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TRAINING PAIRWISE SUPPORT VECTOR MACHINES WITH LARGE SCALE DATASETS

Sandro Cumani and Pietro Laface

sandro.cumani, pietro.laface@polito.it - Politecnico di Torino, Italy

ABSTRACT

We recently presented an efficient approach for training a Pairwise
Support Vector Machine (PSVM) with a suitable kernel for a quite
large speaker recognition task. The PSVM approach, rather than es-
timating an SVM model per class according to the “one versus all”
discriminative paradigm, classifies pairs of examples as belonging or
not to the same class. Training a PSVM with large amount of data,
however, is a memory and computational expensive task, because
the number of training pairs grows quadratically with the number
of training patterns. This paper proposes an approach that allows
discarding the training pairs that do not essentially contribute to the
set of Support Vectors (SVs) of the training set. This selection of
training pairs is feasible because we show that the number of SVs
does not grow quadratically, with the number of pairs, but only lin-
early with the number of speakers in the training set. Our approach
dramatically reduces the memory and computational complexity of
PSVM training, making possible the use of large datasets, including
many speakers. It has been assessed on the extended core conditions
of the 2012 Speaker Recognition Evaluation. The results show that
the accuracy of the trained PSVMs increases with the training set
size, and that the Cprimary of a PSVM trained with a small subset of
the i–vectors pairs is 10 − 30% better than the one obtained by a
generative model trained on the complete set of i–vectors.

Index Terms— Speaker recognition, i–vector, PLDA, Support
Vectors, Pairwise Support Vector Machines

1. INTRODUCTION

I–vectors [1], a compact representation of a Gaussian Mixture Model
(GMM) supervector [2], in combination with Probabilistic Linear
Discriminant Analysis (PLDA) [3, 4], allow speaker recognition sys-
tems to reach state–of–the–art performance. A successful alternative
to the probabilistic generative PLDA model has been recently pre-
sented: a discriminative SVM model trained to decide whether a
pair of utterances belongs or not to the same speaker [5, 6]. This
is in contrast with the usual “one-versus-all” framework, where an
SVM model is created for each enrolled speaker, using as samples of
the impostor class the utterances of a background cohort of speak-
ers. This approach avoids the major weakness of “one-versus-all”
SVM training, namely the scarcity of available samples for the tar-
get speakers. Although our pairwise SVM training approach is ex-
tremely efficient, it is nevertheless expensive in terms of memory and
computational resources, which grow quadratically with the number
of the training i–vectors. It is also more challenging than the one–
versus–all SVM training, due to the size of the matrix of the scores
that must be stored during the training iterations: a set of 256K i–
vectors would need approximately 128GB of memory just for the
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lower triangular score matrix. To solve this problem, it is worth re-
calling that the solution of the SVM optimization problem, in its dual
formulation [7, 8], shows that the separation hyperplane is a function
of a subset of training patterns, the so-called Support Vectors (SVs).
Since it is known that the number of SVs increases linearly with
the number of training patterns [9], several solutions have been pro-
posed in the past to reduce their number, aiming at eliminating the
SVs that are not essential [10] or the SVs recognized as unnecessary,
being linearly dependent in feature space [11]. These approaches try
to reduce the number of SVs for a generic SVM binary problem.
The problem that we address, instead, is characterized by a small
number of utterances, pronounced by a large number of speakers,
and by two highly unbalanced classes: the “same speaker” pairs,
which grows linearly with the number of speakers, and the “differ-
ent speaker” pairs, which grows quadratically with the number of
i–vectors. For this specific task, we propose a simple solution that
allows discarding the training i–vector pairs that do not essentially
contribute to the set of SVs. In particular, since the amount of mem-
ory required for training a generative PLDA model is not affected
by the size of the training set, we first train a PLDA model with the
complete set of training i–vectors. Then, the scores of the training
pairs are computed using this PLDA model, and all pairs with a score
less than a threshold are removed from the training list of the PSVM.
The rationale for this approach is that there is good correlation be-
tween the PLDA and the PSVM scores. Thus, “different speaker”
i–vector pairs with large negative PLDA scores, and “same speaker”
i–vector pairs with large positive PLDA scores, do not contribute to
the set of SVs.
Please notice that this selection strategy is feasible only because we
show that the number of SVs does not increases quadratically, with
the number of the i–vector pairs, but only linearly with the num-
ber of training speakers. This makes our approach not only feasi-
ble, but also extremely efficient: by keeping a very small fraction
of the training pairs, a dramatic reduction of the memory and com-
putational complexity of PSVM training is obtained without losing
accuracy. The experimental results confirm that the accuracy of the
trained PSVMs increases using more speakers in the training set,
making the proposed approach effective both for its reduced com-
plexity and for its obtained performance.

The outline of the paper is as follows: Sections 2 formulates
the i–vector pair score as a second order Taylor approximation of
a symmetric score function. Section 3 describes the pairwise SVM
classifier, and its efficient implementation. In Section 4 we detail
our selection strategy. Section 5 presents the experimental results,
comparing the performance of the PLDA models and of the PSVM
models trained with a selected subset of pairs. Our conclusions are
drawn in Section 6.

2. I–VECTOR PAIR SCORE APPROXIMATION

It has been shown in [6] that the score of the i–vector pair Φ =
(φ1,φ2) can be formulated as a function s(Φ), invariant to i–vector



swapping. This formulation is here recalled for introducing the
hyper–parameters that a SVM must estimate, and for illustrating the
changes necessary for training a PSVM with a reduced dataset.
The second order Taylor expansion for s(Φ) around point Φ̂ = 0
is:

s(Φ) = s(Φ̂) + (Φ ·∇s|Φ̂) + ΦT (H(s)|Φ̂)Φ , (1)

where ∇ is the vector of differential operators ∇ =
(

∂
∂Φ1

, . . . , ∂
∂Φd

)
,

d is the dimension of the i–vector pair, and H(s) is the Hessian of
function s(Φ). Defining:

s(Φ̂) = k , ∇s|Φ̂ = [ c c ] , H(s)|Φ̂ =

[
Γ Λ
Λ Γ

]
, (2)

with a symmetric Λ, we obtain the quadratic function of the i–vector
pair:

s(φ1,φ2) = φT1 Λφ2 + φT2 Λφ1 + φT1 Γφ1 + φT2 Γφ2

+(φ1 + φ2)T c + k , (3)

which can be also interpreted as a linear function of the hyper–
parameter set Θ = {Λ,Γ, c, k}, in an expanded space of i–vector
pairs. In particular, s(φ1,φ2) can be written as the dot–product of a
vector of weights w (the model hyper–parameters) and an expanded
vector ϕ(φ1,φ2) representing an i–vector pair:

s(φ1,φ2) = wTϕ(φ1,φ2) . (4)

where the parameters and the expanded i–vector pair are represented
using the vec(·) operator, which stacks the columns of a matrix into
a vector, as:

w =

vec(Λ)
vec(Γ)

c
k

 , ϕ(φ1,φ2) =


vec(φ1φ

T
2 + φ2φ

T
1 )

vec(φ1φ
T
1 + φ2φ

T
2 )

φ1 + φ2

1

 . (5)

3. PAIRWISE SVM TRAINING

A linear SVM can be trained to learn these model hyper–parameters,
however, training by means of a dual solver [12, 13] has severe limi-
tations for large training sets. Caching the complete kernel matrix is
impractical even for relatively small sized datasets because it would
require O(n4) memory, where n is the number of i–vectors. Also
impractical are the alternatives of keeping in memory the complete
dataset of mapped features (O(n2d2)), where d is the i–vector di-
mension, or expanding the features on–line, with a computational
complexity O(n2d2) for each iteration. Since in NIST SRE 2010,
for example, a popular setting for the i–vector dimension is d = 400,
and the number of training i–vectors n is approximately 20000, us-
ing a standard SVM dual solver approach would be impractical. It
has been shown in [6, 14] that the kernel formulation depends only
on i–vector dot–products, so that kernel can be efficiently computed
by caching the i–vector Gram–matrix. The memory cost, however,
remains O(n2).

We use instead a primal solver because it has been shown in [6]
that it is possible to efficiently evaluate the loss function and its gra-
dient with respect to w over the set of all training pairs, in O(n2d+
nd2) time, without the need of expanding the i–vectors. An analysis
of large-scale SVM training algorithms suited to speaker recogni-
tion tasks [15] allowed us to select, among the primal solvers, the
Optimized Cutting Plane Algorithm (OCAS) approach proposed in
[16, 17], which offers a general and easily extensible framework for

solving convex unconstrained regularized risk minimization prob-
lems. Although the memory cost remains O(n2) even for a primal
solver, the i–vector pair selection strategy, illustrated in the next sec-
tion, allows memory complexity to be dramatically reduced.

Our formulation is also equivalent to a second degree inhomoge-
neous polynomial kernel SVM. Pairwise SVM training using poly-
nomial kernel SVMs has been also proposed in [14] for medium
sized training sets. As it is shown in Section 4, our selection strategy
makes PSVM training much less expensive, and feasible with very
large training sets.

SVM optimization can be seen as the solution of the uncon-
strained convex regularized risk minimization problem:

E(w) = arg min
w

1

2
λ ‖w‖2 +

1

n

n∑
i=1

`(w,xi, ζi) (6)

with loss function

`L1(i) = max(0, 1− ζiwTxi) . (7)

Using the OCAS technique, the SVM parameters w are optimized
by evaluating the loss function and a sub–gradient of its objective
function (6). These evaluations require, in principle, a sum over all
the expanded i–vector pairs in the training set. Since their number
is n2, which can easily reach the order of hundred of millions for
typical training sets, these evaluations would be not effective or even
feasible because their complexity would be O(n2d2).

However, the objective function and its gradient can be com-
puted by means of a much more efficient solution in terms of mem-
ory and computation using (3). In particular, let D = [φ1φ2 . . .φn]
be a matrix including n stacked i–vectors, and let Sθi,j = Sθ(φi,φj)
denote the score matrix for all possible pairs related to component θ
of w, where θ ∈ {Λ,Γ, c, k}. From (4) and (3) the score matrices
can be evaluated as:

SΛ(φi,φj) = φTi Λφj + φTj Λφi ⇒ SΛ = 2 DTΛ D

SΓ(φi,φj) = φTi Γφi + φTj Γφj ⇒ SΓ = S̃Γ + S̃Γ
T

Sc(φi,φj) = cT (φi + φj) ⇒ Sc = S̃c + S̃c
T

(8)

Sk(φi,φj) = k ⇒ Sk = k · 1 ,

where
S̃Γ = [dΓ . . . dΓ︸ ︷︷ ︸

n

] S̃c = [dc . . . dc︸ ︷︷ ︸
n

] , (9)

and
dΓ = diag(DTΓD) dc = DT c . (10)

The diag(·) operator returns the diagonal of a matrix as a column
vector, and 1 is an n× n matrix of ones.
No explicit expansion of i-vectors is, thus, necessary for evaluating
the scores.

Denoting the sum of the partial score matrices by S = SΛ +
SΓ + Sc + Sk, the SVM loss function can be obtained as:

`L1(D,Z) =
∑
i,j

max[0, 1− ζi,jwTϕ(φi,φj)]

= 〈1,max[0,1− (Z ◦ S)]〉 , (11)

where 0 is an n × n matrix of zeros, Z is the n × n matrix of the
labels ζi,j for each i–vector pair (φi,φj), and ◦ is the element-wise
matrix multiplication operator.

In order to compute the objective function gradient, let gi,j be



Fig. 1: Percentage of Support Vectors as a function of the percentage
of the training i–vectors.

the derivative of the hinge loss function with respect to the score
si,j = wTϕ(φi,φj):

gi,j =

{
0 if ζi,jsi,j ≥ 1

−ζi,j otherwise .
(12)

Let G be the matrix of the elements gi,j . Recalling that G is sym-
metric, the terms of the sub–gradient of the loss function can be
rewritten in terms of dot–products and element–wise matrix prod-
ucts as:

∇`w =


2 vec

(
DGDT

)
2 vec

(
[D ◦ (1A G)] DT

)
2 [D ◦ (1A G)] 1B

1TB G 1B

 , (13)

where 1A is a d×nmatrix of ones, and 1B is a size n column vector
of ones.
Again, no explicit expansion of i-vectors is necessary for this evalu-
ation.

Due to the small size of the i–vectors, the dataset of training ut-
terances can easily be loaded in main memory. The evaluation of loss
functions and gradients in OCAS, thus, requires matrix–by–matrix
multiplications of large matrices (n×n), which can also be loaded in
main memory if n is not too large. Although, for a very large training
set, these computations can be performed through block decompo-
sition of the matrices, this procedure is cumbersome and slow. The
selection strategy illustrated in the next section solves these memory
problems, and allows training a pairwise SVM even with millions
of i–vectors of a very large set of speakers. The terms in (8), and
the loss function (11), are computed only for the selected pairs, and
the elements of G corresponding to discarded pairs are set to 0 in
(13). Since their number is very high, a sparse matrix representation
is used.

4. I–VECTOR PAIR SELECTION

Although a dual solver is not used by our approach, we will make
use of the definition of Support Vector to devise an effective selec-
tion strategy. Our strategy is based on two main observations, and a
working hypothesis, confirmed by experimental evidence. The first
observation is that the PSVM support vectors are a small fraction of
the complete training set. The second observation is that the scores
of the generative PLDA models are correlated with the scores of a
PSVM trained with the same training set. The working hypothesis is
that it is possible to a–priori identify and discard most of the i–vector
pairs that do not contribute to the set of SVs of the complete training
set.

In particular, a proof, omitted here for lack of space, can be
given that the number of support vectors in a SVM is upper bounded
by a linear function of the number of elements of the less popu-
lated class. In speaker recognition, the training set typically includes
a quite large number of speakers, each providing a small number
of utterances. Thus, the less populated class is the “same speaker”

Table 1: Distribution of the number of “same speaker” and “different
speaker” i–vector pairs in the regions defined by the margins of a
PSVM. The number of SVs is shown in bold.

i–vector pairs PSVM score
s < −1 −1 ≤ s ≤ 0 0 < s ≤ 1 s > 1

“same speaker” 4381 165633 296234 513292
“different speaker” 2.3G 461947 9114 1248

(a) (b)

Fig. 2: (a) Percentage of i–vector pairs that are included in the
PSVM training set, and percentage of lost support vectors, as a func-
tion of the PLDA score threshold. (b) Zoom of a region of (a)

class, which grow linearly with the number of speakers, whereas the
cardinality of the “different speaker” class is much larger because it
grow quadratically with the number of i–vectors. Using the the set of
48568 i–vectors described in Section 5, we have approximately 2.3
billion “different speaker”, and one million “same speaker” pairs.
Figure 1 plots (in percentage) the number of SVs obtained by train-
ing a PSVM with the i–vectors of an increasing number of speakers.
The figure confirms our theoretical claim that the number of SVs
grows linearly with the number of i–vectors (n) rather than with the
number of the training set pairs (n2).

Training a PSVM with the complete training set, and computing
the PSVM score s of each i–vector pair of the same set, we obtained
the distribution of the number of i–vectors in the regions defined by
the PSVM margins. The distribution is reported in Table 1, where
the number of SVs for each class is shown in bold. It is worth noting
that although the number of “different speaker” pairs is much greater
than the number of “same speaker” pairs, this is not the case for the
number of the corresponding SVs, which is similar.

The correlation coefficient between the scores of the PSVM and
of a PLDA trained on the same set of pairs are 0.83 and 0.69, for the
“same speaker” and “different speaker” classes, respectively. Figure
2 shows the percentage of i–vector pairs that would remain on the
training set, and the percentage of SVs that would be discarded, as a
function of a threshold on the PLDA scores. It is worth noting that
it is sufficient to keep a small fraction of the complete training set to
include almost all the SVs of the complete training set in the filtered
training set. This implies that the PSVM solution obtained with the
small subset of selected training pairs will need much less memory
and processing time, but will be nevertheless near optimal.

These considerations allow us to devise a simple strategy for
detecting and discarding the subset of i–vectors which have few
chances to be SVs for the PSVM. It is based on the evidence that
the number of support vectors grows linearly with the number of
“same speaker” pairs. In particular, the complete set of training
pairs is classified using a PLDA model trained on the same data,
and only the K–best scoring pairs are kept as training set for the



Table 2: Performance of gender independent PLDA and PSVM models, trained with full, and filtered training sets, on NIST 2012 extended
core evaluation. Last row gives the % performance improvement of the FSVM models with respect to the PLDA.

Model

Condition 1 Condition 2 Condition 3 Condition 4 Condition 5
interview phone call interview phone call phone call

without added noise without added noise with added noise with added noise from a noisy environment
EER DCF08 Cprim EER DCF08 Cprim EER DCF08 Cprim EER DCF08 Cprim EER DCF08 Cprim

PLDA 3.76 0.160 0.323 2.52 0.124 0.336 2.94 0.108 0.239 5.43 0.231 0.476 2.99 0.147 0.380
PSVM 2.71 0.108 0.259 2.35 0.116 0.300 2.18 0.082 0.200 4.39 0.193 0.430 2.94 0.135 0.341
FSVM 2.66 0.108 0.260 2.37 0.117 0.302 2.13 0.082 0.200 4.40 0.191 0.430 2.94 0.136 0.342
% impr. 29.3 32.5 19.5 5.9 5.6 10.1 27.5 24.1 16.3 19.0 17.3 9.7 1.7 7.5 10.0

PSVM model. The parameter K = kT is chosen to be a multiple of
the number of “same speaker” pairs T . The i–vector pairs with large
negative PLDA scores are discarded because, with high probability,
they do not contribute to the set of the SVs. We keep, instead, all the
“same speaker” pairs, neglecting the value of their PLDA scores, be-
cause their number is much lower than the number of the “different
speaker” pairs. Given the desired length K of the filtered training
set list, the top-K PLDA scores can be obtained by using a double–
ended priority queue algorithm [18], which requires a single sweep
of the PLDA scores, with an overall complexity O(n2 logK).

5. EXPERIMENTAL RESULTS

Since our experiments were focused on memory and computational
cost of PSVM training, we did not devote particular care to select the
best combination of features, techniques, and training data that al-
low obtaining optimal performance. Every utterance was processed
after Voice Activity Detection, extracting every 10 ms, 19 Mel fre-
quency cepstral coefficients, and the frame log-energy on a 25 ms
sliding Hamming window. This 20–dimensional feature vector was
subjected to short time mean and variance normalization using a 3 s
sliding window, and a 45-dimensional feature vector was obtained
by stacking 18 cepstral (c1-c18), 19 delta (∆c0-∆c18) and 8 double–
delta (∆∆c0-∆∆c7) parameters. We trained a gender–independent
i–vector extractor, based on a 1024–component diagonal covariance
gender–independent UBM, and on a gender-independent T matrix,
estimates with data from NIST SRE 2004–2010, and additionally
with the Switchboard II, Phases 2 and 3, and Switchboard Cellular,
Parts 1 and 2 datasets, for a total of 66140 utterances. The i-vector
dimension was fixed to d = 400. The PLDA and SVM models were
trained using the NIST SRE 2004–2010 datasets, for a total of 48568
utterances of 3271 speakers. The enrollment part of the NIST 2102
dataset was not used because the complete set would become too
large for training the PSVM reference system.

We trained PLDA models with full–rank channel factors, using
200 dimensions for the speaker factors. The i–vectors of the PLDA
models were whitened and L2 normalized. Within Class Covari-
ance Normalization (WCCN) [19] was applied to the i–vectors for
the PSVM. The WCCN transformations and the PLDA models have
been trained using the previously mentioned NIST datasets. These
systems were tested on the extended core NIST 2012 evaluation tri-
als [20]. The scores were not normalized.

Table 2 summarizes the performance of three models, in terms
of % Equal Error Rate, minimum Decision Cost Function, and
minimum Cprimary, defined for the NIST 2008 and 2012 evaluations
[20]. The result are shown for the reference PLDA model, for the
PSVM model trained with the complete set, and for a pairwise
SVM (FSVM) trained with a filtered set of size K = 40T , where
T = 979540 is the number of “same speaker” pairs. The FSVM
model performs similarly to the PSVM, and better than PLDA mod-
els, in all conditions. Figure 3a plots the minimum Cprimary of PLDA

(a) Cprimary of PLDA and PSVM
as a function of the % of speakers
included in the training set

(b) Cprimary of FSVM models as a
function of k, the multiple of the
“same speaker” pairs

Fig. 3: Performance comparison of PLDA and of pairwise SVM
models on Condition 5 of NIST 2012 evaluation.

and PSVM models trained with utterances provided by an increas-
ing number of speakers, for Condition 5. The generative models of
PLDA are better than PSVM models if trained with small subsets of
the speakers, whereas the PSVM models prevail when the training
set includes enough speakers (50% in our experiments). The results
of these PSVM models, trained with a reduced set of speakers, con-
firm that discriminative training needs a sufficient variety of speakers
to avoid overfitting, but is able to outperform PLDA models. The
horizontal dashed line shows that a FSVM trained with the PLDA
40T–best scoring pairs, is able to reach the performance of a PSVM
trained with the complete training set, but with a 60 times reduction
of the memory costs. Figure 3b shows the behavior of minimum
Cprimary of a FSVM trained with different filtered set of i–vectors,
each obtained according to our proposed approach. The number of
the selected i–vectors in the set is a multiple of the number of “same
speaker” pairs T . Using k = 10, i.e., just 10 times the number of
“same speaker” pairs, our FSVM model outperforms PLDA, and
increasing the factor k, it rapidly reaches the PSVM accuracy.

6. CONCLUSIONS

A simple and effective approach for the elimination of the i–vector
pairs that are not essential in training a pairwise SVM has been pre-
sented. We addressed the computational and memory issues raised
by the quadratic increase of the i–vector pairs, showing that the num-
ber of support vectors is bounded by a linear function of the number
of “same speaker” pairs, thus it does not increase quadratically with
the number of i–vectors, but linearly with the number of speakers.
Using this i–vector pairs selection approach, PSVM training with
the utterances of a very large set of speakers becomes feasible. This
is important because we have shown that FSVM benefits from the
use of additional data of different speakers, and that the FSVM mod-
els trained with a large enough training set can perform better than
PLDA models.



7. REFERENCES

[1] N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, and P. Ouel-
let, “Front–end factor analysis for speaker verification,” IEEE
Transactions on Audio, Speech, and Language Processing, vol.
19, no. 4, pp. 788–798, 2011.

[2] D. A. Reynolds, T. F. Quatieri, and R. B. Dunn, “Speaker veri-
fication using adapted Gaussian Mixture Models,” Digital Sig-
nal Processing, vol. 10, no. 1-3, pp. 31–44, 2000.

[3] S. J. D. Prince and J. H. Elder, “Probabilistic Linear Discrimi-
nant Analysis for inferences about identity,” in Proceedings of
11th International Conference on Computer Vision, 2007, pp.
1–8.

[4] P. Kenny, “Bayesian speaker verification with Heavy–
Tailed Priors,” in Keynote presentation, Odyssey 2010,
The Speaker and Language Recognition Workshop, 2010,
Available at http://www.crim.ca/perso/patrick.
kenny/kenny_Odyssey2010.pdf.
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