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We focus on the simulation of periodically switched linear circuits.The basic notation and theoretical framework are presented, with
emphasis on the differences between the linear time-invariant and the time-varying cases. For this important class of circuits and
sources defined by periodic signals, the computation of their steady-state response is carried out via the solution of an augmented
time-invariant MNA equation in the frequency-domain.The proposed method is based on the expansion of the unknown voltages
and currents in terms of Fourier series and on the automatic generation of augmented equivalents of the circuit components. The
above equivalents along with the information on circuit topology allow creating, via circuit inspection, a time-invariant MNA
equation, the solution of which provides the coefficients of both the time- and the frequency-domain responses of the circuit.
Analytical and numerical examples are used to stress the generality and benefits of the proposed approach.

1. Introduction

Nowadays, a number of alternative methods and tools for
the analysis of time-varying circuits and systems that exhibit
a periodic switching behavior have been developed and are
currently available to designers.They are used to predict both
the time- and the frequency-domain responses of electrical
and electronic circuits that are characterized by the possibly
periodic activity of internal switches during the initial design
phase. Well-known examples are the power converters that
are massively used to energize almost any equipment or
appliance.

A seminal contribution to circuit analysis has been
proposed by Zadeh and Desoer in [1, 2] where the basic
definitions and mathematical tools are presented as the
natural extension of the results available for the linear
time-invariant (LTI) case [3]. In the 70s, Liou developed
a closed-form solution for the complete frequency-domain
response of periodically switched linear circuits [4]. Based
on the above results, Strom and Signell [5] extended the
previous works to more complex networks with an arbi-
trary number of switches. The common background of the
above contributions is the analysis of a circuit by means of

a state-equation formalism, intended to compute the so-
called generalized transfer functions and impulse responses
of time-varying circuits. These approaches, however, require
a strong mathematical development and heavy numerical
computations. Yuan andOpal [6, 7] introduced an innovative
simulation approach via the classical modified nodal analysis
(MNA) tool. In the latter contribution, the circuits are frozen
and solved in all the different operating states of the switches.
The dynamical effects of switches on the circuit solution are
then taken into account via a suitable coupling involving
the dynamical elements within the net. More recently, other
techniques such as Floquet theory [8], truncated harmonic
balance [9], and time-invariant multifrequency (TIMFS)
model [10] have been proposed in order to study and to
simulate linear periodically time-varying systems both in
frequency- and in time-domains. Without loss of generality,
the readers should also refer to [11, 12] where additional
properties of time-varying systems are available and to [13–
15] where applications are presented.

The present contribution extends the results of previously
published papers in this field and provides an alternative
approach to the steady-state analysis of periodically switched
linear (PSL) circuits. The proposed method is based on
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the generation of augmented time-invariant characteristics
of the PSL elements directly in frequency-domain via the
harmonic balance technique and on the computation of
steady-state response of a PSL circuit by means of the
standard solution of an augmented linear time-invariant
nodal equation generated from circuit inspection only. The
proposed solution dramatically reduces the mathematical
complexity and offers a modular approach to circuit analysis,
leading to accurate results with remarkable simulation speed-
up.The paper collects a brief overview of the essential theory
needed to handle PSL circuits in order to provide a self-
contained document allowing the readers to readily apply the
proposedmethodology to their own application problems. To
this aim, simple analytical examples and topological intuition
are used to demonstrate the generality of the method.
Its feasibility and strength are instead provided by a real
application example involving a switching power converter
in [16]. The proposed approach is used to predict and to
understand the conducted emission of switching devices,
improving the state-of-the-art results [17, 18]. In the above
assessment, the conducted disturbances are quantified by
means of the frequency spectrum of the steady-state response
of the current supplying the converter.

The remaining part of the paper is organized as follows.
Section 2 outlines the basic notation and definitions of LTI
systems. Their generalization to the case of time-varying
circuits is included in Section 3. Section 4 focuses on the
important class of periodically switched circuits and illus-
trates the basic constitutive operators and rules governing
their behavior. The core of the proposed method is presented
in Sections 5 and 6where augmented characteristic equations
of resistive PSL elements are derived and used to generate
a time-invariant MNA equation describing a generic PSL
circuit. Specific emphasis is given to a topological approach
for the construction of the advocated augmented nodal
equations in matrix form. Section 7 collects the results of the
application of the proposed solution to two example circuits,
with additional details on the accuracy and efficiency of the
method. Summary and conclusions are given in Section 8.

2. Linear Time-Invariant Systems

This section summarizes the standard symbols and defini-
tions used in this paper. A generic single-input single-output
LTI system [3] is defined by the following compact notation:

𝑦out (𝑡) = 𝐿 [𝑥in (𝑡)] , (1)

where 𝑥in and 𝑦out are the input and the output signals,
respectively, and 𝐿 is the operator or rule accounting for the
system behavior.

For a system defined by (1), the evolution of the output
signal can be computed from the impulse response ℎ (𝑡) by
means of the convolution integral that writes

𝑦out (𝑡) = ℎ (𝑡) ∗ 𝑥in (𝑡) = ∫

+∞

−∞

ℎ (𝑡 − 𝜏) 𝑥in (𝜏) 𝑑𝜏, (2)

where ℎ (𝑡) = 𝐿 [𝛿 (𝑡)], 𝛿 (𝑡) being the Dirac delta func-
tion. Additionally, the well-known counterpart of (2) in the
frequency-domain writes

𝑌out (𝜔) = 𝐻 (𝜔) 𝑋in (𝜔) , (3)

where 𝐻 (𝜔) is the frequency-domain network function
obtained via the Fourier transform of the impulse response
ℎ (𝑡); that is,

𝐻 (𝜔) = ∫

+∞

−∞

ℎ (𝑡) exp (−𝑗𝜔𝑡) 𝑑𝑡. (4)

3. Linear Time-Varying Circuits

This section collects the essential theoretical results needed
to extend the characterization of LTI systems to the more
complex case of time-varying circuits. The readers should
refer to [1] for a more exhaustive and in-depth treatment.
Here, the discussion is aimed at presenting the notation
and the main mathematical tools allowing handling these
systems.

For the sake of illustration, the example of Figure 1 is
considered. It shows a simple time-varying circuit consisting
of two resistors, one capacitor, and one switch (Figure 1(a))
and its system representation in terms of interconnected
blocks (Figure 1(b)). From the above example, clearly, the
output of the system 𝑦out depends on the position of the
switch 𝑆. For a fixed state of 𝑆, the output can be defined by
either ℎ

1
(𝑡) or ℎ

2
(𝑡) and the standard convolution integral

given by (2) can be used to compute the system response.
However, to account for a possible time-varying activity of
the system, (2) must be replaced by

𝑦out (𝑡) = ∫

+∞

−∞

ℎ (𝑡, 𝜏) 𝑥in (𝜏) 𝑑𝜏, (5)

where the generalized impulse response ℎ (𝑡, 𝜏) is defined by
ℎ (𝑡, 𝜏) = 𝐿 [𝛿 (𝑡 − 𝜏)] (where in a causal linear time-varying
system ℎ (𝑡, 𝜏) = 0 for 𝑡 < 𝜏) according to [1, 11]. It is relevant
to remark that, in the previous equation, 𝑡 plays the role of
the observation time and 𝜏 represents the so-called excitation
time accounting for the position of the delta function feeding
the system. In other words, the excitation time is used to
explore the time-varying nature of the system under different
operating conditions.

The dependence of the generalized impulse response
on the additional variable 𝜏 requires the definition of the
bifrequency transfer function 𝐻 (𝜔, Ω) that can be computed
by the impulse response via the following integral:

𝐻 (𝜔, Ω) = ∬

+∞

−∞

ℎ (𝑡, 𝜏) exp (−𝑗 (𝜔𝑡 − Ω𝜏)) 𝑑𝑡 𝑑𝜏. (6)

The above equation extends the Fourier transform of
the classical impulse response ℎ (𝑡) to the two-dimensional
case ℎ (𝑡, 𝜏) (see [1] for additional details). Similarly, the
generalization of (3) becomes

𝑌out (𝜔) =
1

2𝜋
∫

+∞

−∞

𝐻 (𝜔, Ω) 𝑋in (Ω) 𝑑Ω. (7)
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Figure 1: (a) Example time-varying circuit; (b) system equivalent defined in terms of two LTI blocks (viz. ℎ
1
and ℎ

2
) and one switch.

From the previous result, the bifrequency transfer func-
tion 𝐻 (𝜔, Ω) can be considered as a map between the input
𝑋in (Ω) and the output 𝑌out (𝜔), where the variables Ω and 𝜔

are the input and output frequencies, respectively.
Equation (7) suggests that a sinusoidal excitation with

angular frequency Ω feeding the system produces an out-
put response characterized by a possibly richer frequency-
domain behavior (i.e.,𝑌out turns out to be a function of𝜔). On
the contrary, it is well known that LTI systems operating in the
sinusoidal steady-state at Ω produce responses characterized
by the same input frequency. In the latter case, 𝑌out would
consist of two delta functions located at 𝜔 = ±Ω.

In this framework, an important role is played by the time-
varying transfer function:

𝐻 (𝑡, Ω) = ∫

+∞

−∞

ℎ (𝑡, 𝜏) exp (−𝑗Ω (𝑡 − 𝜏)) 𝑑𝜏. (8)

It relates the time-domain response of the system 𝑦out (𝑡)

to the corresponding frequency-domain excitation 𝑋in (𝜔),
where the 𝜔 variable needs to be replaced by Ω, leading to

𝑦out (𝑡) =
1

2𝜋
∫

+∞

−∞

𝐻 (𝑡, Ω) 𝑋in (Ω) exp (𝑗Ω𝑡) 𝑑Ω. (9)

Based on [11], that provides a summary of direct and
inverse transformations involving the above defined opera-
tors; the bifrequency transfer can be alternatively obtained
from (8) via

𝐻 (𝜔, Ω) = ∫

+∞

−∞

𝐻 (𝑡, Ω) exp (𝑗 (Ω − 𝜔) 𝑡) 𝑑𝑡. (10)

The above equations constitute the basic set of definitions
needed to solve both analytically and numerically time-
varying circuits. This overview also highlights the main dif-
ferences between time-invariant and time-varying systems.
In the latter case, the relations among the input and output
variables in both time- and frequency-domain involve more
complex operators rather than simple products and con-
volutions. The mathematics is unavoidably more complex.
However, the framework is well established and allows us
to effectively employ the readily available results to real
application examples.

4. Periodically Switched Linear Circuits

This section dealswith the analysis of PSL circuits bymeans of
the generalized transfer functions described in the previous

section. A PSL circuit can be seen as a particular case of a
time-varying linear system, where the circuit configuration
changes periodically in time due to the effect of the switches.
The example of Figure 1 becomes a PSL circuit when the
position of the switch 𝑆 is periodically changed between
the close and the open states. It is important to remark
that this class of circuits represents an important subset of
time-varying systems with a large number of applications in
different engineering domains.

For PSL circuits, the time-varying transfer function
𝐻 (𝑡, Ω) (8) turns out to be a periodic function of 𝑡 that can
be expanded in Fourier series, leading to [6]

𝐻 (𝑡, Ω) =

+∞

∑

𝑛=−∞

𝐻
𝑛

(Ω) exp (𝑗𝑛𝜔
𝑐
𝑡) , (11)

where 𝜔
𝑐

= 2𝜋/𝑇 is the fundamental angular frequency of
the switch (𝑇 being the characteristic period) and 𝐻

𝑛
(Ω) are

new objects called aliasing transfer functions, defined as

𝐻
𝑛

(Ω) =
1

𝑇
∫

𝑇

0

𝐻 (𝑡, Ω) exp (−𝑗𝑛𝜔
𝑐
𝑡) 𝑑𝑡. (12)

Substituting (11) into (10) gives

𝐻 (𝜔, Ω) = 2𝜋

+∞

∑

𝑛=−∞

𝐻
𝑛

(Ω) 𝛿 (𝜔 − Ω − 𝑛𝜔
𝑐
) . (13)

Hence, the output 𝑌out (𝜔) in frequency-domain can
finally be computed via (7) and writes

𝑌out (𝜔) =

+∞

∑

𝑛=−∞

𝐻
𝑛

(𝜔 − 𝑛𝜔
𝑐
) 𝑋in (𝜔 − 𝑛𝜔

𝑐
) . (14)

The above equation is the generalization of (3) for linear
periodically switched systems. This can be appreciated by
observing that (14) is equivalent to (3) when 𝑛 = 0.

In order to better understand the behavior of a PSL
circuit, it is important to specialize the above equations for
the case of a cisoidal excitation 𝑥in (𝑡) = (𝑋

0
/2𝜋) exp (𝑗Ω𝑡).

The frequency-domain response 𝑌out (𝜔) of the system is
obtained by substituting the frequency-domain description
of the input signal 𝑋in (𝜔) = 𝑋

0
𝛿 (𝜔 − Ω) into (14), leading to

𝑌out (𝜔) =

+∞

∑

𝑛=−∞

𝐻
𝑛

(Ω) 𝑋
0
𝛿 (𝜔 − Ω − 𝑛𝜔

𝑐
) . (15)
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The above equation, that is the Fourier transform of a
signal described by its Fourier series, can be rewritten in
time-domain by means of a complex sum of trigonometric
functions with angular frequencies Ω + 𝑛𝜔

𝑐
:

𝑦out (𝑡) =
1

2𝜋

+∞

∑

𝑛=−∞

𝐻
𝑛

(Ω) 𝑋
0
exp (𝑗 (Ω + 𝑛𝜔

𝑐
) 𝑡) . (16)

From the previous results it is clear that PSL circuits are
completely described in both frequency- and time-domains
by the aliasing transfer functions𝐻

𝑛
(Ω) (see [5, 11] for amore

general definition and additional details). It is relevant to
remark that the complexity of the analytical solution of a PSL
circuit is reasonable and affordable for the case or resistive
switched circuits only (as the example of Figure 1 with the
capacitor replaced by a short-circuit). In the more general
case of dynamical circuits, however, the complexity increases
and numerical methods or specialized techniques are needed
to compute the solution of the system (e.g., see [4–6]).

In order to overcome the above limitations, the next
two sections develop an alternative and effective approach to
circuit analysis. A generic circuit is seen as the interconnec-
tion of linear time-invariant elements (as resistors, capacitors,
inductors, . . .) and PSL resistive elements (as the two-
terminal element of Figure 2). Thereby, the circuit is solved
by suitably reinterpreting the characteristics of the circuit ele-
ments within a new framework involving augmented voltage
and current variables. The proposed solution allows solving
any switching dynamical circuit that can be decomposed into
the interconnection of the above two classes of elements.

5. PSL Resistive Elements

In this section, the constitutive relation of PSL resistive circuit
elements and their equivalent characteristics expressed in
terms of augmented time-invariant relations are derived. For
conciseness, the discussion and the proposed procedure are
based on the two-terminal switching element of Figure 2.The
method, however, is general and can be readily applied to
the multiport case. The above extension is briefly outlined
hereafter in this section and is applied to solve an example
problem involving a two-port PSL resistive block in Section 7.

5.1. Constitutive Relations. In the scheme of Figure 2, the
PSL element is driven by an ideal voltage source to allow
the computation of its generalized admittance representation,
that is, the constitutive relation involving the port voltage
V (𝑡) and the current 𝑖 (𝑡) as the input and output variables,
respectively. The resistive switching element is the same of
Figure 1 where the switch 𝑆 is characterized by a periodic
switching activity between the open and the close positions
with a characteristic period 𝑇. The switch is assumed to be
closed in the first half part of the period (e.g., 𝑡 ∈ [0, 𝑇/2])
and open in the remaining part. A cisoidal signal 𝑒 (𝑡) =

(𝐸
0
/2𝜋) exp (𝑗Ω𝑡) is chosen as the voltage excitation in this

example.
Since the switching block does not include dynamical

elements, the port current 𝑖 (𝑡) can be alternatively interpreted
as the juxtaposition in time of the current response computed

from the analysis of the circuit of Figure 2 at each operating
state of the switch (i.e., open and close). Hence, the current
𝑖 (𝑡) writes

𝑖 (𝑡) =
𝐸
0

2𝜋
exp (𝑗Ω𝑡) ⋅ [𝐺

1

+∞

∑

𝑛=−∞

Π
𝑇/2

(𝑡 − 𝑛𝑇)

+ 𝐺
2

+∞

∑

𝑛=−∞

Π
𝑇/2

(𝑡 − 𝑛𝑇 −
𝑇

2
)] ,

(17)

where 𝐺
1

= 2/𝑅 and 𝐺
2

= 1/𝑅 are the equivalent con-
ductances of the PSL two-terminal element when the switch
is close or open, respectively, and Π

Δ
(𝑡 − 𝑡
0
) is the window

function defined by

Π
Δ

(𝑡 − 𝑡
0
) = {

1 𝑡
0

≤ 𝑡 ≤ Δ + 𝑡
0

0 otherwise.
(18)

The direct application of the Fourier transform to (17)
leads, via a relatively long but straightforward manipulation,
to

𝐼 (𝜔) =

+∞

∑

𝑛=−∞

𝑓
𝑐
𝑐
𝑛

(𝐺
1

+ 𝐺
2
exp(𝑗𝑛𝜔

𝑐

𝑇

2
))

⋅ 𝐸
0
𝛿 (𝜔 − Ω − 𝑛𝜔

𝑐
) ,

(19)

where𝑓
𝑐

= 1/𝑇 and 𝑐
𝑛
are the coefficients of the Fourier series

expansion of the periodic function 𝑤 (𝑡) = ∑
+∞

𝑛=−∞
Π
𝑇/2

(𝑡 −

𝑛𝑇):

𝑐
𝑛

= ∫

𝑇/2

0

1 exp (−𝑗𝑛𝜔
𝑐
𝑡) 𝑑𝑡

=
1 − exp (−𝑗𝑛𝜔

𝑐
𝑇/2)

𝑗𝑛𝜔
𝑐

.

(20)

It is important to notice that (19) is equivalent to the
general equation (14), where a single-frequency excitation
𝐸 (𝜔) = 𝐸

0
𝛿 (𝜔 − Ω) is considered (𝐸 (𝜔) being the Fourier

transformof the input cisoidal signal). Equations (14) and (19)
allow defining the aliasing transfer functions as

𝑌
𝑛

= 𝑓
𝑐
𝑐
𝑛

(𝐺
1

+ 𝐺
2
exp (𝑗𝑛𝜔

𝑐

𝑇

2
)) . (21)

In this example, the functions 𝐻
𝑛

= 𝑌
𝑛
do not depend

on the variable Ω since the circuit in each operating state
is resistive and its solution involves instantaneous relations
only. According to (13), the generalized bifrequency admit-
tance can be written as

𝑌 (𝜔, Ω) = 2𝜋

+∞

∑

𝑛=−∞

𝑌
𝑛

⋅ 𝛿 (𝜔 − Ω − 𝑛𝜔
𝑐
) . (22)

The readers should refer to the appendix that collects
additional details on the behavior of the example circuit of
Figure 2 with the aim of further stressing the key features of
PSL circuits.

It is relevant to notice that the proposed procedure can
be applied to multiport resistive elements as well, provided
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Figure 2: (a) Example circuit consisting of the interconnection of an ideal voltage source and of a switching resistive PSL block. (b) Circuit
with the PSL block described by means of its generalized bifrequency admittance 𝑌 (𝜔, Ω).

that their port admittance characteristic can be computed
as for the example two-terminal element of Figure 2. In
practice, voltage sources are applied to the different ports of
themultiport and the current responses are interpreted as the
juxtaposition in time of the port current responses computed
for the different operating states of the switches, leading to
matrix relations similar to (19).

5.2. Augmented Characteristics. Equation (19) suggests that
the frequency-domain steady-state response of a PSL circuit
with independent voltage or current sources defined by
cisoidal excitations with angular frequency Ω = 𝜔

0
can

be suitably expressed in terms of an infinite sum of delta
functions [11]. For practical reasons, this infinite series is then
truncated. For example, for the case of the circuit of Figure 2,

𝐼 (𝜔) =

+∞

∑

𝑛=−∞

𝐼
𝑛
𝛿 (𝜔 − 𝑛𝜔

𝑐
− 𝜔
0
)

≈

+𝑁

∑

𝑛=−𝑁

𝐼
𝑛
𝛿 (𝜔 − 𝑛𝜔

𝑐
− 𝜔
0
) ,

(23)

where 𝐼
𝑛
are the Fourier coefficients of the 𝑛th harmonic

of the current through the PSL element and 𝑁 is the
total number of (both positive and negative) harmonics
considered, (2𝑁+1) being the total number of terms defining
the expansion (23). A similar relation holds for the voltage
𝑉(𝜔).

The previous interpretation of the electrical variables
along with (7) (with 𝑌out = 𝐼 and 𝑋in = 𝑉) and (21) leads
to the following generalized Ohm’s law describing the PSL
resistive block:

𝐼 (𝜔) =
1

2𝜋
∫

+∞

−∞

𝑌 (𝜔, Ω) 𝑉 (Ω) 𝑑Ω

≈

𝑁

∑

𝑘=−𝑁

2𝑁

∑

𝑚=−2𝑁

𝑉
𝑘
𝑌
𝑚

𝛿 (𝜔 − (𝑚 + 𝑘) 𝜔
𝑐

− 𝜔
0
) ,

(24)

for |𝑚 + 𝑘| ≤ 𝑁.
It is important to notice that the periodic behavior of

the system and the convenient interpretation of voltages

and currents in terms of series expansions allow replacing
the integral operator with the products of two sums. From
the above equation it is also clear that voltage and current
variables are defined by truncated Fourier expansions, which
take into account 2𝑁 + 1 harmonics, from −𝑁𝜔

𝑐
+ 𝜔
0
to

+𝑁𝜔
𝑐

+ 𝜔
0
.

Equation (24), along with the representation of the
current 𝐼(𝜔) by means of (23), can be represented via the
following augmented characteristic equation of the two-
terminal PSL element in matrix form:

[
[
[
[
[
[
[

[

𝐼
−𝑁

...
𝐼
0

...
𝐼
𝑁

]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[
[

[

𝑌
0

𝑌
−1

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑌
−2𝑁

𝑌
1

𝑌
0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
...

...
... d

...
...

...
...

... d 𝑌
−1

𝑌
2𝑁

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑌
1

𝑌
0

]
]
]
]
]
]
]
]

]

[
[
[
[
[
[
[

[

𝑉
−𝑁

...
𝑉
0

...
𝑉
𝑁

]
]
]
]
]
]
]

]

, (25)

where the voltage and current variables 𝑉(𝜔) and 𝐼 (𝜔) are
replaced by the vectors V = [𝑉

−𝑁
, . . . , 𝑉

0
, . . . , 𝑉

𝑁
]
𝑇 and I =

[𝐼
−𝑁

, . . . , 𝐼
0
, . . . , 𝐼

𝑁
]
𝑇.The above vectors, that have dimension

(2𝑁 + 1) × 1, are filled in by the harmonic coefficients
defining the steady-state response of the corresponding
variables and play the role of the new port variables of a
possibly augmented circuit element. Clearly, this is the same
underlying interpretation of the so-called harmonic balance
that has been used along with other methods for the solution
of PSL circuits in [19–22]. In the latter papers, however,
the proposed simulation technique involves more complex
and cumbersome computations. In our proposal, instead, the
complexity of the circuit solution is dramatically reduced
by the interpretation of the characteristics of PSL blocks
according to (25).

Equation (25), that turns out to be a linear time-invariant
representation of the PSL element, can be written in a more
compact form as

I = YV, (26)

where Y is the (2𝑁 + 1) × (2𝑁 + 1) matrix of (25).
For conciseness, the above procedure has been detailed

for the case of a two-terminal element only. Its extension
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Figure 3: Example test circuit used for illustrating the proposed
MNA formulation. The values defining the LTI series elements, that
are characterized by their frequency-domain impedances, are 𝑟 =

10 Ω, 𝐿 = 1mH. The PSL block highlighted by the dashed frame is
the two-terminal PSL resistive block of Figure 2, where 𝑅 = 100 Ω

and the switch 𝑆 has a periodic switching activity at frequency 𝑓
𝑐

=

10 kHz. The independent DC voltage source 𝑒 (𝑡) = 10V is defined
in frequency-domain as 𝐸 (𝜔) = 10/2𝜋𝛿 (𝜔)V.

to the more general multiport case is straightforward and
requires to follow the same steps above.

6. Circuit Solution via Augmented MNA

This section adopts the classical MNA approach for circuit
analysis to the case of PSL circuits. For the sake of illus-
tration, the derivation is based on the example circuit of
Figure 3, where a nonideal voltage source with inductive
series impedance is connected to the switching resistive block
of Figure 2. In the schematic of Figure 3, the PSL block
is represented by its generalized bifrequency admittance
𝑌(𝜔, Ω) defined by means of (22) and the ideal voltage
source 𝑒 (𝑡) is defined by the cisoidal excitation 𝑒 (𝑡) =

(𝐸
0
/2𝜋) exp (𝑗𝜔

0
𝑡).

The discussion starts with the well-known stamp arising
from the analysis of the schematic of Figure 3 where a simple
admittance 𝑌 (e.g., 𝑌 (𝜔) = 𝑗𝜔𝐶) replaces the PSL block. In
this case, the MNA equation in matrix form writes

[

[

𝑌 (𝜔) 0 −1

0 𝑔 1

−1 1 −𝑗𝜔𝐿

]

]

[

[

𝑉
1

(𝜔)

𝑉
2

(𝜔)

𝐼 (𝜔)

]

]

= [

[

0

𝑔𝐸 (𝜔)

0

]

]

. (27)

When the impedance 𝑌 (𝜔) is substituted by 𝑌 (𝜔, Ω), the
unknowns, that is, 𝑉

1
, 𝑉
2
, and 𝐼, need to be replaced by the

corresponding vectorsV
1
,V
2
, and I collecting the coefficients

of the harmonic series expansion of the nodal unknowns.
The augmented characteristic of the PSL two-terminal

element defined by (25) and (26) and the companion relations
that can be readily obtained for the classical LTI elements
allow replacing the original MNA equation with

[

[

Y 0 −1
0 𝑔1 1

−1 1 −Z
𝐿

]

]

[

[

V
1

V
2

I
]

]

= [

[

0
𝑔E
0

]

]

, (28)

where all the entries of the matrix are submatrices with
dimension (2𝑁 + 1) × (2𝑁 + 1), where 1 = diag (1), 0 =

diag (0), and Z
𝐿

= diag (𝑗 [. . . , (𝜔
0

− 𝜔
𝑐
), 𝜔
0
, (𝜔
0

+ 𝜔
𝑐
), . . .]𝐿).

On the right hand side of the MNA equation, the excitation

term is composed of vectors of dimension (2𝑁+1)×1 defined
as 0 = [0, . . . , 0]

𝑇 and E = [0, . . . , 𝐸
0
, . . . , 0]

𝑇.
Clearly, (28) turns out to be (2𝑁 + 1) times larger

than the corresponding MNA equation of a circuit with the
PSL element replaced by a linear time-invariant impedance.
However, the proposed extended matrix, that belongs to the
same class of (27), can be readily solved via simple linear
inversion. What is more important, the steady-state response
of the PSL circuit can be computed by reinterpreting the
coefficients of the new voltage and current unknowns by
means of (23). Equation (29) defines the unwrapped and
complete extended MNA stamp for the example circuit of
Figure 3 with 𝑁 = 1.

In sum, the proposed simulation method is valid for PSL
circuits with both constant sources (a constant is seen as a
cisoidal signal with null angular frequency) and any arbitrary
periodic excitation, provided that the latter signal is expended
in Fourier series. Also, the solution of the augmented MNA
equation like (29) provides the direct computation of the
steady-state response of the circuit.

For the sake of illustration, the method has been derived
for the case of a time-varying circuit with one PSL resistive
two-terminal element only. The method, however, is general
and can be suitably applied to arbitrary circuits with one
or more multiport resistive PSL elements, provided that
the switching elements can be described by means of an
admittance representation. It is also useful to remark that
the proposed method is still valid if the resistive switching
element is described by its impedance representation. The
same procedure suggested above for the generation of the
augmented characteristic (26) of the example two-terminal
element of Figure 1 can be followed. As an example, Section 7
includes the results obtained by considering a circuit with a
two-port switching resistive element and briefly outlines the
procedure for the computation of its augmented characteris-
tic. The solution of the proposed augmented MNA problem
introduces benefits in terms of robustness and efficiency with
respect to the classical ODE piecewise approach in time-
domain.

7. Numerical Results

This section collects the numerical results obtained by apply-
ing the proposed method to the solution of the two example
circuits. The responses of the circuits computed by means
of MATLAB and the standard ordinary differential equation
(ODE) integration routines are assumed as the reference
curves in this study. The reference curves are compared with
the solution obtained by means of the linear inversion of the
augmented matrix equation like (29).

The first validation deals with the same example circuit
of Figure 3. For this test case, Figures 4 and 5 show both
the time- and frequency-domain steady-state responses of the
current 𝑖(𝑡) and voltage V

1
(𝑡), respectively, thus highlighting

the good accuracy of the proposed method in reproducing
the reference responses. The time-domain comparison is
carried out by considering the series approximation of the
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unknowns with an increasing number of the expansion
orders 𝑁. For plot readability, a maximum order of 50 has
been considered since a larger order generates responses

overlapping the reference curve very well and does not
allow appreciating the differences among the approximated
responses:

[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑌
0

𝑌
−1

𝑌
−2

0 0 0 −1 0 0

𝑌
1

𝑌
0

𝑌
−1

0 0 0 0 −1 0

𝑌
2

𝑌
1

𝑌
0

0 0 0 0 0 −1

0 0 0 𝑔 0 0 1 0 0

0 0 0 0 𝑔 0 0 1 0

0 0 0 0 0 𝑔 0 0 1

−1 0 0 1 0 0 −𝑗 (𝜔
0

− 𝜔
𝑐
) 𝐿 0 0

0 −1 0 0 1 0 0 −𝑗 (𝜔
0
) 𝐿 0

0 0 −1 0 0 1 0 0 −𝑗 (𝜔
0

+ 𝜔
𝑐
) 𝐿

]
]
]
]
]
]
]
]
]
]
]
]
]

]

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑉
1,−1

𝑉
1,0

𝑉
1,1

𝑉
2,−1

𝑉
2,0

𝑉
2,1

𝐼
−1

𝐼
0

𝐼
1

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[
[
[
[

[

0

0

0

0

𝑔𝐸
0

0

0

0

]
]
]
]
]
]
]
]
]
]

]

. (29)
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Table 1: CPU-time required by the simulation of the circuit of Figure 3 and accuracy of the computed current and voltage responses 𝑖(𝑡) and
𝑣
1
(𝑡), for an increasing number of terms 𝑁 defining their truncated expansions (e.g., see (23)).

Method ODE 𝑡step = 1 ns
𝑡max = 500 𝜇s

Extended MNA
𝑁 = 1 𝑁 = 5 𝑁 = 15 𝑁 = 50 𝑁 = 75 𝑁 = 100 𝑁 = 150

CPU-time 18.7 s 0.052 s 0.059 s 0.079 s 0.15 s 0.17 s 0.23 s 0.46 s
Relative error 𝑖(𝑡) Reference 4.7% 1.3% 0.4% 0.13% 0.09% 0.06% 0.04%
Relative error 𝑣

1
(𝑡) Reference 15% 9.5% 5.9% 3.4% 2.7% 2.42% 1.98%

+
−

r

R
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Figure 6: Example circuit involving a two-port PSL resistive block
and standard (both resistive and dynamical) LTI elements. The
values of components are 𝑟 = 10 Ω, 𝐿 = 1mH, 𝑅 = 100 Ω,
𝑅
𝐿

= 100 Ω, and 𝐶 = 1 𝜇F. The switch operates as in the first
example of Figure 3. The independent DC voltage source 𝑒 (𝑡) =

10 + 2 sin (𝜔
0
𝑡)V is defined in frequency-domain as 𝐸 (𝜔) =

10/(2𝜋) 𝛿 (𝜔) + 1/𝑗𝜋 (𝛿 (𝜔 − 𝜔
0
) − 𝛿 (𝜔 + 𝜔

0
))V, where 𝜔

0
= 2𝜋𝑓

0

and 𝑓
0

= 40 kHz.

In order to provide a better quantitative comparison,
Table 1 collects the main figures on the accuracy and
efficiency of the ODE-based and of the proposed MNA-
based methods implemented in MALAB environment. The
accuracy is assessed by computing the relative mean square
error between the reference and the predicted responses.
Also, the overhead of the proposed method in computing the
aliasing admittances𝑌

𝑛
is included in the total CPU-time.The

numbers in the table confirm the strengths of the proposed
approach that has a number of advantages over alternative
state-of-the-art methods. Mainly, it allows computing the
solution of the nodal variables of a periodically switched
circuit in both frequency- and time-domains by means of
the solution of a single linear problem. The coefficients in
the unknown vector of (29) are the numbers multiplying
either the complex trigonometric functions defining the
time-domain responses or the deltas defining the different
terms of the corresponding frequency-domain spectra.

As a second and more realistic test case, the circuit
of Figure 6 is considered. It is composed of a two-port
PSL resistive block (highlighted by means of a gray frame)
and standard linear time-invariant two-terminal elements.
The topology of this second example is similar to the ones
occurring in a number of applications (e.g., theDC-DCboost
converter is defined by a similar circuit with a different PSL
block involving two switching components, i.e., the diode
and the MOS transistor). As already done in Section 5 for
the two-terminal PSL element of Figure 3, the characteristic
of the two-port resistive PSL block needs to be suitably
replaced by an approximated characteristic involving the
expansion of its port voltages and currents (e.g., see (24) and

(26)). Specifically, the integral equations governing the port
behavior of the PSL block,

𝐼
1

(𝜔) =
1

2𝜋
∫

+∞

−∞

𝑌
11

(𝜔, Ω) 𝑉
1

(Ω) 𝑑Ω

+
1

2𝜋
∫

+∞

−∞

𝑌
12

(𝜔, Ω) 𝑉
2

(Ω) 𝑑Ω

𝐼
2

(𝜔) =
1

2𝜋
∫

+∞

−∞

𝑌
21

(𝜔, Ω) 𝑉
1

(Ω) 𝑑Ω

+
1

2𝜋
∫

+∞

−∞

𝑌
22

(𝜔, Ω) 𝑉
2

(Ω) 𝑑Ω,

(30)

can be suitably replaced, via the same procedure of Section 5,
by

[
I
1

I
2

] = [
Y
11

Y
12

Y
21

Y
22

] = [
V
1

V
2

] , (31)

where the interpretation of the variables and matrices is the
same as the one introduced in the previous section. From the
above equation, it is clear that the PSL block is now suitable
to be plugged into the augmented MNA equation describing
the circuit of Figure 6, leading to

[
[
[

[

Y11 Y12 0 −1
Y21 Y22 + Y

𝑅𝐶
0 0

0 0 𝑔1 1
−1 0 1 −Z

𝐿

]
]
]

]

[
[
[

[

V
1

V
2

V
3

I
1

]
]
]

]

=
[
[
[

[

0
0

𝑔E
0

]
]
]

]

, (32)

where Y
𝑅𝐶

= diag (𝑗 [. . . , (𝜔
0

− 𝜔
𝑐
), 𝜔
0
, (𝜔
0

+ 𝜔
𝑐
), . . .] 𝐶) +

diag (𝐺
𝐿
) is a submatrix with dimensions (2𝑁 + 1) × (2𝑁 + 1)

and 𝐺
𝐿

= 1/𝑅
𝐿
. The remaining entries of the matrix and the

nodal unknowns are the same already defined in (29).
Figure 7 shows the reference and the predicted responses

of the voltage V
2

(𝑡) and the current 𝑖
1

(𝑡) of this second test
circuit. The curves in the figure highlight that the proposed
method produces the steady-state responses of a PSL circuit
and does not include the initial transient observed in the
reference response of the circuit calculated via an ODE-
based solver with null initial conditions of the dynamical
components. As far as the performance of the proposed
method is concerned, the trend given by the numbers of
Table 1 is also confirmed for this second example (see Table 2
for detailed information on the accuracy and performance of
themethod for an increasing number of the expansion orders
𝑁). This second example allows claiming the generality of
the proposed approach that can be applied to circuits with
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Figure 7: Time-domain voltage and current responses of the circuit of Figure 6.The reference curves are compared with the solutions arising
from (32) and the order of expansion 𝑁 = 15.

Table 2: CPU-time required by the simulation of the circuit of Figure 6 and accuracy of the computed current and voltage responses 𝑖
1
(𝑡)

and 𝑣
2
(𝑡), for an increasing number of terms 𝑁 defining their truncated expansions (e.g., see (23)).

Method ODE 𝑡step = 1 ns
𝑡max = 500 𝜇s

Extended MNA
𝑁 = 1 𝑁 = 5 𝑁 = 15 𝑁 = 50 𝑁 = 75 𝑁 = 100 𝑁 = 150

CPU-time 34.5 s 0.029 s 0.051 s 0.076 s 0.19 s 0.24 s 0.445 s 1.1 s
Relative error 𝑖(𝑡) Reference 3.3% 0.9% 0.3% 0.08% 0.05% 0.04% 0.02%
Relative error 𝑣

1
(𝑡) Reference 4.9% 1.7% 0.6% 0.2% 0.14% 0.1% 0.07%

multiterminal PSL blocks without modifying the basic rules
introduced in the previous section for the generation of the
augmented MNA equation.

8. Conclusions

This paper addressed the simulation of the steady-state
behavior of an important class of time-varying circuits con-
sisting of linear time-invariant (possibly dynamical) circuit
elements, periodically switched linear resistive multiport ele-
ments, and ideal sources defined by periodic excitations. The
proposed solution extends the results of previously published
papers in this field and is based on the generation of an aug-
mented time-invariant MNA equation governing the circuit
behavior. The new nodal unknowns in the advocated MNA
equation correspond to the harmonic coefficients defining
the expansions of the unknown voltage and current variables.
A topological approach is considered, with emphasis on an
intuitive physical based interpretation of the PSL elements
in the network. The proposed solution is proven to offer
a modular approach to circuit analysis, leading to accurate
results with good simulation speed-ups. Also, it is sufficiently
general to handle a wide class of circuit topologies occurring
in real application problems. The feasibility and strengths of
the method are demonstrated on simple analytical examples
and two validation test circuits.
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Figure 8: Bifrequency generalized admittance 𝐻 (𝜔, Ω) associated
with the example circuit of Figure 2.

Appendix

This appendix collects some useful remarks on the general
behavior of a PSL circuit to highlight its features and to
provide a graphical interpretation of the operators involved
in the circuit analysis. The discussion is based on the circuit
of Figure 2.

As an example, Figure 8 shows the magnitude of 𝑌 (𝜔, Ω)

defined by (22) and computed for 𝑅 = 100 Ω and 𝑓
𝑐

=

10 kHz. To improve the readability of the plot, the Ω-axis
is discretized and four samples are considered only. This
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Figure 9: Time-domain response of the current 𝑖(𝑡) (a) of the example circuit in Figure 2 and its corresponding spectrum 𝐼(𝑓) (b).

figure allows getting a practical interpretation of the transfer
function of a time-varying system. Due to the term 𝛿 (𝜔−Ω−

𝑛𝜔
𝑐
) in (13), the cut of the two-dimensional surface 𝑌 (𝜔, Ω)

for a fixed Ω value turns out to be given by the superposition
of delta functions occurring at frequencies Ω + 𝑛𝜔

𝑐
(𝑛 =

. . . , −2, −1, 0, 1, . . .). Clearly, the position of such deltas on the
𝜔-axis are shifted to the right (or to the left) when the values
of the input frequencies Ω increase (or decrease).

Figure 9 shows the time-domain current response 𝑖 (𝑡)

of the circuit of Figure 2 to a sinusoidal excitation 𝑒 (𝑡) =

sin (2𝜋𝑓
0
𝑡), 𝑓
0

= 100 kHz, and its corresponding frequency-
domain spectrum. The above figure highlights that the
steady-state response of a periodically time-varying system
contains an infinite number of components at frequencies
±𝜔
0

+ 𝑛𝜔
𝑐
.

The example discussed in this appendix clearly illustrates
that a linear time-varying circuit excited by a sinusoidal signal
produces new harmonics even if the circuit does not contain
active elements (i.e., the circuit of Figure 2 has an ideal
voltage source connected to a passive two-terminal switching
resistive element).
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