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Variable kinematic beam theories are used in this paper to carry out vibration analysis of isotropic thin-walled structures subjected
to non-structural localized inertia. Arbitrarily enriched displacement fields for beams are hierarchically obtained by using the
Carrera Unified Formulation (CUF). According to CUF, kinematic fields can be formulated either as truncated Taylor-like
expansion series of the generalized unknowns or by using only pure translational variables by locally discretizing the beam cross-
section through Lagrange polynomials. The resulting theories were, respectively, referred to as TE (Taylor Expansion) and LE
(Lagrange Expansion) in recent works. If the finite element method is used, as in the case of the present work, stiffness and mass
elemental matrices for both TE and LE beam models can be written in terms of the same fundamental nuclei. The fundamental
nucleus of the mass matrix is opportunely modified in this paper in order to account for non-structural localized masses. Several
beams are analysed and the results are compared to those from classical beam theories, 2D plate/shell, and 3D solid models from
a commercial FEM code. The analyses demonstrate the ineffectiveness of classical theories in dealing with torsional, coupling, and
local effects that may occur when localized inertia is considered. Thus the adoption of higher-order beam models is mandatory.
The results highlight the efficiency of the proposed models and, in particular, the enhanced capabilities of LE modelling approach,
which is able to reproduce solid-like analysis with very low computational costs.

1. Introduction to Refined Beam Theories

In engineering practice, problems involving non-structural
masses are of special interest [1]. An important example is
that of aerospace engineering. In aerospace design, in fact,
non-structural masses are commonly used in finite element
(FE) models to incorporate the weight of the engines, fuel,
and payload, see, for example, [2–5]. In this paper, the effects
due to localized inertia on free vibration of thin-walled beams
are investigated through one-dimensional (1D) higher-order
models. A brief overview about the evolution of refined beam
theories is given below.

A number of refined beam theories have been proposed
over the years to overcome the limitation of classical beam
models such as those by Euler [6] (hereinafter referred to

as EBBM) and Timoshenko [7, 8] (hereinafter referred to as
TBM). If the rectangular cartesian coordinate system shown
in Figure 1 is adopted and we consider bending on the 𝑥𝑦-
plane, the kinematic field of EBBM can be written as follows:

𝑢 = 𝑢
0
,

V = V0 − 𝑥
𝜕𝑢
0

𝜕𝑦

,

(1)

where 𝑢 and V are the displacement components of a point
belonging to the beam domain along 𝑥 and 𝑦 coordinates,
respectively. 𝑢0 and V0 are the displacements of the beam
axis, whereas −(𝜕𝑢0/𝜕𝑦) is the rotation of the cross-section
about the 𝑧-axis (i.e., 𝜙

𝑧
) as shown in Figure 2(a). According
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Figure 1: Coordinate frame of the beam model.

to EBBM, the deformed cross-section remains plane and
orthogonal to the beam axis.

EBBM neglects cross-sectional shear deformation phe-
nomena. Generally, the shear stresses play an important
role in several problems (e.g., short beams and composite
structures) and neglecting these terms can lead to incorrect
results. One may want to generalize (1) and overcome the
EBBM assumption of the orthogonality of the cross-section.
The improved displacement field results in the TBM are as
follows:

𝑢 = 𝑢
0
,

V = V0 + 𝑥𝜙
𝑧
.

(2)

TBMconstitutes an improvement over EBBMsince the cross-
section does not necessarily remain perpendicular to the
beam axis after deformation and one degree of freedom
(i.e., the unknown rotation 𝜙

𝑧
) is added to the original

displacement field (see Figure 2(b)).
Classical beam models yield reasonably good results

when slender, solid section, and homogeneous structures
are subjected to bending. Conversely, the analysis of deep,
thin-walled, and open section beams may require more
sophisticated theories to achieve sufficiently accurate results,
see [9]. One of the main problems of TBM is that the
homogeneous conditions of the transverse stress components
at the top/bottom surfaces of the beam are not fulfilled,
as shown in Figure 3. One can impose, for instance, (2)
in order to have null transverse strain component (𝛾

𝑥𝑦
=

(𝜕𝑢/𝜕𝑦)+(𝜕V/𝜕𝑥)) at 𝑥 = ±(𝑏/2).This leads to the third-order
displacement field known as the Reddy-Valsov beam theory
[10] as follows:

𝑢 = 𝑢
0
,

V = V0 + 𝑓
1
(𝑥) 𝜙
𝑧
+ 𝑔
1
(𝑥)

𝜕𝑢
0

𝜕𝑦

,

(3)

where𝑓
1
(𝑥) and𝑔

1
(𝑥) are cubic functions of the𝑥 coordinate.

It should be noted that although themodel of (3) has the same
number of degrees of freedom (DOFs) of TBM, it overcomes
classical beam theory limitations by foreseeing a quadratic
distribution of transverse stresses on the cross-section of the
beam.

The above theories are not able to include any kinematics
resulting from the application of torsional moments. The
simplest way to include torsion consists of considering a rigid
rotation of the cross-section around the 𝑦-axis (i.e., 𝜙

𝑦
), see

Figure 4. The resulting displacement model is

𝑢 = 𝑧𝜙
𝑦
,

𝑤 = −𝑥𝜙
𝑦
,

(4)

where 𝑤 is the displacement component along the 𝑧-axis.
According to (4), a linear distribution of transverse displace-
ment components is needed to detect the rigid rotation of the
cross-section about the beam axis.

Beammodels that include all the capabilities discussed so
far can be obtained by summing all these contributions. By
considering the deformations also in the 𝑦𝑧-plane, one has

𝑢 = 𝑢
0
+ 𝑧𝜙
𝑦
,

V = V0 + 𝑓
1 (
𝑥) 𝜙𝑧

+ 𝑓
2 (
𝑧) 𝜙𝑥

+ 𝑔
1 (
𝑥)

𝜕𝑢

𝜕𝑦

+ 𝑔
2 (
𝑧)

𝜕𝑤

𝜕𝑦

,

𝑤 = 𝑤
0
− 𝑥𝜙
𝑦
,

(5)

where 𝑓
1
(𝑥), 𝑔

1
(𝑥), 𝑓

2
(𝑧), and 𝑔

2
(𝑧) are cubic functions.

In the case of rectangular cross-section, the cubic functions
from Vlasov’s theory are 𝑓

1
(𝑥) = 𝑥 − (4/3𝑏

2
)𝑥
3, 𝑔
1
(𝑥) =

−(4/3𝑏
2
)𝑥
3, 𝑓
2
(𝑧) = 𝑧 − (4/3ℎ

2
)𝑧
3, and𝑔

2
(𝑧) = −(4/3ℎ

2
)𝑧
3,

where 𝑏 and ℎ are the dimensions of the cross-section along
the 𝑥- and 𝑧-axis, respectively. The beam models discussed
so far are not able to account for many higher-order effects,
such as the second-order in-plane deformations of the cross-
section.

Over the last century, many refined beam theories have
been proposed to overcome the limitations of classical beam
modelling. A commendable and comprehensive review on
beam theories can be found in [11, 12]. Different approaches
have been used to improve the beam models, which include
the use of warping functions based on de Saint-Venant’s
solution [13–16], the variational asymptotic solution (VAM)
[17–22], and the generalized beam theory (GBT) [23–28]. A
displacement fieldwhich is able to take into account the cross-
section deformation by means of warping functions is

𝑢 = 𝑢
0
,

V = V0 + f (𝑥) 𝜖
0

𝑥𝑦
− 𝑥

𝜕𝑢
0

𝜕𝑦

+ f (𝑧) 𝜖
0

𝑦𝑧
− 𝑧

𝜕𝑤
0

𝜕𝑦

,

𝑤 = 𝑤
0
,

(6)

where f(𝑥) and f(𝑧) are the warping functions, whereas 𝜖0
𝑥𝑦

and 𝜖0
𝑦𝑧
are the transverse shear strainsmeasured on the beam

axis. As a general guideline, one can state that the richer the
kinematic field is, the more accurate the 1D model becomes
[29]. The main disadvantages of a richer displacement field
are the increase of equations to be solved and the choice of
the terms to be added since this choice is generally problem
dependent.
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Figure 2: Differences between Euler-Bernoulli (a) and Timoshenko (b) beam theories.
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Figure 4: Rigid torsion of the beam cross-section.

CUF represents a tool to tackle the problem of the choice
of the expansion terms. Let u = {𝑢

𝑥
𝑢
𝑦
𝑢
𝑧
}
𝑇 be the trans-

posed displacement vector. According to CUF, the generic
displacement field can be expressed in a compact manner as
an 𝑁-order expansion in terms of generic functions, 𝐹

𝜏
, as

follows:

u (𝑥, 𝑦, 𝑧) = 𝐹
𝜏
(𝑥, 𝑧) u

𝜏
(𝑦) , 𝜏 = 1, 2, . . . ,𝑀, (7)

(−1, 1)
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Figure 5: Cross-sectional L9 element in the natural plane.
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Figure 6: Two assembled L9 elements in actual geometry.
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Figure 7: Cross-section of the C-shaped beam.

where 𝐹
𝜏
are the functions of the coordinates 𝑥 and 𝑧

on the cross-section. u
𝜏
is the vector of the generalized

displacements,𝑀 stands for the number of terms used in the
expansion. In line with (7), it is clear that (1) to (5) consist
of MacLaurin expansions that uses 2D polynomials 𝑥𝑖𝑧𝑗 as
base functions, where 𝑖 and 𝑗 are positive integers. This class
of models is referred to as TE (Taylor-Expansion). It should
be noted that (1), (2), and (4) are particular cases of the linear
(𝑁 = 1) TE model, which can be expressed as

𝑢
𝑥
= 𝑢
𝑥
1

+ 𝑥𝑢
𝑥
2

+ 𝑧𝑢
𝑥
3

,

𝑢
𝑦
= 𝑢
𝑦
1

+ 𝑥𝑢
𝑦
2

+ 𝑧𝑢
𝑦
3

,

𝑢
𝑧
= 𝑢
𝑧
1

+ 𝑥𝑢
𝑧
2

+ 𝑧𝑢
𝑧
3

,

(8)

where the parameters on the right-hand sides (𝑢
𝑥
1

, 𝑢
𝑦
1

, 𝑢
𝑧
1

,
𝑢
𝑥
2

, etc.) are the displacements and the rotations of the beam
reference axis. Higher-order terms can be taken into account
according to (7). For instance, the displacement fields of (3)
and (5) can be seen as particular cases of the third-order (𝑁 =

3) TE model as follows:

𝑢
𝑥
= 𝑢
𝑥
1

+ 𝑥𝑢
𝑥
2

+ 𝑧𝑢
𝑥
3

+ 𝑥
2
𝑢
𝑥
4

+ 𝑥𝑧𝑢
𝑥
5

+ 𝑧
2
𝑢
𝑥
6

+ 𝑥
3
𝑢
𝑥
7

+ 𝑥
2
𝑧𝑢
𝑥
8

+ 𝑥𝑧
2
𝑢
𝑥
9

+ 𝑧
3
𝑢
𝑥
10

,

𝑢
𝑦
= 𝑢
𝑦
1

+ 𝑥𝑢
𝑦
2

+ 𝑧𝑢
𝑦
3

+ 𝑥
2
𝑢
𝑦
4

+ 𝑥𝑧𝑢
𝑦
5

+ 𝑧
2
𝑢
𝑦
6

+ 𝑥
3
𝑢
𝑦
7

+ 𝑥
2
𝑧𝑢
𝑦
8

+ 𝑥𝑧
2
𝑢
𝑦
9

+ 𝑧
3
𝑢
𝑦
10

,

𝑢
𝑧
= 𝑢
𝑧
1

+ 𝑥𝑢
𝑧
2

+ 𝑧𝑢
𝑧
3

+ 𝑥
2
𝑢
𝑧
4

+ 𝑥𝑧𝑢
𝑧
5

+ 𝑧
2
𝑢
𝑧
6

+ 𝑥
3
𝑢
𝑧
7

+ 𝑥
2
𝑧𝑢
𝑧
8

+ 𝑥𝑧
2
𝑢
𝑧
9

+ 𝑧
3
𝑢
𝑧
10

.

(9)

The possibility of dealing with any-order expansion makes
the TE CUF able to handle arbitrary geometries, thin-walled
structures, and local effects as it has been shown for static [30,
31], linearized stability analyses [32, 33], and free-vibrations of
both metallic [34–36] and composite structures [37–39].

Recently, a new class of CUF models has been developed
by the first author and his coworkers [40, 41]. In this class

of models, Lagrange-like polynomials are used to discretize
the displacement field on the cross-section. These models
are referred to as LE (Lagrange Expansion) and they have
been used to develop a component-wise (CW) modelling
approach in some recent works. Static analyses on isotropic
[40] and composite structures [42, 43] have revealed the
strength of LE models in dealing with open cross-sections,
localized boundary conditions, and layer-wise descriptions of
composite structures. Moreover, static and dynamic analyses
of reinforced-shell wing structures [44, 45] as well as civil
engineering framed constructions [46, 47] by 1D CWmodels
have been carried out and the results have shown the
enhanced capabilities of LE in obtaining 3D accuracy with
very low computational costs. Furthermore, the LE models
have shown their enhanced capabilities in dealing with load
factors and localized inertia in static analysis of thin-walled
beams in a companion paper [48].

In the present paper, TE and LE models are extended
to include localized inertia in the free vibration analysis
of homogeneous isotropic thin-walled beams. In the next
section, LE models are formulated by using CUF. 1D refined
elements including localized inertia are then obtained by
classical finite element method (FEM). Numerical results are
subsequently discussed. Finally, the main conclusions are
outlined.

2. Higher-Order Models Based on
Lagrange Polynomial Expansions

The degrees of freedom of the TEmodels (displacements and
𝑁-order derivatives of displacements) described above are
defined along the axis of the beam.Theunknownvariables are
only pure displacements if Lagrange polynomials are adopted
as expansion functions (𝐹

𝜏
) in (7). This class of CUF models,

which is referred to as LE, was recently introduced in [40],
where triangular three-(L3) and six-node (L6) elements as
well as quadrilateral four-(L4), nine-(L9), and 16-node (L16)
elements were used to discretize the displacement unknowns
on the cross-section of beam structures. In this paper, L9
elements are used. In the case of an L9 element, the cross-
sectional interpolation functions are given by

𝐹
𝜏
=

1

4

(𝑟
2
+ 𝑟𝑟
𝜏
) (𝑠
2
+ 𝑠𝑠
𝜏
) 𝜏 = 1, 3, 5, 7,

𝐹
𝜏
=

1

2

𝑠
2

𝜏
(𝑠
2
− 𝑠𝑠
𝜏
) (1 − 𝑟

2
) +

1

2

𝑟
2

𝜏
(𝑟
2
− 𝑟𝑟
𝜏
) (1 − 𝑠

2
)

𝜏 = 2, 4, 6, 8,

𝐹
𝜏
= (1 − 𝑟

2
) (1 − 𝑠

2
) 𝜏 = 9,

(10)

where 𝑟 and 𝑠 vary from −1 to +1, whereas 𝑟
𝜏
and 𝑠
𝜏
are the

coordinates of the nine points whose locations in the natural
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(a) 6 L9 (b) 10 L9

Figure 8: Distribution of L9 elements above the cross-section of the C-shaped beam.

Figure 9: Position of the non-structuralmass at the tip cross-section
of the C-shaped beam.

coordinate frame are shown in Figure 5. The displacement
field given by an L9 element is therefore

𝑢
𝑥
= 𝐹
1
𝑢
𝑥
1

+ 𝐹
2
𝑢
𝑥
2

+ ⋅ ⋅ ⋅ + 𝐹
9
𝑢
𝑥
9

𝑢
𝑦
= 𝐹
1
𝑢
𝑦
1

+ 𝐹
2
𝑢
𝑦
2

+ ⋅ ⋅ ⋅ + 𝐹
9
𝑢
𝑦
9

𝑢
𝑧
= 𝐹
1
𝑢
𝑧
1

+ 𝐹
2
𝑢
𝑧
2

+ ⋅ ⋅ ⋅ + 𝐹
9
𝑢
𝑧
9

,

(11)

where 𝑢
𝑥
1

, . . . , 𝑢
𝑧
9

are the displacement variables of the prob-
lemand represent the translational displacement components
of each of the nine points of the L9 element. The choice
of using Lagrange-type polynomials to discretize the cross-
section displacement field leads to the following advantages.

(i) Each of the problem unknowns (e.g., 𝑢
𝑥
1

, . . . , 𝑢
𝑧
9

)
has a precise physical meaning; that is, they are pure
translational displacements. This is not true in the
case of TE models.

(ii) The beam model can be refined in a smart way; that
is, unknown variables can be arbitrarily placed in
subdomains over the cross-section area (e.g., close to
loadings). This is realized by discretizing the beam
cross-section with a number of L-elements as shown
in Figure 6.

3. Finite Element Formulation

3.1. Preliminaries. Referring to the coordinate frame shown
in Figure 1, let the cross-section of the structure be denoted
by Ω and let the beam boundaries over 𝑦 be 0 ≤ 𝑦 ≤ 𝐿. The
stress, 𝜎, and strain, 𝜖, components are grouped as follows:

𝜎 = {𝜎𝑦𝑦
𝜎
𝑥𝑥

𝜎
𝑧𝑧

𝜎
𝑥𝑧

𝜎
𝑦𝑧

𝜎
𝑥𝑦}

𝑇

,

𝜖 = {𝜖𝑦𝑦
𝜖
𝑥𝑥

𝜖
𝑧𝑧

𝜖
𝑥𝑧

𝜖
𝑦𝑧

𝜖
𝑥𝑦}

𝑇

.

(12)

In the case of small displacements with respect to a charac-
teristic dimension of Ω, linear strain-displacement relations
can be used as follows:

𝜖 = Du, (13)
whereD is the following linear differential operator:

D =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

0

𝜕

𝜕𝑦

0

𝜕

𝜕𝑥

0 0

0 0

𝜕

𝜕𝑧

𝜕

𝜕𝑧

0

𝜕

𝜕𝑥

0

𝜕

𝜕𝑧

𝜕

𝜕𝑦

𝜕

𝜕𝑦

𝜕

𝜕𝑥

0

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

. (14)

Constitutive laws were exploited to obtain stress components
as follows:

𝜎 = C̃𝜖. (15)

In the case of isotropic material, the matrix ̃C is

̃C =

[

[

[

[

[

[

[

[

𝜆 + 2𝐺 𝜆 𝜆 0 0 0

𝜆 𝜆 + 2𝐺 𝜆 0 0 0

𝜆 𝜆 𝜆 + 2𝐺 0 0 0

0 0 0 𝐺 0 0

0 0 0 0 𝐺 0

0 0 0 0 0 𝐺

]

]

]

]

]

]

]

]

, (16)
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(a) 10 L9 LE model (29.861Hz)

+

(b) FEM-3D model (29.756Hz)

Figure 10: Eighth modal shape of the C-shaped beam.

(a) 10 L9 LE model (27.169Hz)

+

(b) FEM-3D model (26.716Hz)

Figure 11: Eighth modal shape of the C-shaped beam with a non-structural mass at the tip cross-section (Figure 9).

b
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t

z

x

Figure 12: Cross-section of the I-shaped beam.

where 𝐺 and 𝜆 are the Lamé’s parameters. If Poisson’s ratio ]
and Youngmodulus 𝐸 are used, one has𝐺 = 𝐸/(2(1+ ])) and
𝜆 = ]𝐸/((1 + ])(1 − 2])).

3.2. Fundamental Nuclei. The FE approach was adopted to
discretize the structure along the 𝑦-axis. This process is
conducted via a classical finite element technique, where the
displacement vector is given by

u (𝑥, 𝑦, 𝑧) = 𝐹
𝜏
(𝑥, 𝑧)𝑁

𝑖
(𝑦) q
𝜏𝑖
, (17)

𝑁
𝑖
stands for the shape functions and q

𝜏𝑖
for the nodal

displacement vector,

q
𝜏𝑖
= {𝑞𝑢

𝑥𝜏𝑖

𝑞
𝑢
𝑦𝜏𝑖

𝑞
𝑢
𝑧𝜏𝑖

}

𝑇

. (18)

For the sake of brevity, the shape functions are not reported
here.They can be found inmany books on finite elements, for

instance, in [49]. Elementswith four nodes (B4)were adopted
in this work; that is, a cubic approximation along the 𝑦 axis
was assumed. The choice of the cross-section discretization
for the LE class (i.e., the choice of the type, the number,
and the distribution of cross-section elements) or the theory
order, 𝑁, for the TE class is completely independent of the
choice of the beam finite element to be used along the axis of
the beam.

The stiffness and mass matrices of the elements were
obtained via the principle of virtual displacements as follows:

𝛿𝐿 int = ∫

𝑉

𝛿𝜖
𝑇
𝜎𝑑𝑉 = −𝛿𝐿 ine, (19)

where 𝐿 int stands for the strain energy, 𝛿𝐿 ine is the work of
the inertial loadings, and 𝛿 stands for the virtual variation.
The virtual variation of the strain energy was rewritten using
(13), (15), and (17) as follows:

𝛿𝐿 int = 𝛿q𝑇
𝜏𝑖
K𝑖𝑗𝜏𝑠q

𝑠𝑗
, (20)

where K𝑖𝑗𝜏𝑠 is the stiffness matrix in the form of the funda-
mental nucleus. Its components are provided below and they
are referred to as𝐾𝑖𝑗𝜏𝑠

𝑟𝑐
, where 𝑟 is the row number (𝑟 = 1, 2, 3)

and 𝑐 is the column number (𝑐 = 1, 2, 3).

𝐾
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(a) 7 L9 (b) 12 L9

Figure 13: Distribution of L9 elements above the cross-section of the I-shaped beam.

Figure 14: Position of the non-structural mass at the tip cross-
section of the I-shaped beam.
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(21)

The fundamental nucleus has to be expanded according to the
summation indexes 𝜏 and 𝑠 in order to obtain the elemental
stiffness matrix.

The virtual variation of the work of the inertial loadings
is

𝛿𝐿 ine = ∫

𝑉

𝜌𝛿u𝑇ü𝑑𝑉, (22)

where 𝜌 stands for the density if the material, and ü is the
acceleration vector. Equation (22) is rewritten using (17) as
follows:

𝛿𝐿 ine = 𝛿q𝑇
𝜏𝑖
∫

𝑙

𝑁
𝑖
𝑁
𝑗
𝑑𝑦∫

Ω

𝜌𝐹
𝜏
𝐹
𝑠
𝑑Ωq̈
𝑠𝑗
= 𝛿q𝑇
𝜏𝑖
M𝑖𝑗𝜏𝑠q̈

𝑠𝑗
,

(23)
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(b) With localized inertia

Figure 15: MAC values between the 12 L9 and FEM-3D models of the I-shaped beam.
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Figure 16: Cross-section of the hollow-rectangular box beam.

where M𝑖𝑗𝜏𝑠 is the fundamental nucleus of the mass matrix.
Its components are provided below and they are referred to as
𝑀
𝑖𝑗𝜏𝑠

𝑟𝑐
, where 𝑟 is the row number (𝑟 = 1, 2, 3) and 𝑐 denotes

column number (𝑐 = 1, 2, 3). Consider the following:

M𝑖𝑗𝜏𝑠
11

= M𝑖𝑗𝜏𝑠
22

= M𝑖𝑗𝜏𝑠
33

= 𝜌∫

𝑙

𝑁
𝑖
𝑁
𝑗
𝑑𝑦∫

Ω

𝐹
𝜏
𝐹
𝑠
𝑑Ω

M𝑖𝑗𝜏𝑠
12

= M𝑖𝑗𝜏𝑠
13

= M𝑖𝑗𝜏𝑠
21

= M𝑖𝑗𝜏𝑠
23

= M𝑖𝑗𝜏𝑠
31

= M𝑖𝑗𝜏𝑠
32

= 0.

(24)

It should be noted that no assumptions on the approximation
order or on the choice of 𝐹

𝜏
functions (TE or LE) have been

made in formulating K𝑖𝑗𝜏𝑠 and M𝑖𝑗𝜏𝑠. It is therefore possible
to obtain refined beam models without changing the formal
expression of the nuclei components. This is the key-points
of CUF which allows, with only nine coding statements, the
implementation of any-order of multiple class theories.

In the present paper, the effect due to non-structural
masses is also investigated. Localized inertia can in principle
be arbitrarily placed into the 3D domain of the beam
structure. In the framework of the CUF, this is easily realized
by adding the following term to the fundamental nucleus of
the mass matrix:

m𝑖𝑗𝜏𝑠 = I [𝐹
𝜏
(𝑥
𝑚
, 𝑧
𝑚
) 𝐹
𝑠
(𝑥
𝑚
, 𝑧
𝑚
)𝑁
𝑖
(𝑦
𝑚
)𝑁
𝑗
(𝑦
𝑚
)] 𝑚̃,

(25)

where I is the 3 × 3 identity matrix and 𝑚̃ is the value of the
non-structural mass, which is applied at point (𝑥

𝑚
, 𝑦
𝑚
, 𝑧
𝑚
).

The undamped dynamic problem can be derived by
substituting (20) and (23) into (19). After global mass and
stiffness FE matrices are assembled, one has

Mq̈ + Kq = 0. (26)

Introducing harmonic solutions, it is possible to compute the
natural frequencies 𝜔

𝑘
by solving an eigenvalues problem as

follows:

(K − 𝜔
2

𝑘
M) q
𝑘
= 0, (27)

where q
𝑘
is the 𝑘th eigenvector. The eigenvalue problem of

(27) is solved by using ARPACK libraries [50], which are
based on an algorithmic variant of the Arnoldi process [51]
called Implicitly Restarted Arnoldi Method (IRAM) [52].

4. Numerical Results

This section investigates the efficiency of the present
approach applied to modal analysis of beam structures with
localized inertia. The attention is focused on the capability
of the approach to deal with refined solutions with low
computational costs.The results were comparedwith classical
beam theories and FE models from the commercial code
MSC Nastran©. Common C- and I-shaped beams as well
as hollow-rectangular boxes were considered. The adopted
material was an aluminium alloy and it had the following
characteristics: Young modulus 𝐸 equal to 75GPa, Poisson’s
ratio ] equal to 0.33, and density 𝜌 = 2700Kg/m3. For all the
problems addressed, ten four-node (B4) cubic 1D Lagrangian
finite elements were used along the beam axis for both TE and
LE models.

4.1. C-Section Beam. The analysis of a cantilever C-shaped
beam was carried out as the first assessment. The cross-
section of the structure is shown in Figure 7.The geometrical
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(a) 10 L9 (b) 16 L9

Figure 17: Distribution of L9 elements above the cross-section of the hollow-rectangular box beam.

+

(a) FEM-2D

−

(b) FEM-3D

Figure 18: Mesh discretization for the FEM-2D and FEM-3D MSC Nastran© models.

data were as follows: 𝑏 = 0.5m, 𝑎 = ℎ = 2𝑏, and 𝑡 = 0.1m.
The length of the beam, 𝐿, was equal to 20m.

Table 1 shows the first ten natural frequencies for each
implemented model. Columns 2 and 3 refer to the classical
models EBBM and TBM. The natural frequencies by fourth-
order (𝑁 = 4), sixth-order (𝑁 = 6), and eighth-order (𝑁 = 8)
refined TE beam model are given in columns 4 to 6. Two
different distributions of L9 elements above the cross-section
were considered (6 L9 and 10 L9) in the case of LEmodelling
approach, as shown in Figure 8, and the results are given in
the 7th and 8th columns of Table 1. In columns 9 and 10, MSC
Nastran© shell and solid models are given for comparison
purposes, and they are,respectively, referred to as FEM-2D
and FEM-3D in the table. FEM-2D model was obtained by
using 4-node QUAD elements, whereas FEM-3D model was
obtained by using 8-node CHEXA elements. For eachmodel,
the number of DOFs is given in the last row of Table 1. The
following comments can be made:

(1) As expected, classical models are not able to provide
torsional and coupled modes.

(2) A higher than fourth-order TE model is necessary to
correctly detect torsional modes.

(3) As indicated in Table 1, where superscripts are used to
denote the kind of each vibrational mode, bending,
torsional, and coupled bending/torsional modes are
detected by LE models in accordance with MSC

Nastran© 2D and 3D models. An appropriate distri-
bution of the L9 elements above the cross-section is
effective in improving the accuracy of the solution.

(4) The 10 L9 LEmodel provides a solid-like solutionwith
a high reduction of the number of the DOFs.

A second beam configuration was considered and a non-
structural mass was added on the C-shaped beam at the
coordinates (0, 𝐿, ℎ), as Figure 9 shows. The weight of the
non-structural mass was equal to 4000Kg. For this load case,
Table 2 reports the main vibrational frequencies by different
models for clamped-free boundary conditions. The number
of the DOFs for each model implemented is also given in
the last row of the table. Figures 10 and 11 show the 8th
mode shape by both LE and FEM-3D models, and the effects
due to the localized non-structural mass are highlighted.
Table 3 shows the natural frequencies of the C-shaped beam
undergoing clamped-clamped boundary conditions. For this
case, the same localized inertia as above was placed at 𝑦 =

(3/4)𝐿 as shown in Figure 9. The following comments arise.

(1) As expected, the application of the non-structural
mass is responsible for bending/torsional mode cou-
plings.

(2) Classical models and lower-order TE models are not
effective for the problem under consideration.

(3) The proposed LE model is able to detect the MSC
Nastran© shell and solid results.
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(a) Mode 2, 16 L9 LE model (57.023Hz) (b) Mode 2, FEM-3D model (54.551Hz)

(c) Mode 10, 16 L9 LE model (109.87Hz) (d) Mode 10, FEM-3D model (101.58Hz)

Figure 19: Modal shapes of the hollow-rectangular box beam.

(a) Case A (b) Case B

Figure 20: Position of the non-structural mass at the tip cross-section of the hollow-rectangular box beam.
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Figure 21: MAC values between the 16 L9 and FEM-3D models of the hollow-rectangular box beam.
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(a) Mode 1, 16 L9 LE model (6.04Hz) (b) Mode 1, FEM-3D model (5.98Hz)

(c) Mode 4, 16 L9 LE model (43.20Hz) (d) Mode 4, FEM-3D model (52.90Hz)

Figure 22: Modal shapes of the hollow-rectangular box beam with localized inertia at the tip cross-section (Figure 20(a), Case A).

Table 1: First 10 natural frequencies (Hz) for the cantilever C-shaped beam.

Mode Classical and refined models based on TE LE models MSC Nastran©

EBBM TMB 𝑁 = 4 𝑁 = 6 𝑁 = 8 6 L9 10 L9 FEM-2D FEM-3D
1 1.75b 1.75b 1.76b 1.76b 1.76b 1.76b 1.76b 1.74b 1.75b

2 2.99b 2.98b 2.93b 2.76b 2.65b 2.56b 2.56b 2.49b 2.54b

3 10.97b 10.90b 10.90b 7.66t 6.73t 6.29t 6.27t 6.09t 6.23t

4 18.67b 18.35b 12.25t 10.89c 10.89c 10.87c 10.87b 10.71b 10.83b

5 30.63b 30.20b 17.46t 13.83t 12.37t 11.46t 11.41t 10.99t 11.34t

6 51.81b 49.83b 29.94b 24.87t 22.54t 21.18t 21.10t 20.29c 20.97t

7 59.75b 58.25b 34.66t 29.93b 29.87t 29.25t 29.19t 28.82t 29.06t

8 65.87a 65.87a 45.76t 32.49b 30.21b 29.89b 29.86b 29.55b 29.75b

9 98.20b 93.73b 56.94c 41.26c 37.12c 34.93c 34.76c 33.44c 34.53c

10 100.22b 94.43b 59.22c 57.05c 53.02c 50.23c 49.88c 48.06c 49.51c

DOFs 93 155 1395 2604 4185 3627 5859 38250 177000
aAxial; bbending; ccoupled; ttorsional

(4) The number of the DOFs is very low in the case of
CUF models if compared both to the shell and solid
models.

4.2. I-Shaped Beam. A cantilever I-shaped beam was consid-
ered as the second example. The cross-section geometry is
shown in Figure 12.Thedimensions𝑎 and 𝑏were, respectively,
equal to 0.2m and 0.3m, whereas the thickness 𝑡 was 0.05m.
The length of the structure, 𝐿, was 3m.

The first ten natural frequencies, calculated according to
different models, are given in Table 4. Classical and refined
TE as well as LE models are considered. Two different LE

models were implemented and they differed in the cross-
section L9 elements discretization, as shown in Figure 13. In
columns 8 to 10,MSCNastran© beam, shell, and solidmodels
are given for comparison purposes. MSCNastran© 1Dmodel
(hereinafter referred to as FEM-1D) was obtained with 21

two-node CBAR elements, whereas shell and solid elements
were constructed using the same elements as in the previous
analysis case, and they are referred to as FEM-2D and FEM-
3D, respectively.

The consistent correspondence between the 12 L9 LE
model and the solid model was further investigated bymeans
of the Modal Assurance Criterion (MAC), whose graphic
representation is shown in Figure 15(a). The MAC is defined
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Table 2: First 10 natural frequencies (Hz) for the cantilever C-shaped beam with localized inertia at the tip cross-section (Figure 9).

Mode Classical and refined models based on TE LE models MSC Nastran©

EBBM TMB 𝑁 = 4 𝑁 = 6 𝑁 = 8 6 L9 10 L9 FEM-2D FEM-3D
1 1.15b 1.15b 1.15b 1.13c 1.12c 1.11c 1.11c 1.10c 1.11c

2 1.97b 1.96b 1.89b 1.73c 1.65c 1.58c 1.58c 1.53c 1.57c

3 8.67b 8.63b 7.62t 5.70t 5.16t 4.90t 4.88t 4.88t 4.56t

4 14.69b 14.48b 11.37t 9.28t 8.37t 7.77t 7.73t 7.39t 7.67t

5 25.76b 25.44b 12.60c 10.09c 9.82c 9.73c 9.72c 9.52c 9.86c

6 41.50b 40.48b 25.28c 20.64c 18.23c 16.92c 16.81c 16.08c 16.63c

7 49.00b 48.07b 30.46c 23.37c 22.83c 22.71c 22.64c 22.59c 22.23c

8 54.78b 53.78b 35.77c 29.79c 28.69c 27.42c 27.16c 26.09c 26.71c

9 85.83b 81.86b 42.93c 33.48c 30.51c 29.70c 29.64c 29.27c 29.51c

10 89.33b 85.37b 51.67c 40.65c 38.24c 39.12c 38.16c 37.90c 34.35c

DOFs 93 155 1395 2604 4185 3627 5859 38250 177000
bBending; ccoupled; ttorsional.

Table 3: First 10 natural frequencies (Hz) for the clamped-clamped C-shaped beam with localized inertia at 𝑦 = (3/4)𝐿 (Figure 9).

Mode Classical and refined models based on TE LE models MSC Nastran©

EBBM TMB 𝑁 = 4 𝑁 = 6 𝑁 = 8 6 L9 10 L9 FEM-2D FEM-3D
1 10.09b 9.99b 9.50b 7.13c 6.34c 5.90c 5.86c 5.55c 5.57c

2 17.18b 16.70b 11.62b 10.32c 10.21c 10.14c 10.13c 9.86c 9.91c

3 24.52b 24.01b 19.39t 14.82t 13.33t 12.49t 12.41t 11.99t 12.45t

4 41.73b 39.38b 26.06t 23.00t 22.54t 22.34t 22.30t 22.02t 21.76t

5 51.56b 49.97b 31.58c 28.12c 27.59c 26.33c 26.13c 25.15c 26.26c

6 85.41b 79.17b 45.77c 31.47c 28.50c 27.99c 27.96c 27.63c 27.81c

7 91.67b 87.63b 49.97c 47.70c 44.95c 42.40c 41.92c 39.70c 41.22c

8 108.39b 105.88b 64.95c 50.60c 48.43c 48.14c 47.96c 46.89c 46.82c

9 142.65b 135.53b 76.50c 61.84c 56.29c 52.94c 52.18c 48.26c 48.43c

10 154.97b 139.71b 83.10c 63.53c 62.81c 62.63c 62.41c 61.33c 56.38c

DOFs 93 155 1395 2604 4185 3627 5859 37995 176115
bBending; ccoupled; ttorsional.

Table 4: First 10 natural frequencies (Hz) for the I-shaped beam.

Mode Classical and refined models based on TE LE models MSC Nastran©

EBBM TMB 𝑁 = 6 𝑁 = 8 7 L9 12 L9 FEM-1D FEM-2D FEM-3D
1 15.67b 15.65b 15.73b 15.73b 15.75b 15.72b 15.63b 15.11b 15.68b

2 35.28b 35.01b 34.93b 34.90b 34.87b 34.86b 34.73b 34.73b 34.80b

3 97.91b 96.08b 96.16t 88.74t 77.68t 76.58t 96.26b 68.45t 75.61t

4 217.27b 206.05b 97.06b 96.99b 97.13b 96.88b 196.99b 93.04b 96.63b

5 272.62b 265.09b 198.27b 197.28b 196.28b 196.10b 262.81b 191.98b 195.71b

6 439.19a 439.01a 265.24b 264.79b 246.78t 243.49t 439.09a 220.31t 240.63t

7 529.90b 507.02b 298.13t 277.27t 265.12t 264.20b 486.79b 253.52b 263.49b

8 592.06b 533.06b 440.66a 440.64a 440.64a 440.62a 497.53b 413.86c 440.23a

9 866.98b 811.08b 491.81b 487.36b 453.27t 448.06t 788.63b 439.82a 443.55t

10 1117.81b 950.08b 502.74t 495.78t 482.74b 481.97b 828.65b 464.45b 480.95b

DOFs 93 155 2604 4185 4185 6975 126 12200 127800
aAxial; bbending; ccoupled; ttorsional.
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Table 5: First 10 natural frequencies (Hz) for the I-shaped beam with localized inertia at the tip cross-section (Figure 14).

Mode Classical and refined models based on TE LE models MSC Nastran©

EBBM TMB 𝑁 = 4 𝑁 = 6 𝑁 = 8 7 L9 12 L9 FEM-2D FEM-3D
1 3.70b 3.69b 3.67b 3.66b 3.65b 3.66b 3.63b 2.60b 3.61b

2 8.33b 8.29b 8.07c 8.01c 7.95c 8.17c 7.84c 5.74b 7.78c

3 61.86b 61.46b 53.74c 50.74t 47.77t 52.63t 45.30t 41.95t 38.50c

4 103.26b 102.06b 72.37t 64.48t 58.75t 80.77t 55.33t 53.62t 48.73t

5 171.03b 163.96b 101.98c 95.58c 91.37c 104.66c 88.99c 85.71c 84.95c

6 237.21b 231.18b 157.05t 151.08t 145.40t 150.93t 139.02t 129.29t 132.30t

7 458.27b 441.52b 224.05c 213.21c 204.64c 199.42c 191.89c 186.50c 184.73c

8 486.61b 444.07b 281.72c 266.67c 257.43c 254.03c 247.97c 230.50c 243.84c

9 679.49b 649.65b 392.70t 368.10t 343.10t 371.59t 316.84t 292.44t 292.90t

10 841.12b 777.59b 435.90c 420.36c 408.36c 398.96c 389.35c 366.42c 370.94c

DOFs 93 155 1395 2604 4185 4185 6975 12200 127800
bBending; ccoupled; ttorsional.

as a scalar representing the degree of consistency between two
distinct modal vectors (see [53]) as follows:

MAC
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=
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where {𝜙
𝐴
𝑖

} is the 𝑖th eigenvector of model A, whereas {𝜙
𝐵
𝑗

}

is the 𝑗th eigenvector of model B. The modal assurance
criterion takes on values from zero (representing no con-
sistent correspondence) to one (representing a consistent
correspondence). The following remarks can be made:

(1) Unlike classical beam theories, higher-order TE and
LE models are able to foresee torsional and coupled
modes.

(2) Unlikely CUF 1D models, FEM-1D model is not able
to produce the solid-like solution.

(3) The cross-section discretization refinement for LE
models is an effective method that leads to the 3D
solution.

(4) Bending, torsional, and coupled modes are detected
by LE models in accordance with FEM-2D and FEM-
3Dmodels with a high reduction of the number of the
DOFs.

(5) The MAC analysis underlines the perfect correspon-
dence between the LEmodel and the solid one for the
considered load case.

In the second load case, a non-structural mass was added
at the tip cross-section of the I-shaped beam, as shown in
Figure 14. The weight of the localized inertia was equal to
1000Kg and it was applied at (𝑎, 𝐿, 𝑏). Table 5 gives the
first 10 vibrational frequencies for classical, TE, LE, and MSC
Nastran© models.The application of the non-structural mass
produces an increase in the number of the coupled modes, as
expected. The MACmatrix between the 12 L9 model and the
FEM-3D model for the load case under consideration is also
calculated and it is represented in Figure 15(b). It should be
underlined that

(1) Classicalmodels are ineffective in detecting the effects
due to non-structural masses that are not placed in
correspondence of the shear center;

(2) The increase in the order for TE models provides
greater accuracy on the evaluation of the coupled
frequencies;

(3) Even though local inertia is considered, LE models
can produce solid-like solution, as shown by theMAC
matrix. In fact, a very good agreement was found for
the FEM-3D and LEmodels. LE analyses are therefore
clearly able to detect 3D-elasticity solutions. However,
some mixings in modes 3 and 4 are evident.

4.3. Hollow-Rectangular Beam. The cantilever hollow-square
cross-section beam shown in Figure 16 was investigated as
the last example. The geometrical data were as follows: 𝑎 =

0.8m, ℎ = 0.2m, and 𝑡 = 0.01m. The length of the
beam, 𝐿, was equal to 3.2m. Table 6 reports the first 10
natural frequencies, together with the number of DOFs for
each model implemented. Columns 2 and 3 show the results
from the classical beam theories. The TE models from the
fourth-order to the eighth-order Taylor-like expansion are
considered in columns 4 to 6. The LE models are reported in
columns 7 and 8. The LE models were obtained by adopting
two different discretizations above the cross-section of the
beam, as Figure 17 shows. In Figure 17, a different notation
is adopted with respect to Figures 8 and 13. The nodes of the
L-elements are, in fact, not depicted in Figure 17, for the sake
of clearness. In columns 9 and 10 of Table 6, MSC Nastran©
shell and solidmodels are given for comparison purposes and
they are referred to as FEM-2D and FEM-3D, respectively.
For this analysis case, the mesh discretizations for FEM-2D
and FEM-3Dmodels are shown in Figure 18. Figure 19 shows
a comparison between some selected modal shapes by the
16 L9 LE and FEM-3D models.

The vibrations of the box beamwere further analyzed and
a non-structural mass with a weight of 500Kg was added
at the coordinates (𝑎, 𝐿, −ℎ/2), as shown in Figure 20(a)
(Case A). A comparison between LE and MSC Nastran©
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Table 6: First 10 natural frequencies (Hz) for the hollow-rectangular box beam.

Mode Classical and refined models based on TE LE models MSC Nastran©

EBBM TMB 𝑁 = 4 𝑁 = 6 𝑁 = 8 10 L9 16 L9 FEM-2D FEM-3D
1 25.48b 25.36b 25.15b 24.73b 24.52b 24.53b 24.07b 24.42b 23.89b

2 75.70b 72.79b 72.58b 72.42b 72.35b 62.08d 57.02d 55.34d 54.55d

3 158.03b 153.20b 137.79b 127.58b 90.87d 72.62b 72.67b 70.43s 69.59s

4 411.74a 357.95b 146.19t 134.29d 111.68s 100.61s 74.19s 73.98s 72.51b

5 435.12b 406.88b 330.86b 265.87s 127.00s 103.42s 77.60s 74.31b 73.12s

6 435.23b 411.74a 346.16b 274.47d 131.29s 109.38s 80.88s 75.35s 75.03s

7 833.29b 745.94b 413.68a 344.10b 139.88s 118.52d 84.76s 81.38s 80.48s

8 1089.50b 808.29b 428.76t 361.71s 141.44d 119.24s 96.36s 89.73s 89.56s

9 1235.23a 1146.76b 549.40b 388.13d 152.86s 122.01b 97.79s 93.33s 92.30s

10 1338.69b 1284.52b 690.19t 413.49a 166.72s 133.77s 109.87s 101.87s 101.58s

DOFs 93 155 1395 2604 4185 5580 8928 15000 38400
aAxial; bbending; ccoupled; ddifferential bending; ttorsional; sshell-like.

Table 7: First 10natural frequencies (Hz) for the hollow-rectangular
box beamwith localized inertia at the tip cross-section (Figure 20(a),
Case A).

Mode LE models MSC Nastran©

10 L9 16 L9 FEM-2D FEM-3D
1 6.20d 6.04d 6.11d 5.98d

2 18.54d 18.23d 18.94d 17.97d

3 43.77d 39.75d 38.66d 38.02d

4 44.07d 43.20d 69.36d 52.90d

5 95.47d 74.18s 70.43s 69.60s

6 100.62s 77.59s 73.98s 73.12s

7 103.41s 79.15s 78.77s 74.72s

8 109.34s 84.75s 81.38s 80.47s

9 118.77s 93.54s 89.90s 89.07s

10 119.60s 96.37s 93.33s 90.49s

DOFs 5580 8928 15000 38400
bBending; ccoupled; ddifferential bending; ttorsional; sshell-like.

models is given in Table 7. The correspondence between
LE 16 L9 and FEM-3D models is underlined through MAC
analyses, which are shown in Figure 21. MAC matrices for
both the cases without and with localized inertia (Case A) are
provided in Figure 21. Somemodal shapes by LE andFEM-3D
models for the load case considered are shown in Figure 22.

In the last load case, two non-structural masses were
added at (𝑎, 𝐿, −ℎ/2) and (0, 𝐿, ℎ/2), as shown in Figure 20(b)
(Case B). For this case, theweight of each non-structuralmass
was equal to 250Kg. The results from LE and MSC Nastran©
analyses are given in Table 8 for Case B. The following
statements hold:

(1) As it is also clear from previous analyses, CUF 1D
models are able to foresee cross-sectional deforma-
tions, and thus local shell-like modes of the box beam
are detected.

(2) At least an eight-order TEmodel (𝑁 = 8) is necessary
to correctly detect shell-like natural frequencies.

Table 8: First 10natural frequencies (Hz) for the hollow-rectangular
box beam with two localized masses at the tip cross-section
(Figure 20(b), Case B).

Mode LE models MSC Nastran©

10 L9 16 L9 FEM-2D FEM-3D
1 6.86b 6.86b 7.02b 6.84b

2 13.68d 12.08d 11.79d 11.66d

3 19.96b 19.89b 20.54b 19.75b

4 55.69s 54.27d 66.47s 54.22d

5 62.60d 60.69s 66.78d 64.12s

6 65.02s 62.80s 70.43s 69.21s

7 94.04b 73.64s 73.98s 71.08s

8 97.95s 74.55s 81.38s 73.56s

9 101.2s 77.86s 83.15s 80.21s

10 100.4s 84.96s 85.66s 80.67s

DOFs 5580 8928 15000 38400
bBending; ccoupled; ddifferential bending; ttorsional; sshell-like.

(3) The LE models accurately detect the solid solution.
Both global and local modes are correctly found with
a significant reduction of computational costs.

(4) For the case with no localized inertia, MAC matrix
shows a perfect correspondence between LE and
FEM-3D models. However, modes 3 and 4 as well
as modes 8 and 9 are exchanged between the two
models.

(5) Good agreement is evident from the MAC matrix
even though non-structural masses are applied. In
this case, no mode exchanges appear but some mix-
ings are evident since coupled phenomena occured.

5. Conclusions

The effects due to non-structural localized inertia on the
vibration of isotropic thin-walled beams have been inves-
tigated in this work. The ineffectiveness of classical beam
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theories and related FEs in dealing with non-structural
masses which are not placed in the shear center of the cross-
section has been demonstrated. In fact, localized inertia has
been shown to be responsible for torsion, bending/torsion
couplings, and local phenomena such as cross-sectional
deformations. For these reasons, the use of higher-order
beam theories is mandatory.

In this paper, higher-order beam theories have been
developed by using the Carrera Unified Formulation (CUF),
which is a hierarchical approach allowing for the automatic
formulation of FE arrays deriving from arbitrarily enriched
kinematic fields. By using an appropriate indexing notation,
stiffness and mass matrices are in fact written in terms of
fundamental nuclei which depend neither on the approxi-
mation order nor the class of the beam theory implemented.
Accordingly, in the present work, non-structural localized
masses have been introduced and arbitrarily placed over the
3D beam domain by exploiting the higher-order capabilities
of CUF. Two CUF beam classes have been considered for the
proposed analyses, TE and LE. In TE class, beam theories
are formulated by using Taylor-like polynomials to discretize
the cross-sectional generalized displacements. On the other
hand, LEmodels have only pure displacement unknowns and
Lagrange polynomials are used to locally refine the cross-
section displacement field.

A number of homogeneous thin-walled beams subjected
to localized inertia have been addressed in the proposed study
and the results compared to those from 2D plate/shell and 3D
solid FE models by the commercial code MSC Nastran©.The
analyses highlight the enhanced capabilities of CUF theories
with respect to classical ones when dealing with localized
inertia effects. In particular, it is demonstrated that LEmodels
yield 3D results with very low computational efforts.
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