
04 August 2020

POLITECNICO DI TORINO
Repository ISTITUZIONALE

GyneScan: An Improved Online Paradigm for Screening of Ovarian Cancer via Tissue Characterization / Acharya U. R.;
Sree V. S.; Kulshreshtha S.; Molinari F.; Wei Koh J. E.; Saba L.; Suri J. S.. - In: TECHNOLOGY IN CANCER
RESEARCH & TREATMENT. - ISSN 1533-0346. - ELETTRONICO. - 13:6(2014), pp. 529-539.

Original

GyneScan: An Improved Online Paradigm for Screening of Ovarian Cancer via Tissue Characterization

Publisher:

Published
DOI:10.7785/tcrtexpress.2013.600273

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2542100 since:

LONDON:SAGE PUBLICATIONS LTD



529

Technology in Cancer Research and Treatment 

ISSN 1533-0346 

Volume 13, Number 6, December 2014  

© Adenine Press (2014)

*Corresponding author:
Prof. Filippo Molinari, Ph.D.
Phone: 139 11 564 4135
E-mail: filippo.molinari@polito.it 

U. Rajendra Acharya, Ph.D., 
D.Eng.1 

S. Vinitha Sree, Ph.D.2

Sanjeev Kulshreshtha, M.Tech.2

Filippo Molinari, Ph.D.3*
Joel En Wei Koh, B.Sc.1

Luca Saba, M.D.4

Jas�jit S. Suri, M.S., Ph.D., 
M.B.A., Fellow AIMBE5,6†

1Department of Electronics and 

Computer Engineering, Ngee Ann 

Polytechnic, Singapore
2Visiting Scientist, Global Biomedical 

Technologies, CA, USA
3Biolab, Department of Electronics and 

Telecommunications, Politecnico di 

Torino, Torino, Italy
4Vascular Screening and Diagnostic 

Centre, London, and Department of 

Biological Sciences, University of 

Cyprus, Nicosia, Cyprus
5Point of Care Devices, Global 

Biomedical Technologies, Inc., 

Roseville, CA, USA; Diagnostic and 

Monitoring Division, AtheroPoint(TM) 

LLC, Roseville, CA, USA 
6Department of Electrical Engineering, 

Idaho State University (Affl.),  

Idaho, USA

†All reprint correspondence.

GyneScan: An Improved Online Paradigm for 
Screening of Ovarian Cancer via Tissue 

Characterization

 www.tcrt.org 
DOI: 10.7785/tcrtexpress.2013.600273

Ovarian cancer is the fifth highest cause of cancer in women and the leading cause of death 
from gynecological cancers. Accurate diagnosis of ovarian cancer from acquired images 
is dependent on the expertise and experience of ultrasonographers or physicians, and is 
therefore, associated with inter observer variabilities. Computer Aided Diagnostic (CAD) 
techniques use a number of different data mining techniques to automatically predict the 
presence or absence of cancer, and therefore, are more reliable and accurate. A review of 
published literature in the field of CAD based ovarian cancer detection indicates that many 
studies use ultrasound images as the base for analysis. The key objective of this work is to 
propose an effective adjunct CAD technique called GyneScan for ovarian tumor detection 
in ultrasound images. In our proposed data mining framework, we extract several texture 
features based on first order statistics, Gray Level Co-occurrence Matrix and run length 
matrix. The significant features selected using t-test are then used to train and test several 
supervised learning based classifiers such as Probabilistic Neural Networks (PNN), Sup-
port Vector Machine (SVM), Decision Tree (DT), k-Nearest Neighbor (KNN), and Naïve 
Bayes (NB). We evaluated the developed framework using 1300 benign and 1300 malignant 
images. Using 11 significant features in KNN/PNN classifiers, we were able to achieve 100% 
classification accuracy, sensitivity, specificity, and positive predictive value in detecting ovar-
ian tumor. Even though more validation using larger databases would better establish the 
robustness of our technique, the preliminary results are promising. This technique could be 
used as a reliable adjunct method to existing imaging modalities to provide a more confident 
second opinion on the presence/absence of ovarian tumor. 

Key words: Ovarian cancer; Computer aided diagnosis; Texture analysis; Ultrasound; 
classification; Feature extraction; Tissue characterization; Screening.

Introduction

Nowadays, ovarian neoplasm cancers represent a significant health problem in 
industrialized nations with the female population that has a 2.5% lifetime chance of 
developing ovarian cancer (1, 2). Between the age group 55 to 74 years, more than 
50% of ovarian cancer deaths happen, and around 25% of deaths occur between 
35 and 54 years (3, 4). It is the fifth highest reason for cancer in women (affect-
ing about 1 out of 70 women) and the leading cause of death (1% of all women 
die of it) from gynecological cancers (5). The incidence of this cancer is higher 
in developed countries owing to lifestyle and heredity factors (6). Many heredity 

Abbreviations: CAD: Computer Aided Diagnosis; PNN: Probabilistic Neural Networks; SVM: 
Support Vector Machine; DT: Decision Tree; KNN: k-Nearest Neighbour; NB: Naïve Bayes; TVUS: 
Transvaginal Ultrasonography; GLCM: Gray Level Co-occurrence Matrix.
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 factors are associated with ovarian cancer occurrence risk, in 
particular age (7) and the presence of harmful mutations in 
tumor suppressor BRCA1 or BRCA2 genes (7, 8).

The rapid and precise diagnosis of cancer pathology is 
extremely important to offer a better survival rate to the 
affected women, and, in this setting, imaging analysis rep-
resents a key technique. Currently, three main techniques are 
used to image adnexa: Ultrasound (US), Computed Tomog-
raphy (CT) and Magnetic Resonance (MR) (1, 9-12). CT, 
MR, and radioimmunoscintigraphy have one or more of the 
following limitations: cost, device availability, radiation 
exposure. The appearances of both the normal and cancer-
ous ovaries on ultrasound images have been studied since 
the use of pelvis ultrasound (13-15). Barua et al. (15) have 
recently studied the feasibility of a preclinical animal model 
in determining the effectiveness of contrast enhanced ultraso-
nography in detecting early stage ovarian cancer. Transvagi-
nal Ultrasonography (TVUS) is the first-choice technique 
ovarian neoplasm characterization because of the excellent 
temporal and spatial resolution and the absence of risk related 
to radiation and the administration of contrast material (16). 

With the introduction of TVUS and 3D-ultrasonography, 
the sensitivity and specificity of ultrasonography have been 
shown to have improved significantly (17, 18). However, 
the effectiveness of ultrasonography is mainly related to the 
level of expertise of the reader (19), and in one study, it was 
observed that the most experienced sonographer obtained 
an accuracy of 92%, and the less experienced observers had 
only an accuracy in the range of 82% and 87% (20). Fur-
thermore, studies (21) have shown that the nature of benign 
and malignant ovarian tumors may sometimes overlap in the 
acquired images, and thereby, make it difficult for the ultra-
sonographers or physicians to detect the exact type of tumor. 
Such ambiguous appearances result in unnecessary biopsies, 
which increase cost, time, and patient anxiety. Therefore, 
there is a need for an adjunct modality that could provide 
more objective information on the nature of the tumor. 

Over the past few years, techniques for the Computer Aided 
Diagnosis (CAD) of specific pathologies have been proposed 
for more objective determination of the presence/ absence of 
disease and for the improvement of differential diagnosis of 
lesions (22-24). These techniques generally select features 
that quantify the grayscale intensity variations in the images 
and use them to develop classifiers that automatically detect 
the presence of disease. Due to the minimal involvement of 
human interpretation in the entire protocol, such CAD based 
techniques can provide objective and reproducible results. 
Most of CAD studies for ovarian cancer detection use fea-
tures based on (a) blood test results (25) (b) Mass Spectrom-
etry (MS) data (26-28) and (c) ultrasound images (29-31). The 
curse of dimensionality issue affected the MS based studies 

(32) as they have to study a huge amount of features extracted 
from a relatively small dataset. Ultrasound is currently a very 
commonly offered affordable technique. A literature review of 
ultrasound-based techniques describes that there is still room 
for improvement in the detection accuracy. Therefore, in this 
work, we have proposed a CAD technique for ovarian tumor 
classification in ultrasound images. Comprehensive morpho-
logical characteristics of malignant and benign tumors can be 
evaluated by 3D ultrasonography compared to 2D ultrasonog-
raphy (33). Even though some studies have concluded that 3D 
ultrasound did not have a better diagnostic performance than its 
2D counterpart (34, 35), few other studies have indicated that 
power Doppler ultrasound and the selective use of 3D ultraso-
nography can improve the accuracy of ovarian tumor diagnosis 
(36, 37). Hence, in this work, we have developed our protocol 
using images acquired using 3D transvaginal ultrasound. 

Methods

Data

In the present work, twenty non-consecutive women with 
previous diagnosis of ovarian mass (10 malignant, 10 benign; 
nine post-menopausal, eleven pre-menopausal; age: 29 to 74 
years) were evaluated. The study was approved by the Institu-
tional Review Board and the procedure was explained to each 
woman before obtaining informed consent. One of the authors 
of this paper consecutively selected these women during pre-
surgical evaluation. Women with no anatomopathological 
evaluation were excluded from the study. First these subjects 
were scanned by B-mode ultrasonography to study the adnexal 
masses. Subsequently, the imaged masses were subdivided 
into unilocular, multilocular, unilocular-solid, multilocular-
solid or solid. The tumor vascularization was evaluated by 2D 
power Doppler. To minimize noise, the power Doppler set-
ting was specifically tuned for each subject in order to obtain 
maximum sensitivity while avoiding artifacts. 

Prior to surgery, all the patients underwent 3D-transvaginal 
ultrasonography evaluation, and 3D volumes of the suspicious 
areas were acquired. Depending on the size of the volume 
box, the acquisition time varied between two and six seconds. 
In the case where more than one volume was recorded for 
an adnexal mass, only the first volume was used for further 
analysis. We wanted our database to contain 1300 benign 
and 1300 malignant images to build and evaluate the clas-
sifiers. Therefore, we selected the middle 130 images from 
each 3D volume acquired from each of the 10 benign and 10 
malignant subjects, thus making our database to have 1300 
malignant and 1300 benign images. To obtain the Region of 
Interest (ROI), the image was cropped automatically using 
the horizontal and vertical gradients to detect the boundaries 
of the black frame border around the image. Subsequently, we 
captured images of the size of 256 3 256 and a gynecologist 
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Figure 1:  Sample ultrasound images of (A) benign ovarian tumor (upper panels) (B) malignant ovarian tumor (bottom panels).

and radiologist marked out the squared ROI from indi-
vidual cropped images. Figure 1 depicts a few examples of 
ultrasound images of benign and malignant ovarian tumors. 

Overall GyneScan Architecture

Our proposed system for ovarian tumor classification 
GyneScan is presented in Figure 2. The on-line classifi-
cation system part of the figure indicates the steps in pro-
cessing a test/new patient image. This system determines 
the class of the test image (benign/malignant) by using the 
features extracted from the test image in the classifiers that 
have already been trained by using the training parameters 
assessed by the off-line learning system. The off-line clas-
sification system evaluates the training parameters of the 
classifiers by using the combination of the features extracted 
from the training dataset and the corresponding ground truth 
training class labels. In this work, we developed and evalu-
ated the following classifiers: Probabilistic Neural Networks 
(PNN), Support Vector Machine (SVM), Decision Tree 
(DT), k-Nearest Neighbor (KNN), and Naïve Bayes (NB) 
using stratified ten-fold cross-validation. By comparing the 

predicted class labels of the test images and the correspond-
ing ground truth labels, various performance measures (accu-
racy, sensitivity, specificity, and Positive Predictive Value 
(PPV)) were calculated for each classifier.

Texture based Features Extraction

We used Gray Level Co-occurrence Matrix (GLCM) (38) and 
the run length matrix (39) texture methods for feature extrac-
tion. Let the image be represented by a M 3 N gray-scale 
matrix I(i, j), where each element of the matrix indicates the 
intensity of a single pixel in the image. The co-occurrence 
matrix C(i, j | Δx, Δy) is the second-order probability func-
tion estimation. This matrix denotes the rate of occurrence 
of a pixel pair with gray levels i and j, given the distances 
between the pixels are Δx and Δy in the x and y directions, 
respectively. The co-occurrence matrix C(i, j | Δx,  Δy) is 
defined as 

� � � � � � �| |( )∆ ∆ ∆ ∆ ∆ ∆i j p q p q p q i p q jC , , {( , ),( , ) : I( , ) , I( , ) }x y x y x y 

	
� � � � � � �| |( )∆ ∆ ∆ ∆ ∆ ∆i j p q p q p q i p q jC , , {( , ),( , ) : I( , ) , I( , ) }x y x y x y �

[1]
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where (p, q), (p 1 Δx, q 1 Δy) ∈ M 3 N, d 5 (Δx, Δy) and  
| . | denotes the cardinality of a set. The probability that a gray 
level pixel i is at a distance (Δx, Δy) away from the gray 
level pixel j is given by

i j
i j

i j
P( , )

C( , )

C( , )∑
� � [2]

The following features were computed from the co-occur-
rence matrix:

•	 First order statistical features: Based on the first 
order statistics, five features were extracted from the 
pre-processed fundus image f(x, y). They are mean, 
variance, skewness, kurtosis and energy. Table I pres-
ents the description of these features.

•	 GLCM based textural features: Let I(i, j) denote the 
original fundus image (normal or abnormal) and let the 
image have distinct gray level intensities. Firstly, we 
calculated the GLCM of order N 3 N, where N refers 
the number of gray levels. An element of the GLCM 
matrix (i, j, d, θ) is defined as the joint probability 
of the gray levels I and j separated by distance d and 
along direction θ. To reduce the computation, we have 

used θ as 0°, 45°, 90°, and 135°, and d is defined as the 
Manhattan or city block distance based on this GLCM. 
These features are mathematically defined as shown in 
Table II.

Figure 2:  Block diagram of the proposed system GyneScan™ for ovarian tumor detection.

Table I
Definition of first order statistical features.

S. No. Features Description

1 Mean (m) �
�� �

f x y
m

( , )

M Nx y1

M

1

N

∑ ∑

2 Variance (σ2) �
�

�
� �

f x y{ ( , ) m}

M N
x y2 1

M

1

N
2

σ
∑ ∑

3 Skewness (Sk) �
�

�
� �

f x y
S

k
1

M N

{ ( , ) m}
x y1

M

1

N
3

3σ

∑ ∑

4 Kurtosis (Kt) �
�

�
� �

f x y
K

t
1

M N

{ ( , ) m}
x y1

M

1

N
4

4σ

∑ ∑

5 Energy (E) �
� �

f x yE ( , )
x y1

M

1

N
2∑ ∑
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Table II
Description of GLCM based textural features.

S. No. Haralick feature Description

1 Contrast �
� { }∑ ∑ ∑
= = =

n i jI P( , )
n i j

con
0

N 1
2

0

N

0

N

2 Autocorrelation �
�

�

�

�

ij i jI ( )P( , )
i j

autocor
0

N 1

0

N 1

∑ ∑

3 Maximum probability �
�

�

�

�

∑ ∑ i jI maxP( , )
i j

mprb
0

N 1

0

N 1

4 Dissimilarity � �
�

�

�

�

∑ ∑ i j i jI P( , )
i j

dsmlrt
0

N 1

0

N 1

5 Homogeneity �
� ��

�

�

�

∑∑
i j

i jI
1

1 ( )
P( , )

j

N

i

N

hmg 2
0

1

0

1

6 Entropy ��
�

�

�

�

( )∑ ∑ i j i jI P( , )log P( , )
i j

Entr
0

N 1

0

N 1

7 Energy �
�

�

�

�

∑ ∑ i jI P( , )
i j

Enrg
0

N 1

0

N 1
2

8 Correlation �
�

�

�

�

�

µ µ

σ σ

∑ ∑ i j i j
I

( , )P( , )
i j

x y

x y
cor

0

N 1

0

N 1

where σx , σy , μx , μy are the standard deviations and means of Px , Py  Px , Py are the 
partial probability density functions. px(i) 5 ith entry in the marginal–probability 
matrix obtained by summing the rows of P(i, j)

9 Cluster shade � � � � �
�

�

�

�

µ µ{ }∑ ∑ i j i jI P( , )
i j

x yclsh
0

N 1

0

N 1 3

10 Variance �
�

�

�

�

µ ( )∑ ∑ −  i i jI ( ) log P( , )
i j

variance
0

N 1

0

N 1
2

where μ 5 mean of P(i, j)

11 Sum average �
�

�∑ i iI P ( )
i

x ysavg
2

2N

12 Sum entropy ��
�

� �i iI P ( )log P ( )
i

x y x ysentr
2

2N

{ }∑

13 Sum variance �
�

�i iI I P ( )
i

x ysvar
2

2N

sentr

2( )∑ −

14 Difference variance i iI ( I ) P ( )
i

x ydvar
2

2N

savg
2

( )∑ −�
�

�

15 Difference entropy ��
�

�

� �i iI P ( )log P ( )
i

x y x ydentr
0

N 1

{ }∑

16 Information correlation measure 1 �
�

�
I

HXY HXY

max(HX HY)IMC1
1

17 Information correlation measure 2 � � � �[ ]I 1 exp 2(HXY HXY)IMC2 2

where HX and HY are the entropies for Px and Py

��
�

�

( )( )∑ i iHX P ( ) log P ( )x x
i 0

N 1

��
�

�

( )( )∑ i iHY P ( ) log P ( )y y
j 0

N 1

��
�

�

( )( )∑ i j i jHXY P( , ) log P( , )
i j, 0

N 1

��
�

�

( )∑ i j i jHXY P( , )log P ( )P ( )x y
i j

1
, 0

N 1

��
�

� �

i j i jHXY P ( )P ( )log P ( )P ( )x y x y
i j

2
, 0

N 1 0

( )∑
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(39) studied the application of run length matrix for 
texture feature extraction. Run length matrix, R(i, j), 
records the frequency that j points with a gray level i 
continue in the direction θ. Here, we consider the run 
lengths matrices for angles θ 5 0°, 45°, 90°, 135°. The 
following features, shown in Table III, were calculated 
from the run length matrix.

Classifiers

Support Vector Machine (SVM): It is an efficient classifier 
especially for the data distributed in higher dimensions. It works 
by linearly separating two data points belonging to two different 
classes by a hyperplane (40). Non-linear classification can be 
performed using kernel functions. It can directly solve two class 
problems but multi-class solution can also be obtained by break-
ing them into several two class problems. We have used the lin-
ear kernel, quadratic kernel, polynomial kernel of order 1, 2, 
and 3 and the Radial Basis Function (RBF) kernels in this work. 

Decision Tree (DT): Computationally cheap and user 
friendly decision trees have been used. These are one of the 
easiest supervised learners which follow tree structure for 
depicting decisions (41). Every parent node in the tree is an 
objective node which branches into child nodes as either a 
decision of belongingness of data or another objective node 
or both. A statistical property called information gain is cal-
culated which is a measure of separation between training 
examples and target classification. 

k-Nearest Neighbor (KNN): Nearest neighbor is a non-para-
metric algorithm. In this algorithm it is assumed that a test 
observation closer to a trained labeled data should have same 
belongingness (42). The closeness is calculated by distance 
metrics. In KNN, ‘k’ implies the number of observations near 
to the test point. The value k should be tactically selected 
and it should be small enough to contain only relevant data 
points and large enough to not miss any data points which 
would decide its belongingness to a class. This classifier can 
perform well even with lesser training data. 

Naive Bayes (NB): Bayes’ rule says that posterior probabil-
ity is proportional to prior probability times likelihood (43). 
Naïve Bayes algorithm is based on the Bayes’ rule but here 
it is assumed that features are independent of each other i.e. 
presence of one feature is totally independent of presence 
of another feature. Even maximum likelihood is also used 
for parameter estimation in several applications. As they are 
based on probabilistic model they are very good supervised 
learners and can be trained even with lesser data. 

Probabilistic Neural Network (PNN): It is a feed-forward 
network of multiple layers where the input layer, pattern 
layer, summation/category layer and output layer are arranged 

Table III
Description of run length matrix based textural features.

S.No Feature Description

1 Short Run Emphasis (SRE) �
��

��

∑∑

∑∑

i j

j

i j
SRE

R( , )

R( , )

ji

ji

2
1

N

1

N

1

N

1

N

rg

rg

2 Long Run Emphasis (LRE) � ��

��

∑∑

∑∑

j i j

i j
LRE

R( , )

R( , )

ji

ji

2

1

N

1

N

1

N

1

N

rg

rg

3 Gray-level Non-uniformity 
(GLNU)

�
��

� �

∑



∑

∑ ∑

i j

i j
GLNU

R( , )

R( , )

ji

i j

1

N 2

1

N

1

N

1

N

rg

g r

4 Run length Non-uniformity 
(RLNU)

�
��

� �

∑



∑

∑ ∑

i j

i j
RLNU

R( , )

R( , )

ij

i j

1

N 2

1

N

1

N

1

N

gr

g r

5 Run Percentage (RP) � � �
∑∑ i j

RP
R( , )

P
i j1

N

1

Ng r

Here P is the total number of 
image pixels point.

6 Low Gray-level Run 
Emphasis (LGRE)

� � �

� �

i j

i

i j
LGRE

R( , )

R( , )

i j

i j

1

N

1

N

2

1

N

1

N

g r

g r

∑∑

∑∑

7 High Gray-level Run 
Emphasis (HGRE)

� � �

� �

∑∑ ⋅

∑∑

i j i

i j
HGRE

R( , )

R( , )

i j

i j

1

N

1

N
2

1

N

1

N

g r

g r

8 Short Run Low Gray-level 
Run Emphasis (SRLGE)

�
��

��

i j

i j

i j
SRLGE

R( , )

R( , )

ji

ji

2 2
1

N

1

N

1

N

1

N

rg

rg

⋅
∑∑

∑∑

9 Short Run High Gray-level 
Run Emphasis (SRHGE)

�
��

��

i j i

j

i j
SRHGE

R( , )

R( , )

ji

ji

2

2
1

N

1

N

1

N

1

N

rg

rg

⋅
∑∑

∑∑

10 Long Run Low Gray-level 
Run Emphasis (LRLGE)

� ��

��

⋅
∑∑

∑∑

i j j

i

i j
LRLGE

R( , )

R( , )

ji

ji

2

2
1

N

1

N

1

N

1

N

rg

rg

11 Long Run High Gray-level 
Run Emphasis (LRHGE)

� ��

��

i j j i

i j
LRHGE

R( , )

R( , )

ji

ji

2 2

1

N

1

N

1

N

1

N

rg

rg

⋅ ⋅∑∑

∑∑

•	 Run length matrix based texture features: Galloway 
(39) observed that in coarse texture, long gray level 
runs may be exist more frequently as compared to fine 
texture which generally contains short runs. Galloway 
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sequentially to receive inputs from previous layer and for-
ward the output to the input of next layer (44). Every input in 
the input layer is fed to every node in the pattern layer; here, 
unlike common back-propagation algorithm where sigmoid 
function is used for activation, a non-linear function is used. 

Feature Selection, Classification, Probabilistic Neural 
Network (PNN) Parameter Tuning and Genetic Algorithm

We used the Maximum Relevance Minimum Redundancy 
(mRMR) - Mutual Information Quotient (MIQ) method as the 
feature selection method. This technique relates the highest rel-
evance of a feature to its class (45). It does that by determining 

mutual information (a statistical measure) between (a) target 
feature and its class, which should be maximized for class 
determination and (b) between two features, which should be 
minimized to remove information redundancy. They together 
are known as mRMR. A difference operator called Mutual 
Information Quotient (MIQ) is introduced to optimize both 
the relevance and redundancy values. The extracted features 
were evaluated and further selected using student’s t-test, 
which was used to assess whether the means of a feature in 
two groups are statistically different from each other by com-
paring with p-values at less than 0.05 which were considered 
clinically significant. The classifier robustness was evaluated 
using ten-fold cross validation technique.

Table IV
Results of (Mean 6 SD) for various features extracted.

Rank of feature using 
mRMR-MIQ

Benign Malignant

p-valueMean 6 SD Mean 6 SD

Autocorrelation   1 18.962 6 4.132 18.030 6 3.516 0.0001
Homogeneity 90 27 0.705 6 0.054 0.726 6 0.066 0.0001
Dissimilarity   3 0.799 6 0.180 0.720 6 0.209 0.0001
Max probability   2 0.151 6 0.122 0.179 6 0.150 0.0001
Contrast 0 13 0.930 6 0.313 0.813 6 0.301 0.0001
Information correlation measure 2 12 0.801 6 0.065 0.829 6 0.068 0.0001
Sum variance   8 43.727 6 9.655 41.503 6 7.589 0.0001
Cluster shade   5 12.815 6 19.309 20.148 6 29.866 0.0001
Correlation 90 19 0.799 6 0.080 0.831 6 0.087 0.0001
Energy 0 21 0.076 6 0.051 0.092 6 0.090 0.0001
Energy 135 24 0.061 6 0.050 0.079 6 0.091 0.0001
Energy 90 23 0.067 6 0.050 0.084 6 0.091 0.0001
Skewness 29 0.264 6 0.326 0.333 6 0.362 0.0001
Homogeneity 45 26 0.661 6 0.063 0.687 6 0.076 0.0001
Energy 45 22 0.061 6 0.050 0.079 6 0.091 0.0001
Run length non-uniformity 35 3538.049 6 981.493 3056.297 6 1039.805 0.0001
Short run low gray-level run emphasis 38 0.103 6 0.117 0.111 6 0.102   0.047
Variance 31 4600.694 6 613.812 4817.160 6 714.229 0.0001
Kurtosis 30 2.240 6 0.413 2.292 6 0.457   0.002
Long run high gray-level run emphasis 40 6240082.394 6 10506429.767 12769818.857 6 12309279.552 0.0001
Gray-level non-uniformity 33 14966.417 6 10250.377 24261.805 6 15036.827 0.0001
Run percentage 34 0.629 6 0.148 0.567 6 0.148 0.0001
High gray-level run emphasis 37 3369.684 6 2831.230 5109.719 6 2934.456 0.0001
Low gray-level run emphasis 36 3.714 6 7.851 5.168 6 6.819 0.0001
Short run emphasis 32 0.768 6 0.050 0.747 6 0.065 0.0001
Long run low gray-level run emphasis 39 9904.270 6 27160.338 14878.838 6 23762.561 0.0001
Entropy   4 3.320 6 0.323 3.212 6 0.432 0.0001
Sum average   6 7.877 6 1.231 7.580 6 1.145 0.0001
Sum entropy   7 2.520 6 0.162 2.487 6 0.253 0.0001
Difference variance   9 1.550 6 0.487 1.330 6 0.535 0.0001
Difference entropy 10 1.158 6 0.135 1.088 6 0.181 0.0001
Information correlation measure 1 11 20.292 6 0.092 20.336 6 0.111 0.0001
Contrast 45 14 1.886 6 0.600 1.615 6 0.659 0.0001
Contrast 90 15 1.485 6 0.488 1.273 6 0.546 0.0001
Contrast 135 16 1.899 6 0.593 1.619 6 0.655 0.0001
Correlation 0 17 0.875 6 0.049 0.893 6 0.050 0.0001
Correlation 45 18 0.745 6 0.098 0.786 6 0.106 0.0001
Correlation 135 20 0.744 6 0.097 0.785 6 0.106 0.0001
Homogeneity 0 25 0.753 6 0.049 0.772 6 0.057 0.0001
Homogeneity 135 28 0.661 6 0.062 0.687 6 0.075 0.0001
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Results

Selected Features

In our work, 40 out of 42 extracted texture features were 
clinically significant (p  0.0001). Table IV also shows the 
rank of each feature (mean and standard deviation) using the 
mRMR-MIQ feature selection method. 

Classification Results

To evaluate the classifiers, we used ten-fold stratified cross 
validation technique. The entire dataset (1300 benign and 
1300 malignant) was divided into ten equal groups, with 
each group containing the equal number of images from each 
class. During the first trial, nine groups were used to train 
the classifier and the remaining one part was used to test the 
classifiers and to obtain the performance measures. This pro-
cedure was repeated nine more times by using a different test 
set each time. The averages of the performance metrics (sen-
sitivity, specificity, diagnostic accuracy, and PPV) obtained 
in all the iterations are reported as the overall performance 
metrics (Table V). It is evident from Table V that among all 
the classifiers, the PNN and KNN classifiers presented 100% 
average accuracy, sensitivity, specificity, and PPV using only 
11 significant features.

Discussion

Besides ultrasonography, another most commonly used tech-
nique for detecting ovarian cancer is to determine the lev-
els of a tumor marker called Cancer-Antigen 125 (CA125). 
However, CA125 marker has been found to be elevated 
only in 50% of stage 1 cancers (46), and also CA125 can 
be increased in pancreatic and uterine malignancies, and 
frequently in benign conditions also (47). There is limited 
literature on CAD based studies for ovarian tumor clas-
sification. In Table VI, we present a summary of the find-
ings of these published studies. It can be seen that the MS 
based studies (26-28, 48, 49) have resulted in high accura-
cies. However, they are limited by the cost and availability of 

the data analysis equipment. Menon (50) examined women 
with elevated CA125 levels and concluded that sensitivity of 
ultrasound reading can be increased by the usage of ovarian 
morphology and PPV can be increased by the use of complex 
ovarian morphology. Tailor et al. (51) and Biagiotti et al. 
(29) used operator suggested features (Table VI), and hence, 
are subjective in nature (features). The techniques developed 
by Zimmer et al. (31) and Lucidarme et al. (30) presented 
accuracies of only 70% and 91.73%, respectively. 

Recently, our group (52) presented a classification model to 
automatically discriminate the malignant and benign ovar-
ian tumors in ultrasound images. We used texture features 
based on Laws Texture Energy and Local Binary Patterns 
extracted from 1000 benign and 1000 malignant images in a 
SVM classifier, and obtained an accuracy of 99.9%, sensitiv-
ity of 100% and specificity of 99.8% using 2000 ultrasound 
images. In another study (53), we extracted Hu’s invariant 
moments, Gabor transform parameters and entropies from 
1300 benign and 1300 malignant ovarian tumors. Significant 
features were fed to the PNN classifier fine-tuned by genetic 
algorithm (GA) achieved an average classification accuracy 
of 99.8%, sensitivity of 99.2% and specificity of 99.6% 
at σ 5 0.264. In our last study (54), we extracted features 
based on the textural changes and higher-order spectra from 
1000 images in each category (benign and malignant), and 
used them in a DT classifier. An accuracy of 97%, sensitiv-
ity of 94.3%, and specificity of 99.7% was obtained. After 
evaluating a variety of features that quantify the gray-level 
intensity variations in the ultrasound images, we concluded 
that there is still room for improvement in the accuracy. 
Therefore, we studied texture features based on first order 
statistics, GLCM and run length matrices in this work, and 
using 11 significant features in KNN/PNN classifiers, we 
were able to achieve 100% classification accuracy in detect-
ing ovarian tumor. The following are some key features of 
our proposed technique:

a.	 Since the proposed GyneScan algorithm is automated, the 
final diagnosis result is objective and does not require spe-
cific training or expertise to understand the end-results. 

Table V
Results of average accuracy, sensitivity, specificity and PPV for various classifiers.

Classifiers No. of features Accuracy (%) PPV (%) Sensitivity (%) Specificity (%)

SVM, RBF 31 100.00 100.00 100.00 100.00
SVM, linear 40   84.73   87.59   81.00   88.46
SVM, quadratic 38 100.00 100.00 100.00 100.00
SVM, poly3 15 100.00 100.00 100.00 100.00
Decision tree 22   98.54   98.92   98.15   98.92
KNN 11 100.00 100.00 100.00 100.00
Naïve bayes   3   67.35   69.93   60.62   74.08
PNN 11 100.00 100.00 100.00 100.00
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Table VI
Summary of results of CAD based studies for ovarian tumor classification. 

Literature No. of samples Features Classifier Performance

Renz et al. (25) Benign, early stage and late 
stage cancers (55 cases)

Blood test data and age Multilayer perceptron Accuracy: 92.9%

Assareh and Moradi (48) Dataset 1:
  91 normal, 162 cancers
Dataset 2:
  100 normal, 16 benign 

  and 100 cancers

Three significant biomarkers from 
protein mass spectra

Two fuzzy linguistic rules Dataset 1: Accuracy: 100%
Dataset 2: Accuracy: 86.36%

Tan et al. (26) 24 normal, 30 cancers DNA micro-array, blood test, and 
proteomics data

Complementary Learning 
Fuzzy Neural Network

Accuracy: 84.72%

Tang et al. (27) 95 normal, 121 cancers Four statistical moments (mean, 
variance, skewness and kurtosis) 
obtained from SELDI-TOF mass 
spectroscopy data

Kernel partial least square 
classifier

Accuracy: 99.35% 
Sensitivity: 99.5% 
Specificity: 99.16%

Petricoin (28) 66 benign, 50 cancers Proteomic spectra Genetic algorithm with self 
organizing cluster analysis

Sensitivity: 100% 
Specificity: 95%

Tailor et al. (51) 52 benign, 15 cancers Clinical and ultrasound based vari-
ables from TVUS images

Back propagation neural 
network

Sensitivity: 100%
Specificity: 98.1%

Biagiotti et al. (29) 175 benign, 51 cancers Age and parameters from TVUS 
images

Three layer back propagation 
network

Sensitivity: 96%

Zimmer et al. (31) – B-scan ultrasound images Morphological Analysis Accuracy: 70%

Lucidarme et al. (30) 234 benign, 141 cancers Quantification of tissue disorganiza-
tion in backscattered ultrasound 
(3D TVUS)

Ovarian HistoScanning (OHS) 
system

Sensitivity: 98%
Specificity: 88%
Accuracy: 91.73%

Acharya et al. (52) 1000 benign, 1000 cancers Local Binary Pattern 1 Law’s Mask 
Energy

SVM classifier Sensitivity: 100% 
Specificity: 99.8%
Accuracy: 99.9%

Acharya et al. (53) 1300 benign, 1300 cancers Hu’s invariant moments 1 Gabor 
wavelet features 1 Entropies

PNN classifier, tuned with 
genetic algorithm

Sensitivity: 99.2% 
Specificity: 99.6%
Accuracy: 99.8%

Acharya et al. (54) 1000 benign, 1000 cancers Texture and higher-order spectra 
based features

DT classifier Sensitivity: 94.3% 
Specificity: 99.7%
Accuracy: 97.0%

Proposed method 1300 benign, 1300 cancers Features based on first order statis-
tics, GLCM and run length matrix

KNN/PNN classifiers Sensitivity: 100% 
Specificity: 100%
Accuracy: 100%

b.	 Due to the use of a large sample size (2600 images) for 
the training and evaluation of classifiers, and also because 
of the use of stratified cross validation technique for data 
resampling, the classifiers are generalized to effectively 
handle new images. 

c.	 The accuracy was obtained using only 11 features, and 
hence there is no problem of curse of dimensionality that 
is an issue for MS data.

d.	 The GyneScan system can be easily deployed on any 
computer and does not require expensive software. Since 
the algorithm works on ultrasound images which are now 
commonly acquired and affordable, the over-all set-up 
and use of the proposed system is cost-effective.

e.	 Besides the afore-mentioned advantages, the key finding 
in this preliminary study is the algorithm’s capability to 
detect ovarian tumor with a high accuracy of 100%. 

On the limitations side, we understand the need for more 
validation using larger databases to establish the accuracy of 
the proposed CAD algorithm. Moreover, we propose to con-
tinue this study to 3D, where we use the spatial information of 
the 3D slices taken from a single patient for further analysis.

Conclusion

In our earlier studies in the area of CAD based ovarian tumor 
classification, we found that the classification accuracy could 
be further improved. Therefore, in this work, we have pro-
posed another CAD technique GyneScan that successfully 
captures the subtle variations in the gray-level intensity 
variations in the ultrasound images of benign and malignant 
ovarian tumors using several texture features based on first 
order statistics, Gray Level Co-occurrence Matrix and run 
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length matrix. On using 11 significant features extracted from 
1300 benign and 1300 malignant images to train/test KNN/
PNN classifiers, we were able to achieve 100% classifica-
tion accuracy, sensitivity, specificity, and positive predictive 
value. Thus, the proposed technique could be a more objec-
tive adjunct method to detect the presence/absence of ovarian 
tumor. 
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