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∗Princeton University/Department of Chemical and Biological Engineering, Princeton, NJ, USA
†Princeton University/Program in Applied and Computational Mathematics, Princeton, NJ, USA

‡Politecnico di Torino/Energy Department, Torino, Italy

Abstract— We use a relatively recent nonlinear manifold
learning technique (diffusion maps) to parameterize low
dimensional attracting manifolds arising in the description
of detailed chemical kinetics mechanisms. With no a priori
knowledge about the shape and dimension of the manifold,
such an approach provides a way of solving a reduced (and
less stiff) set of equations in terms of automatically detected
slow variables. Advantages as well as disadvantages of the
approach are discussed.

I. INTRODUCTION

The solution of detailed models for chemical kinetics
(either ODE or discretized PDE) often poses severe nu-
merical difficulties mainly due to two aspects: First, the
number of degrees of freedom is large; second, the dynam-
ics is characterized by disparate time scales. As a result,
reactive flow solvers with detailed chemistry often become
intractable even for large clusters of CPUs, especially when
dealing with direct numerical simulation (DNS) of turbulent
combustion problems. This has motivated the development
of several approaches for reducing the complexity of such
kinetics models, by expressing them in terms of only a few
slow variables. However, there are no generally applicable
recipes for selecting a good global parameterization of the
reduced model, and the choice of slow variables often relies
upon intuition and experience. Clearly, a more systematic
approach in this respect would be highly desirable. In this
work, we follow a fully automated approach where the low-
dimensional attracting manifold is identified, parametrized
and a consistent reduced model constructed. The key step
is the parameterization, which is obtained by learning the
slow manifold through diffusion maps (DMAPs).

II. DIFFUSION MAPS

The diffusion maps approach has recently emerged as a
powerful tool in data analysis [1], [2], [3]. The basic aim is
to provide a nonlinear extension of the Principal Component
Analysis (PCA) in order to construct a low-dimensional
embedding for a given set of M points (X1,...,XM ) in a
high-dimensional space, if such an embedding exists. To
this end, a distance dij between a pair of states (Xi and
Xj) is needed. Based on dij , a pairwise affinity function

can be established such that Wij = Wji ≥ 0, with the heat
kernel being a popular option:

Wij = exp

[
−
(
dij

ε

)2
]
. (1)

Although, for data in <N , an obvious choice for dij is
the standard Euclidean distance, this is not always the best
option. For instance, a weighted Euclidean norm may be
necessary when the different coordinates of a generic point
Xi are characterized by disparate orders of magnitude.
This is indeed the case encountered in many combustion
problems, where data are likely points in concentration
space and major species (i.e. reactants and products) arise
in much higher concentrations compared to minor species
(i.e. radicals). The notion of locality is introduced through
the model parameter ε which defines the width of a small
neighborhood, where the chosen distance d can be assumed
as a good measure of proximity. Based on the symmetric
matrix W = {Wij}, a diagonal matrix D = {Dii} can
be defined such that: Dii =

∑M
k=1Wik. Following the

DMAPs approach, if the initial data points are located
on a low dimensional manifold with dimension k, a gap
appears between k nontrivial eigenvalues of the Markov
matrix K = D−1W and the remaining ones. Moreover, the
components in the corresponding k eigenvectors establish a
projection of the high-dimensional points (X1,...,XM ) into
a k-dimensional space.

III. APPLICATION TO COMBUSTION

We will demonstrate the feasibility of constructing re-
duced kinetics models for combustion applications, by ex-
tracting the slow dynamics on a manifold globally parame-
terized by diffusion maps. To this end, preliminary results
are shown for a homogeneous reactive mixture of hydrogen
and air at stoichiometric proportions under fixed total en-
thalpy (H = 300[kJ/kg]) and pressure (P = 1[bar]). Time
evolution of the chemical species follows the Li mechanism
[4], and can be generally formulated as follows:

d~y

dt
= ~f (~y) , (2)



with ~y representing the state in terms of mass fractions
of the nine participating chemical components (H2, N2,
H , O, OH , O2, H2O, HO2, H2O2). Equations (2) are
further complemented by an implicit algebraic equation for
temperature, stipulating the constancy of total enthalpy.

The first step of the proposed method requires the iden-
tification of the low-dimensional attracting manifold. While
many possible constructions have been suggested in the
literature (see, e.g., [5], [6], [7], [8]) here, in the spirit of
the equation free framework [9], [10], we assume that only
the rates ~f(~y) are accessible and do not rely upon any prior
knowledge about a good parameterization of the manifold.

For data collection, Eqs. (2) are integrated starting from
a rich enough set of random states within the admissible
phase-space (convex polytope defined by elemental conser-
vation constraints and concentration positivity) and, after
sufficient time to approach a neighborhood of the manifold,
samples are collected from each trajectory. As a result, a
set of points {Xi, i = 1, ...,M} in <N (hopefully dense
enough within the region of interest) becomes available for
defining the manifold.

As a second step, the diffusion maps approach is per-
formed as outlined in Section II. Due to a disparity of
the magnitudes of species concentrations, dij is taken as
the Euclidean distance between properly rescaled points X̃i

and X̃j , with X̃i = RXi using the fixed diagonal matrix
R = {Rkk}, Rkk = 1/max(X(k)). Here, max(X(k))
represents the largest k-th coordinate among all sample
points, whereas the parameter ε in (1) can be chosen as a
multiple of the quantity: maxj mini6=j dij [11], [12], [13].
An example is shown in Fig. 1. Finally, as a third step,
following [13], [14], the reduced model of (2) can be
constructed as follows:

d~L

dt
=
∂ ~ψ
(
~ψ−1

(
~L
))

∂~y
~f
(
~ψ−1

(
~L
))

, (3)

where ~L denotes the reduced state, while ~ψ and ~ψ−1 repre-
sent the restriction and lifting operators. Clearly, obtaining
these operators, for example through Nyström extension
[15] and various interpolation approaches, is a crucial step
in our model reduction method.

IV. CONCLUSION

In this work, we provide evidence that the diffusion
maps technique is a useful tool for systematically extracting
a global parameterization of low-dimensional manifolds
arising in combustion problems, while less stiff reduced
systems can be expressed in terms of the slow variables
parametrizing these manifolds as identified by the process.
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Fig. 1. Homogeneous reactive mixture of hydrogen and air at stoichio-
metric proportions with fixed enthalpy (H = 300[kJ/kg]) and pressure
(P = 1[bar]). Two dimensional DMAPs parameterization of 1095 points
as provided by the two nontrivial leading eigenvectors φ1 and φ2 of the
Markov matrix K. Colors represent mass fractions, while black filled circle
and black diamond represent the fresh mixture condition and equilibrium
state, respectively.
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