
04 August 2020

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Variable Parallelism Cyclic Redundancy Check Circuit for 3GPP-LTE/LTE-Advanced / C. Condo; M. Martina; G.
Piccinini; G. Masera. - In: IEEE SIGNAL PROCESSING LETTERS. - ISSN 1070-9908. - STAMPA. - 21:11(2014), pp.
1380-1384.

Original

Variable Parallelism Cyclic Redundancy Check Circuit for 3GPP-LTE/LTE-Advanced

Publisher:

Published
DOI:10.1109/LSP.2014.2334393

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2560946 since:

IEEE / Institute of Electrical and Electronics Engineers Incorporated:445 Hoes Lane:Piscataway, NJ 08854:

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PORTO@iris (Publications Open Repository TOrino - Politecnico di Torino)

https://core.ac.uk/display/234902019?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1

Variable Parallelism Cyclic Redundancy Check
Circuit for 3GPP-LTE/LTE-Advanced

Carlo Condo, Maurizio Martina, Gianluca Piccinini, Guido Masera

Abstract—Cyclic Redundancy Check (CRC) is often employed
in data storage and communications to detect errors. The 3GPP-
LTE wireless communication standard uses a 24-bit CRC with
every turbo coded frame, thus, the CRC can be exploited to detect
residual errors and to enable early stopping of iterations as well.
The current state of the art lacks specific CRC implementations
for this standard, and most current solutions adopt a fixed degree
of parallelism, unsuitable for many turbo decoder architectures.
This work proposes a variable parallelism circuit targeting the
3GPP-LTE/LTE-Advanced 24-bit CRC, that can adapt to input
data of different sizes. Low complexity is achieved through
careful functional sharing among the various parallelisms: com-
parison with the state of the art shows comparable or superior
speed and extremely low complexity.

Index Terms—CRC, 3GPP-LTE, LTE-Advanced, turbo codes

I. INTRODUCTION

The Cyclic Redundancy Check (CRC) is a common tech-
nique employed in a variety of fields to detect errors in
sequences of bits [1]–[3]. Its straightforward implementation
and high reliability has led to ample usage in memories,
wired and wireless communications including the 3GPP Long
Term Evolution (LTE) standard [4]. In particular, the 3GPP-
LTE/LTE-Advanced wireless communication standard relies
on turbo codes [5] for forward error correction. Coded frame
sizes ranging from 40 bits to 6144 bits with a granularity of
down to 8 bits are foreseen: the last 24 bits of each coded
frame are the remainder of a 24-bit CRC performed on the
remaining bits (known as CRC-24b) [4]. Since the turbo codes
decoding algorithm is iterative, the CRC can be used as an
early stopping criterion [6]. The CRC is performed on the
frame after the error correction process and compared to the
received remainder: if they match, the process is stopped, on
the contrary, in case of discrepancy, further decoding iterations
(each composed of two half iterations) are required. The state
of the art is ripe with turbo code decoder designs, and the
3GPP-LTE/LTE-Advanced standard is often considered in both
actual application and cases of study. However, very few
designs implement the CRC-based early stopping, and scant
details on the implementation are given [7]–[9].

The problem of CRC computation has been analyzed in
depth in the past. In addition to serial implementations, many
solutions for parallel CRC computation have been proposed
[10]–[17]. Research on flexible CRC implementations has
been particularly prolific, with programmable circuits that

Copyright c©2012 IEEE. Personal use of this material is permitted. How-
ever, permission to use this material for any other purposes must be obtained
from the IEEE by sending an email to pubs-permissions@ieee.org.

The authors are with the Department of Electronics and Telecommunica-
tions, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy.
E-mail: <name.surname>@polito.it.

can handle different CRC polynomials [10], [11] and flexible
design methodologies that produce efficient dedicated circuits
given a particular CRC polynomial [13]–[15]. In the vast
majority of these solutions, the degree of parallelism is fixed
at design time. This poses problems in 3GPP-LTE turbo
decoders, since the data on which the CRC is performed are
often scattered in various memories, that can be of different
size from the CRC parallelism, with an uneven usage within
the decoder.

This work proposes a CRC circuit targeting the CRC-24b of
3GPP-LTE that can adapt on-the-fly to the size of the incoming
data. By observing how the CRC calculation changes with
the parallelism, a flexible low-complexity solution has been
devised: three implementations are proposed, each based on
different design choices. The rest of the paper is organized as
follows: Section II describes the devised CRC parallelization
process, while Section III details the designed circuit and
its modifications. Implementation results are presented and
compared to the state of the art in Section IV and conclusions
are drawn in Section V.

II. PARALLELIZATION OF THE CRC OPERATION

Let us recall the CRC-24b polynomial for coded frames as
defined by the 3GPP-LTE standard:

p24 = x24 + x23 + x6 + x5 + x+ 1. (1)

In the CRC computation, the frame is sequentially divided
by the constituent polynomial: if at the end of the division
the remainder is equal to the received CRC, the frame is
considered correct and the decoding is interrupted. Let d be a
frame made of K bits and c a vector of M + 1 bits holding
the current remainder value left-shifted by one position; M is
the remainder length and in this case M = 24. Thus, in the
following, d(i) and c(i) will be referred to as the i-position
bit of d and c respectively. The CRC polynomial division is
performed in the binary domain as detailed in Alg. 1, where

Algorithm 1 CRC-24b
1: rm = all zeros
2: for i = 0 : K −M − 1 do
3: c(24 : 1) = rm
4: c(0) = d(i)
5: if c(24)=0 then
6: rm = c(23 : 0)
7: else if c(24)=1 then
8: rm = c⊕ pb24
9: end if

10: end for

2

⊕ is the binary XOR operation, rm is the new remainder that
is used to update c and pb24 is the binary representation of p24,
where its 25th, 24th, 7th, 6th, 2nd and first bits are ‘1’ and
the others are ‘0’. The operations in Alg. 1 suppose that the
frame bits d(i), without the M CRC bits, are shifted into c
one at a time: this operation would be very time consuming,
especially when long frame sizes are involved. Assuming to
perform one run of the CRC loop (line 2-10 in Alg. 1) in one
clock cycle, we define as NCRC = K −M as the number
of cycles necessary to complete the computation. Depending
on the decoder architecture, it is possible to perform the CRC
computation every iteration or every half iteration. Considering
the most common parallel turbo decoder architectures, a half
iteration requires at least Ndec = K/D clock cycles, where
D is the number of decoder cores. Since the CRC compu-
tation might need to be completed in a half iteration, recent
LTE/LTE-Advanced decoder implementations, that use D = 8
or D = 16, would be forced to wait for the CRC completion.
Indeed, even when D = 1, a serial CRC calculation could not
be sustained. As an example, for K = 6144 and allowing up to
twelve half iterations (i.e. six iterations, a conservative choice),
to obtain a throughput of 450 Mb/s the decoder would need
to run at a clock frequency of 5.3 GHz, that is not realistic.

A common approach to speed up the CRC is the paralleliza-
tion of the polynomial division [13] by unfolding the operation
described in Alg. 1, meaning that P bits of the frame are
loaded at each cycle in the shift register containing c, leading
to NCRC = (K −M)/P. The inherent degree of parallelism
in CRC-24b is P= 24, that is NCRC = 255. However, 24 is
not always an implementation-friendly degree of parallelism.
Indeed, the parallel computation requires a 24-bit vector rd
containing part of the hard decision vector d, but in 3GPP-
LTE/LTE-Advanced the frame size has a granularity of 8 bits.
For this reason, data are usually stored in memories that have a
width of one, two or four bytes, and assembling 24-bit vectors
is not straightforward. Moreover, there is no guarantee that all
windows are composed of the same number of bits: border
windows in parallel decoders can be truncated. The proposed
low-cost CRC circuit has a variable degree of parallelism, that
can adapt on-the-fly to the size of the incoming data and is
suitable for diverse decoder structures.

Table I reports the equations necessary for the computation
of the updated remainder vector rm, bit per bit, in case of three
different degrees of parallelism (8,16 and 24). They have been
obtained by unfolding the serial operation described in Alg.
1. The 24-bit vector rd contains the hard decision bits: since
their number varies according to the degree of parallelism,
the useful bits are the 8, 16 or 24 most significant bits. In
the following, when square brackets are used, the ⊕ operation
must be applied among the values in the indicated interval,
that is

rd(k)⊕ [c(i) . . . c(j)] = rd(k)⊕

(
j⊕

l=i

c(l)

)
. (2)

It has been noticed that many of the ⊕ of each parallelism
degree are contained in those required for the higher degrees of
parallelism. Most of the superpositions between the different

Remainder shift register

rm

XOR network

Parallelism

rd(7)

P-8

P-16

P-24

rd(23) rd(15) rd(0)New data d

c

Figure 1. Variable Parallelism CRC circuit.

parallelisms are explicitly shown in Table I: rm8(i) and
rm16(i) are the i-th bit of the remainder as computed with
a CRC parallelism 8 (P-8) and 16 (P-16) respectively. To
this purpose, the table entries highlighted in light gray are
those equations that are completely included in the degree
of parallelism just higher, whereas dark gray shading means
a partial inclusion. These inclusions allow for an interesting
flexible implementation of a variable parallelism CRC at very
low cost, as it will be detailed in the next sections.

III. VARIABLE PARALLELISM CRC CIRCUIT

The proposed variable parallelism CRC system is pictured
in Fig. 1. At every clock cycle, a vector d of new data is
injected in the system and stored in a register rd. Although rd
is 24-bit long, d can be 8, 16 or 24 according to the selected
parallelism. In case of P-8 or P-16, d is stored in the 8 or
16 most significant bits of rd. Together with d, the current
remainder c is given to the XOR network: here the equations
shown in Table I are implemented. Three possible remainders
are obtained, and the correct one is selected according to the
current Parallelism signal. As d changes at every clock
cycle, also the degree of parallelism can change: for example,
let us assume a two-core decoder architecture that stores hard
decision bits in 16-bit registers. When considering K = 80
bits, each core fills two 16-bit registers, while only 8 bits
of a third register are used. Consequently, after two P-16
operations, a single P-8 is required, immediately followed by
the first P-16 of the second core.

A. Low complexity XOR network

The XOR network is structured as a combinational network
of XOR gates that performs the ⊕ operations needed by
the equations in Table I: ⊕ operations among multiple bits
within the same equations are tackled via a binary tree of
XOR gates. This structure brings a critical path equal to the
deepest tree in the system. Five-level deep XOR trees are
present in both P-24 (rm24(0), rm24(5), rm24(23)) and P-
16 (rm16(0), rm16(23)), while in P-8 only four-level XOR

3

Table I
CRC - REMAINDER COMPUTATION FOR PARALLELISM 8, 16 AND 24 CONSIDERING A SINGLE IMPLEMENTATION.

P- 8 P-16 P-24
rm(0) rd(16) ⊕ [c(16)..c(23)] rd(8) ⊕ [c(8)..c(14)] ⊕ rm8(23) rd(0) ⊕ [c(0)..c(17)] ⊕ c(23)

rm(1) rd(17) ⊕ c(16) rd(9) ⊕ c(8) rd(1) ⊕ rm16(16)

rm(2) rd(18) ⊕ c(17) rd(10) ⊕ c(9) rd(2) ⊕ rm16(17)

rm(3) rd(19) ⊕ c(18) rd(11) ⊕ c(10) rd(3) ⊕ rm16(18)

rm(4) rd(20) ⊕ c(19) rd(12) ⊕ c(11) rd(4) ⊕ rm16(19)

rm(5) rd(21) ⊕ [c(16)..c(19)] ⊕ [c(21)..c(23)] rd(13) ⊕ [c(8)..c(11)] ⊕ [c(13)..c(23)] rd(5) ⊕ [c(0)..c(3)] ⊕ [c(5)..c(17)] ⊕ c(22) ⊕ c(23)

rm(6) rd(22) ⊕ c(16) ⊕ c(21) rd(14) ⊕ c(8) ⊕ c(13) rd(6) ⊕ c(0) ⊕ c(5) ⊕ c(18)

rm(7) rd(23) ⊕ c(17) ⊕ c(22) rd(15) ⊕ c(9) ⊕ c(14) rd(7) ⊕ c(6) ⊕ rm16(17)

rm(8) c(0) ⊕ c(18) ⊕ c(23) rd(16) ⊕ c(10) ⊕ c(15) rd(8) ⊕ c(7) ⊕ rm16(18)

rm(9) c(1) ⊕ c(19) rm8(1) ⊕ c(11) rm16(1) ⊕ rm16(19)

rm(10) c(2) ⊕ c(20) rm8(2) ⊕ c(12) rm16(2) ⊕ rm16(20)

rm(11) c(3) ⊕ c(21) rm8(3) ⊕ c(13) rm16(3) ⊕ rm16(21)

rm(12) c(4) ⊕ c(22) rm8(4) ⊕ c(14) rm16(4) ⊕ c(6)

rm(13) c(5) ⊕ c(23) rd(21) ⊕ c(15) ⊕ c(20) rd(13) ⊕ c(7) ⊕ c(12)

rm(14) c(6) rm8(6) rm16(6)

rm(15) c(7) rm8(7) rm16(7)

rm(16) c(8) rm8(8) rm16(8)

rm(17) c(9) rm8(9) rm16(9)

rm(18) c(10) rm8(10) rm16(10)

rm(19) c(11) rm8(11) rm16(11)

rm(20) c(12) rm8(12) rm16(12)

rm(21) c(13) rm8(13) rm16(13)

rm(22) c(14) rm8(14) rm16(14)

rm(23) [c(15)..c(23)] [c(7)..c(14)] ⊕ rm8(23) rd(23) ⊕ [c(0)..c(16)] ⊕ c(22) ⊕ c(23)

trees are found (rm8(0), rm8(23)). Consequently, the critical
path Tcrit is equal to 5 × TXOR, where TXOR is the delay
introduced by a two-input XOR gate. To obtain a minimum
complexity XOR network for P-8, P-16 and P-24 CRC and
at the same time estimate the cost and gain of the proposed
variable parallelism architecture, successive optimizations are
applied to the remainder computation. These optimizations can
be difficult to perform for automated logic synthesis tools,
since they do not reach their optimum in presence of arithmetic
dominated by XOR gates [18].

• Unoptimized parallel CRC: the starting point of this
analysis is the number of XOR gates required for the
⊕ operations in Table I without considering the superpo-
sitions. The P-8 CRC requires 38 XOR gates, P-16 78
and P-24 105, for a total of 221 XOR gates.

• Intra-parallelism optimized CRC: some of the XOR gates
counted in the previous analysis are repetitions of other
XOR gates within the same parallelism. By reusing them,
P-8 CRC is reduced to 24 XOR gates, P-16 needs only
47, and 73 gates are sufficient for P-24, amounting to a
total of 144 XOR gates.

• Inter-parallelism optimized CRC: by sharing XOR gates
between P-8, P-16 and P-24 according to Table I, it is
possible to substantially reduce the circuit complexity. In
particular, assuming P-8 is implemented with 24 XOR
gates, only 31 additional gates are needed for P-16. With
both P-8 and P-16 present, P-24 can be implemented with
37 XOR gates, with the total gate count descending to 92.

As it can be observed, starting from an internally optimized P-
24 (73 XOR gates), two degrees of parallelism can be added
to the CRC at the cost of 19 additional XOR gates (+26%
increment).

B. Pipelined XOR network

To shorten the critical path and increase the achievable
frequency, the XOR network can be pipelined. Four pipeline
stages have been added to the previous architecture, separating
the levels of all binary XOR trees and propagating signals
accordingly, and requiring 154 delay elements in total. They
introduce a latency of four clock cycles, but allow to reduce
Tcrit from 5× TXOR to TXOR.

C. Extension to 32-bit parallelism

Even though the inherent degree of parallelism of CRC-
24b is P= 24, 32-bit registers are common enough in turbo
decoders, and P= 32 can be useful. Implementing a degree of
parallelism higher than the CRC parallelism, however, comes
at a higher complexity cost than the previous ones. Apart from
the additional bits in rd, the equations for P-32 are much
more complex than those presented in Table I, and the degree
of superposition among P-32 and the smaller parallelisms is
reduced. Indeed, with P-8, P-16 and P-24 already present (92
XORs), 54 additional XOR gates are necessary to implement
also P-32, for a total of 144 XOR gates. The critical path
becomes Tcrit = 6 × TXOR, but with P-32 only 192 clock
cycles are necessary to perform the remainder calculation on
largest turbo code frame size in 3GPP-LTE.

IV. IMPLEMENTATION

The proposed circuits have been synthesized with Synopsys
Design Compiler on a CMOS 90 nm standard cell technology.
The smallest area obtained implementing the CRC circuit with
P-8, P-16 and P-24 is 1061 µm2, with a target maximum
frequency of 1 GHz (Tcrit = 1 ns), meaning that the correct
functionality is guaranteed for frequencies ≤ 1 GHz. The vast

4

Table II
COMPARISON AMONG DIFFERENT CRC CIRCUITS: CRC POLYNOMIAL

TYPE (CRC), NUMBER OF XOR GATES, NUMBER OF DELAY ELEMENTS,
CRITICAL PATH (Tcrit), REQUIRED CLOCK CYCLES.

Circuit CRC XOR Delay
Tcrit

Cycles

gates elements for m bits

Prop-C CRC-24b 92 24 5 × TXOR m/(8-16-24)

Prop-P CRC-24b 92 154 TXOR
m+4

8−16−24

Prop-32 CRC-24b 144 24 6 × TXOR m/(8-16-24-32)

[13] CRC-16 137 28 4 × TXOR (m + 3)/16

[14] CRC-16 72 16 4 × TXOR (m + 16)/16

[15] CRC-16 80 16 16 × TXOR (m + 16)/16

[13] CRC-32 467 35 4 × TXOR m/32

[14] CRC-32 452 32 5 × TXOR (m + 32)/32

[15] CRC-32 614 32 20 × TXOR (m + 32)/32

majority of decoders has a much lower working frequency
[8], [9]: it is consequently improbable that the system critical
path resides in the variable parallelism CRC circuit. However,
relaxing the area constraint (and thus disrupting the binary
tree structure), maximum frequencies as high as 2.5 GHz
(Tcrit = 0.4 ns) can be obtained with an area of 1548
µm2. Another implementation has been carried out taking into
account the pipelined XOR network. The maximum achievable
frequency is 5.26 GHz (Tcrit = 0.19 ns), obtained with an
area occupation of 4088 µm2: as expected, it is roughly five
times faster than when enforcing the binary tree structure in the
combinational XOR network. Due to the very high frequencies
we have obtained, in most implementations the pipelined
architecture would be unnecessary, bringing an overhead of
four clock cycles of latency and no actual benefit in speed. A
final implementation takes in account also the fourth degree
of parallelism P-32: maintaining the tree structure in the XOR
network, an area of 2338 µm2 and a maximum frequency of
833 MHz have been obtained.

Table II presents the characteristics of the proposed CRC
together with other solutions present in literature: the combi-
national circuit is labeled Prop-C, the pipelined architecture is
Prop-P and the circuit with P-32 is Prop-32. The number of
XOR gates needed for each implementation is listed alongside
the number of delay elements, the critical path and the number
of cycles needed to perform the CRC calculation on m bits.
Since the proposed circuits implements concurrently different
degrees of parallelism that can be selected on-the-fly, the
number of cycles depends on the chosen mode (P-8, P-16,
P-24 or P-32). To the best of our knowledge, no detailed CRC
circuit implementations for 3GPP-LTE exist in the state of the
art. Comparison is consequently attempted with other parallel
CRC circuits targeting similar polynomials: in particular, the
16-bit CRC-16 and 32-bit CRC-32 are taken in account. CRC-
16 and CRC-24b share similar polynomial structures, with
a large number of zero coefficients between the 2nd and
3rd highest order nonzero coefficients, while CRC-32 allows
to evaluate how circuit complexity rises with the order of
the polynomial and is closer to Prop-32. The CRC solution
employed in [9] is not included in Table II: the lack of imple-
mentation details prevents a fair comparison, but a qualitative

estimation is possible. A 4× 24 bit look-up table is necessary
for every decoding core to implement the distributed part of the
CRC, while the recombination circuit requires a tree of adders
that widens and deepens with the increasing of D, leading
to a fast but costly implementation. The circuit designed in
[13] starts from the sequential Linear Feedback Shift Register
(LFSR) implementation and applies unfolding, pipelining and
retiming to reduce the critical path and increase the paral-
lelism. Our approach is different in concept, since starting
from the desired parallelisms we have devised a minimum-
complexity circuit sharing as many logic functions as possible.
The architecture in [13] relies on a four-level pipeline: it
requires a total of 28 delay elements, performing the CRC-16
calculation on m bits in (m+3)/16 cycles, and has a Tcrit of
4×TXOR. The proposed architecture, on the contrary, requires
24 delay elements, and achieves Tcrit = 5 × TXOR without
the need of pipelining. Supposing to use P-16 only, m bits are
handled in m/16 clock cycles. Regardless of the additional
degrees of parallelism (P-8 and P-24) and of the more complex
polynomial, the proposed architecture requires only 92 XOR
gates, against the 137 of [13]. The LSFR-based parallel CRC-
16 presented in [14] and [15] rely on a number of XOR
gates comparable to both Prop-C and Prop-P, and they need
fewer delay elements. However, they require a larger number
of cycles to complete the computations, and [15] has a very
large Tcrit. All three approaches [13]–[15] experience a steep
increment in complexity w.r.t. CRC-16 when implementing
CRC-32. Even though the calculations involved in CRC-32
are comparable in complexity to those involved in P-32 for
CRC-24b, Prop-32 requires less than 1/3 of the XOR gates of
[13], [14] and less than 1/4 of [15]. This achievement is even
more significant considering that the effectiveness of [13]–[15]
is reduced in presence of CRC polynomials of order different
from a power of two.

V. CONCLUSION

In this work, a novel circuit for the parallel computation of
CRC-24b employed in the 3GPP-LTE/LTE-Advanced standard
has been proposed. It is able to perform the CRC calculation
with a variable degree of parallelism, that can be changed
on-the-fly. Three versions of the circuit have been designed: a
low-complexity circuit supporting three degrees of parallelism,
a fast pipelined version, and an extended design supporting
four different parallelisms. Implemented in CMOS 90 nm
technology, they all show very good complexity and speed
figures: comparison with the state of the art reveals unmatched
on-the-fly adaptivity at an extremely low complexity cost and
comparable or superior speed.

VI. ACKNOWLEDGMENT

This work has been partially funded by the NEWCOM#
project, and developed within its work package 2.3.2 “Tools
for embedded hardware/software architectures”.

5

REFERENCES

[1] F. Song, X. N. Liu, and Q. H. Wu, “A multi-CRC selective HARQ
scheme for MIMO systems,” in Wireless Communications and Signal
Processing (WCSP), 2010 International Conference on, 2010, pp. 1–6.

[2] Y.-R. Chuang, J.-W. Chen, and C.-S. Hsu, “Investigate partial CRC-
32 characteristic and performance for real-time multimedia streamings
in 802.11 wireless mesh networks,” in Systems, Man, and Cybernetics
(SMC), 2011 IEEE International Conference on, 2011, pp. 3415–3420.

[3] Y. Wu and Y. Qiu, “The 8-bit parallel CRC-32 research and implemen-
tation in usb 3.0,” in Computer Science Service System (CSSS), 2012
International Conference on, 2012, pp. 1079–1082.

[4] Multiplexing and Channel Coding, 3GPP Std. TS36.212, 2012.
[5] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error

correcting coding and decoding: Turbo codes,” in IEEE International
Conference on Comm., 1993, pp. 1064–1070.

[6] L. Guerrieri, D. Veronesi, and P. Bisaglia, “Stopping rules for duo-binary
turbo codes and application to HomePlug AV,” in Global Telecommu-
nications Conference, 2008. IEEE GLOBECOM 2008. IEEE, 2008, pp.
1–5.

[7] S.-J. Lee, M. Goel, Y. Zhu, J.-F. Ren, and Y. Sun, “Forward error
correction decoding for WiMAX and 3GPP LTE modems,” in Signals,
Systems and Computers, Asilomar Conference on, 2008, pp. 1143–1147.

[8] M. May, T. Ilnseher, N. Wehn, and W. Raab, “A 150Mbit/s 3GPP LTE
turbo code decoder,” in Design, Automation Test in Europe Conference
Exhibition (DATE), 2010, 2010, pp. 1420–1425.

[9] S. Belfanti, C. Roth, M. Gautschi, C. Benkeser, and Q. Huang, “A 1Gbps
LTE-advanced turbo-decoder ASIC in 65nm CMOS,” in VLSI Circuits
(VLSIC), Symposium on, 2013, pp. C284–C285.

[10] C. Toal, K. McLaughlin, S. Sezer, and X. Yang, “Design and implemen-
tation of a field programmable CRC circuit architecture,” Very Large
Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 17, no. 8,
pp. 1142–1147, 2009.

[11] M. Grymel and S. Furber, “A novel programmable parallel CRC circuit,”
Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,
vol. 19, no. 10, pp. 1898–1902, 2011.

[12] J. Cho, B. Sung, and W. Sung, “Block-interleaving based parallel CRC
computation for multi-processor systems,” in Signal Processing Systems
(SIPS), 2010 IEEE Workshop on, 2010, pp. 311–316.

[13] C. Cheng and K. Parhi, “High-speed parallel CRC implementation based
on unfolding, pipelining, and retiming,” Circuits and Systems II: Express
Briefs, IEEE Transactions on, vol. 53, no. 10, pp. 1017–1021, 2006.

[14] G. Campobello, G. Patane, and M. Russo, “Parallel CRC realization,”
Computers, IEEE Transactions on, vol. 52, no. 10, pp. 1312–1319, 2003.

[15] M. Sprachmann, “Automatic generation of parallel CRC circuits,” De-
sign Test of Computers, IEEE, vol. 18, no. 3, pp. 108–114, 2001.

[16] M. Ayinala and K. Parhi, “Efficient parallel VLSI architecture for linear
feedback shift registers,” in Signal Processing Systems (SIPS), 2010
IEEE Workshop on, 2010, pp. 52–57.

[17] ——, “High-speed parallel architectures for linear feedback shift reg-
isters,” Signal Processing, IEEE Transactions on, vol. 59, no. 9, pp.
4459–4469, 2011.

[18] A. Verma and P. Ienne, “Improving XOR-dominated circuits by exploit-
ing dependencies between operands,” in Design Automation Conference.
Asia and South Pacific, 2007, pp. 601–608.

