each basis function χ`(s = 1) is non vanishing, by topology, if
and only if `= K +1, where K is the order of the Lagrange polynomials (i.e. if it is the “last”
function of the basis), being by definition

χa(1) = δa,K+1, a = 1, . . . ,K +1. (2.40)

Moreover, the integral is solved numerically, using a Gaussian quadrature rule. Basically,
the choice of this quadrature is free, but for the implementation the GLL formula is used.
Then, if P is the order of the formula, and tp , πp for p = 0, . . . ,P are respectively its nodes
and weights, one has:∫

Γi

∇ϕA ·ni vn,m =
∑
i j
ϕ̂i j DK+1,iδn,K+1

∑
p
π(tp )ρ(tp ) f (tp )χ j (tp )χ`(tp )

+
∑
i j
ϕ̂i jδi ,K+1δn,K+1

∑
p
π(tp )ρ(tp )g (tp )

∑
r

Dk jχr (tp )χ`(tp ), ∀m,n. (2.41)

All contributions from the different m and n values are then considered at the same time.
By defining the following vectors of quantities evaluated on the nodes of the quadrature
grid

π = {
πp |πp =π(tp ), p = 0, . . . ,P

}
(2.42a)

ρ= {
ρp |ρp = ρ(tp ), p = 0, . . . ,P

}
(2.42b)

f = {
fp | fp = f (tp ), p = 0, . . . ,P

}
(2.42c)

g = {
gp |gp = g (tp ), p = 0, . . . ,P

}
(2.42d)

and the following matrices

X = {
Xi p |Xi p =χi (tp ), i = 1, . . . ,K +1, p = 0, . . . ,P

}
(2.43a)

C =
∑

r
Dr jχr (tp ) = XD (2.43b)

EA A A = XT diag
[
fπρ

]
X (2.43c)

FA A A = XT diag
[
gπρ

]
C (2.43d)

and reordering, one can write the first contribution MA A,1 to the matrix MA A

M A A,1
n+m(K+1),i+ j (K+1) = δn,K+1

(
DK+1,i E A A A

m j +δa,K+1F A A A
m j

)
. (2.44)
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2 Application of the Spectral Element Method to second order neutron transport

(a) MA A (b) MBB

Figure 2.11: Matrices of inner interaction resulting from the disretization of (2.26).

Similarly, one can calculate the integral of the form∫
e
ϕA∇v A ·n, (2.45)

which brings to the second contribution MA A,2

M A A,2
n+m(K+1),i+ j (K+1) = δi ,K+1

(
DK+1,nE A A A

j m +δn,K+1F A A A
j m

)
, (2.46)

and also the third contribution MA A,3, coming from the integral in the form∫
e
ϕA v A , (2.47)

which sums up the following elements

M A A,3
n+m(K+1),i+ j (K+1) = δn,K+1δi ,K+1G A A

mi , (2.48)

where the matrix GA A has the following definition:

GA A = XT diag
(
πρ

)
X. (2.49)

Because of the Kroenecker delta functions appearing in MA A,1,MA A,2 and MA A,3, one dis-
covers that MA A is not full, but has a fixed and easy sparsity pattern which may help its
construction and its memory storage using dedicated libraries, because the programmer
knows a priori which matrix elements are non-zero and where to place them. In particular,
MA A,1 is nonzero only in K +1 rows in regular pattern, MA A,2 in K +1 columns and MA A,3

in the intersections of the first two matrices. Figure 2.11a shows the combined pattern.Figure 2.11a

The procedure to assemble MBB is easily derived from the one for MA A , where the in-
terface is seen from element B , corresponding to an s = −1 side on the reference domain.
So, in the curvilinear integral enter all functions restricted to s =−1 instead of s =+1 when
mapped. The pattern of the matrix is analogous (a row and a column non vanishing every
K +1 positions), symmetric with respect to the top-left corner, as shown in Figure 2.11b.Figure 2.11b
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2.2 On the way to local refinement: the Discontinuous Galerkin approach

(a) MAB (b) MB A

Figure 2.12: Matrices of cross-element interaction resulting from the disretization of Eq. (2.26).

In principle, also MAB and MB A are constructed in the same way, with mixed features.
In the definitions of their generating integrals functions appear that are defined on differ-
ent sides of the interface (but are, of course, both non vanishing exactly on e), which are
represented in the reference domain by a s =−1 or s =+1 according to the fact that they be-
long to A or B . Another complication is given by the fact that different polynomial orders
are used in the two elements, so the matrices are in general rectangular and one should
consider different derivation matrices DA and DB for the unknowns and the test functions
accordingly. Matrices MAB and MB A are represented in Figure 2.12. Figure 2.12

The pattern of the comprehensive algebraic matrix obtained at the end of this simple
derivation is given in Figure 2.13. It is clear that it is sparse but completely predictable, as Figure 2.13

shown in the previous considerations. Sparse matrix storage algorithms coupled with ap-
propriate solution routines are strongly advised for the solution of DG-SEM linear systems.

Similar remarks apply to the case where the interface is not of type E −W . Provided that
the axes “in contact” in the reference domain are oriented in the same way, one has simply
to consider the correct parametrization for the border. For instance, for a N −S case the
functions defined on A are evaluated in t = 1, while in B for t = −1. The pattern of rows
and columns change, since they collate each other for N −S couplings, but their number
is unchanged.

A slightly different approach is necessary if couplings are made between non opposing
poles, like E −S : in this case one has to consider the correct parametrization and revert
one of the axis. An example of this procedure has been implemented in the solver in a
first phase of the development, but not retained in view of the properties of the transfinite
interpolation technique shown in section 2.3.

Another example of DG-SEM matrix is presented in the next section, associated to one of
the benchmark problems used.
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2 Application of the Spectral Element Method to second order neutron transport

Figure 2.13: Complete matrix. The yellow dots belong to the tensor part of the weak operator. The
orange dots are those issued from the discontinuous integral relations. The blue entries
sees both contributions summing up.

2.2.2 Some results

The Natelson benchmark

A set of numerical results illustrates some of the advantages of the spectral element ap-
proach for a classical neutron transport problem, as originally proposed by Natelson [1971].
The calculation domain, shown in figure 2.14, is a 3×3 cm cell with a symmetry plane alongFigure 2.14

one of the diagonals; an external unitary source is spread over D1, where also the isotropic
scattering cross section differs from the value in the remaining of the cell (table 2.8). All theTable 2.8

boundary conditions are assumed of the homogeneous Neumann type (which are natural
in Galerkin schemes, so that one can avoid the introduction of boundary conditions while
assembling the matrix). Results for approximations A1, A2 and A3 are presented, while the
domain is subdivided in four elements (D1, D(1)

2 , D(2)
2 and D(3)

2 ).
Several authors have considered this problem, but it seems that none has ever provided

an analytical reference solution. To perform some numerical assessments a very detailed
SEM calculation has been retained as reference solution, using 28×28 degrees of freedom
for each of the four quadrants in which the domain is decomposed. An analysis of the
convergence trend suggests that the numerical error of the solver, due to the growing con-
ditioning number of the matrix, is still kept under control by the algorithm.

For a first analysis, the same problem is solved using linear and quadratic finite ele-
ments on triangles, often referred as Courant elements P1 and P2 in finite element liter-
ature [Quarteroni, 2009]. All FEM calculations are performed with the FreeFem++ code
[Pironneau et al., 2010]. The same problem is then solved with spectral elements of in-
creasing order. The comparison between the two sets of solutions is performed for the
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D1

D2

D(1)
2

D(2)
2

D(3)
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3.0

x

y

Figure 2.14: Geometry of the Natelson [1971] benchmark. Dimensions are in centimeters. The ma-
terial region D2 has been subdivided into three computational elements D(1)

2 ,D(2)
2 and

D(3)
2 . Reflective boundary conditions are used.

Table 2.8: Material properties for the Natelson [1971] benchmark problem.

Σt Σs Source strength
Region [cm−1] [cm−1] [cm−3s−1]

D1 1.00 0.50 1.0
D2 1.00 0.25 0.0

same number of equations, corresponding to the nodes of the grid and roughly propor-
tional to the computational burden.

The position of the unknowns for the two schemes is not the same, due to the completely
different nature of the grid generation algorithm (Delaunay triangulation for FEM, tensor
product of 1D GLL grids for SEM). Moreover, since the discontinuous SEM approach gives
two values of the solution at the interfaces, point-wise evaluations of the error should be
handled with special care, in particular to avoid interpolation processes as much as possi-
ble. Therefore, the error is evaluated on the central point of each quadrant, as it is uniquely
defined and computed without interpolation at least for SEM if even values of K are used,
on the middle point of one of the outer edges of the source region and on the integral mean
values of the flux on the four subdomains, introducing anyway the quadrature error. This
choice of indicators allows to describe in an accurate way the various error trends of the
solution.

Figure 2.15 shows the non vanishing elements for the A1 (diffusion model) case with Figure 2.15

K = 3, K = 4, K = 6 and K = 5 respectively for each cell.
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Figure 2.15: Example of sparsity pattern of a spectral element matrix operator with the discontinu-
ous Galerkin approach. This case corresponds to an A1 solution of the Natelson bench-
mark introduced in section 2.2.2.
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2.2 On the way to local refinement: the Discontinuous Galerkin approach

Study of the convergence pattern To establish the feature of the convergence of the SEM

and FEM numerical schemes, one can estimate how rapidly the digits of the solutions for
the quantities indicated above reach stability, referring to the reference solution for SEM.
For the FEM solution, the reference is obtained with a calculation using about 3500 equa-
tions, approximately corresponding to the number of points of the SEM reference calcula-
tion.

Some comparisons on the number of stable digits are illustrated in Figures 2.16 and 2.17. Figure 2.16

Figure 2.17Both P1 and P2 finite elements are used, together with the SEM scheme. In all cases, the
increased number of equations is achieved with a refinement of the grid adding the same
number of degrees of freedom to each element Di . The number of stable digits reached
by the SEM model is quite larger than for FEM for any number of unknowns. It is worth
remarking that the upper limit of the number of unknowns adopted is due to the capability
of the FEM solver. These results support our choice to adopt the SEM solution described
above as reference for the following steps.

Comparison of FEM and SEM solutions to reference The relative error for the already
mentioned quantities and functional of the solution is studied when the number of equa-
tions is progressively increased. Figure 2.18a shows the smooth trend of the error evalu- Figure 2.18a

ated for the integral mean flux over the first quadrant D1. A similar graph is shown in figure
2.18b, referring to the solution at the midpoint of the outer edge of D1; even if the trends Figure 2.18b

are less regular, the convergence speed is quite similar to the previous example.

An example to show the potential of adaptivity

The grid can be adapted to improve the performance of the numerical scheme, thus reduc-
ing the computational burden to reach a given approximation. A preliminary evaluation is
presented to show the potentiality of an adaptive approach to enhance the performance of
the SEM scheme.

A solution with 900 equations (152 equations for each of the four elements) is evaluated
and assumed as reference for the subsequent calculations. The number of unknowns in the
largest square is then progressively reduced (132, 112 and so on up to 32). In figure 2.19 the Figure 2.19

relative errors at each step are plotted as a function of the computational gain, expressed
in terms of the relative reduction of the number of equations.

Benchmark IAEA-EIR2

In table 2.10 some results of the application of SEM to the benchmark problem IAEA-EIR2 Table 2.10

(figure 2.20, material data and sources in table 2.9) are presented, together with some of Figure 2.20

Table 2.9the results available in literature. Namely, we have performed three calculations with FEM

(Courant P2) with different values of the mesh size h and one with SEM. These results are
compared with the Boundary Element Method and those obtained by the TWODANT code
[Alcouffe et al., 1984] working with the discrete ordinates scheme. Except for the latter, all
the numerical methods solve the A2 model in the example. It has to be noted, however, that
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(a) Digits of the mean flux over D1,
computed using the A3 model.
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(b) Digits of the mean flux over D1,
computed using the A2 model.
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(c) Digits of the mean flux over D(1)
2 ,

computed using the A1 model.
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(d) Digits of the mean flux over D(2)
2 ,

computed using the A1 model.

Figure 2.16: Number of stable digits of some functionals of the solution, using FEM P1 and P2
schemes and the spectral element method.
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(a) Digits of the value of the flux in the
center point of D1, computed using
the A1 model.
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(b) Digits of the value of the flux in the
midpoint of the outer edge of D1,
computed using the A1 model.

Figure 2.17: Number of stable digits of some functionals of the solution, using FEM P1 and P2
schemes and the spectral element method.

the comparison of the various A2 calculations with the discrete ordinates has only an in-
dicative value, owing to the intrinsic, and distinctive, approximation mechanism of the AN

method, while the approximation of the SN method can be arbitrarily increased by letting
N go to infinity. In this respect, the “pseudo-reference” SEM solution has been introduced
to perform a comparison remaining inside the class of the AN solution methods.

2.2.3 Comments on the DG approach

The original and typical formulation of the Spectral Elements Method carries some weak-
nesses concerning the grid specifications. The Continuous Galerkin approach, which is the
classical reference framework for most Galerkin-type schemes, requires conformal grids. If,
in FEM, this may not constitute a serious problem since the elements are typically “small”
(compared to the characteristic dimensions of the domain), in SEM they tend to be far more

Table 2.9: Material properties for the IAEA EIR-2 benchmark problem [Khalil, 1985].

Σt Σs Source strength
Region [cm−1] [cm−1] [cm−3s−1]

D1 0.60 0.53 1.0
D2 0.48 0.20 0.0
D3 0.70 0.66 1.0
D4 0.65 0.50 0.0
D5 0.90 0.89 0.0
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Figure 2.18: Convergence trends of the FEM and SEM solutions, compared to the reference SEM so-
lution.

extended, since the gradients of the material characteristics and of the solution are opti-
mally handled by the high polynomial degree.

The neutron flux in power and research reactors may show sufficiently steep gradients
to require a local fine grid reconstruction. For instance, the presence of localized absorbers
like gadolinized pins, self powered neutron detectors or shutdown rods distorts the flux
shape with most of the effect in the spatial scale of the mean free path. On the other hand,
localized reactivity insertions are known to provoke high isolated flux peaks: the proce-
dures for safety evaluations require in this case a fine reconstruction of the power profile at
a sub-assembly level in order to identify the most compromised pin and evaluate margins
on it; currently, envelope statistical approaches are used, which could be substituted by

Table 2.10: Comparison of results for the IAEA-EIR2 benchmark. All values are in n/cm2/s. BEM
results are from Ciolini et al. [2002], TWODANT calculations from Khalil [1985]

FEM FEM FEM SEM BEM TWODANT
h = 1.0 cm h = 0.5 cm h = 0.3 cm

ΦD1 1.19987E+1 1.19705E+1 1.19623E+1 1.19459E+1 1.1973E+1 1.1960E+1
ΦD2 6.01814E -1 5.70341E -1 5.60809E -1 5.43844E -1 5.3613E -1 5.3613E -1
ΦD3 1.92649E+1 1.92215E+1 1.92051E+1 1.91766E+1 1.9222E+1 1.9202E+1
ΦD4 9.09529E -1 8.71527E -1 8.59959E -1 8.38486E -1 8.2946E -1 8.3364E -1
ΦD5 1.49461E+0 1.51175E+0 1.51697E+0 1.52707E+0 1.5318E+0 1.5263E+0
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Figure 2.19: Behavior of the relative error of the quantities and solution functionals observed for an

adaptive grid as a function of the computational gain. φ1,φ
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is the value of the scalar flux at the midpoint of the outer edge of D1.
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Figure 2.20: Geometry for the IAEA EIR-2 benchmark problem [Khalil, 1985]. Void boundary condi-
tions are put on all four sides.
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Figure 2.21: Deformation of a reference element

more accurate computations with localized grid refinement using SEM and DG in order to
reduce incertitudes and allow lower provisions in the reactor design phase.

From the implementation point of view, the explicit block-matrix approach seems easily
scalable to more complex domains; its memory consumption is low, because each block
can be stored in memory in the final sparse matrix as soon as it is calculated and with-
out cross terms, owing to the advantageous structure of the DG interface conditions acting
solely on traces. Last, the conservation of the number of particles in each element is of
great importance in nuclear engineering for the equivalence procedures, since it guaran-
tees a high precision in the conservation of the reaction rates over which such calculation
schemes are based. More details and results are presented in the next section, which adds
to the DG-SEM scheme another feature to enhance even more its flexibility.

2.3 Domain deformation: Transfinite interpolation

2.3.1 Motivation

Up to this point, the SEM elements were considered rectangular, obtained by a scaling of a
reference square with a different factor in each direction. General expressions for a rotated
element were obtained by Barbarino [2010]. For certain computational domains, more grid
flexibility is advisable. For instance, one may need to adapt the boundaries of each element
to curved surfaces, and in doing so it could be advantageous to deform an element with
the elimination of one side, reverting to the triangular shape which is a feature cleverly
exploited by general FEM Courant schemes to assemble flexible grids.

In this section both problems are approached using transfinite interpolation and Radau
polynomials, with reference to a specific exercise where these features are required at the
same time.

2.3.2 Analytical deformation of a quadrangular mesh element

Assume a 2D reference domain Ω̂(s, t ) ∈ [−1,+1]2 as in Figure 2.21, which can be deformed
by the transformation Γ = x(s, t ), y(s, t ) into the domain Ω(x, y). Once Γ is obtained, it is
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possible to calculate the Jacobian matrix and the metrics in all points, feeding the SEM

scheme with the adjusted mass and stiffness matrices.
When the analytic expression for Γ is not easily recoverable, numerical methods exist,

which are based on the solution of differential equations modelling pseudo-potentials al-
locating charges in equilibrium positions according to the interface nodes [Deville et al.,
2002]. One of this methods has been successfully used by the author previously with SEM

grids [Barbarino, 2010]; this method requires the solution of a partial differential equation
on each internal point.

In these pages another approach is used, called transfinite interpolation. This method
does not address the Γ transformation directly, but its Lagrangian interpolant obtained us-
ing only the parametric representation of the contours of the element. The accuracy of the
method is improved by a clever choice of the interpolation basis, and typically brings handy
expressions for the transformed coordinates, which can be treated analytically rather than
numerically.

Transfinite interpolation basics

In order to introduce the grounds of the method, a mono-dimensional interpolation prob-
lem is first considered. Be f (x) a suitable function defined in [−1,+1]; be f ?(x) its linear
Lagrangian interpolation, obtained by applying to f (x) the projection operator Px as fol-
lows [Mund, 2011a]:

f ?(x) = Px f (x) = f (−1)ϑ1(x)+ f (1)ϑ2(x), (2.50)

where

ϑ1(x) = 1−x

2
, ϑ2(x) = 1+x

2
.

The interpolation error may be represented as an operator Qx acting on f (x), being:

ε(x) = f (x)− f ?(x) = (I −Px ) f (x) =Qx f (x). (2.51)

Standard textbooks report that the error associated to linear Lagrangian interpolation in
1D has an error which goes as the square of the mesh size, as:

||ε(x)|| =O(h2). (2.52)

Intuitively, the simplest extension to two or more dimensions implies the tensor product
P⊗ of the two projectors Px and Py

f ?(x, y) = P⊗ f (x, y) = Px Py f (x, y) = f (−1,−1)ϑ1(x)ϑ1(y)+ f (−1,1)ϑ1(x)ϑ2(y)

+ f (1,−1)ϑ2(x)ϑ1(y)+ f (1,1)ϑ2(x)ϑ2(y). (2.53)

The error operator Q⊗ associated to this projector is

Q⊗ = I −P⊗ = I − (I −Qx )(I −Qy ) =Qx +Qy −QxQy =Qx ⊕Qy , (2.54)

where ⊕ is the symbol for the boolean sum. By extension of equation (2.52), one observes
that the error in this 2D case is of the same order of the 1D case, being

||ε⊗(x, y)|| =O(h2
x )+O(h2

y ) (2.55)
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2 Application of the Spectral Element Method to second order neutron transport

at the leading order. It can now be observed that reversing formally the roles of interpola-
tion and error operators in equation (2.54), thanks to the fact that Q +P = I , the transfinite
projection operator defined as

P⊕ = Px ⊕Py = Px +Py −Px Py (2.56)

has an associated error operator Q⊕ =QxQy , and then the leading error magnitude is only

||ε⊕(x, y)|| =O(h2
x h2

y ), (2.57)

considerably smaller than in the tensor case.
In addition to this proof, one may get a hint on the precision at which the original func-

tion is represented by each of the operators at the border of the domain. For instance, the
interpolation of f , f ?(x, y), calculated in x =−1 is, according to equation (2.53):

f ?(−1, y) = f (−1,−1)ϑ1(y)+ f (−1,1)ϑ2(y), (2.58)

and so the interpolator evaluated on the boundary is just a segment connecting the two
values of f at the domain endpoints. Indeed, the expanded expression for the transfinite
interpolation is

f ‡(x, y) = f (−1, y)ϑ1(x)+ f (1, y)ϑ2(x)+ f (x,−1)ϑ1(y)+ f (x,1)ϑ2(y)

− f (−1,−1)ϑ1(x)ϑ1(y)− f (−1,1)ϑ1(x)ϑ2(y)− f (1,−1)ϑ2(x)ϑ1(y)− f (1,1)ϑ2(x)ϑ2(y)
(2.59)

which, evaluated in x = 1 as before brings simply

f ‡(−1, y) = f (−1, y), (2.60)

meaning that, this time, the interpolant corresponds exactly to the values of the function
at the boundaries (this rationale is valid for x, y = ±1 of course). Intuitively, if a better
representation of the boundaries is available, one expects a better interpolation inside the
domain, which is confirmed by equation (2.57).

Extension to three dimensions is quite straightforward. The transfinite operator is

P⊕ = Px ⊕Py ⊕Pz = Px +Py +Pz − (Px Py +Px Py +Py Pz )+Px Py Pz (2.61)

and, given the associated error operator as QxQyQz , the norm of the interpolation error
results O(h2

x h2
y h2

z ). Again, the interpolation is exact on the six edges of the reference cube

[−1,1]3.

Use with coordinate transformation

The two-dimensional domain mapping problem consists in finding two functions x(s, t )
and y(s, t ) constituting the components of the transformation Γ(s, t ) between Ω̂ andΩ. Us-
ing the transfinite technique means rather looking for the boolean interpolated functions
x‡(s, t ) and y‡(s, t ) of the transformation. It is clear from equation (2.59) that one needs to

78



2.3 Domain deformation: Transfinite interpolation

Ω
Ω1

Ω2

Ω3

s
s

st
t

t

Figure 2.22: A triangular element split into three lozenges.

know the law {s, t } → {x, y} at least for each of the four sides N , S , E , W , which will be
represented by the following loci:

N = [x‡(s,+1), y‡(s,+1)]T ,

E = [x‡(+1, t ), y‡(+1, t )]T ,

S = [x‡(s,−1), y‡(s,−1)]T ,

W = [x‡(−1, t ), y‡(−1, t )]T .

(2.62)

Assume that each side can be represented parametrically as

X (ξ) = [
xX (ξ), yX (ξ)

]T , X ∈ {N ,S ,E ,W } , (2.63)

where for all four cases ξ needs exactly the reference interval in [−1,+1] to represent com-
pletely the corresponding side. One can impose that the free parameter appearing in equa-
tion (2.62) is equal to ξ, by virtue of the same domain [−1,+1] and the fact that the second
free parameter does not enter into the side definition, since it is equal to ±1. In the end,
the explicit expression of the transformation is

Γ‡(s, t ) = [x‡(s, t ), y‡(s, t )]T =W (t )ϑ1(s)+E (t )ϑ2(s)+S (s)ϑ1(t )+N (s)ϑ2(t )

−W (−1)ϑ1(s)ϑ1(t )−E (−1)ϑ1(s)ϑ2(t )−W (1)ϑ2(s)ϑ1(t )−E (1)ϑ2(s)ϑ2(t ). (2.64)

This transformation, though handy, has the important drawback of being non conformal,
i.e. it does not conserve the angle between lines passing from Ω̂ to Ω [Ivanov and Tru-
betskov, 1995]. This requires particular care in a Continuous Galerkin framework, when
imposing the continuity of currents in multi-region multi-media domains, since gradients
must be calculated differently according to the side of each interface between two ele-
ments. In case of Discontinuous Galerkin, the mass conservation and the integral form
of the interface conditions overcome this problem.

2.3.3 Trilateral elements

Sometimes, for symmetry reasons or to improve flexibility, it is necessary to include some
triangular elements in the grid. The transfinite interpolation technique allows, in principle,
to transform a side of the reference domain in a single point (x0, y0), simply setting the
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Figure 2.23: Radau basis in 1D, for K = 4 and including the x = 1 edge. Basis are simply specular if
x = −1 is included in the set instead. With dotted lines, the same basis for the Lobatto
case.

parametrization of the concerned X side artificially equal to ΓX (ξ) = [x0, y0]. Anyway the
transformation is not invertible, because all the points on X are collapsed to the same
coordinate in Ω; this implies a vanishing jacobian there, which prevents the evaluation of
some of the integrals in the mass and stiffness matrices.

Two solutions have been identified, and successfully applied in this work. The first alter-
native consists of splitting each trilateral domain in three quadrilateral lozenges, deformed
via the transfinite interpolation. This method, illustrated in Figure 2.22 has several disad-Figure 2.22

vantages, for instance the presence of hanging nodes. The study of this alternative and its
implementation have been performed, but they are not presented in this thesis.

The second solution identified changes the SEM interpolation basis in order to avoid the
presence of nodes on the collapsed side.

As for the interpolator basis used classically in SEM methods, the new basis is constituted
by Lagrange interpolators in the grid of the Gauss Radau quadrature formula. The nodes
are defined in (−1,+1] or [−1,+1), and one extreme point is always excluded according to
the formulation.

Radau nodes are the solutions of the polynomial equation

PK (x)+PK+1(x) = 0 (2.65)

where PK and PK+1 are the Legendre polynomials of order K and K +1 respectively. The
nodes of the associated quadrature formula are obtained as

w j =


2

(K +1)2 , j = 1

1

(K +1)2

1−ξ j[
PK (ξ j )

]2 , 2 ≤ j ≤ K +1.
. (2.66)
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ΩΩ̂

Figure 2.24: A triangular element treated with a change of basis

In two dimensions the interpolators are still tensor products of one-dimensional La-
grangian bases, and it is perfectly admissible to mix Radau and Lobatto polynomials in
order to have nodes on the opposite side as before, in order to account for the interface
values. Figure 2.24 is an example, where a Radau grid is used in the s direction of the refer- Figure 2.24

ence element Ω̂, while a GLL grid is still used along t . The resulting spectral element lacks
of degrees of freedom in one vertex, but this is beneficial because in all other points the
Jacobian is strictly positive, and all matrices of the algebraic problem can be evaluated as
before. As for the Lagrangian interpolators over the GLL grid, also in this case it is possible
to get explicitly the value of the derivatives on the nodes of the Radau grid. Two differen-
tiation matrices exist, according to the orientation of the grid. For the case where ξ1 >−1,
which implies that the last node is placed exactly in +1, the matrix is [Karniadakis and
Sherwin, 2005]:

DRadau =



K (K +1)

4
, i = j = 1,

1

2(1−ξi )
, i = j > 1,

PK (ξi )

PK (ξ j )

1−ξ j

1−ξi

1

ξi −ξ j
, otherwise.

(2.67)

The matrix corresponding to the other verse has a change in sign and all rows and columns
are swapped, being:

DRadau =



−K (K +1)

4
, i = j = K +1,

− 1

2(1−ξK+2−i )
, i = j < K +1,

−PK (ξK+2−i )

PK (ξK+2− j )

1−ξK+2− j

1−ξK+2−i

1

ξK+2−i −ξK+2− j
, otherwise.

(2.68)

The matrix for the GLL grid has already been introduced in equation (1.81) and it is not
changed.

2.3.4 The pin-cell problem

The techniques outlines in sections 2.3.2 and 2.3.3 are applied together to solve a lattice
problem. The domain represents one eighth of a fuel cell, like the one depicted in Figure
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Figure 2.25: Domain for the Mosteller benchmark [Mosteller and Eisenhart, 1991], representing a
typical lattice configuration.

2.25, comprising one or more concentrical fuel regions (for fine burnup analysis), the cladFigure 2.25

and the moderator. Reflection conditions are imposed on all sides, being a calculation
which normally assumes no neutron leakage [Mosteller and Eisenhart, 1991].

For each cell type, the transformation is explicitly reported in the following paragraphs.

Rings With reference to Figure 2.26b, each hollow annular cell has four sides, whose para-Figure 2.26b

metric equations in t and s, with −1 ≤ t , s ≤+1:

S (s) =

 x(s) = h

2
(s +1)+ r

y(s) = 0
, N (s) =


x(s) =

p
2

2

[
h

2
(s +1)+ r

]
y(s) =

p
2

2

[
h

2
(s +1)+ r

] ,

E (t ) =


x(t ) = (r +h)cos

[π
8

(t +1)
]

y(t ) = (r +h)sin
[π

8
(t +1)

] , W (t ) =


x(t ) = r cos

[π
8

(t +1)
]

y(t ) = r sin
[π

8
(t +1)

] .

(2.69)
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Figure 2.26: Dimensions of the model cells

Introducing these definitions into equation (2.64), one has:

Γ(s, t ) =


x(s, t ) = 1

2
(h +2r +hs)cos

[π
8

(1+ t )
]

,

y(s, t ) = 1

2
(h +2r +hs)sin

[π
8

(1+ t )
] (2.70)

The transformation is invertible in any point, and so the associated jacobian is non van-
ishing everywhere.

Wedge By imposing a vanishing radius r to the previous relations, one obtains the map-
ping for the wedge (Figure 2.26a), representing the innermost fuel region. Thus, each side Figure 2.26a

of the wedge can be parametrized as follows:

S (s) =

 x(s) = h

2
(s +1)

y(s) = 0
, N (s) =


x(s) =

p
2

2

[
h

2
(s +1)

]
y(s) =

p
2

2

[
h

2
(s +1)

] ,

E (t ) =


x(t ) = h cos

(π
8

(t +1)
)

y(t ) = h sin
(π

8
(t +1)

) , W (t ) =


x(t ) = 0

y(t ) = 0

.

(2.71)

Please note the degenerate mapping which brings all points in s =−1 in (0,0). The trans-
finite interpolation of the coordinate transformation is

Γ(s, t ) =


x(s, t ) = 1

2
h(s +1)cos

[π
8

(1+ t )
]

,

y(s, t ) = 1

2
h(s +1)sin

[π
8

(1+ t )
] (2.72)

which is non invertible for x = 0 and y = 0. Thus, it cannot be used if there are degrees of
freedom placed in that point.
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2 Application of the Spectral Element Method to second order neutron transport

Moderator Finally, the moderator region can be represented by the area enclosed by these
edges (Figure 2.26b):Figure 2.26b

S (s) =

 x(s) = h

2
(s +1)+ r

y(s) = 0
, N (s) =


x(s) =

p
2

2

[
h

2
(s +1)

]
y(s) =

p
2

2

[
h

2
(s +1)

] ,

E (t ) =


x(t ) = r +h

y(t ) = r +h

2
(t +1)

, W (t ) =


x(t ) = r cos

[π
8

(t +1)
]

y(t ) = r sin
[π

8
(t +1)

] .

(2.73)

The transformation from the reference domain takes the following form:

Γ(s, t ) =


x(s, t ) = 1

2

[
(h +1)(1+ s)− r (s −1)cos

(π
8

(1+ t )
)]

,

y(s, t ) = 1

4

[
(h + r )(1+ s)(1+ t )−2r (s −1)sin

(π
8

(1+ t )
)]

.

(2.74)

This transformation is invertible everywhere in the domain.

2.3.5 Results

A DG-SEM code with deformed elements has been implemented by the author using the
MATLAB environment. The internal sparse matrix routines are used to optimize memory
consumption. The solver has been specifically designed to cope with lattice problems in
8-th symmetry, like the Mosteller benchmark [Mosteller and Eisenhart, 1991] which has
been already introduced. The code works in one group and source mode: its main aim is
to demonstrate the convergence properties of the numerical scheme on the spatial resolu-
tion of the solution, rather than being a criticality solver. Nonetheless, its capabilities can
be easily improved by adding the standard inner-outer iteration scheme or more involved
protocols, as any other solver. The isotropic AN model is fully implemented, allowing a cer-
tain degree of transport insight which is normally needed in these problems. The AN set is
solved with block iterations, one equation at a time, with a Gauss-Seidel scheme to update
the pseudo-scattering terms in each solution and accelerate convergence.

Heterogeneous cylinder - comparison to diffusion

The first set of results refers to a simplified pin-clad configuration, where the presence
of the moderator is neglected and reflective boundary conditions are enforced also on
the curved boundary, i.e. at clad edge. The geometry (Figure 2.27) is adapted from theFigure 2.27

aforementioned Mosteller benchmark; even if the benchmark is quite idealized, the cross
sections have been chosen to resemble the original values proposed by Mosteller for the
original case(table 2.11). In particular, the benchmark as it is formulated has been calcu-Table 2.11

lated with the DRAGON code [Marleau et al., 2000] splitting the fuel region according to
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Figure 2.27: Domain for the bare pin benchmark. Dimensions are taken from the Mosteller bench-
mark. Regions D1 to D4 are all filled with the same fuel-like composition, and have the
same extension along x (0.0983cm). Material properties may be found in table 2.11

the present case; the cross sections have been condensed to one energy group. Sources are
arbitrary chosen with a step distribution trying to mimic a typical radial power distribution.

This first exercise is run only in diffusion (A1) mode, in order to profit of the analytic so-
lution which allows accurate evaluations on the convergence rate of DG-SEM. To compare
with more classical approaches, FEM evaluations are also performed, using elements of
Courant type [Quarteroni, 2009] P1 and P2 (triangular) using the code FreeFem++ [Piron-
neau et al., 2010].

The reaction rates for each cell is given in Figure 2.28, using the total number of degrees Figure 2.28

of freedom (NDOF) as independent variable. This choice is made to compare SEM and FEM

schemes considering the final size of the solution system and therefore the computational
effort needed to solve it. All elements have the same polynomial order so, to recover the
value of K , one may use the relation 6(K +1)2 = NDOF, which is valid only for this domain.

Table 2.11: Material properties for the heterogeneous source pin-clad benchmark problem.

Σt Σs Source
Region [cm−1] [cm−1] [cm−3s−1]

D1 4.0866E-01 3.6308E-01 1.5
D2 4.0866E-01 3.6308E-01 1.3
D3 4.0866E-01 3.6308E-01 1.0
D4 4.0866E-01 3.6308E-01 0.8
D5 2.4653E-01 2.4438E-01 0.0
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2 Application of the Spectral Element Method to second order neutron transport

Table 2.12: Material properties for the homogeneous source pin-cell benchmark problem.

Σt Σs Source
Region [cm−1] [cm−1] [cm−3s−1]

D1 7.2487E-01 7.0816E-01 1.0
D2 7.2487E-01 7.0816E-01 0.0
D3 7.2487E-01 7.0816E-01 0.0

The FEM grid is assembled using the FreeFEM++ embedded meshing tool, based on the
Delunay algorithm for triangulation. Mesh size is uniform throughout the domain. The
SEM scheme reaches quickly a level of error comparable to round-off, and its pattern is
almost the same for any considered cell. On the contrary, the FEM schemes are much slower
and the magnitude of the deviations varies considerably across the domain.

This fact is due to the local mass conservation principle, which is a distinctive feature
available in DG and not in the CG of classical Courant FEM. The neutron balance is con-
served in each cell, while for CG this statement is valid only looking at the ensemble of the
cells forming the domain. For further confirmation, the error trend is calculated on the
sum of the reaction rates of each cell (Figure 2.28f): while the FEM scheme shows the sameFigure 2.28f

trend as in each single cell, the values of the SEM trend are lower, indicating that the neu-
tron balance is better conserved on a global scale than at the local one. This is of course
a strong point in favor of the SEM approach for nuclear applications, since the main goal
remains the computation of reaction rates in discrete portions of the system.

Mosteller benchmark - homogeneous

The second set of results uses the geometry specified by Mosteller (Figure 2.25). There areFigure 2.25

only three elements, standing for the fuel, the clad and the moderator. The cross sections
(Table 2.12) are again issued from a full homogenization of the original critical MostellerTable 2.12

benchmark on all three regions. The source in the fuel region reproduces the flux inte-
grated values on each of the three cells, thus mimicking a realistic power profile for a lattice
calculation. Anyway, since homogenization is concerned, the scope of this evaluation is
again mainly to check the convergence of the method and, at the same time, the conver-
gence of the AN scheme to the transport solution, because in this case the asymptotic con-
vergence is guaranteed by the equivalence to the integral form of the transport equation,
as illustrated in chapter 1.

Figures 2.29 show the reaction rates of each of the cells D1, D2 and D3, followed by theFigure 2.29

total reaction rate D1 +D2 +D3 in Figure 2.29d. The model used is A2.Figure 2.29d

The behavior of SEM, compared to FEM, is quite varying. Apart from very low-order
schemes, where foreseeable oscillations are to be ascribed to the Lagrangian interpolation
functions, the convergence trend is similar to the previous evaluations, with a fast conver-
gence of SEM and a much slower trend for FEM. Anyway, the average value of the error in
each cell changes; as far as SEM is concerned, it follows the density of degrees of freedom,
being in the clad region the most remarkable accumulation of points in the radial direction.

86



2.3 Domain deformation: Transfinite interpolation

102 103
10−12

10−9

10−6

10−3

NDOF

ε

SEM

FEM P1
FEM P2

(a) Fuel (ring D1)

102 103
10−12

10−10

10−8

10−6

10−4

10−2

NDOF

ε

(b) Fuel (ring D2)

102 103
10−12

10−10

10−8

10−6

10−4

10−2

NDOF

ε

(c) Fuel (ring D3)

102 103
10−12

10−10

10−8

10−6

10−4

10−2

NDOF
ε

SEM

FEM P1
FEM P2

(d) Fuel (ring D4)

102 103

10−12

10−9

10−6

10−3

100

NDOF

ε

SEM

FEM P1
FEM P2

(e) Clad (ring D5)

102 103
10−12

10−9

10−6

10−3

NDOF

ε

(f) All the domain

Figure 2.28: Bare pin benchmark: reaction rates compared to diffusion, for each of the 5 cells in
which the domain is subdivided

87



2 Application of the Spectral Element Method to second order neutron transport

101 102

10−2

10−1

NDOF

ε

(a) Fuel

101 102

10−3

10−2

10−1

NDOF

ε

SEM

FEM P1
FEM P2

(b) Clad

101 102

10−3

10−2

10−1

NDOF

ε

SEM FEM P1
FEM P2

(c) Moderator

101 102

10−2

10−1

NDOF

ε

(d) Complete domain

Figure 2.29: Homogeneous Mosteller benchmark: relative error of A2 SEM and FEM schemes.
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Figure 2.30: Homogeneous Mosteller benchmark: reaction rates and computational time, for vari-
ous AN orders. If not specified in the legend, values are for SEM computations.
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Figure 2.31: Mosteller homogeneous benchmark: parametric study on the total reaction rate and
the computational time varying the DG penalty parameter σ. Values used are 1 (dotted
lines), 5 (dashed lines) and 10 (solid lines).
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Table 2.13: Material properties for the heterogeneous source pin-cell benchmark problem.

Σt Σs Source
Region [cm−1] [cm−1] [cm−3s−1]

D1 4.0866E-01 3.6308E-01 2.0
D2 2.4653E-01 2.4438E-01 0.0
D3 9.7874E-01 2.4438E-01 0.0

FEM does not show the same behavior because the triangular elements are not deformed
too much, and thus its mesh remains homogeneous. The performances of SEM in the fuel
region are not impressive, though quite satisfactory.

The total reaction rate is presented in Figure 2.29d. The total reaction rate is also given inFigure 2.29d

Figure 2.30a, as a function of the order N . FEM schemes demonstrate low sensitivity to theFigure 2.30a

model change, mainly due to the slow convergence which tends to shadow the improved
accuracy of the model. On the other hand, the fast SEM convergence allows to appreciate
the higher precision with increasing AN order. It has to be noted that the DRAGON and
FEM results are given with 6 significant digits, so the results in the 10−5-10−6 range cannot
be considered truly representative of the effective discrepancy between AN and transport,
which is demonstrated by theory.

Solution time has been measured, excluding the matrix preparation time in order to iso-
late the work done by the computing routines. As expected, it scales exponentially with the
number of degrees of freedom, and almost linearly with the AN order.

Finally, the role of the penalty parameter is investigated. The definition of the optimum
parameter is still an open research question [Rivière, 2008]; for the scopes of this thesis, it
is satisfactory to check if this parameter has a non-negligible effect on the reaction rates,
identify a range, or a threshold value, for where it can be safely chosen, at least for this
problem.

Calculations have been performed for all AN orders from 1 to 20, for penalty parame-
ters 1,5 and 10, which are values typically used in DG-FEM computations and are widely
accepted by the community.

The influence of the penalty parameter on the total reaction rates is shown in Figure
2.31a, as well as for the computational time in Figure 2.31b. There does not seem to be anyFigure 2.31a

Figure 2.31b bias on the values of the reaction rates, meaning that the scheme remains consistent with
the original weak formulation regardless of the penalty parameter. Not really significant
differences on the computational times are imputable to the penalty.

Mosteller benchmark - heterogeneous

This last benchmark considers a heterogeneous pin-cell configuration. The original prob-
lem, as it was formulated by Mosteller has been solved with DRAGON using a 64 group
library; single group condensed cross sections are then used to solve again a source prob-
lem with DRAGON, determining a reference solution. A unitary source imposed on the fuel
region produces a flux distribution which is quite close to that obtained in the critical case.
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Figure 2.32: Relative error of A2 SEM and FEM schemes compared to the reference analytic solution
for the source-driven Mosteller benchmark.
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Figure 2.33: Heterogeneus Mosteller benchmark: reaction rates and computational time, for vari-
ous AN orders. If not specified in the legend, values are for SEM computations.

101 102

10−5

10−4

10−3

10−2

10−1

NDOF

ε

(a) Total reaction rate

101 102

10−2

10−1

100

101

102

NDOF

t

SEM A1

SEM A8

SEM A16

(b) Computational time

Figure 2.34: Mosteller heterogeneous benchmark: parametric study on the total reaction rate and
the computational time varying the DG penalty parameter σ. Values used are 1 (dotted
lines), 5 (dashed lines) and 10 (solid lines).
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The same input parameters are used in the MATLAB DG-SEM code and in the FEM code
(FreeFem++).

A set of results, similar to the ones obtained for the homogeneous case, are here pre-
sented.

Figure 2.32 shows the relative error of the reaction rates in each of the considered cells. Figure 2.32

The FEM calculations overlap the SEM ones in the moderator, where FEM seems to approach
the correct solution while SEM seems to converge steadily on a biased value. Anyway, AN

(and A2 even more) does not converge to the real transport solution, so the presence of
a bias is expected. Moreover, the fact that the neutron balance is not respected in each
cell may shift the FEM solution of some amount, which should anyway disappear with an
infinitely refined grid. Since the source of the bias cannot be trivially isolated, one may
look at the total reaction rate considering D1 +D2 +D3, Figure 2.32d, to eliminate at least Figure 2.32d

the problem of the conservation of neutrons. The results show a more natural convergence
of the two schemes towards, possibly, the same solution, even if FEM schemes are slower
compared to SEM that a common PC, like the one used for these evaluations, cannot cope
with the huge algebraic systems required to achieve the same accuracy.

Furthermore, the effect of the AN order is investigated and results are given in Figure
2.33a. The relative error compared to the DRAGON transport solution is evaluated for a Figure 2.33a

varying order K and reducing in parallel the length of the FEM average mesh, with an in-
creasing transport detail. The SEM solution seems to reduce its margin versus the transport
one as already observed in Figure 2.30a; the only difference seems to be a higher order of Figure 2.30a

the converged solution for A16-A20 which, still considering the effect of the limited number
of available digits, may suggest that the converged A∞ solution and the real transport flux
actually differ of a factor 10−5 on the total reaction rate.

Again, time scales almost linearly with the order N , suggesting that the spectral prop-
erties of the SEM-AN operator, which is never assembled completely but solved iteratively,
are not much altered by the change in order.

Finally, the effect of penalty is checked with the same motivation as before (Figures 2.34a Figure 2.34a

and 2.34b). Again, the numerical scheme shows a negligible sensitivity to the typical values Figure 2.34b

of penalty parameters used.

2.3.6 Comments on the transfinite interpolation approach

This section has introduced another efforts made to improve the flexibility of the SEM

method for neutron transport problems. Compared to the classical approach [Barbarino,
2010], the DG-SEM one endowed with transfinite interpolation seems now adequate to cope
with the involved geometries present in nuclear applications. The developments presented
here are of help for the implementation, and the convergence properties analysed in sim-
ple one-dimensional benchmarks in section 2.1 are confirmed also for the the Mosteller
exercise.

Nonetheless, such flexibility and precision has to cope with the limited definition of the
second order transport models, which are the ones that may profit best of the SEM strategy.
The DG-SEM approach reduces to very low levels the amount of spatial discretization error
with limited computational cost, but the drawbacks of the AN model are not touched, and
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become now the weaker point of this approach, to be further investigated and mitigated.
Anyway, at lattice level, results seem to show a quite limited amount of discrepancy, which
may justify the use of this technique as it is.
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model

Due to the high number of full-core studies required for the design, licensing and operation
phases of commercial nuclear reactors, time constrains are relevant on the formulation of
the neutronic models and the solver architectures. Typically, only the diffusive approxi-
mation of the Boltzmann neutron transport equation is available in codes used for power
nuclear installations.

This chapter deals with the implementation of the AN model in legacy diffusion codes;
its mathematical formulation is given in chapter 1, together with the hypotheses which
allow its derivation.

The contents of the chapter are split into two parts. In section 3.1 the AN method, in
its isotropic form already introduced in equation (1.61), is implemented in some industrial
core analysis tools and applied to representative clusters of assemblies (called colorsets)
and to a full-core case.

The hypothesis on scattering isotropy is quite restricting for the industrial quality levels;
nowadays very often at least the first moment of scattering is considered through a suitable
adjustment of the diffusion parameters. In section 3.2, the anisotropic AN model, already
introduced in section 1.1.4 in the original form, is re-elaborated and three different algo-
rithms are studied, taking into account the unfavorable mathematical structure of model
(1.69) and the constraints of the code practice. Only one of the alternatives is implemented
in a demonstrative solver, and some results are introduced for a 1D colorset.

Results are tailored to a feasibility analysis, but the real aim of the entire chapter is to
highlight the many implementation issues: these aspects are predominant over model-
ing in the industrial framework, and the problems encountered may apply also to other
schemes, like SPN .

3.1 Isotropic AN implementation

In industrial nuclear reactor simulation, the two-group diffusion model spatially discretized
with a nodal approach has been used used for several decades. This configuration allows
the implementation in very fast codes, but may suffer important limitations in the descrip-
tion of the power distribution: this physical model neglects completely the effect of the
angular anisotropy of the neutron flux [Bell and Glasstone, 1970], with possible loss of ac-
curacy.

95



3 Industrial core analysis with the AN model

The multi-level scheme presently in use, which starts from detailed transport calcula-
tions in given portions of the system to produce few-group cross section datasets for full-
core analysis, is certainly very practical. Conservation of reaction rates achieved by spatial
homogenization, energy condensation and proper flux factorization in coarse regions al-
lows a great simplification in the treatment of strong localized transport effects [Bell and
Glasstone, 1970; Zmijarevic et al., 2006]. When large volumes compared to the neutron
mean free path are considered, and provided that pure particle absorption is not the dom-
inant phenomenon, relevant transport effects may only arise at interfaces. However, the
higher is the material heterogeneity the more they gain importance in the system, like for
instance in complex UO2 and MOX fuel loading patterns.

As far as the accuracy of the model is concerned, there are generally different situations
inside any nuclear system where local transport effects play a non-negligible role. At a
lower spatial scale pin-by-pin calculations, where each fuel pin is homogenized to a single
cell, are also highly affected by flux anisotropies, especially near the instrumentation and
control rods. Possibly, the flux distribution may show steep variations, with unavoidable
distortions of the flux isotropy postulated to accept the use of the diffusive approach.

In recent times, the SPN method [Brantley and Larsen, 2000] has gained the attention
of the industrial experts because it may constitute in the short term a valuable trade-off
between implementation ease and angular detail resolved [Downar et al., 2004; Baudron
and Lautard, 2007]. Among the various formulations available, the AN formalism allows
to arrange the SPN model into a set of coupled second-order equations, which are hand-
ier to be solved with a cheap implementation effort; despite the different meaning of the
coefficients, one formally obtains a set of equations of the same analytical nature of multi-
group diffusion. The model has been introduced in section 1.1 and details can be found in
Coppa and Ravetto [1982], Coppa and Ravetto [1981], Coppa et al. [1982] and Ciolini et al.
[2002]. In principle, then, it is possible to treat this higher order transport approximation
with any of the existing diffusion codes, even using the standard nodal approach for the
space discretization.

In the SP3, most neutronic codes currently in use solve the model by combining the
equations in a way that two second-order diffusion-like equations remain, coupled only
by the scattering term (see for instance Downar et al. [2004] for the PARCS code). The use
of AN is an effective strategy to increase the order of the transport approximation N with a
consistent and straightforward procedure, nevertheless conserving the easiness to be em-
bedded in production codes.

3.1.1 Nodal methods in reactor simulation

Cross section homogenization and condensation allow describing the nuclear core in a
multi-region problem with a given set of constant data in each region, usually called node
[Lawrence, 1986]. The number of nodes is instructed by computational time constraints
and suggested by the geometrical regularity of the domain.

Larger volumes call generally for lower order transport operators, thus aiming only at
asymptotic transport solutions. The standard technique to model water reactors employs
quarters of fuel assemblies in diffusion theory; indeed, pin-by-pin calculations generally
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3.1 Isotropic AN implementation

need more accurate transport approximations or tailored diffusion entities to cope with
finer meshes of the order of the neutron mean free path.

Considering meshes in a Cartesian reference frame, a typical scheme proceedes as fol-
lows. A first discretization is carried out by the finite volume technique [Ferziger and Peric,
2002]. Since analytical and semi-analytical solutions are known for linear second-order
partial differential equations in the homogeneous medium, spectral synthesis methods
are now extensively used to solve diffusion problems [Hébert, 2010; Tomatis, 2010]. Then,
the problem is conveniently decoupled by the transverse integration procedure, which
needs, however, some further approximations for the neutron leakage introducing addi-
tional non-linearity. The assumption of a quadratic leakage along the transverse direc-
tions of integration is usually accepted. Various flux expansions are accounted in literature,
starting from polynomial bases to the kernel solutions of the associated homogeneous dif-
fusion equation.

Full analytical multi-dimensional solutions are less common for specific numerical is-
sues, but they are certainly of great interest [Melice, 1978; Fu and Cho, 2002].

3.1.2 Implementation and issues

Multigroup AN operator in tensor form The isotropic multigroup AN model has been
introduced in (1.61), and it is repeated here for convenience:

µ2
α

Σg
∇2ϕα,g −Σgϕα,g +

G∑
g ′
Σs,g ′→gΦg +

1

k
χg

G∑
g ′
νΣ f ,g ′Φg ′ = 0

Φg =
N∑
β=1

wβφβ,g , α= 1, . . . , N , g = 1, . . . ,G .

(3.1)

The notation can be simplified adopting a single index which counts all the possible com-
binations of g and α, obtaining a single equation set to be implemented in the standard
procedures of the diffusion solver. This formalism is recovered by comparison to multi-
group diffusion. In fact, the classical set of multi-group diffusion equations in compact
matrix notation is: [

D∇2 −C+T+ 1

k
F
]
Φ=0, (3.2)

where
D = {

Dg g ′ = Dgδg g ′
}

,

C = {
Cg g ′ =Σgδg g ′

}
,

T = {
Tg g ′ =Σs,g ′→g

}
,

F = {
Fg g ′ =χgνΣf,g ′

}
,

Φ= {
Φg

}
.

By contrast, the AN model writes:[
D?∇2 −C?+T⊗U+ 1

k
F⊗U

]
ϕ=0, (3.3)
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where

D? :=
{

D?
`,`′ =

µα

Σg
δ`,`′

}
,

C? :=
{

C?
`,`′ =Σgδ`,`′

}
,

U := {
Un,m = wm

}
,

ϕ := {
ϕ`

}
,

with g = 1, . . . ,G and m,n,α= 1, . . . , N and using for the combined AN -multigroup case the
following ordering

`,`′ = (g −1)N +α; (3.4)

the other definitions are unchanged. The ordering (3.4) preserves the diagonality of the
diffusive and removal terms with respect to the operators found in (3.2).

Assembly discontinuity factors Nodal codes usually adopt the discontinuity factors de-
fined according to the generalized perturbation theory [Lawrence, 1986]; these factors are
calculated by the lattice codes for two of the three coordinate directions at least [Rechantin
and Schenider, 2012]. The use of these factors is a compulsory complement to the ho-
mogenized cross section set which is obtained by the lattice model; they are typically used
in conjunction with the diffusive hypothesis, but their applicability is not bounded to this
specific flux description. Then, in principle it is certainly licit to use them with an AN for-
malism, but it should be granted that the effect of the heterogenized fluxes and interface
currents, the physical quantities on which discontinuity factors are defined, is conserved
at least after the reconstruction.

If one considers two homogeneous adjacent regions A and B , the discontinuity condi-
tion [Lawrence, 1986]

f (A)Φ(A) = f (B)Φ(B) (3.5)

may be AN expanded as follows

f (A)
N∑
α=1

ϕ(A)
α = f (B)

N∑
α=1

ϕ(B)
α (3.6)

Thanks to the linearity of the flux and current reconstruction relations (1.54) and imposing
as interface conditions

f (A)ϕ(A)
α = f (B)ϕ(B)

α (3.7)

for allα= 1, . . . , N , one certainly satisfies (3.5) also with the discontinuity factors calculated
for diffusion. A similar remark holds for currents, which obey to the the linear relation in
equation (1.56).

Concerning the implementation of AN , including the formalism of the discontinuity fac-
tors, with respect to the overall code structure, the modifications to be applied to a diffu-
sion code are in principle restricted only to the flux solver and its cross section model; in
particular the depletion, thermal feedback, dehomogenization modules as well as the ho-
mogenization and condensation schemes should be untouched by the introduction of the
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3.1 Isotropic AN implementation

AN formalism. This feature is of great avail to core analysis in AN theory on a large scale.
Once cross sections are determined, no modifications in the main solving routines are nec-
essary for steady-state problems; only extrapolation lengths may optionally be modified.
Pre-processing of macroscopic cross sections and post-processing of pseudo-fluxes are the
prominent required developments.

Issues concerning the implementation in legacy codes The implementation of second-
order models requires diffusion codes working with general multi-group formalism [Bar-
barino and Tomatis, 2013a], and codes optimized for two groups might not suit the purpose
[Downar et al., 2004; Larsen et al., 1996]; difficulties arise from specific optimizations and
from the way the diffusive model is generally recast.

The first issue is related to the presence of certain routines, which are intended to be
used rigidly with a specific formulation. These parts include in particular the accelerations
and linear system solvers, which have to be modified or substituted with more general al-
gorithms. The second issue is more severe: in order to reduce the flow of data through the
solver and its memory footprint, often the classical two-group diffusion equation is recast
in order to aggregate some parameters. For instance, a common approach represents the
total and scattering cross sections through the absorption cross sections and arranging the
up/down scattering terms in the removal cross section together with the homogenization
spectrum [Dall’Osso and Ponce, 1998; Garland, 2005]; this model can be expressed in ma-
trix form as:

−∇2
[

D1 0
0 D2

](
Φ1

Φ2

)
+

[
Σa,1 0

0 Σa,2

](
Φ1

Φ2

)
+

[−Σr 0
Σr 0

](
Φ1

Φ2

)
= 1

k

[
νΣf,1 νΣf,2

0 0

](
Φ1

Φ2

)
(3.8)

As well, the set of optimized cross sections is provided by the lattice code of the calcu-
lation chain, and the reconfiguration of the output to retrieve full information on cross
sections may not be promptly feasible for validation restrictions.

Another issue is related to the sign of the pseudo-fluxes. While physical fluxes are always
positive, the pseudo-fluxes arising in AN may in general change sign1. Both the finite vol-
ume approach and the nodal formalism should be insensible on the sign of the unknowns,
but run-time control checks may have been added in order to stop execution with classical
diffusion calculations. An extensive analysis of all ancillary routines is compulsory in or-
der to identify these features and adapt them, or eventually inhibiting them without major
consequences.

Finally, the derivation of AN from the integral transport equation, presented in section
1.1.4, suggests that each pseudo-flux behaves like a virtual neutron population, thus en-
dowed with a proper mean free path. While in diffusion theory the neutron mean free
path scales as the inverse of the total cross section Σ, in AN it goes as µα/Σ, as it is clear

1It can be demonstrated that only if the medium is homogeneous the sign is predictable, being always posi-
tive. In fact, in this particular case an equivalence with even parity SN is proved, and in the latter case the
unknowns are the sum of the physical fluxes on a couple of symmetrical directions [Coppa and Ravetto,
1981].
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from (1.65). Being, by definition, µα < 1, the mean free path tends to reduce with growing
values of N ; pushing the order to high values, notwithstanding the general limitations of
second-order approaches and the inefficacy of these models to increase the transport de-
tail as explained in section 1.1.4, it may eventually reach very small values. This means,
also, that the characteristic length of neutron motion reduces: the grid should be refined
because steeper variations in the pseudo-fluxes appear and they should match the mesh
size to be resolved. Grid refinement, though costly, is rarely possible on industrial code ar-
chitectures, where the “quarter assembly” mesh size is a standard; often the mesh size is a
trade-off arising from the coupling between the neutronic and thermal-hydraulic modules
of the core analysis tool, and in this case there is no room for unbalanced grid refinement.

Some results after the implementation in the AREVA analysis tools A few AN applica-
tions calculations by nodal diffusion codes demonstrate the practical feasibility of this ap-
proach. Results from a mono-dimensional diffusion solver are presented first, detailing
the behavior of the neutron flux close to a representative node interface. Then, an AREVA
industrial code is used to solve a UO2/MOX color-set problem and finally a realistic core
configuration.

In the contest of this work, the AN formulation is implemented in several existing codes,
some of them being AREVA commercial codes used for reactor design and safety assess-
ment. Due to the high degree of optimization achieved after almost 30 years of devel-
opment, the codes are characterized by several peculiarities that are not usually found in
more “general purpose” core analysis tools. Since the target of this section is to prove the
feasibility of the AN approach in an industrial framework, some interest has been placed
on the investigation of these peculiarities and on the ways to handle them. Not all the
details of the implementation are here reported, since they constitute sensitive industrial
property.

The core analysis code is fed with a library of cross sections obtained by the lattice code,
an AREVA customized version of the CEA code APOLLO2. In order to overcome the incom-
pleteness of the cross section set, since the library contains only the cross sections speci-
fied in the model (3.8), some additional code modifications have been performed. When
possible, the original APOLLO2 hdf output file has been read and the homogenized cross
sections extracted, skipping the pre-processing actually responsible for producing the final
library. This injection of raw cross sections into the core code is practical, but only suitable
for small colorsets due to its low speed, and cannot be considered procedural.

Indeed, when a complete core is concerned, the library is retained and some assump-
tions are made. The diffusion coefficient Dg is retained, since it is obtained with a vali-
dated procedure [Rechantin and Schenider, 2012] from a single-assembly homogenization
in critical conditions. A guess of the transport cross section Σtr,g = Σg −Σs,g ,1 is derived
assuming

Dg = 1

3Σtr,g
, g = 1,2; (3.9)

in absence of any other clue on the Σg value, parameter Å is introduced, which allows
to estimate the group total cross section as Σg = (1+Å)Σtr,g , adding and removing some
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3.1 Isotropic AN implementation

scattering to the physics of the material. The in-group scattering cross section follows as
Σs,g ,0 =Σg −Σa,g , being the absorption cross section always available in diffusion libraries.
The parameter Å is here unknown, and it is let varying on a wide range. Even if this es-
camotage does not allows precise evaluations on a single reactor state point, nonetheless
this procedure builds several cross section sets describing comprehensive operating con-
ditions, which is acceptable for the scope of this work. Moreover, the removal cross sec-
tion Σr,g is used as the down-scattering term, and no up-scattering is explicitly considered,
even though its amount is consistently included in the removal formalism2. Furthermore,
to comply with the standard treatment of anisotropy in diffusion codes, the 1/Σg in the
leakage term of each AN equation has been substituted by 1/Σtr,g : in this way the approxi-
mation adopted in diffusion is transferred to all AN equations and to the interface currents
in exactly the same way; thus only approximated, this treatment is straightforward to im-
plement and does not affect negatively the scheme accuracy. Section 3.2.1 will introduce
more involved algorithms studied to consider anisotropy in a fully consistent fashion.

All these considerations lead to implement the following AN multigroup set of equations:

µ2
α

Σtr,1
∇2ϕα,1 −Σ1ϕα,1

+
(
Σs,1,0 −Σr +

1

k
νΣf,1

) N∑
β=1

wβϕβ,1 +
1

k
νΣf,2

N∑
β=1

wβϕβ,2 = 0,

µ2
α

Σtr,2
∇2ϕα,2 −Σ2ϕα,2 +Σr

N∑
β=1

wβϕβ,1 +Σs,2,0

N∑
β=1

wβϕβ,2 = 0,

Φg =
N∑
α=1

wαϕα,g

(3.10)

for α= 1, . . . , N and g = 1, . . . ,G .

3.1.3 Results

The 1D interface problem

The AN methodology has been implemented in a multi-group 1D diffusion solver. In order
to have a transport reference, an SN solver is also used, with the same machine precision
(single) but a different numerical scheme, since it adopts the diamond difference sweeping
algorithm [Lewis and Miller, 1993]

The 1D solver has been originally prepared by Dr. Tomatis and adapted by the author,
and reproduces accurately the coarse mesh algorithm of finite volumes and polynomial
nodal method used in industrial codes in more dimensions, with the only absence of the
transverse leakage model.

The computational domain is composed of two layers of different homogeneous mate-
rials. Each block is 10.75 cm thick and is subdivided into 40 elementary cells to get rid of
any spatial discretization error. Both the nodal code and the SN algorithm use the same

2Σr =Σs,1→2 −Σs,2→1Φ1/Φ2, where Φ1 and Φ2 are the fast and thermal scalar fluxes in homogenization con-
ditions [Rechantin and Schenider, 2012].
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3 Industrial core analysis with the AN model

Table 3.1: Input data for the 1D interface problem.

MOX layer UO2 layer
Group 1 Group 2 Group 1 Group 2

Σt ,g 5.24895×10−1 1.57348 5.31150×10−1 1.30058
Σs,0,g→1 4.97321×10−1 4.73917×10−3 5.04664×10−1 2.03884×10−3

Σs,0,g→2 1.08826×10−2 1.23734 1.62955×10−2 1.19134
χg 1.0 0.0 1.0 0.0
νΣ f ,g 1.43654×10−2 5.05968×10−1 7.15848×10−3 1.41284×10−1

Fg 9.91226×10−1 1.24472 9.94868×10−1 1.01536
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Figure 3.1: Profiles of the fast flux.
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Figure 3.2: Thermal flux profileΦ2.
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Figure 3.3: Fast net current profile J1.
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Figure 3.4: Thermal net current profile J2.
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Figure 3.5: Multiplication constant keff.

grid. The two-group cross sections have been obtained by homogenization from two ref-
erence assemblies, one filled with uranium dioxide fuel (UO2), and the other with mixed
uranium-plutonium oxides (MOX). Cross sections have been produced by the APOLLO2-A
code in single assembly conditions (see Table 3.1). The diffusion coefficient is here simplyTable 3.1

defined as Dg = 1/(3Σt ,g ).

Figures from 3.1 to 3.5 summarize some of the results achieved. It should be noted that
the following numerical tests are for verification purposes only, and are not to be intended
as a physical validation of the model, which is already partly attained in chapter 1 and in
numerous works in literature regarding the fully equivalent SPN model.

Figure 3.1 shows the fast flux profile using different transport approximations. Close toFigure 3.1

the interface between the materials the discrepancy between the fast flux calculated with
the nodal diffusion calculation and the one from the nodal A2 option is slightly above the
percentage point, and tends to worsen towards the boundaries. A similar consideration
holds comparing S2 and A2 while the pattern changes because of the numerical algorithms,
which are completely different in nature. A small distinction is noticed between A2 and S4:
for the equivalence on moments of AN , SP2N−1, P2N−1 and S2N in planar geometry, the
two fluxes should overlap, but the numerical schemes and the single precision adopted
unavoidably insert an offset.

Figure 3.2 shows the same quantities introduced in Figure 3.1, referring to the thermalFigure 3.2

flux. Towards the interface using A2 instead of diffusion implies about 5% of difference,
which is reducing below 1% near the reflective boundaries.

Figures 3.3 and 3.4 show the net neutron current of fast and thermalized neutrons, re-Figure 3.3

Figure 3.4 spectively. It is clear that both the group currents approach rapidly the machine precision
close to the boundaries; for this reason, the relative error is to be disregarded therein. The
relative deviation of the interface current calculated with diffusion and A2 is about 5% in
the two cases. Basically, the same difference is observed when comparing A2 to S2. As
already stated for the flux, the accuracy of the nodal A2 and S4 is largely comparable.

Last, Figure 3.5 plots the multiplication constant as a function of N for both models ANFigure 3.5
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Figure 3.6: Domain of the colorset problem.

and S2N . The S2N results are much more stable increasing the number of directions. Both
trends have a sharp peak in the lowest order approximation, which corresponds to the dif-
fusion equation. The AN results tend to oscillate, slightly overestimating the value of keff,
eventually converging towards the S2N result. Nonetheless, A2 is able to catch the reduction
of the keff which is neglected by diffusion.

The 2D colorset example

Similarly to the one-dimensional case, the AN method has been successfully implemented
in an industrial version of a three dimensional nodal code, which is developed to perform
full-core calculations for design and safety studies in AREVA NP, and is also used for 2D
validation studies on portions of fuel assemblies.

The colorset problem is composed of four neighboring quarters of assemblies, consid-
ered as axially infinite (see Figure 3.6). Cross section datasets have been produced by Figure 3.6

APOLLO2-A (see Table 3.2). Homogenized cross sections in the real environment condi- Table 3.2

tions would yield more accurate results for validation purposes. Nevertheless, the input
cross sections come from homogenization with reflective conditions for each single as-
sembly, in compliance with the standard procedure in core analysis3.

Table 3.3 collects the main results. The reference solution is here provided by the lattice Table 3.3

3Assembly discontinuity factors are unitary along the z direction

105



3 Industrial core analysis with the AN model

Table 3.2: Input data for the colorset interface problem.

MOX ass. 1 UOX ass. 2-3 UOX ass. 4

Group 1
Σt ,g 5.3085370×10−1 5.3346366×10−1 5.3346336×10−1

Σs,0,g→1 5.0378040×10−1 5.0692120×10−1 5.0692016×10−1

Σs,0,g→2 1.3187183×10−2 1.6795540×10−2 1.6795665×10−2

χg 1.0 1.0 1.0
νΣ f ,g 9.9567280×10−3 7.4732252×10−3 7.4732490×10−3

Fg ,x 9.8905790×10−1 9.9372095×10−1 9.9371410×10−1

Fg ,y 9.8905790×10−1 9.9371730×10−1 9.9371410×10−1

Fg ,z 1.0 1.0 1.0

Group 2
Σt ,g 1.4964706×100 1.3164625×100 1.3164611×100

Σs,0,g→1 3.6090766×10−3 1.7578889×10−3 1.7578837×10−3

Σs,0,g→2 1.2561710×100 1.2192476×100 1.2192501×100

χg 0.0 0.0 0.0
νΣ f ,g 3.7379852×10−1 1.5534373×10−1 1.5534236×10−1

Fg ,x 1.3471475×100 1.0657552×100 1.0657581×100

Fg ,y 1.3471475×100 1.0657319×100 1.0657581×100

Fg ,z 1.0 1.0 1.0

APOLLO2-A calculation on the entire colorset.

The solver in AN mode is in perfect accordance with the standard diffusive solution,
demonstrating the correct implementation. Both seems having the same bias if compared
to the reference APOLLO2-A solution, due to the environment effects of the cross sections.
Even if much of the impact of transport is not visible due to the large mesh size compared to
neutron mean free path, it is possible to appreciate some improvement in the MOX fueled
assembly. The error on the reactivity of the diffusion and of AN is of the same order.

A three-dimensional configuration

The following calculations reproduce the neutron flux in a commercial reactor of the French
operating fleet (900 MWe PWR, first cycle). The mesh of the quarter assembly calculation
shows 18 planes of 884 nodes each (cell dimensions are about 10×10×20 cm), where the
bottom and the top planes host the axial reflector, a virtual homogenized region which ac-
counts for the top and bottom nozzles of the assemblies, plus some structural material.
The boundary conditions are of void type on all external surfaces. The first evaluations re-
fer to homogeneous cross sections in the whole reactor, to move then to real configurations
at hot full power (pressure 155 bar, average core burnup 14 GWd/t after an all-rods-out de-
pletion, end of cycle). Comparisons against diffusion are limited to A2, since higher orders
do not provide significant additional contributions [Barbarino and Tomatis, 2013b]. The
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Table 3.3: Some results for the colorset problem.

MOX ass. 1 UOX ass. 2-3 UOX ass. 4 Colorset
Φ1
Φ2

εAP2A
Φ1
Φ2

εAP2A
Φ1
Φ2

εAP2A keff εAP2A

Diffusion 16.086 4.38% 6.051 1.41% 5.825 0.83% 1.26501 0.22%
A2 16.013 3.91% 6.066 1.17% 5.819 0.95% 1.26676 0.36%
A3 16.014 3.92% 6.066 1.17% 5.819 0.95% 1.26676 0.36%
APOLLO2-A 15.411 - 6.137 - 5.874 - 1.2622666 -

thermal feedback on cross sections is not taken into account since the focus is on the effect
of second-order transport on the scalar flux.

Homogeneous reactor This set of results concerns a homogeneous reactor, where the
cross sections are the same in each node of the mesh. This ideal framework, in conjunc-
tion with the optical dimension of the domain compared to the neutron mean free path,
removes heterogeneities and interface phenomena, endowing the central part of the reac-
tor with an infinite medium behavior. Here, the difference between transport and diffusion
approximations vanishes, thereby allowing the required verification of the scheme.

Figure 3.7a shows the computed scalar flux in the thermal group for values of Å between Figure 3.7a

−90% and +90%. The negative side of the range represents a set of configurations where
scattering tend to become less and less important as a neutron interaction mechanism,
accentuating transport effects; on the other hand, the amount of scattering grows in the
positive range ofÅ, indicating a marked diffusive setting. For each value ofÅ the cell relative
error compared to A1 is given, condensed in a box plot representation4. A similar behavior
is noticed for the fast flux with differences of the same order of magnitude. Figure 3.7c, Figure 3.7c

which presents the same evaluations from the point of view of the intranodal currents in
each coordinate direction, is characterized by an analogous behavior with a slightly higher
average error. Again, a similar argument holds for the fast currents.

As anticipated, for such optically large system there is no difference between diffusion
and transport. Diffusion gives already an adequate description of the neutron fluxes and
currents, which are not expected to be substantially modified by any higher order trans-
port scheme. This is perfectly confirmed by the calculations which show, regardless of the
amount of scattering, basically a flat behavior in the distribution of the errors.

The baseline deviation, around 1%, is due to the different extrapolation lengths used to
model the behavior of the neutrons at the external boundaries of the system. As a proof,
Figures 3.7b and 3.7d show the distribution of the errors on a representative plane (the Figure 3.7b

Figure 3.7d4The convention adopted is: the lower edge of the box represent the 25th percentile, the top edge stands for
the 75th percentile, the central line is the median. Whiskers extend from the lowest datum still within 1.5
times the inter-quartile range (IQR, the length of the box) of the lower quartile, and the highest datum still
within 1.5 IQR of the upper quartile. Outliers are indicated with crosses. If the distribution is of normal type,
the outliers are those points exceeding ± 2.698 times the standard deviation around the median [McGill
et al., 1978].
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Figure 3.8: Homogeneous reactor: effective multiplication factor relative deviation, compared to A1.

central one, where the maximum flux can be found for both diffusion and AN ). The black
triangle identifies the cell where A2 has its maximum, the white one is for A1. The white
boxes mark the cells of maximum and minimum percent deviation with respect to the val-
ues of this plane only. The error is not negligible on the outer layer of the reactor only.
The resulting multiplication factor is plotted in Figure 3.8, the differences calculated are Figure 3.8

definitely negligible and only due to the leakage close to the boundary.

Heterogeneous reactor The heterogeneous reactor allows to highlight and isolate the ef-
fects of second-order transport on the flux solution. Assembly discontinuity factors are
used for currents on each radial plane, as delivered by the lattice code5.

Figure 3.9a shows the relative deviation of the thermal scalar flux in A2 approximation, Figure 3.9a

compared to diffusion. Similar distributions of the error are noticed in all modeled condi-
tions, with a shift to higher values for increasingly transportistic settings (when Å decreases
below zero). On the other side, more scatterizing situations present a stabilization to an
asymptotic value. As far as the latter configurations are concerned, the residual errors are
due to interface effects and the modeling of the void boundary conditions (Figure 3.9b). As Figure 3.9b

predicted, the higher order of the AN model has limited efficacy if the transport mechanism
is dominated by scattering, even if heterogeneities are present. Anyway, the correction is
far more evident when transport effect are expected to dominate. An analogous situation
is valid for the currents: Figure 3.9c represents the error on the thermal ones, and similar Figure 3.9c

values are observed in the fast group.
The value of keff (Figure 3.10) is affected about one order of magnitude more than in the Figure 3.10

5At present, also in diffusion simulations for industrial use the axial discontinuity factors are typically not
modeled.
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Figure 3.10: Realistic reactor: effective multiplication factor relative deviation, compared to A1.

previous case, notwithstanding that the variations are below 1% also in the extremes of the
range of Å.

3.1.4 Conclusions

The AN transport model allows great flexibility for the implementation of second-order
models, like the SPN transport into ordinary core simulators. In fact, provided a sufficiently
flexible diffusive solver, few code changes are required to retrieve AN solutions, with an ac-
ceptable increase in computational time. Anyway, the implementation is not straightfor-
ward as it may appear looking solely at the model equations, mainly for the lack of availabil-
ity of some cross sections in the full-core libraries; the modification of the solver innermost
data structure is often extremely complex, especially when a high level of optimization is
present and unavoidable for performance reasons.

The definition of a proper diffusion coefficient issued by cross section homogenization
is not necessary with the AN formulation. Furthermore, the AN allows to use again assem-
bly discontinuity factors, contrary to other second-order transport models, for which their
proper utilization is still debated.

Tests on a standard PWR core shows corrections of about 1-2 % on flux peaks caused by
AN , with a few hundreds pcm changes on the neutron multiplication factor. It is important
to notice that most of the correction comes already from lower orders AN , and this turns as
beneficial for the global computational performance.
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3 Industrial core analysis with the AN model

3.2 Anisotropic AN implementation

In chapter 1, section 1.1, the anisotropic AN model has been briefly introduced. The model
shares the second-order differential operator in space with the isotropic one, but the di-
agonality of the matrix cannot, apparently, be easily recovered. Anyway, anisotropy to the
first order at least is nowadays a requirement for any industrial grade reactor analysis, and
an explicit treatment is foreseen.

Demonstrated the feasibility of the implementation of the isotropic AN into diffusion
codes, the task of this section is to focus on the anisotrpic model to elaborate some strate-
gies for its implementation. The constraints with respect to the previous analysis are the
same: limited coding effort, limited verification, robustness, non-regression of the model
on the results where it is not needed.

Three possible algorithm are discussed. Only the last option is finally retained for the im-
plementation, because it seems to necessitate of minor code changes in the solver driving
routines.

3.2.1 Perturbative solution

First, a perturbative approach is presented. The underlying physical assumption is that
anisotropy introduces a small perturbation to the isotropic solution. This assumption re-
quires some insight into the configuration to be analyzed to be justified. Mathematically,
one assumes that the parameter ζ:

ζ= Σs,1

Σtr
(3.11)

can be considered small with respect to the leading order of the other terms. Then, the
solution is assumed as a power expansion in ζ. The truncation at a certain order P yields:

ϕα =
P∑

p=0
ϕ

(p)
α ζp +0(ζP+1). (3.12)

The larger the perturbation parameter ζ, the higher the perturbation order P is expected
in order to reproduce accurate solutions. For eigenvalue problems, both components of
the fundamental eigenpair should be expanded like the flux. This procedure requires also
complex expansions of the other eigenvectors and detailed knowledge of the eigenspec-
trum [Rellich, 1954], which would prevent its application for practical uses. Hence, con-
sidering that the power method and its derivates show subsequent source problems, for
which a single expansion of (3.12) is sufficient, it is easier to solve different successive per-
turbation problems. This derivation avoids the expansions of the multiplication factor k
and other unknowns.

Once the developed flux is inserted into the original formulation, one can gather the
power terms in ζ. In order to satisfy the equality, perturbation theory requires that each
term is vanishing. Thus, a set of P +1 problems has to be solved, the first being

µ2
α

wαΣt
∇2ϕ(0)

α + Σt

wα
ϕ(0)
α =

(
Σs,0 +

1

k
νΣ f

)
Φ, (3.13a)
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and the others are

µ2
α

wαΣt
∇2ϕ

(p)
α + Σt

wα
ϕ

(p)
α =−

[
3
ζ

Σt
µ2
αµ

2
β

]
∇2ϕ

(p−1)
α , (3.13b)

for p = 1, . . . ,P . The last equation is(
3
ζ

Σt
µ2
αµ

2
β

)
∇2ϕ(P )

α = 0, (3.13c)

which is also providing a suitable error criterion for the P perturbation approximation.
Equations (3.13) hold for α= 1, . . . , N .

The scattering and fission sources are entered only into the 0th-order problem, yielding
the starting isotropic solution. The problems are solved in chain at the level of the inner
iterations, where neutron production is fixed, coming from the previous outer iteration.

This option requires main code changes at the level of inner iterations.

3.2.2 Leakage iterations

The second option regains iterative methods with the supplementary divergence of the
current considered as known term at each iteration step. This implies the resolution of
successive source problems. As well, eigenvalue problems are also treated as sequences of
source problems by the power method or by other derived versions.

Different implementation schemes can be adopted, because code modifications are nec-
essarily requested at the level of inner iterations. Many schemes for inner iterations are
available in literature and in codes used in industry, and they follow from very specific
methodologies too. The most common methodologies are coarse mesh finite volumes
(CMFV), nodal expansion (NEM), response matrix (RM), finite elements (FE) and bound-
ary element methods (BEM). The first three techniques are currently employed in AREVA
full-core codes. Moreover, it is important to note that the nodal expansion method follows
different implementation in the core codes of the SCIENCE code suite, the CASMO/NEMO
US code suite as well as in the core codes ARTEMIS (ARCADIA code suite) and PRISM (CAS-
CADE code suite) [Dall’Osso and Ponce, 1998; Hobson, 2008].

The application of nodal expansion methods which recomputes several estimates of cur-
rents at the node surfaces, suggests source updates in the same existing iterations to con-
tain the computational charge. However, other possible nested iteration levels may show
different approximations and numerical formulas for the currents, requiring careful and
formal consistency check.

An optimal implementation scheme in case of one of the AREVA codes is detailed in the
following. This code couples a coarse mesh finite volume method yielding average nodal
fluxes and a nodal expansion method to compute corrections for the currents at node sur-
faces. Because of this coupling, the algorithm needs code modifications in the correspond-
ing sections. Finite volumes uses finite differences for currents, whereas the nodal scheme
uses analytical function expansions.
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3 Industrial core analysis with the AN model

Another iteration level for the leakage term is built on both inner schemes, where the
anisotropic term is inserted into the external source. Being a constant over the cell, it ap-
pears only in the 0-th order moment weighted equations. If it were not constant, addi-
tional terms should be included in other equations, without additional complications for
the solver since they would be still known terms.

Since the numerical scheme solves the diffusion equation using a finite volume approach,
the anisotropic source term appears always integrated into the cell volume. Then, the
Gauss theorem over the node volume yields

∫
V

drµ2
αζ

N∑
β=1

µ2
β∇ϕβ,g =

N∑
β=1

µ2
αµ

2
βζ·[(∇ϕβ,g

∣∣
x+ − ∇ϕβ,g

∣∣
x−

)+ (
∇ϕβ,g

∣∣
y+ − ∇ϕβ,g

∣∣
y−

)
+ (∇ϕβ,g

∣∣
z+ − ∇ϕβ,g

∣∣
z−

)]
, (3.14)

where the the subscripts x+, x−, y+, y−, z+, z− stand for the coordinates of the faces of the
hexahedral finite volumes in each Cartesian direction. Gradients are discretized by cen-
tered finite differences to feed the pure diffusive solver

∇ϕ(xi+1/2) = 2
ϕ(xi+1)−ϕ(xi )

∆i+1 +∆i−1
, (3.15)

as usually done throughout the finite volume scheme.
The gradients are evaluated in two different ways in the implementation, according to

the available data. While calculating the anisotropic source to feed the pure diffusive solver,
the values of the nodal flux are used with centered finite differences. In order to estimate
the gradients, interpolation is adopted. For a cell surrounded by other active cells, it is
possible to use the centered scheme

∇ϕ(xi ) = (
ϕ(xi+1)−ϕ(xi−1)

) 2

∆i+1 +∆i−1
(3.16)

At the boundaries such centered scheme is not possible. It is possible to estimate the gra-
dient, with the same accuracy, by fitting a parabola on three continguos values of the func-
tionϕ (the three values of the first or last cells in a certain direction), and then evaluate the
gradient of the parabolic shape at the boundaries.

At boundaries, a parabolic interpolation fit is chosen to keep the same second-order
truncation error. Three continguos values of the flux are selected backwards, and on the
left boundary x−

∂
in one dimension it comes out that

∇ϕ(x−
∂ ) = (a −1)ϕ(x0)+ϕ(x1)−aϕ(x2)

x1 −x0 −a
, with a = x2

1 −x2
0

x2
2 −x2

0

. (3.17)

For the right boundary x+
∂

with I cells, the formula becomes

∇ϕ(x+
∂ ) = (b −1)ϕ(xI )+ϕ(xI−1)−bϕ(xI−2)

l1 − l0 −b
, with b = l 2

1 − l 2
0

l 2
2 − l 2

0

(3.18)
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and l0 = x+
∂
−xI , l1 = x+

∂
−xI−1, l2 = x+

∂
−xI−2.

On the other hand, the nodal expansion routine provides already the currents through
the combination of same analytical functions used for the flux, making the leakage itera-
tions easier to implement.

So far, the scheme has been successfully implemented in a 1D multigroup diffusion
solver; the absence of the transverse leakage does not prevent the testing purposes. Any-
way, the amount of modifications still remains sizeable.

3.2.3 Diagonalization

It has been demonstrated that the original AN formulation can be obtained from the SP2N−1

transport approximation by diagonalization of the differential operator acting on the even
flux moments. This leads to another set of second-order differential equations coupled
only by possible terms of scattering anisotropy.

A further approach could be the application of an additional diagonalization on the new
anisotropy differential operator, trying to recover again the diagonal form of the streaming
term. This entails determining a suitable basis change valid throughout the whole domain.
In other words, one would like to join the leakage into a unique term which shows again
the ensued diagonal form.

In order to simplify the derivation, the original notation used in literature is adopted,
i.e. the unknowns appearing in Eq. (1.69) are all divided by the corresponding weights, as
ϕα←ϕα/wα; thus, in a one group model, is

1

Σ
A∇2ϕ−ΣIϕ+

(
Σs,0 +

1

k
νΣf

)
Bϕ+3

1

Σ
ζAC∇2ϕ=0, (3.19)

where, using6 w = [
wβ,β= 1, . . . , N

]
, µ2 =

[
µ2
α,α= 1, . . . , N

]
, ρ=µ2 ◦w and 1N as unit col-

umn vector of dimension N , it is

A = diag
(
µ2

)
, B =1N ×wT , C =1N ×ρT

Extension to multigroup systems is straightforward and will be given afterwards.
Matrix A−1 has on the main diagonal the reciprocal of the elements in A. Equation (3.19)

is left-multiplied by A−1, then the operator acting on the laplacian of the moments is diag-
onalized; in order to accomplish this task one has to look for the eigenpairs of the operator
[I+3ζC], thus solving the following problem

(IN×N +3ζC)ξi =λiξi , (3.20a)

which holds for i = 1,2, . . . , N or, in matrix form:

(IN×N +3ζC) = EΛE−1, (3.20b)

where the eigenvalues λi are collected on the diagonal of Λ, and the columns of E are the
corresponding eigenvectors ξi . Therefore E becomes a change-of-basis matrix, and so it

6being ◦ the symbol indicating the Hadamard product, (a◦b)i = ai ·bi .

115



3 Industrial core analysis with the AN model

is always invertible. Moving to the right hand side the first term of the summation of Eq.
(3.20a), one has

3ζεi 1N = (λi −1)ξi , with εi =
∑
β

µ2
βwβξi ,β. (3.21)

By virtue of the arbitrariness of the eigenvector normalization, the first possible solution
is ξ1 = 1N , yielding ε1 =

∑
βµ

2
β

wβ = 1/3 and finally λ1 = 1+ζ. The remaining eigenvectors
follow from εi = 0, for 1 < i ≤ N , with corresponding unitary eigenvalues, and arbitrary
components.

In order to determine a closed form also for E−1, it is worth noticing that problem (3.20b)
can be manipulated to obtain

(IN×N +3ζC)T (E−1)T = (
IN×N +3ζρ×1N

)= (
E−1)T

Λ, (3.22)

and so the elements of E−1, needed for all subsequent calculations, can be obtained again
with the solution of this eigenproblem. This implies that the first eigenvector is equal to ρ,
whereas the only constraint is that the sum of all components must vanish for the remain-
ing ones.

After diagonalization, the unknown pseudo-fluxes will be decomposed on the new basis
as

ϕ= Eψ. (3.23)

Note that no material information is needed for E, and thus the decomposition is unique
everywhere in the computational domain. Hence, no modification is demanded for bound-
ary conditions and assembly discontinuity factors, if any. Eq. (3.19) is then left-multiplied
by the inverse of E, obtaining

1

Σ
Λ∇2ψ−ΣtΥψ+

(
Σs,0 +

1

k
νΣf

)
Θψ =0, (3.24)

where

Υ= E−1A−1E, Θ= E−1A−1BE.

Still in order to retrieve a standard form for diffusion codes, the removal operator should
be diagonal. Then, one can use Γ= diag(Υ), shifting the remaining part of the operator to
the scattering term, which has already a full pattern.

Then, the final form of the model is

1

Σ
Λ∇2ψ−ΣΓψ+ [ΣsΘ+Σ (Γ−Υ)]ψ+ 1

k
νΣfΘψ = 0 (3.25)

The scalar flux is easily obtained using the change of basis matrix:

Φ=wT ·ϕ= (
wT ·E

)
ψ (3.26)
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3.2 Anisotropic AN implementation

Finally, in a multigroup approach each equation is expanded in pseudo-fluxes. Then,
one has to solve a set of G matrix equations in the form, for g = 1, . . . ,G :

1

Σ
Λg∇2ψg −ΣgΓψg +

[
Σs,0,g→gΘ+Σg (Γ−Υ)

]
ψg+

G∑
g ′=1
g ′ 6=g

Σs,0,g ′→gψg ′ + 1

k
χg

G∑
g ′=1

νΣf,g ′Θψg ′ =0. (3.27)

Change of basis options

Only the first eigenvector of the eigenproblem at equations (3.20) is well-defined, and there
are different options for the remaining ones, still ensuring the condition εi = 0 (see equa-
tion (3.21)).

The first option uses the properties of the Gauss-Legendre quadrature, which can in-
tegrate exactly polynomials in the segment [−1, 1] up to the order (4N − 1), where N is
provided by the given AN approximation. The parity of even monomials yields∫ 1

0
µmdµ= 1

m +1
=

N∑
i=1

wiµ
m
i , m < 4N −1, (3.28)

thus suggesting the following definition for ξ j ( j > 1):

ξi , j =µ j−1
i − 3

j +2
, i = 1, . . . , N . (3.29)

Vandermonde matrices arise in the determination of the components of the inverse matrix
E−1, whose inversion can be carried by means of Lagrange polynomials.

Another definition for E is simply derived from the conditions of the vanishing weighted
sum, εi = 0:

ξi , j =


1, if i 6= j

−
∑
β 6= j µ

2
β

wβ

µ2
i wi

, otherwise.
(3.30)

In this case, the matrix E−1 is numerically determined.
Other options are provided by standard numerical routines, which solve directly the

main eigenproblem.

3.2.4 Numerical results

In this section some numerical results are introduced, obtained by the formal diagonal-
ization method. The other two methods, still valid on a theoretical point of view, can be
implemented in standard diffusion codes applying significant modifications to the source
code, and the economicity of this operation (considering also verification and validation)
is questionable due to the development of an ad-hoc solution.
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Figure 3.11: Verification of the formal diagonalization operators: anisotropic cases compared to the
one calculated with the original isotropic AN formulation.
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Figure 3.12: Anisotropic calculation using the formal diagonalization: comparison between diffu-
sion and higher order approximations.

119



3 Industrial core analysis with the AN model

1 2 3 4 5 6
1.21905

1.2191

1.21915

1.2192

N

k
ef

f

Figure 3.13: Anisotropic calculation using the formal diagonalization: multiplication factor as a
function of the order of the transport approximation.

A 1D multi-group solver for multi-region problem has been developed in the SciLab pro-
gramming language. The solver is based on a simple finite difference approach using reg-
ular equi-spaced grids. Both the isotropic AN mode (adopting the standard definitions of
the operators) and the anisotropic version are available in the code, implemented in a pre-
processing module acting only on the macroscopic cross sections: thus, the two modes use
the very same computational routines. The material specifications for the model problem
are reported in Table 3.4, and are representative of a simple colorset involving two adjacentTable 3.4

MOX and UO2 assemblies. Reflector conditions are applied at boundaries, as well. Both
half assembly lengths are of 10.752 cm.

A first batch of tests aims at verifying the definition of the operators resulting from the
formal diagonalization procedure. The problem is considered isotropic (Σtr,g = Σt,g ), and
is solved using both the original AN operators (3.1) and the new ones (3.27).

From a merely mathematical point of view, the formal diagonalization process does not
have any influence on the accuracy of the transport model, since it is just a change of the
basis by which the solution is represented. However, numerical issues related to the mag-

Table 3.4: Input data for the 1D interface problem. All cross sections are in cm−1.

MOX layer UO2 layer
Group 1 Group 2 Group 1 Group 2

Σg 5.327840×10−1 1.314048×100 5.3334587×10−1 1.502423
Σtr,g 2.968346×10−1 9.877822×10−1 2.982115×10−1 1.1436665×100

Σs,0,g→1 5.065018×10−1 1.8083068×10−3 5.056410×10−1 3.2951059×10−3

Σs,0,g→2 1.6562084×10−2 1.217201×100 1.3668350×10−2 1.263938×100

χg 1.0 0.0 1.0 0.0
νΣf,g 7.4499152×10−3 1.546263×10−1 1.0006606×10−2 3.714562×10−1
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3.2 Anisotropic AN implementation

nitude of the new coefficients of the equations can arise, questioning the use of the single
real precision in computation or requiring more attention for the definition of the basis
change matrix E.

Figures 3.11a and 3.11b show the percentage relative difference ε between the computed Figure 3.11a

Figure 3.11bscalar flux functions, for both fast and thermal groups, varying the order of the AN approx-
imation. For the A1 case, no results are shown since the two bases are identical, thus all
quantities coincide. For the other orders N > 1, it appears a clear shift in the correspond-
ing solutions, whose magnitude depends on the order N of the approximation in a non
regular manner. The original functions are normalized to one on their maximum, and this
is the motivation for the odd spatial distribution of the error. Anyway, this deviation never
goes as high as 0.1%, negligible for any practical application. As far as the currents are con-
cerned (Figures 3.11c and 3.11d), the argument is basically the same. Again, the maximum Figure 3.11c

Figure 3.11ddifference in the values stands below 1%.

A second batch of tests focuses on the difference between the results, including the
anisotropy effect, using various AN approximations up to N = 6, compared to the diffu-
sive case (A1). The relative difference ε is computed as much as the fast and thermal fluxes
(Figures 3.12a and 3.12b) and currents (Figures. 3.12c and 3.12d). Figure 3.12a

Figure 3.12b

Figure 3.12c

Figure 3.12d

All AN approximations have basically the same performance in the test; the errors are
hardly distinguishable even at the lowest order A2. Discrepancies compared to diffusion
theory are localized around the interface (occurring at 10.7 cm), and though in this case
the anisotropy effect do not play a major role, the thermal flux is corrected by about 5% ,
and the correction on currents approaches 10%.

Figure 3.13 shows how the keff is affected by the additional moments of the angular flux Figure 3.13

considered in the solution. Much of the effect is observed passing from diffusion (A1) to A2,
the rest being almost vanishing corrections.

3.2.5 Remarks

There are some numerical issues related to the use of the formal diagonalization, which
could affect the stability of the algorithm and its applicability to reactor codes. These prob-
lems come from the topology of the base chosen for the formal diagonalization, and are not
present in the original AN isotropic formulation. In particular, for a problem modeled with
G groups and adopting N equations, one has that G pseudo-fluxes have magnitude much
higher than the others (see Figure 3.14 for an example with G = 2 and N = 3, and they have Figure 3.14

all the same sign). The other psudo-fluxes have much smaller values, changing sign in-
side the calculation domain (Figure 3.14b provide a magnification of Figure 3.14a for the
minor pseudo-fluxes around the interface). Moreover, Figure 3.14b shows that the minor
unknowns develop non negligible steeps around the interface, and this fact could break,
for instance, the nodal approach if the spatial mesh size or the nodal functional expansion
are not able to resolve correctly the peculiar shape of these functions.

Further investigations are necessary to search for a robust methodology to cope with
these patterns and mitigate their impact on the accuracy of the model.
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Figure 3.14: Pseudofluxes for the A3 calculation with anisotropy and two energy groups

3.2.6 Conclusion

This work presents three options to take into account the linearly anisotropic scattering
into the AN neutron transport model. The first solution attempt recurs to perturbation
theory, the second to an additional leakage iteration within diffusion solvers and the third
introduces a formal diagonalization procedure on the AN system equations. The main re-
quirement of this work is using common neutron diffusion solvers with very minor modi-
fications in the source code.

The first attempt is only formally discussed, whereas the others have been implemented
in a 1D code and numerically verified. Since the option of leakage iteration requests code
changes in the solvers, the diagonalization procedure has been initially selected for the
final implementation in core simulators.

Unfortunately, the diagonalization procedure yields stiff problems to resolve, with the
new unknowns differing of some orders in magnitude. This occurs with any change of
variables, outlined in the given procedure. Indeed, this reveals the perturbative nature of
the problem, that adds small corrections to the global solution obtained without anisotro-
pic scattering. This stiffness may cause single real precision algorithms to fail, especially in
situations close to the infinite medium, and also demand for more restrictive error criteria
in iterative schemes. Furthermore, the corrective components can show steep behaviors,
requiring finer meshes close to material discontinuities. Eventually, the diagonalization
technique can fit mostly finite difference solvers on fine meshes, like for instance in pin-
by-pin problems, rather than commercial nodal solvers.

A careful analysis about the feasibility of the perturbative approach, together with a pos-
sible reformulation of the technique still to get minor code modification, is proposed as
future development.
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discretized problems

The numerical solution of the linear transport model with a deterministic approach, widely
adopted in the description of the neutron population behavior in the nuclear engineering
discipline, is based on the discretization of the phase-space variables [Lewis and Miller,
1993]; the resulting set of linear equations for the unknowns is then solved with appro-
priate algorithms. The discretization schemes, especially when the angular variable is con-
cerned, can introduce modifications in the physical features of the transport phenomenon,
producing a wide range of distortions usually called ray effects [Lathorp, 1968; Duderstadt
and Martin, 1979]. The ray effect phenomenon strongly affects the numerical solution of
transport problems in various different situations; it is therefore important to identify and
evaluate such effects in order to correctly interpret the results of numerical simulations
and to facilitate the development of ray effect mitigation schemes [Lathorp, 1971; Miller
and Reed, 1977; Morel et al., 2003]

Ray effects are a well known issue in multi-dimensional transport in a steady-state sit-
uation; the mathematical reason for ray effects is found in the lack of rotational symme-
try of the discretized transport streaming operator [Morel et al., 2003]. Only PN methods
exhibit such property, but typically they are not able to provide sufficiently accurate solu-
tions to those problems affected by ray effects under the SN framework [Larsen and Morel,
2010]; this is due to the fact that the angular flux in these situations has a strong anisotro-
pic behavior, which is not easily taken into account by the global nature of the spherical
harmonics.

Moreover, the distortion of the physical propagation phenomenon can also be experi-
enced in 1D when the time-dependence is considered. The time-ray effect can be par-
ticularly relevant when the propagation of high energy particles is considered [Dulla and
Ravetto, 2004; Dulla et al., 2006; Zerr and Baker, 2011], thus requiring a high-order approx-
imation of the transport operator to reduce the impact of such distortions.

This chapter aims at a thorough characterization of how the transport phenomena is dis-
torted when introducing the discretization of the variables involved, with a specific focus
on the angle and time variables that are responsible for the appearance of ray effects.

To obtain this objective, simplified configurations are chosen, allowing a direct analyt-
ical approach. The transport problem in two-dimensional plane geometry is approached
at first by means of integral transforms. The analysis of the transport kernel in the Fourier
transformed space is performed, allowing to provide a quantitative evaluation of the dis-
tortion that can be expected through a properly defined index depending on the physical
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characteristics of the system under consideration. The analysis of the bidimensional prob-
lem is also carried out in the direct space, obtaining an analytical solution to a source prob-
lem in the absence of scattering and proposing a definition of the aforementioned ray effect
indicator suitable for this analysis. The study performed for the x−y geometry is then used
as a guideline in order to investigate the problem of the time-ray effect in one-dimensional
slab configurations. The Fourier-trasformed transport kernel is studied, properly defining
the ray effect indicator for this model. The analysis in the direct space includes the com-
parison of the adoption of different quadrature schemes for the angular integration and a
critical discussion on the use of alternative discretization approaches that might be bene-
ficial for the reduction of the time-ray effect. Another important objective of the present
work is to gain a deep physical insight on the ray effect phenomenon, considering the var-
ious configurations that may lead to the appearance of such artifacts. It is finally worth
remarking that this approach to clarifying the physics of ray effects through a combination
of classical analysis and simple numerics may also have some pedagogical value.

The extent of this work, originally conceived for the 2012 ANS Summer Meeting [Bar-
barino et al., 2012] and then extended for the ICTT23 [Barbarino et al., 2013a], is still of
course introductory; the novelty of the topic obliges to proceed by limited but consoli-
dated steps. Further studies, with the support of simulations on realistic configurations,
are imperative to assess the effective capabilities of the indicators.

4.1 Static transport problems in two dimensions

4.1.1 Transport model in x − y flat-land in the Fourier-transformed space

The appearance of ray effects is the typical consequence of the discretization of the angular
variable in a multi-dimensional transport problem and steady-state condition, due to the
directional collimation of the propagation of particles associated with a fine set of discrete
directions.

The objective of the present analysis is to identify a technique for the quantitative eval-
uation of this effect; therefore, the model to be studied is simplified neglecting the energy
dependence and the attention is focused on the interaction of the spatial and angular vari-
ables. Moreover, a two-dimensional x − y geometry is chosen, assuming that particles are
propagating on the x − y plane only (i.e., a flat-land approximation, as defined in section
1.1.1), since the ray effect features can be easily characterized also in this simplified case
compared to those visible in a 3D geometry. The transport model considered then takes
the form:

cosθ
∂

∂x
φ(x, y,θ)+ sinθ

∂

∂y
φ(x, y,θ)+Σφ(x, y,θ) = cΣ

2π
Φ(x, y)+ S(x, y)

2π
, (4.1)

where the scalar fluxΦ(x, y) is defined by

Φ(x, y) =
∫ 2π

0
φ(x, y,θ)dθ.
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and c is the number of secondaries per collision. The scattering phenomenon and the
external source are assumed to be isotropic. A homogeneous infinite system is considered,
in order to apply the Fourier transform [Case et al., 1953] to both spatial variables:

iωx cosθφ̃(ωx ,ωy ,θ)+ iωy sinθφ̃(ωx ,ωy ,θ)+Σφ̃(ωx ,ωy ,θ)

= cΣ

2π
Φ̃(ωx ,ωy )+ S̃(ωx ,ωy )

2π
.

(4.2)

The analysis of the problem in the Fourier transformed space allows an explicit formula-
tion of the exact transport operator, that will be then compared to the approximated form
obtained when introducing the angular discretization.

Expression (4.2) can be rearranged to make explicit the angular flux:

φ̃(ωx ,ωy ,θ) = 1

2π

[
1

iωx cosθ+ iωy sinθ+Σ

](
cΣΦ(ωx ,ωy )+ S̃(ωx ,ωy )

)
(4.3)

and, integrating over the angle θ, an expression connecting the scalar flux and the external
source is obtained:

Φ̃(ωx ,ωy ) = 1

2π

[∫ 2π

0

dθ

iωx cosθ+ iωy sinθ+Σ

](
cΣΦ(ωx ,ωy )+ S̃(ωx ,ωy )

)
. (4.4)

Rearranging terms, it is possible to explicitly obtain the functional relation between the
scalar flux and the external source:

Φ̃(ωx ,ωy ) = Γ(ωx ,ωy )

1− cΣΓ(ωx ,ωy )
S̃(ωx ,ωy ) =G(ωx ,ωy )S̃(ωx ,ωy ), (4.5)

where

Γ(ωx ,ωy ) = 1

2π

∫ 2π

0

dθ

iωx cosθ+ iωy sinθ+Σ = 1√
Σ2 +ω2

x +ω2
y

= 1√
Σ2 +ρ2

. (4.6)

Function G plays the role of a transfer function, since it produces the resulting total flux
when applied to any source. Symbol ρ indicates the distance from the center of the coor-
dinate system in the transformed space. The transfer function G allows to identify the key
characteristics of the transport model: if one assumes a localized δ source in the center
of the coordinates, the transfer function represents directly the scalar flux response, and it
depends on the distance ρ from the source position; as expected, a perfect circular sym-
metry is shown, owing to the angular isotropy of the source. An example of the pattern of
the transfer function obtained is given in Fig. 4.1a. Figure 4.1a

The angular discretization is introduced into the model by substituting the analytical in-
tegration of equation (4.4) with a suitable quadrature, as prescribed by the discrete ordinate
approximation scheme:

Φ̃(ωx ,ωy ) = 1

2π

[
2N∑

n=1

wn

iωx cosθn + iωy sinθn +Σ

](
cΣΦ(ωx ,ωy )+ S̃(ωx ,ωy )

)
. (4.7)
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4 Studies on ray effects in SN discretized problems

Table 4.1: Maximum value of the ray effect indicator for the x − y case with different values of c.

c → 0 0.2 0.4 0.6 0.8 0.95

S2 0.4477 0.4000 0.3394 0.2610 0.1550 0.0457
S4 0.2251 0.1900 0.1508 0.1069 0.0571 0.0150
S6 0.1502 0.1245 0.0969 0.0671 0.0349 0.0090
S8 0.1127 0.0926 0.0713 0.0489 0.0252 0.0064

The relation between flux and source can be given the same form as in equation (4.5) also
in this case, with a different definition for the Γ function, namely:

ΓSN (ωx ,ωy ) = 1

2π

2N∑
n

wα

Σ+ i cos
(
θn − tan−1

(
ωx /ωy

))
ρ

. (4.8)

The total number of directions considered is defined in accordance to the SN formalism
adopted in 1D slab geometry for the µ variable, in order to preserve the rotational sym-
metry, e.g. S2 has one direction per quadrant and S4 has two directions per quadrant.
The discrete-ordinate transport kernel shows an explicit dependence on the two trans-
formed coordinates ωx and ωy , resulting in the loss of the rotational symmetry previously
observed.

Figures 4.1b, 4.1c and 4.1d represent the modulus of the complex kernel G of the dis-Figure 4.1b

Figure 4.1c

Figure 4.1d

cretized transfer functions for S2, S4 and S8 cases, respectively. The discrete directions can
be easily identified and, as expected, the distortion is reduced when a larger number of
ordinates is adopted. The scattering phenomenon also affects the appearance of ray ef-
fects, attenuating the magnitude of the discrete artifacts when the number of secondaries
per collision c is increased. Figure 4.2 provides the same set of results as Figure 4.1 with aFigure 4.2

larger value of c, to graphically show the reduction of the ray effect.
The graphical isoline representation of the kernels provides a practical approach for the

quantitative estimation of the magnitude of ray effect phenomenon. If the exact trans-
fer function is superimposed to the discrete one, it is possible to measure the maximum
distance between the isolines allowing a direct quantification of the amount of distortion
introduced by the angular discretization. Obviously, this difference depends on the isoline
considered and hence on the value of ρ associated with it. In Figure 4.3a an example ofFigure 4.3a

how the ray effect indicator IRE is identified is reported. Figure 4.3b shows the resultingFigure 4.3b

curves obtained for different angular approximations; their maximal values can be used as
a quantifier for the relevance of ray effect in a certain configuration. Table 4.1 summarizesTable 4.1

the values of such maxima obtained for different angular approximations and number of
secondaries per collision, showing that this indicator models correctly the dumping effect
of scattering on the ray effect.

4.1.2 Problem in x − y in the direct space

The analysis of the simplified x − y transport problem treated in the previous section was
shown to be readily amenable using Fourier transforms, and moreover a measure for the
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Figure 4.1: Contour plot of the exact transport kernel (top left), compared to the discretized versions
obtained adopting different numbers of discrete ordinates. Material data: Σ = 1 cm−1;
c = 0.2. Isolines plotted for values 0.6, 0.3, 0.2, 0.1 and 0.07, starting from the center.
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Figure 4.2: Contour plot of the modulus exact transport kernel (top left), compared to the dis-
cretized versions obtained adopting different numbers of discrete ordinates. Σ= 1 cm−1,
c = 0.8. Isolines plotted for values 0.6, 0.3, 0.2, 0.1 and 0.07 starting from the center. The
maximum of the functions is normalized to one.
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4.1 Static transport problems in two dimensions
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Figure 4.3: Ray effect indicator IRE (Σ= 1 cm−1, c = 0.5).

ray effect phenomenon was apparent in this framework. However, the information ob-
tained may easily turn out to be difficult to interpret, and its connection to the features of
the problem in the physical space is lost. On the other hand, the analysis of the transport
phenomenon in the physical space requires the introduction of important simplifications
in the source terms.

In this section, the characterization of a transport problem is carried out in bidimensio-
nal x − y geometry by analytical means, in order to identify a suitable ray effect indicator
with the same philosophy adopted in the Fourier transformed space. To do so, a homo-
geneous medium in the absence of scattering is considered, which permits the analytical
representation of the solution for the flux and, at the same time, it is the most challeng-
ing configuration for the appearance of the ray effect. The domain considered is a square
with an edge of 2 m.f.p., with no volume sources, and an incoming isotropic flux φ0 on one
portion [0; y0] of the vertical edge, where y0 = 1 m.f.p for simplicity. A vacuum boundary
condition is assumed on the rest of the sides. The transport model considered is again flat-
land-like, with no loss of significance of the results. It is possible to show [Barbarino et al.,
2013a] that the angular flux is non-zero in all the spatial points of the domain, and it takes
the form:

φ(x, y,θ) =
 φ0 exp

[
− Σ

cosθ
x

]
α1 ≤ θ ≤α0

0 otherwise,
(4.9)

where

α1 = tan−1 y − y0

x
, α0 = tan−1 y

x
.

The scalar flux can then be retrieved as:

Φ(x, y) =
∫ α0

α1

φ(x, y,θ)dθ. (4.10)
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4 Studies on ray effects in SN discretized problems

The integral (4.10) does not seem solvable in terms of elementary functions, so a reference
solution is obtained by performing the integration numerically to a high degree of accu-
racy. The resulting spatial distribution of the scalar flux is depicted in Figure 4.4a. TheFigure 4.4a

same physical problem is then solved adopting a discrete ordinates SN approach: a re-
duced number of ordinates is assumed and a quadrature formula is used to evaluate the
integral. In Figures 4.4b, 4.4c and 4.4d the results obtained assuming 2, 4 and 8 equallyFigure 4.4b

Figure 4.4c

Figure 4.4d

spaced and weighted directions on the x − y plane are reported. Directions may also be
identified adopting a Gauss-Legendre quadrature on the interval [0;2π].

In order to quantify the amount of ray effect in this case and in analogous x − y con-
figurations, a simple, practical scheme is set up. Consider the solution for the scalar flux
restricted along a generic straight line γ crossing the domain, denoted by the symbol fγ.
If the solution is exact, intuitively from equation (4.9) one could imagine that the function
obtained would be quite well represented by an expansion in terms of few exponentials:

fγ(ξ) ≈ h(M)
γ (ξ) =

M∑
m=1

amemξ, (4.11)

where ξ is the characteristic coordinate along the designated line γ. In other words, the
value of M needed to reduce the error-norm

∥∥ fγ−hγ
∥∥ below a certain small threshold

should be small, having possibly excluded the areas close to the source.
On the other hand, the more the solution is biased by ray artifacts (in the form of steep

gradients, localized peaks and discontinuities), the more fγ should be difficult to be repre-
sented by the expansion (4.11) with few terms.

Following this intuition, a simple indicator is defined which theoretically should be able
to classify the solutions according to the amount of spatial ray effect without knowing the
exact solution, but only its mathematical nature.

In order to obtain a reference, the procedure is first applied to the exact solution, using
a set of 100 equally spaced lines parallel to the x axis and other 100 equally spaced paral-
lel to y . For each of the 200 restrictions of the flux, fγ, the corresponding approximated
function hγ is calculated adopting a least squares algorithm. The discrepancy between the
two functions is evaluated as the root of the mean squared error. The values falling in the
rectangle (x, y) ∈ {(0,0)× (0.1,1.1)} are neglected, in order to attenuate the strong gradients
induced by the boundary source. All the obtained values are averaged arithmetically, ob-
taining a global indicator for the whole domain. The procedure shows for this case that an
exponential expansion with M = 4 represents well enough the solution, with the indicator
in the order of 10−2.

The same procedure is repeated on the SN solutions introduced earlier, using Gauss-
Legendre quadratures of increasing order, as well as equally spaced and weighted direc-
tions. These two approaches to the angular treatment are associated with an exact solu-
tion for the spatial dependence (as inequation (4.9)) at first; then, the effect of the spatial
discretization is considered assuming a spatial mesh ∆x = ∆y = 0.1 m.f.p. and a standard
diamond difference scheme.

The resulting values of the ray effect indicator for all cases are summarized in Figure 4.5.Figure 4.5

As mentioned earlier, the “exact” curve represents the difference of the exact solution as
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Figure 4.4: Contour plot of the solution of the x − y problem in the absence of scattering. Compari-
son of discrete ordinates with the exact solution.
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Figure 4.5: Ray effect indicator based on the use of a four-term exponential expansion, compared
to the reference (Exact) and angular discretized solutions of the x− y transport problem.
Results are provided for Gauss-Legendre nodes and weights in association to an exact
representation (GL ex) and discretized solution (GL∆x) of the spatial operator. The same
evaluations are performed adopting equally spaced angular nodes (EQ ex and EQ ∆x).

compared to the four-term exponential representation, and it is therefore constant, while
the indicator calculated on the discretized solution is, as expected, higher. The benefi-
cial effect of the increase in the number of discrete ordinates is reflected in the decrease
of the indicator, while the choice of the quadrature set and the introduction of the spatial
discretization has a less relevant influence. Additionally, it may be observed that the spa-
tially discretized solutions are associated to a slightly smaller ray effect indicator as defined
above. This can be justified by the spatial discretization scheme that, imposing a local bal-
ance of the flux on the bi-dimensional mesh, may smooth the sharp gradient of the angular
discretized solution and therefore reduce the ray effects.

The proposed definition of a ray effect indicator based on the understanding of the
mathematical nature of the solution has proven to be rather effective for the evaluation
of the numerical artifacts in the bi-dimensional case under analysis. The extension of such
method to a general case, including the effect of scattering and the heterogeneity of the
medium, is not straightforward and would require additional studies, foreseen for future
works.

4.2 Time dependent problems

4.2.1 Problems in x − t in the transformed space

The transport model in one-dimensional slab geometry is not affected by ray effect phe-
nomena in steady-state conditions. However, distortions of the propagation of particles
associated to the discretization of the angular variable can be observed also in 1D when
time-dependence is also considered. These phenomena are usually called time-ray effects
[Dulla et al., 2006]; they can be easily understood from a physical point of view if one con-
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Figure 4.6: Contour lines of the modulus of the Fourier-transformed transport kernel for the x −
t problem (top left), compared to the discretized versions obtained adopting different
numbers of discrete ordinates (Σ= 1cm−1, c = 0.5, v= 1cm/s). Isolines, from the center,
correspond to values 0.6, 0.3, 0.2 and 0.1.
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Figure 4.7: Contour lines of the modulus of Fourier-transformed transport kernel for the x−t model,
where the coordinates of the frequency space are conveniently mapped {ωx ,ωt } 7→ {ξ,ψ}
to recover the circular pattern of the exact solution. Isolines, from the left, go from 0.1 to
0.9 with increments of 0.1.
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4.2 Time dependent problems

siders that particles moving along a specific direction in the set of the discrete ordinates
can reach some specific points in free flight only at a certain specific time, determined by
the particle velocity.

The general transport problem experiencing time ray effects can be written in the form:

1

v
∂

∂t
φ(x,µ, t )+µ ∂

∂x
φ(x,µ, t )+Σφ(x,µ, t ) = cΣ

2
Φ(x, t )+ S(x, t )

2
, (4.12)

where, again, the energy dependence is neglected in order to focus on the interaction
among angle, space and time. The system is considered to be infinite and homogeneous,
and the mathematical form of the present model is analogous to the previous x − y case,
allowing the application of the Fourier transforms to obtain the solution. Equation (4.12)
when transformed in both space and time reads:

(
i
ωt

v
+ iµωx +Σ

)
φ̃(ωx ,ωt ,µ) = cΣ

2
Φ̃(ωx ,ωt )+ S̃(ωx ,ωt )

2
, (4.13)

which can be solved to obtain the transformed scalar flux:

Φ̃(ωx ,ωt ) = 1

2

∫ 1

1
dµ

1

i
ωt

v
+ iµωx +Σ

(
cΣΦ̃(ωx ,ωt )+ S̃(ωx ,ωt )

)
, (4.14)

or, explicitly:

Φ̃(ωx ,ωt ) = Λ(ωx ,ωt )

1− cΣΛ(ωx ,ωt )
S̃(ωx ,ωt ) = H(ωx ,ωt )S̃(ωx ,ωt ), (4.15)

where in this case

Λ(ωx ,ωt ) = 1

2iωx
log

[
iωt +Σv+ ivωx

iωt +Σv− ivωx

]
.

Although the mathematical nature of the x−y and x−t problem is similar, the correspond-
ing kernel in the transformed space shows different features. In particular, it can be easily
observed from formula (4.2.1) that the kernel depends on both the transformed coordi-
nates separately, and not only on their vector modulus, therefore no circular symmetry can
be expected in this case. This is made clear by the direct observation of the modulus of
the transfer function in Figure 4.6a, which for the time-dependent case shows a different Figure 4.6a

symmetry in the transformed space with respect to Figure 4.1a. However, the appearance
of ray effects can be observed in the transport kernel also in this case; the integral over µ in
(4.14) is now substituted by a quadrature formula, leading to a different definition for the
functionΛ:

ΛSN (ωx ,ωt ) = 1

2

N∑
n=1

 wn

i
ωt

v
+ iµωx +Σ

 , (4.16)

and the resulting transport kernel is plotted in Figs. 4.6b, 4.6c and 4.6d for different angular Figure 4.6b

Figure 4.6c

Figure 4.6d

approximations. Again, it is possible to identify the distortions associated with the discrete
directions.
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Figure 4.8: Ray effect indicator IRE (Σ=1 cm−1, c=0.5, v=1 m/s) in the x − t case.

The relevance of ray effect in x − t configurations can be seen more clearly by perform-
ing a suitable change of coordinates {ωx ,ωt } 7→ {ξ,ψ}, in order to recover a circular sym-
metry for the exact transport kernel, as shown in Figure 4.7a. The coordinate transforma-
tion amounts to writing explicitly the real and imaginary parts of the complex function
H(ωx ,ωt ) in formula (4.15) as ξ+ iψ, so that the modulus of the exact transfer function
shows a circular symmetry. When the same mapping procedure is applied to the SN dis-
cretized transfer functions, the appearance of a distortion in the particle propagation is
clearly visible, as can be observed in Figure 4.7.Figure 4.7

The representation of the x−t transport kernels in the transformed space with respect to
the new coordinates ξ andψ allows the introduction of the ray effect indicator IRE as in the
previous case. The distortion in the isolines is measured like Figure 4.3a and the resulting
values as function of ξ are reported in Figure 4.8. It is observed a pattern similar to the x−yFigure 4.8

case, with the presence of a maximum, and the attenuation of the distortion when a larger
number of directions is adopted is confirmed.

4.2.2 Effect of the improvement of the angular description

At this point, it may be of interest to investigate the possibility to adopt a different approach
for the angular treatment in the time-dependent problem considered above, with the aim
of mitigating or smoothing the time-ray effect phenomena. Till now the mathematical sim-
ilarities of the x − y and x − t problems have been exploited; hence, the methods that have
been adopted in the literature for the reduction of ray effects in multi-dimensional steady-
state transport problems are first considered.

The appearance of ray effects in multi-dimensional transport is due to the physical dis-
tortion in the streaming of particles, forced to propagate along specific directions. The re-
duction of such distortion can be attained operating on the number of ordinates adopted,
also making use of localized refinement of the angular mesh, but still retaining an SN -like
formalism of the problem [Longoni and Haghighat, 2002]. Other approaches are based on
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4.2 Time dependent problems

the use of different basis functions for the representation of the angular dependence, such
as wavelets [Buchan et al., 2008] and finite elements [Briggs et al., 1975; Coppa et al., 1990;
Drumm et al., 2013]. The attention is focused on this second class of techniques, trying to
understand whether the application of finite elements to the angular variable µ in the x− t
transport problem can be beneficial for the reduction of time-ray effects.

Finite element methods of different flavors have been applied to linear transport prob-
lems. A large deal of work has focused on the standard FEM approach, where the bidi-
mensional Ω angular domain to be discretized is subdivided in triangular meshes and the
classic “tent” trial functions are introduced into the model equation to minimize the resid-
ual à la Galerkin [Martin et al., 1981; Drumm et al., 2013]. Other developments have been
performed introducing basis functions on the angle with a global support [Coppa et al.,
1990; Coppa and Ravetto, 1995], therefore allowing a description of the angular behavior
of the flux with a larger number of degrees of freedom. In the x − t transport model under
analysis, such approaches can be seen as a generic representation of the angular flux in the
form:

ϕ(x,µ, t ) =
K∑

k=1
Uk (µ)gk (x, t ), (4.17)

where the functions Uk may be defined across two discretization meshes, as in standard
FEM, or on the whole µ domain, as it is done for the spatial treatment with the spectral ele-
ment method. Once the expansion (4.17) is introduced into the model (4.12), the integrals
of the equation, weighted by the same functions Uk , overµ provide a set of linear equations
for the expansion coefficients gk . This process has been applied in Coppa et al. [1990] to
x − y flat-land transport, leading to a set of equations recast in matrix form. The same can
be done here, leading to an expression written in compact form as:

1

v
Â
∂X

∂t
+ B̂

∂X

∂x
+ΣÂX = cΣ

2
ĈX + S

2
(4.18)

where the unknown column vectorX contains all the functions gk , and the other terms in
the equation are defined as follows:

Â = {
ai j

}
, ai j =

∫ 1

−1
dµUi (µ)U j (µ), (4.19)

B̂ = {
bi j

}
, bi j =

∫ 1

−1
dµµUi (µ)U j (µ), (4.20)

Ĉ = {
ci j

}
, ci j =

∫ 1

−1
dµ′Ui (µ′)

∫ 1

−1
dµU j (µ), (4.21)

S =
[

S
∫ 1

−1
dµU1(µ), S

∫ 1

−1
dµU2(µ), . . . , S

∫ 1

−1
dµUK (µ)

]t

. (4.22)

The procedure makes then use of the solution of the generalized eigenvalue problem for
the matrices Â and B̂ :

ÂVα =λαB̂Vα, α= 1,2, . . . ,K , (4.23)
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that can be written alternatively as:

ÂVα = ναnα,
B̂Vα = ηαnα,
λα = να/ηα.

(4.24)

The unknown vector X is projected on the basis vectors Vα and the orthogonality with
respect to the vectors nα allows to diagonalize the first two terms of equation (4.18). The
resulting system of equations is decoupled for what concerns the two differential terms.
When the process is applied to bi-dimensional steady-state transport, the diagonalization
process also modifies the collision term in the balance equation maintaining its coupling,
resulting in an increased collision and scattering contribution with a beneficial smoothing
of the ray effect.

On the contrary, when the diagonalization process is applied to the x−t model in matrix
form, equation (4.18), the collision term on the left-hand-side of the equation is also diag-
onalized, since the same matrix Â appears in both the time derivative and collision terms.
As a consequence, no additional collisionality is introduced by the process, and a standard
SN -like formulation of the problem is obtained, with a possible different definition of the
quadrature set, as obtained by the diagonalization of matrix B̂ . This fact is due to the differ-
ent form of the matrix equation obtained in the x − t case, equation (4.18), with respect to
the steady-state problem treated in Coppa et al. [1990]: in this latter case, all the coefficient
matrices appearing in the equation are distinct, and the diagonalization process for the
matrices associated with the differential part of the problem results in an additional cou-
pling in the rest of the equation, that can be physically interpreted as increased collisions
and scattering.

The mathematical sketch of the application of a generic collocation method, as in (4.17),
and the consequent verification of the uselessness of such procedure, can be given a more
general explanation.

The starting point of the methods introduced before, the expansion of the flux in terms
of a set of function of the variableµ, aims at the characterization of the angular dependence
of the neutron population with a large number of degrees of freedom. This can be obtained
by adopting linear “tent” functions on a fine discretization of the µ domain as in FEM, or
by the adoption of polynomial functions of µ on the whole interval, as it is done in spectral
element methods.

We should also remember that also the PN method, applied to the x− t transport model,
works with the same philosophy, assuming a polynomial form of the N -th order for the
angular dependence of the angular flux. Moreover, the time-dependent PN model in 1D
slab is equivalent to the corresponding SN+1 model, having properly defined the discrete
ordinates and integration weights, together with the boundary conditions, in the represen-
tation of the scalar flux. Therefore, the time-ray effect experienced with SN models in x − t
transport is the same effect that can be observed when approaching the problem with the
PN formalism and, by extension, it will be observed in any collocation method as finite ele-
ments and spectral elements. The only difference that any of these methods can introduce
is in the definition of the directions and weights for the quadrature integral.
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In conclusion, we can state that the features of the time ray-effect in time-dependent
1D transport cannot be reduced by the application of a different numerical scheme for the
angle as it has been done successfully with finite elements in multi-dimensional problems.
To this aim, more innovative and complex approaches need to be identified.

4.2.3 Problem x − t in direct space without scattering

In the previous sections the problem of time-ray effects has been addressed, firstly study-
ing the characteristics of the transport operator in the Fourier transformed space, and then
discussing the possibility to reduce such distortions by a suitable change of the discretiza-
tion scheme for the angle.

Since one of the main conclusions of the previous section is that different discretization
schemes are performing no better than SN , the attention is now focused on the analysis of
the same problem in the direct time-space domain, providing analytical results and com-
paring the performance of different quadrature sets for the SN scheme.

All the problems considered are source-driven, and the medium is homogeneous and
purely absorbing. These hypotheses allow an analytical solution for the angular and scalar
flux, to be used as reference against the results obtained when the integral over the angle is
substituted by quadrature in SN .

The transport equation providing the angular flux φ in an infinite slab of homogeneous
absorbing material is:

1

v
∂φ(x,µ, t )

∂t
+µ∂φ(x,µ, t )

∂x
+Σφ(x,µ, t ) =Q(x,µ, t ). (4.25)

The Green function of the problem is evaluated at first, introducing into the model (4.25) a
delta source in space, angle and time:

QG(x,µ, t ; x ′,µ′) = δ(x −x ′)δ(µ−µ′)δ(t ). (4.26)

The time dependence is handled by application of the Laplace transform, reducing (4.25) to
an ordinary differential equation in x, whose solution is the Green function of the problem:

φ̃G
(
x −x ′,µ−µ′, s

)= δ(µ−µ′)∣∣µ∣∣ exp

[
− 1

µ

(
Σ+ s

v

)(
x −x ′)] ·ϑ[

sgn(µ′)
(
x −x ′)] , (4.27)

where ϑ denotes the Heaviside function. Obviously, the solution (4.27) depends paramet-
rically on the transformed variable s. The Green function in the physical time domain can
be obtained performing the inverse transform:

φG
(
x −x ′,µ−µ′, t

)=L −1
s→t

(
φ̃G

(
x −x ′,µ−µ′, s

))
, (4.28)

and the subsequent convolution with any generic source yields the solution to the trans-
port model for the angular and scalar flux:

φ(x,µ, t ) =
∫ +∞

−∞
dx ′

∫ +1

−1
dµ′

∫ t

0
dt ′Q(x ′, t ′,µ′)φG

(
x −x ′,µ−µ′, t − t ′

)
(4.29)

Φ(x, t ) =
∫ 1

−1
dµφ(x,µ, t ). (4.30)
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Equations (4.30), if written down explicitly, provides the exact solution to the transport
problem and can be considered as a reference. The angular discretization can be intro-
duced through a quadrature evaluations of the integrals over µ in equations (4.30), yielding
the SN -like solution to be compared to the reference.

In the following, the flux responses to some source distributions are explicitly calculated
and compared to SN results.

Analytical solution to some benchmark problems

Isotropic pulsed point source The first source considered emits a pulse of particles iso-
tropically at x = 0, therefore the source reads as:

Q1(x,µ, t ) = 1

2
δ(x)δ(t ) → Q̃1(x,µ, s) = 1

2
δ(x). (4.31)

The scalar flux in this simple case can be evaluated in the Laplace transformed space as:

Φ̃1 (x, s) = 1

2

∫ +1

−1
dµ

∫ +∞

−∞
dx ′

∫ +1

−1
dµ′φ̃G(x −x ′,µ−µ′, s)δ(x ′) = 1

2
E1

[(
Σ+ s

v

)
|x|

]
, (4.32)

where E1 is the exponential integral function, defined as:

E1

[(
Σ+ s

v

)
|x|

]
=

∫ 1

0

dµ

µ
exp

−
(
Σ+ s

v

)
|x|

µ

 . (4.33)

The inverse transform of (4.32) can be expressed analytically, giving the final result:

Φ1(x, t ) = 1

2
ϑ

[
t − |x|

v

]
exp[−Σvt ]

t
. (4.34)

This solution will be used in the following as the Green function for a more general case
of an isotropic pulsed source with a general spatial distribution.

Isotropic pulsed Gaussian source The second source considered has a Gaussian spatial
distribution, centered at x = m with standard deviation σ:

Q2(x,µ, t ) = 1

2

1p
2πσ2

exp

(
− (x −m)2

2σ2

)
δ(t ). (4.35)

The flux response to source Q2 is obtained directly by a convolution product of the source
with the appropriate Green function for this problem, Eq. (4.34), giving the result:

Φ2(x, t ) = 1

4

e−Σvt

t

[
erf

(
x −m +vtp

2σ2

)
−erf

(
x −m −vtp

2σ2

)]
. (4.36)
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Collimated pulsed Gaussian source The case here considered is based on the previous
source Q2, introducing a collimation along the direction µ0 for the particles emitted:

Q3(x,µ, t ) = 1p
2πσ2

exp

(
− (x −m)2

2σ2

)
δ(t )δ(µ−µ0). (4.37)

The corresponding flux is obtained performing the convolution product reported in for-
mula (4.30), giving as a result:

Φ3(x, t ) = vp
2πσ2

exp(−vΣt )exp

(
− (x −m −vµ0t )2

2σ2

)
. (4.38)

Pulsed Gaussian source with finite angle polarization This last configuration can be
seen as a variation of the previous case, useful for the following discussion on how to treat
anisotropic source with an SN scheme. The angular dependence of the source is here given
in the form of a gate function as:

Q4(x,µ, t ) = 1

2

1p
2πσ2

exp

(
− (x −m)2

2σ2

)
δ(t )

[
ϑ

(
µ−a

)−ϑ(
µ−b

)]
, (4.39)

where a and b are such that −1 ≤ a < b ≤ 1 and represent the limits for the region where
the angular dependence is constant and non-zero. The convolution of this source with the
Green function (4.28) gives the following expression for the scalar flux:

Φ4(x, t ) = 1

4

exp(−Σvt )

t

[
erf

(
x −m −vat

σ
p

2

)
−erf

(
x −m −vbt

σ
p

2

)]
. (4.40)

SN solution and comparison of different quadrature schemes

The solutions evaluated in the previous section can be used as reference to be compared to
the approximate results that can be obtained when adopting an SN scheme for the angular
treatment. This can be done evaluating the integrals over µ by a quadrature rule, thus
allowing to identify the effect of the discrete ordinates without the superposition of any
other discretization scheme for the other phase-space variables.

The interest is focused on the possible effects associated with the choice of directions
and weights. Therefore, several quadrature schemes are applied [Abramowitz and Stegun,
1972], in order to evaluate how the SN approximate solution is modified by the different
choices of directions and weights.

The Gauss-Jacobi quadrature provides a general definition valid for most schemes:∫ +1

−1
f (µ)(1−µ)α(1+µ)βdµ=

N∑
n=1

wn f (µn), (4.41)

where α and β are two real numbers and are both strictly larger than −1. Different situa-
tions can be identified:

• α=β: Gegenbauer quadrature (GB);
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Figure 4.9: Schematics of the quadrature rules adopted. The length of the arrows is representative
of the corresponding weight.

• α=β=−0.5: Chebyshev quadrature (CS);

• α=β= 0: Gauss-Legendre quadrature (GL).

A fourth quadrature set, which cannot be directly obtained from (4.41) as GB and CS, is the
Gauss-Lobatto-Legendre formula: it has a unit weight function, as with Gauss-Legendre,
and both integration endpoints belong to the set of nodes.

The presence of the weight function (1−µ)α(1+µ)β in the integral to be approximated
represents a limitation for the application of the quadrature in a general case. The problem
can be circumvented by an elaboration of the integral to be performed, thus modifying the
weights that will be adopted in the quadrature:∫ +1

−1
f (µ)dµ=

∫ +1

−1
(1−µ)α(µ+1)β

f (µ)

(1−µ)α(1+µ)β

≈
N∑

n=1
wn

f (µn)

(1−µn)α(1+µn)β

≈
N∑

n=1
w ′

n f (µn).

(4.42)

The corrected weights w ′
n can be easily evaluated and do not require the knowledge of

the function to be integrated. Interestingly, when the adjustment (4.42) of the weights is
performed assuming α and β values both approaching −1, a set of directions and weights
is obtained that has its limit in those of the Gauss-Lobatto-Legendre quadrature.

Figure 4.9 gives a graphical representation of the directions assumed for each quadratureFigure 4.9

scheme, where the length of the arrows is proportional to the corresponding weight.
The various quadrature sets introduced are now applied for the evaluation of the scalar

fluxes in response to the different sources described above. In the following the generic
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4.2 Time dependent problems

symbol wi is adopted to denote the weights, bearing in mind the required modification
(4.42) for the use of various quadrature schemes.

Isotropic pulsed point source In this case, the scalar fluxΦ?1 is obtained starting from the
Laplace-transformed expression (4.32), substituting the integral over µ with the quadra-
ture:

Φ?1 (x, t ) = 1

2
L −1

s→t

{
E1

[(
Σ+ s

v

)
|x|

]}

= 1

2
L −1

s→t


N /2∑
i=1

wi

µi
exp

−
(
Σ+ s

v

)
|x|

µi


 ,

(4.43)

where the sum is limited to the positive values of µ to be consistent with the integral (4.33).
Since the inverse transform operator is linear, it is possible to move it inside the sum: the

inverse transform of each exponential term gives a Dirac delta function in the direct space,
namely:

Φ?1 (x, t ) = 1

2

N /2∑
i=1

wi

µi
L −1

s→t

exp

−
(
Σ+ s

v

)
|x|

µi




= 1

2

N /2∑
i=1

wi

µi
exp

(
−Σ |x|

µi

)
δ

(
t − |x|

vµi

)
.

(4.44)

Expression (4.44) clearly states that neutrons are propagated only along specific collimated
directions, identified by the ordinates where the delta functions are centered, thus distort-
ing the physics of the propagation as represented by the reference solution (4.34).

Isotropic pulsed Gaussian source The approximate solution just evaluated, (4.44), is now
used as Green function to obtain the scalar flux associated with the source Q2:

Φ?2 (x, t ) = v

2
p

2πσ2
exp(−Σvt )×

N /2∑
i=1

wi

[
exp

(
− (x −m −vµi t )2

2σ2

)
+exp

(
− (x −m +vµi t )2

2σ2

)]
(4.45)

The analytical solution (4.36) is compared to the different SN discretized forms that can
be obtained adopting different quadrature sets in Figures 4.10 and 4.11 for a source sym- Figure 4.10

Figure 4.11metrically located with respect to x = 0. The solutions for the positive half-domain at dif-
ferent time instants are reported, since the solution is even. The different localization of
the maxima in the SN fluxes is due to the different directions adopted, while their height
reflects the weights associated with such directions. As expected, the choice of a different
quadrature scheme is not providing an attenuation of the ray effects phenomenon. How-
ever, the different direction choice is affecting the localization of the artifacts and their
amplitude is directly related to the associated weight that ensures the conservation of par-
ticles.
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Figure 4.10: Flux response to an isotropic pulsed Gaussian source (m = 0 cm, σ = 0.1 cm), solved
with exact transport and S4 (Σ= 0.5 cm,v= 0.9 cm/s).
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Figure 4.11: Flux response to an isotropic pulsed Gaussian source (m = 0 cm, σ = 0.1 cm), solved
with exact transport and S8 (Σ= 0.5 cm−1,v= 0.9 cm/s).
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4 Studies on ray effects in SN discretized problems

Collimated pulsed Gaussian source The SN solution for this collimated source takes the
form:

Φ?3 = vp
2πσ2

exp(−Σvt )
N /2∑
i=1

wi exp

(
−

(
x −m −µ0vt

)2

2σ2

)
δ(µi −µ0). (4.46)

Is is important to notice that the discretized solution for such a strongly collimated source
can provide a null result, if the direction of propagation is not part of the discrete directions
adopted. This extreme situation is representative of the problems that can be encountered
when treating strongly anisotropic phenomena with a discrete ordinate approach. A more
general case of an anisotropic source emission and some additional discussion on this sub-
ject are presented in the following.

Pulsed Gaussian source with finite angle polarization Finally, using Q4 one obtains the
following discretized solution to the transport model (4.25):

Φ?4 (x, t ) = v
2σ

p
2π

exp(−Σvt )
N /2∑
i=1

wi exp

(
(x −m −vµi t )2

2σ2

)[
ϑ

(
µi −a

)−ϑ(
µi −b

)]
(4.47)

The nature of this solution depends on the relative position of the gate with respect to the
discrete ordinates available in the set chosen. If none of the directions is included between
a and b, the discretized solution vanishes for any t > 0. In the other cases, the solution
depends solely on the number of discrete ordinates seen by the gate function, but the exact
values a and b will have no influence on the solution. This also implies that the exact
number of particles emitted by the source is never correctly taken into account, since only
a few discrete contributions of the source are considered by the scheme. The response
function obtained is over or under-estimating the correct solution in a quite unpredictable
way, with foreseeable increased loss of accuracy if a small number of directions is adopted.
In such a case, it might be advisable to adopt a non conventional quadrature scheme with
respect to the standard Gauss-Legendre set, for the purpose of following more closely the
direction propagation of the collimated particles.

The problem of the lack of particle conservation can be overcome in this particular case
with a calibration of the quadrature scheme. Since the angular behavior s(µ) of the neutron
source is known at t = 0, it is plausible to think that its integral over [−1,+1] can be eval-
uated analytically or with a sufficient accuracy with another method which does not pose
the same resolution problem of a Gaussian schemes. Then, the following equality can be
imposed, appropriately modifying the weights:

N∑
n=1

w?
n s(µn) =

∫ +1

−1
s(µ)dµ, (4.48)

where w?
n are the rescaled weights to preserve the source strength. In our case equation

(4.48) reads as: ∑
a<µn<b

w?
n s(µn) =

∫ b

a
dµ= b −a. (4.49)
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Since the angular distribution of the particles does not change during the propagation due
to the absence of scattering, it can be assumed that the rescaled quadrature is able to ac-
count correctly for all particles. However, it is clear that such adjustment is not working
when scattering is taken into account.

The formula adopted to rescale the weights and properly preserve particles in the colli-
mated source problem is:

w?
n = wn

∫ +1

−1
s(µ)dµ

N∑
m=1

wm s(µm)

. (4.50)

In other words the weights are all corrected proportionally to the ratio between the ex-
pected result of the quadrature and the actual one.

Figures 4.12 and 4.13 show the discretized scalar fluxes associated with source Q4 with Figure 4.12

Figure 4.13two different µ intervals, adopting the standard weights and the rescaled ones to preserve
particles. The gate functions is chosen in the first case (0.05 < µ< 0.21) in order to include
the same number of discrete ordinates for each scheme (Figure 4.12). Results presented in
Figure 4.13 are for an interval over µ that includes the second most forward-peaked Gegen-
bauer direction (namely 0.05 <µ< 0.50), the other quadrature schemes still including only
one direction.

The comparison of Figures 4.12 and 4.13 concerning the GL, GLL and CS results shows
that, when the original set of weights wn is adopted, the same results in the two config-
urations are obtained. This is due to the fact that the same ordinates are considered and
therefore the exact limits of the collimation interval [a;b] play no role. When the weights
are then rescaled some differences in the two cases are observed, since both are preserv-
ing the total number of emitted particles. The use of the Gegenbauer quadrature produces
different results in this comparison, since the number of ordinates involved is changed.
However, all these results show a different localization and height of the flux peaks, due
to the different directions and weights, but time-ray effects are, as expected, unavoidably
present in all solutions. However, the choice of the Gegenbauer quadrature may be consid-
ered more suitable for the problem at hand, since it allows to describe more properly the
most forward-peaked part of the source.

4.3 Conclusions

The physical distortions and numerical effects associated with the discretization of the
angular variable in linear transport problems, usually called ray effects, have been ana-
lyzed and characterized in multidimensional configurations in steady-state, as well as in
time-dependent problems in 1D slab geometry. The analysis of the transport kernel in the
Fourier-transformed space has allowed to identify and measure the role of the ray artifact
appearing in x − y geometry and x − t problems. This approach has allowed the definition
of a proper ray effect indicator, depending on the angular discretization adopted and on
the physical characteristics of the medium. The analysis of the ray effect phenomenon has
also been performed in the direct space, assuming a purely absorbing medium that allows
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Figure 4.12: Flux response to a pulsed Gaussian source (m = 0 cm, σ = 0.2 cm), collimated in the
interval 0.05 < µ < 0.21, solved with exact transport and S8, adopting different angular
schemes (Σ= 1.0 cm−1, v= 1.5 cm/s).

148



4.3 Conclusions

0 0.5 1 1.5 2 2.5 3
0

0.5

1

x

GL GL calib.
GLL GLL calib
CS CS calib.
GBα=1.0 GBα=1.0 calib.
Exact

(a) t = 0.001

0 0.5 1 1.5 2 2.5 3
0

5 ·10−2

0.1

0.15

x

(b) t = 1

0 0.5 1 1.5 2 2.5 3
0

1

2

3

·10−2

x

(c) t = 2

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8
·10−3

x

(d) t = 3

Figure 4.13: Flux response to a pulsed Gaussian source (m = 0 cm, σ = 0.2 cm), collimated in the
interval 0.05 < µ < 0.50, solved with exact transport and S8, adopting different angular
schemes (Σ= 1.0 cm−1, v= 1.5 cm/s).
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an analytical solution for the transport equation. A definition of the ray effect indicator
has been proposed also in this case, based on the understanding of the mathematical na-
ture of the transport solution, with similar performances to the configurations observed in
the Fourier analysis. The definition of the ray effect indicator in the direct space for this
simplified problem provides a starting point for the definition of proper indicators to be
applied in more realistic configurations. The peculiarities of the time-dependent problem
in 1D slab, characterized by the appearance of time-ray effects, have been discussed in or-
der to provide a more complete understanding of the phenomenon. The possibility of the
adoption of different discretization approaches for the reduction of ray artifacts has been
examined, starting from the typical approaches used in multi-dimensional transport and
discussing the physico-mathematical reasons that prevent these alternative schemes from
being successful in the reduction of time-ray effect. The modification in the numerical so-
lution introduced by the adoption of different quadrature sets has been studied, clarifying
how the choice of a different quadrature scheme is in principle not able to attenuate the
ray effects, but could provide more significant results when strongly anisotropic problems
are considered.
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Conclusions and proposals for future
developments

The studies on ray effects conclude the thesis.
As it is stated in the introduction, this work explores some topics in the field of neutron

transport for core calculations.
Concerning the application of the Spectral Element method in neutronics, the analysis

is focused on the possibility to couple effectively the numerical method, which addresses
only the space part of the model, with angular discretizations in typical calculation do-
mains. Even if a full-core tool is not available at the end of this thesis, its main “building
blocks” are discussed.

Section 2.1 has addressed the convergence properties of the SEM applied to some stan-
dard transport models. In particular, the spherical harmonics and discrete ordinate for-
mulations have been considered. This characterization should help in understanding the
combined effect of the discretization in space and angle, highlighting that using SEM one
gets a coupling depending on the scattering ratio: this parameter tends to slow down the
convergence rate of the scheme. The drawback is in common with all other combined
angular/space discretizations since it alters the mean free path of neutrons and, thus, the
ability of a certain spatial mesh to correctly resolve the flux gradients. By the way, as it is
clear from the results, the high-order polynomials and the automatic combined refinement
of order and mesh size, endowed in the SEM structure, reduces this concern. It is observed
that the high convergence rates demonstrated by SEM on general second-order models are
confirmed when applied to neutron transport, constituting an advantage compared to the
classical discretization techniques used so far for these applications. In general, SEM out-
performs low-order classical approximation schemes and do not add, in principle, much
complexity to the implementation: even if most of the coding effort is not treated in the the-
sis, the scheme is close to a typical Finite Element solver, especially in this 1D case where,
for both FEM and SEM, the pattern of the algebraic matrix can be easily foreseen and ded-
icated solution strategies are naturally implemented. Moreover, SEM keeps a predictable
pattern also in higher dimensions, which is a clear advantage for memory optimization.

Sections 2.2 and 2.3 try to reduce the drawbacks of the original SEM grid specifications.
The classical reference for variational methods like SEM and FEM is typically the Galerkin
approach, and it requires essentially conformal grids: the mesh edges always end on a node
and the interface degrees of freedom are superimposed to the ones of the nearby element.
If the elements are “small”, grid flexibility may be recovered by refinement. In SEM, the
mesh size is typically “large” compared to the characteristic dimensions of the domain,
due to the high number of internal degrees of freedom. While this feature focuses on the
optimal handling of gradients by the polynomial degree of the expansion basis rather than
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to the mesh radius, it may pose problems in adapting the grid to some involved features
that may appear on common computational domains. Nonetheless, the neutron flux in
power and research reactors may show sufficiently steep gradients to require a further local
fine reconstruction. For instance, the presence of localized absorbers like burnable poison
pins, self neutron power detectors and shut-down rods distort the flux shape with most
of the effect in the spatial scale of the mean free path. Or, there are situations where the
procedures for safety evaluations require a fine reconstruction of the power profile at a sub-
assembly level, like in presence of localized reactivity insertions: at the moment, mainly
envelope approaches are used, adding costly provisions to the results.

These problems could be overcome by a different treatment of mesh interfaces, mov-
ing from the Continuous to the much more flexible Discontinuous Galerkin approach, as
illustrated by means of some examples in section 2.2.

From the implementation point of view, the explicit block-matrix approach developed in
the context of this work for DG-SEM seems easily scalable to more complex domains, and it
is preferable to the automatic algorithms which are proposed for FEM schemes; its memory
consumption is low, because each block can be stored in the final sparse matrix as soon as
it is calculated, without cross-terms due to the advantageous structure of the DG interface
conditions. Last, the conservation of the number of particles in each element is of great im-
portance in nuclear engineering for the equivalence procedures, since it guarantees a high
precision in the conservation of the reaction rates over which such calculation schemes
are based. Discontinuous Galerkin, opposed to classical Continuous Galerkin, guarantees
it by means of its formulation; this feature alone, whose efficacy is proven in several con-
vergence tests targeted on the reaction rates, justifies the use of this method for any reactor
physics calculation using SEM.

Finally, the Cartesian flavor of the grids used so far is removed by the transfinite inter-
polation in section 2.3, a robust and accurate technique of mesh deformation which ha
been tightly integrated into the SEM formalism and kept at an analytical level to reduce the
number of machine operations. With this last block, DG-SEM seems now adequate to cope
with the involved geometries present in nuclear applications, when compared to the orig-
inal approach. The developments presented are of help for the implementation, and the
convergence properties analyzed for simple one-dimensional benchmarks are confirmed
also for the case of the bi-dimensional Mosteller test.

From the point of view of the global accuracy of the results, such flexibility is now able to
cope excellently with the space discretization errors; nonetheless, the focus should move
now on the accuracy of second-order transport models, which turns out to be the the weak
point of the global approach. The DG-SEM approach reduces to very low levels, even ma-
chine round-off, the amount of spatial discretization error with limited computational cost,
but the limitations of the AN model are penalizing in those situations where transport ef-
fects are very strong, to be further investigated and mitigated. Anyway, looking at the nu-
merical tests carried out in section 2.3 and compared with fine DRAGON solutions, even at
pin level the discrepancies, though evident, seem acceptable on an engineering basis.

Solvers could be integrated in transport code packages, but some further development
is mandatory before proceeding in this research topic. Even if not strictly necessary for
many analyses, the extension to three dimensions would provide interesting results on the
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assessment of the SEM features in realistic three-dimensional problems. Formally, this task
could be fulfilled as an extension of the procedures already applied in the two-dimensional
studies; anyway, there are some challenges concerning the implementation which do not
appear completely in this work. First, memory consumption increases rapidly with the ad-
dition of one more dimension: in this sense, dedicated sparse matrix routines have already
been used in the solvers (PETSc for the Fortran codes and the MATLAB embedded ones in
the other cases), and they have a direct effect on the size of the domains that were used
for the examples provided in the text. For AN and multi-group calculations the presence
of nested iteration loops compels to store the matrices for each equation, and this strat-
egy limits the extension of the final system. Smarter algorithms are to be studied in order
to reduce the number of elements stored and quickly build on-the-fly the remaining ones.
Moreover, grid handling should be improved, for the presence of surfaces and edges and
the relative orientation problems. They were only partially encountered and addressed for
the transfinite solver. Then, the conditioning number should be properly controlled with
a suitable preconditioning scheme. No exact recipes are available at the moment for SEM

schemes, but much research is on this topic as reported in the cited references. Finally,
a proper development environment should be used to replace the Fortran language. The
procedural style of the Fortran code practice has been deprecated since several years in
the field of variational methods, since the complexity which arises from large codes can be
treated only if a object oriented language is used, and in a proper way, and the price of a
reduced execution speed is largely balanced by the easier maintenance. Examples of such
codes in the nuclear field are still not very common, but the Fortran heavy limitations are
already starting to show up and the switch will be soon inevitable.

The AN transport model, if its use is somehow questionable in problems with a small
scale compared to the neutron mean free path, is an optimal trade-off for core calculations
where the hypotheses stated in section 1.1 assure a sufficient consistency with respect to
the original transport model.

In general, second-order transport models like SPN or AN have gained attention in the
last years because they seem handy to implement into ordinary core simulators, eventu-
ally as modules. In fact, provided a sufficiently flexible diffusive solver, relatively few code
changes are needed to obtain an AN solution, with an acceptable increase in computational
time. The definition of a proper diffusion coefficient issued from cross section homoge-
nization is not necessary with the AN formulation, in principle. Furthermore, AN allows to
use again assembly discontinuity factors as they are defined in diffusion, opposed to other
second-order transport models for which their proper use is still debated. Tests on periodic
lattices of realistic fuel assemblies (colorsets) and a standard PWR core show corrections of
about 1-2% on flux peaks caused by AN , with a few hundreds pcm changes on the neutron
multiplication factor. It is important to note that most of the corrections come from lower
orders AN , and this turns beneficial for the global computational performance.

Considering linearly anisotropic scattering into the AN neutron transport model de-
stroys, looking at the original formulation, the diffusion-like structure of the isotropic AN

model. With the imperative constraint of solving this model again with diffusive solvers,
the equations are reformulated and three algorithms are outlined in section 3.2. The first
attempt recurs to perturbation theory, the second to an additional leakage iteration within
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diffusion solvers and the third introduces a formal diagonalization procedure on the AN

system equations.
The first attempt is only formally discussed not because of its efficacy, but for the com-

plexity of the implementation in pre-existing diffusion codes, whereas the others have been
implemented in a 1D code and numerically verified. Since the option of leakage iteration
requires code changes in the solvers, the diagonalization procedure has been initially se-
lected for the final implementation in core simulators. Unfortunately, the diagonalization
procedure yields stiff problems, with the new unknowns differing of some orders in mag-
nitude. This seems to occur regardless of the choice of the projection basis for diagonal-
ization, notwithstanding the freedom in the choice of its parameters. Indeed, this confirms
the perturbative nature of the problem, that adds small corrections to the global solution
obtained without anisotropic scattering. This stiffness may cause single real precision al-
gorithms to fail, especially in situations close to the infinite medium, and also demand for
more restrictive error criteria in iterative schemes. Furthermore, the corrective compo-
nents can show steep behaviors, requiring finer meshes close to material discontinuities.
Mesh adaption, unfortunately, is seldom a feature of standard solvers, where mesh size is
optimized taking into account only the available data, the speed and the coupling with
thermal-hydraulic codes. Eventually, the diagonalization technique can fit mostly finite
difference solvers on fine meshes, like for instance in pin-by-pin problems, rather than
commercial nodal solvers.

The last chapter focuses on the physical distortions and numerical effects associated
to the discretization of the angular variable in linear transport problems, usually called ray
effects, that are analyzed and characterized in multi-dimensional configurations in steady-
state as well as in time dependent problems.

The analysis of the transport kernel in the Fourier transformed space has allowed to
identify and measure the role of the ray artefacts appearing in x − y geometry and x − t
problems. This approach has allowed the definition of a proper ray effect indicator, de-
pending on the angular discretization adopted and on the physical characteristics of the
medium. The analysis of the ray effect phenomenon has also been performed in the di-
rect space, assuming a purely absorbing medium that allows an analytical solution for the
transport equation. A definition of the ray effect indicator has been proposed also in this
case, with similar performances to the configurations observed in the Fourier analysis. The
peculiarities of the time-dependent problem in a 1D slab, characterized by the appearance
of time-ray effects, have been discussed. The possibility of the adoption of different discre-
tization approaches for the reduction of ray artefacts has been examined, and the modi-
fication in the numerical solution introduced by the adoption of different quadrature sets
have been studied.

Future work may include the development of suitable ray effect indicators applicable in
more general configurations. The indicators in the transformed space are easily defined,
but this tool shifts the result in a mathematical framework where its interpretation is dif-
ficult. The acquisition of a greater insight in the transfer function is certainly of interest
for the future; in a shorter perspective, the recognition of typical ray effect patterns seems
more viable. The indicators defined in the direct space try and formalize the process of vi-
sual recognition of the characteristic features of a biased propagation; in this sense, in the
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field of image processing there exist algorithm capable of advanced edge recognition and
multi-dimensional Fourier filtering: their possible application on ray-affected flux maps
could provide interesting results in their quality assessment. Moreover, it is clear that the
addition of discrete ordinates to the schemes used in x−t problems is only palliative; more
effective corrections to the SN scheme are still to be found and studied.
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