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Summary

Luca Ardito has focused his PhD on studying how to identify and to reduce the
energy consumption caused by software. The project concentrates on the application
level, with an experimental approach to discover and modify characteristics that
waste energy. We can define five research goals:

• RG1. Is it possible to measure the energy consumption of an ap-
plication? Measuring the energy consumption of an electronic device (PC,
mobile phone, etc.) is straightforward, but several applications coexist on
it, possibly with very different energy needs. Usage profiles for applications
are certainly important too. We will consider the most common platforms
(Windows, Linux, Mac Osx)1.

• RG2. Could Energy Efficiency be considered as a software non-
functional requirement? Research has increasingly focused on improving
the Energy Efficiency of hardware, but the literature still lacks in quantifying
accurately the energy impact of software. This research goal is strictly related
to the following one.

• RG3. Is it possible to profile the energy consumption of a soft-
ware application? An empirical experiment could assess quantitatively the
energetic impact of software usage by building up common application us-
age scenarios and executing them independently to collect power consumption
data.

• RG4. Is there a relationship between the way a program is written
and its energy consumption? The same application, at the code level, can
be written in different ways. Here the question is if the different ways have
impact on energy consumption. The code should be considered at two levels:
source code (programmer) and object code/byte code (compiler). [88]

1https://01.org/powertop/ Last visited: 2014/01/02
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• RG5. Is it possible to use the energy consumption information to
trigger self-adaptation? A software application could automatically modify
its behaviour in order to reduce its energy consumption.
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Chapter 1

Introduction

Greenhouse gas emissions and Power Consumption are problems of relevant impor-
tance. The EU has identified the ICT industry as the most important actor in the
20-20-20 challenge: it is estimated that the ICT sector can reduce global emissions
from all sectors of 15% by 2020. However, the environmental impact of ICT is not
only positive: ICT was responsible for 10% of energy demand in 2010 and for 2% of
global CO2 emissions (expected to grow to 8% in 2020) [103]. The energy impact of
ICT was often analysed in the context of embedded systems, where energy efficiency
is a key point; so far, little research on collection and analysis of power consumption
data, at the application level, exists [22] [63]. As said above, energy consumption
is usually analysed at the hardware and low-level software level. Little research is
available on the software application level. The project concentrates on the appli-
cation level, with an experimental approach to discover and modify characteristics
that waste energy.

1.1 Research Goals

This dissertation is written according to the following research goals. It also provides
a detailed analysis of the state of the art, which defines a taxonomy to classify
papers; all this with the aim of being able to repeat the same work after a few years
to compare how the data vary.

RG1. Is it possible to measure the energy consumption of an application?

Measuring the energy consumption of an electronic device (PC, mobile phone, etc.)
is straightforward, but several applications coexist on it, possibly with very different
energy needs. Usage profiles for applications are certainly important too. The most

1



1 – Introduction

common platforms are Windows, Linux, and Mac Osx 1. Within an application, we
can identify two layers: the application layer and the platform layer, in turn divided
into the Operating system and devices. The first question is if it is meaningful to
trace the consumption of applications to layers. If this is not feasible, then energy
consumption (and the efforts to reduce it) should consider the platform layer only
[23].

RG2. Could Energy Efficiency be considered as a software non-functional
requirement?

Research has increasingly focused on improving the Energy Efficiency of hardware,
but the literature still lacks in quantifying accurately the energy impact of software.
This research goal is strictly related to the following one.

RG3 Is it possible to profile the energy consumption of a software appli-
cation?

An empirical experiment could assess quantitatively the energetic impact of soft-
ware usage by building up common application usage scenarios (e.g.: Skype call,
Web Navigation, Word writing) and executing them independently to collect power
consumption data. Based on the use of PCs, the resources are used differently. It is
necessary to identify the profile of use of the systems and verify if and how energy
consumption varies.

RG4. Is there a relationship between the way a program is written and
its energy consumption?

The same application, at the code level, can be written in different ways. Here
the question is if the different ways have impact on energy consumption. The code
should be considered at two levels: source code (programmer) and object code/byte
code (compiler) [88].

• RG4.1. Can we identify energy smells in the source code? A code
smell is a characteristic of a source code that is considered negative and that
could represent a cue of a fault. Smells can be both at design level and at
code level. With energy smell we want to define a particular code or design
pattern, which can impact on the energy efficiency of an application.

• RG4.2. Can we refactor energy smells in the source code? Often a
smell is linked to a refactoring action, that is proposed to fix the smell and

1https://01.org/powertop/ Last visited: 2014/01/02
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1.2 – Methodology

improve properties of the software module, such as maintainability, compre-
hensibility, reliability, performance. If it is possible to identify, automatically
or manually, the energy smells, a refactoring action should be defined for each
smell found.

• RG4.3. Is it possible to analyse statically the source code of an
application in order to classify its energy efficiency? The static code
analysis should identify energy inefficient situations of the source code. If so,
we can evaluate the energy efficiency of the source code that is analysed.

RG5. Is it possible to use the energy consumption information to trigger
self-adaptation?

A software application could automatically modify its behaviour in order to reduce
its energy consumption.

1.2 Methodology

The methodology utilised is Empirical Software Engineering. The Empirical Soft-
ware Engineering (EMSE) research can be applied using two paradigms: qualitative
and quantitative research. Qualitative research studies objects in their natural set-
tings, and phenomena are explained by eliciting explanations from people. This
approach is for construction of perspective-based results and reflects the question
“Why?”. Quantitative research focuses on the quantification of a relationship or
a comparison of two or more groups. This type of research answers the question
“How?”. The two approaches are complementary and are often mixed or alternated
in research. Both approaches provide a set of methodological tools defined by Shull
et al. [91] as a set of organising principles around which empirical data is collected
and analysed. These tools are called empirical strategies by Wohlin et al. [106],
kinds of empirical studies by Juristo et al. [52] and “research methods” by Shull
et al. [91]. The first two authors identify three methodological tools (experiments,
surveys, case studies), and the latter one adds two more tools (ethnographies and
action research). Below are presented the tools as defined by Shull et al. [91].

• Survey: it is used to identify the characteristics of a broad population of
individuals. It is conducted through the use of questionnaires, structured in-
terviews, or data logging techniques. One important step in survey researches
is the identification of a representative subset of the population, since usually
it is not possible to poll every member.

• Case study: it investigates a phenomenon within its real-life context, offer-
ing in-depth understanding of how and why certain phenomena occur, thus

3



1 – Introduction

investigating cause / effect relationships (qualitative research). Exploratory
case studies are used as initial investigations of some phenomena to derive new
hypotheses and build theories, while confirmatory case studies are used to test
existing theories.

• Controlled experiment: it is an investigation of a testable hypothesis where one
or more independent variables are manipulated to measure their effect on one
or more dependent variables. Each combination of values of the independent
variables is a treatment. True experiments are not always possible in SE (e.g.,
full randomisation is often not achievable in real contexts); in that case quasi-
experiments can be conducted (for instance, the subjects are not assigned
randomly to the treatments).

• Ethnography: this method focuses on the sociological aspects. Ethnogra-
phies study a community of people to understand how the members of that
community make sense of their social interactions. For software engineering,
ethnography can help to understand how technical communities build a cul-
ture of practices and communication strategies that enables them to perform
technical work collaboratively. A special form of ethnography is participant
observation, where the researcher becomes a member of the community being
studied for a period of time.

• Action Research: in Action Research, the researchers attempt to solve a real-
world problem while simultaneously studying the experience of solving the
problem, intervening inside the real contexts to improve the situation.

This work has been carried out by using: Case Study, Controlled Experiment, and
Action Research.

1.3 Thesis Outline

The contributions of this PhD program can be summarised in four points:

1. Literature review: described in Chapter 2;

2. Analysis of energy consumption as a non-functional requirement: described in
Chapter 3;

3. Characterisation of the energy consumption of software applications and sys-
tems with an empirical approach; identification of software characteristics that
waste energy: described in Chapter 4;

Finally, Chapter 5 summarises the work done.

4



Chapter 2

Background

The rapid growth and significant development of IT systems has started to cause
an increase of worldwide energy consumption [103]. This issue moved technology
producers, information systems managers, and researchers to deal with energy con-
sumption reduction in terms of:

• Global CO2 footprint;

• Consumption of data centres;

• Reduced battery life of portable devices;

• Economic impact of a new business model, which aims at greening everything.

As well described in [59], IT producers are forced to manage the product lifecycle
through legislation, but also users are becoming concerned about the environmental
implications from the use of IT. This area of research is called GREEN IT, which
“refers to environmentally sustainable computing or IT1” and is defined as “The
study and practice of designing, manufacturing, using, and disposing of computers,
servers, and associated subsystems such as monitors, printers, storage devices, and
networking and communications systems efficiently and effectively with minimal or
no impact on the environment” [74]. Murugesan in [74] also expresses the benefits
introduced by Green IT: “Green IT benefits the environment by improving energy
efficiency, lowering greenhouse gas emissions, using less harmful material, and en-
couraging reuse and recycling”. Taking into account the research areas identified in
[19] and according to [74], the main topics related to Green IT, are:

• Design for environmental sustainability: “balancing energy and resource sav-
ings by ICT and energy and resource consumption of ICT” [76] and “making
business operations, buildings, and other systems energy-efficient” [75];

1http://en.wikipedia.org/wiki/Green_computing Last Visited: 11 Apr 2013
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• Energy-Efficient Computing: the efficient use of resources in terms of energy-
aware algorithms;

• Power Management: a set of HW/SW techniques that optimise the man-
agement of power resources in computer systems, portable devices, and data
centres.

• Data centre design: eco-friendly devices that improve energy efficiency and
energy conservation of data centres (i.e., energy-efficient mechanical and elec-
trical systems, green power, use of natural light, etc.);

• Virtualization: “the faithful reproduction of an entire architecture in software,
which provides the illusion of a real machine to all software running above it”
[56];

• Disposal and recycling management: managing e-waste, and limiting planned
obsolescence upgrading devices instead of replacing them;

• Regulatory Compliance: Regulatory requirements and legislative actions tend
to force acceptance of a technology or practice in situations where this would
not occur. The existence of certain rules on sustainability in IT standards can
lead to the adoption of some green IT initiatives [71];

• Green metrics, tools and methodology assessments: software tools for col-
lecting or simulating, analysing, modelling, reporting energy consumptions,
environmental risk management, environmental impact, and greenhouse gas
emissions; platforms for eco-management, emission trading, or ethical invest-
ing [74].

Green IT involves many areas and stakeholders, starting from governments, through
new business models and R&D, to different technical fields. IT can also be used to
monitor energy consumption such as: heating systems in buildings, fuel efficiency in
cars or smart grids implementation. So IT is involved in worldwide energy reduction,
and in reducing its energy consumption as well. The main contribution of this work
is to summarise evidence available in the literature about:

• Measuring techniques for energy consumptions in IT systems;

• IT energy consumption trend according to our taxonomy;

• Methodologies to reduce energy consumption of IT;

The goal is to offer a clearer picture of the state of the art in this field, and to
highlight areas where evidence is missing as well [9]. This chapter is organized as
follows:
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• Section 2.1 proposes our taxonomy.

• Section 2.2 deals with the energy metrics, which are used to characterise more
quantitatively what “greenness” means at each layer of the taxonomy.

• Section 2.4 describes some guidelines that can improve energy efficiency in IT
systems.

• Section 2.5 gives our conclusions.

2.1 Taxonomy

We define the following taxonomy to organize IT and energy consumption. We
consider two orthogonal dimensions, the time axis (or IT energy lifecycle) and the
space axis (IT elements and infrastructure).

2.1.1 IT Energy Life Cycle

Inspired by [32] we propose the energy life cycle in Figure 2.1. The activities in the
lifecycle are design of the IT product, manufacture, transport (includes packaging
and distribution), use, disposal, and possibly recycling. All these activities consume
materials and energy, with related emissions.

Figure 2.1. The time axis: Energy Life Cycle

7



2 – Background

2.1.2 IT Elements and Infrastructure

On the spatial axis, we consider elements or nodes (e.g. PC, peripheral devices
and mobile phones) and their connections (cables, wireless links etc.) to build
infrastructures (e.g. PC networks, the Internet, data centres, the cloud). In a node,
we define different layers (starting from hardware to application) as defined later
(Figure 2.2)

• Network element: this element considers network equipment (e.g. Network
Interface Card, router and gateways) and protocols, which means everything
is related to connectivity.

• A node element consists of three layers:

– Hardware layer: this layer considers CPUs, GPUs, and storage (memory,
disks).

– Operating System layer: this layer considers software programs imple-
menting the traditional operating system services (file and memory man-
agement, task scheduling, I/O management). The key issue here is power
management.

– Application layer: this layer considers software to implement user level
services. Key issues considered here are the energy efficiency of algorithms
and software architectures.

• Infrastructure element: This element considers many nodes connected by a
network to define a larger entity capable of offering higher-level computation
services. Entities of this kind are data centres, web farms, and cloud comput-
ing.

2.2 Energy Benchmarks and Metrics Assignment

Energy (measured in Joule or Wh) and power (measured in J/s or W) are the
metrics, which can be used to characterise consumption of IT and ICT systems.
However, they are not specific to IT. In literature, other specific measures have been
proposed. We can summarise them into three broad categories:

• Power, in terms of consumed Watts.

• Efficiency, as the ratio of useful energy and total energy used.
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Figure 2.2. The space axis: Nodes and Infrastructure

• Productivity, defined, at high level, on a production process, as output/re-
source on a time interval (ex. cars produced per worker in a day). In the
context of Energy and IT, the output is computational work while the re-
source is energy. Computational work needs to be defined at each level of the
taxonomy. For instance: in a CPU, an example may be operations performed,
in a network bits transmitted, in a web application hits managed.

Table 2.1 reports measures proposed in literature [84], [17] and [39] placing them in
our taxonomy and categorising them as efficiency or productivity. Not all layers of
the taxonomy are covered, meaning that other efficiency or productivity measures
could be defined.
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Table 2.1: Energy Metrics and Benchmarks

Layer Category Unit Description Example
Infr Productivity Useful

work/W
Green Grid
Data-centre
Performance
Efficiency
(DCPE) [38]

Aims at measuring
“Useful work” de-
livered by a data
centre vs. the
power used

Infr Efficiency % Useful
Power (for
storage,
compu-
tation,
communica-
tion) / Total
power

Green Grid
Data-centre Ef-
ficiency(DCE)
[38]

Node Productivity MFLOPS/W
or FLOP/J

Number
of Float-
ing point
operation
computed
per watt

The Green 500 list2

ranks high perfor-
mance computers
on MFLOPS/W,
instead of the usual
ranking on FLOPS
only

App Power W Power used
by an appli-
cation on a
node

Joulemeter [54]
is a tool able to
estimate instant
power consump-
tion of PCs and
applications

2http://www.green500.org/ Last Visited: 11 Apr 2013
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App Productivity Operation /
J

Output is
intended
as sorted
records

Joule Sort [83],
counts sorted
records per Joule,
and is a bench-
mark for sorting
algorithms. It is
a variant of Sort
benchmark that
considers records
sorted per second

OS Power W Power used
by an OS or
an app on a
node

Softwatt [42] is a
tool to estimate
power used by OS
and applications

HW Power W SimplePower
3

Given an instruc-
tion (or an instruc-
tion set) and a
program, it esti-
mates energy con-
sumption on the
CPU).

Network Efficiency %
100(MI)/M

I = energy
consumption
at idle, M
energy at
maximum

Environmental
Performance Index
(EPI) [67]

Network Productivity KB/J KB trans-
ferred per
Joule over a
channel

Energy-efficiency
rating (EER) [21]
does the same in
Gbps/W

2.3 Energy Consumption and Carbon Footprint

A lot of data has been published on IT-related consumption and emissions. However
these data are usually sparse. In this section we summarise them using the taxonomy

3http://www.cse.psu.edu/~mdl/software.htm 11 Apr 2013
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as a unifying point of view. In 2.3.1 we review data at a global level, then we will
focus on the space and time view (2.3.2, 2.3.3), and further on.

IT is responsible for very limited percentages of consumptions and emissions as
described in Figure 2.3 (less than 1% consumption of primary energy, around 3%
of electrical energy, 2% of carbon emissions). However, an analysis of future trends
shows that emissions and consumption tend to increase. At this level much work
should be done to stabilise and possibly reduce these trends, in order to provide
a sustainable IT future. The analysis performed before considers the whole of IT.
In the following table, we analyse the problem considering the spatial and time
dimensions, as introduced by the taxonomy.

Figure 2.3. Comparison of different energy consumptions

2.3.1 Worldwide space dimension

Focusing on the IT sector, a key question is which IT components are responsible
for these trends. We start from individual components (or nodes such as PCs, fixed
and mobile, and data centres) and we conclude with networks.

Node view (PCs, Laptops, Mobile Devices) and Data Centres

According to [103] we report some numbers about the number of different class of
devices and their consumption from 2002 to 2020. The number of worldwide PCs
is expected to grow from 592 million (2002) to more than 4 billion (2020) and,
regarding energy consumption, laptops will overtake desktop computers by 2020. In
2002, emissions of PCs and monitors were 200 MtCO2e, growing to 600 MtCO2e
by 2020. The number of servers in 2002 was 18 million and there will be a sharp
increase of this figure up to 122 million in 2020. In 2002 data centre emissions were
approximately equal to 76 MtCO2e and this value should more than triple by 2020
to 259 MtCO2e. In 2002 there were 1.1 billion mobile devices. This is expected to
grow to 4.8 billion in 2020. Telecommunications emissions rise from 150 MtCO2e in
2002 to about 350 MtCO2e in 2020. Figure 2.4 represents the carbon emission in
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2002 [103], and Figure 2.5 reports an estimate, based on [103] of carbon emissions
by IT by 2020.

Figure 2.4. The global footprint by subsector 2002

Figure 2.5. The global footprint by subsector 2020

The majority (57 percent) will come from PCs, peripherals, and printers, while
data centres account for 25% only. Figure 2.6 compares the growth of devices
produced and the growth of carbon emissions [103].

From the analysis above it is clear that PCs and mobile devices are the key
factors in consumption in the future. Another study [48] stated that data centres
in 2009 consumed about 330 TWh worldwide, and authors in [94] estimated the
electrical energy consumption of PCs, laptops, and mobile phones in 2009:

• PCs: 163.2 TWh

• Laptops: 46.2 TWh

• Mobile Phones: 44.6 TWh

These data are calculated in terms of electrical energy consumed and cannot be
compared with data in Figure 2.4 because of different units, years, and data aggre-
gations.
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Figure 2.6. PC, Servers, and Mobile Phones production vs. Carbon Emissions

Network view

The number of Internet users has continuously increased, and the energy consump-
tion of the Internet has grown accordingly. Network equipment such as hubs,
switches and routers for the Internet consumed energy of about 6.05 TWh/year
in 2010 as shown in Figure 2.7 and it is expected to grow by 1 TWh or more per
year.

Figure 2.7. Electrical Energy consumption of IT devices based on Figure 2.2

14



2.3 – Energy Consumption and Carbon Footprint

In addition, the network equipment that connects to the Internet in home and
office networks transmits packets via Ethernet links. The estimated energy con-
sumption of Network Interface Cards (NICs) and other network devices, which use
Ethernet links in the US, was approximately 5.3 TWh/yr in 2005 [77]. Moreover, the
default link rate of the Ethernet and the network edge devices is rapidly increasing
from 10 Mbps to 1 Gbps or more, and the number of network devices is also increas-
ing [16]. To sum up, based upon our taxonomy, most of the energy consumption is
concentrated within data centres and nodes. Network devices have a less important
role but not negligible because of the magnitudes involved.

2.3.2 Local space dimension

Within a Node

In Figure 2.8 we analyse consumption inside a node [72].

Figure 2.8. Typical energy consumption of PC components based on [72]

The energy contribution due to software can be measured on hardware. This,
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from the hardware perspective, is seen as a different trend of the instant power
consumed by the device. There are several (and canonical) ways to gather energy
consumption data from a hardware device and we cite four examples. In 1998 au-
thors of [87] stated that the current drawn by a processor could be measured using an
oscilloscope with a shunt resistor, connected in series with the supply voltage pin of
the microprocessor. It is also possible to perform a direct (current) measure by util-
ising an ammeter with a high frequency signal to obtain a stable value [97]. In [58]
the authors connected a multimeter to a laptop power supplier. They also plugged
the laptop supplier into a universal power supply (UPS) to filter out voltage fluctu-
ations. Their multimeter sampled the current 11-12 times a second. Otherwise it is
possible to use smart meters; some commercially available products are Plogg Me-
ter4, Kill-a-Watt / Tweet-a-Watt5, and SmartLink6. They aim more at monitoring,
controlling, and automating the attached device. It is very difficult to find reliable
values about CPU power consumptions. Usually manufacturers publish the “Ther-
mal design power” (TDP). This value does not match the maximum CPU power
consumption but it refers to the maximum amount of power that the cooling system
in a computer has to dissipate and the result is expressed in Watts. These values are
not comparable between CPUs produced by different manufacturers. AMD intro-
duced a new metric (called ACP) to measure the CPU power consumption [7]. ACP
is obtained by measurements taken on specially instrumented components in partic-
ular conditions (temperature, workloads, configurations). In [51] authors analysed
the problem of estimating system power consumption. They stated that for each
task, it is possible to measure the number of clock cycles executed per unit time and
generate a model that can predict the watt consumed: P(System) Power(Taski) +
P(bias’) Where bias’ equals every other component and Power(Taski) = F * number
of FP Cycles + I * number of Int Cycles + M *number of Memory Cycles. Au-
thors in [47] studied deep server hard drives (3.5) energy consumption, both from
a mechanical and electronic perspective. Based on their studies, drive platters spin
constantly, they stop only in standby mode; read/write heads are only powered dur-
ing the reading and writing phase. The arm actuator is only powered when there is
the need to seek across locations on a platter. Printed circuit board electronics are
instead always powered. Based on ATA/ATAPI-5 specification and the Advanced
Configuration and Power Interface (ACPI), modern hard drives support four power
management states: active, idle, standby, and sleep (it is not possible to recover from
this state without a system reset). In standby mode, mechanical energy savings may

4http://www.bytesnap.co.uk/bytesnap-design-case-studies-the-plogg-smart-energy-meter/

Last Visited: 11 Apr 2013
5http://www.ladyada.net/make/tweetawatt/ Last Visited: 11 Apr 2013
6http://www.smarthome.com Last Visited: 11 Apr 2013
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range from 92 % to 99% and electronic components energy saving may span from
35% to 95%. In idle mode mechanical components can consume from 25% to 75%
of the total energy consumption. During the read/write phase the energy consump-
tion is dependent on the Logical Block Number (LBN). Data density increases at
higher LBNs and more time is required to recover the data (due to constant angular
velocity of the spindle), read bandwidths decreases and read energy consumption
increases. But write bandwidths remains fairly constant because write requests are
not influenced by the varying data density on the platters, hence bandwidth and
energy consumption do not vary on the basis of LBN. In general, reading consumes
more energy than writing for blocks larger than 2KB, and writing is more energy
intensive than reading for blocks smaller than 2KB.

Disk Model Cap. Read Write Read Write Idle Efficiency
Unit GB MiB/s MiB/s W W W MiB/j
SSD
Intel X-25E 32 226 198 1.7 2.7 0.6 103
Intel X-25M 80 225 79 1.0 2.5 0.6 128
Samsung
PB22-J

256 201 180 1.1 2.8 0.6 124

Super Talent
FfM56GX25H

256 235 163 1.6 2.9 0.5 102

HDD
Samsung
HD502HI

500 106 108 6.6 6.6 3.7 16

Samsung
HM500JI

500 87 87 2.3 2.3 / 28

W.D.
WD7500KEV

750 82 82 2.0 2.0 / 41

Table 2.2: Energy Metrics and Benchmarks

The energy consumed during seeking is minimal, but restricting disk accesses
between low and central LBNs could help to save energy in long usage periods.
Solid-state drives have different power consumption profiles and efficiency as shown
in Table 2.2. Authors in [86] analysed energy consumption of office and telecommu-
nications equipment in commercial buildings. They divided monitors and printers
into categories. Table 2.3 and Table 2.4 show the energy consumption of moni-
tors divided into two categories: CRT and LCD. Over the years monitors show an
increase of performance and a decrease of energy consumption.

Table 2.5 shows the energy consumption of different categories of printers.
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Type -
CRT

Active Standby Suspend Off

14-15” 61 53 19 3
17” 90 26 9.2 4.3
19” 104 31 13 4
21” 135 43 14 4.7

Table 2.3: CRT energy consumption estimate [86]

Type -
LCD

Active Standby Suspend Off

13” 2.5 0.7 0.2 0.1
14” 6.7 1.9 0.7 0.3
15” 11.7 3.4 1.2 0.6
17” 16.7 4.8 1.7 0.8
18” 25 7.2 2.5 1.2
20” 31.7 9.2 3.2 1.6
21” 36 10.4 3.6 1.8

Table 2.4: LCD energy consumption estimate [86]

Within Network, Data Centres and Infrastructure

Authors in [41] examined the energy consumption of networking devices in the In-
ternet, based upon data collected by the U.S. Department of Commerce. Data are
available in Table 2.6.

Based upon these findings, the impact given by a reduction in consumption in
this field can be relevant.

2.3.3 Time dimension

PC

Let us now analyse how these consumptions are distributed over the lifecycle of
IT devices (manufacturing and transport, usage, disposal). According to [105] the
energy to manufacture a PC accounts to 4250 MJ, the energy spent in usage (con-
sidering an average usage time of 3 years) is 1500 MJ, and the overall energetic cost
(including transport and purchase) is about 7900 MJ. Manufacturing is the most
energy-hungry phase, and consequently the author suggests concentrating efforts on
reusing devices to extend their average usage time.

In detail the distribution of energy consumption [73] (Figure 2.9) is as follows:

• Design/Manufacture: 4250 MJ (54%)
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Device Active Standby Suspend Off
Impact
Printer

36.5 16.8 N/A 1

Inkjet
Printer

42.576 13.377 N/A 2.878

Laser
Printer

231 28 16 1.9

Laser
Printer
Small
Desktop

130 75 10 N/A

Laser
Printer
Desktop

215 100 35 N/A

Laser
Printer
Small
Office

320 160 70 N/A

Laser
Printer
Large
Office

550 275 125 N/A

Table 2.5: Printer energy consumption estimate [86]

Device Approximate
Number De-
ployed

Total AEC
TW-h

Hubs 93.5 Million 1.6 TW-h
LAN Switch 95000 3.2 TW-h
WAN Switch 50000 0.15 TW-h
Router 3257 1.1 TW-h
Total 6.05 TW-h

Table 2.6: Energy consumption of networking devices in the Internet [41]

• Transport: about 950 MJ (12%)

• Purchase/Use: about 1500 MJ (19%)

• Other 1200 MJ (15%)

According to [73] the energy taken for the production of a common Personal
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Figure 2.9. Phases and Energy Costs

Computer has risen by 7% in comparison to 2002. This value increased from about
6420 MJ in 2002 to about 6900 MJ in 2007. About the usage phase, modern PCs
consume more energy at full-load than the old ones, while in a low-power mode
they take less energy than the old computers. Therefore the total energy used
depends strongly on the usage scenario. Considering a home scenario, the total
energy used by an average 2007 PC per year is almost the same as it was in 2002.
The reduction is mainly due to CRT monitors (between 65 W-145 W when active,
and 9-14 W in standby) substituted by LCD monitors (25 W when active, 2 W
in standby). The increase is due to a possible increase in consumption of other
components of a personal computer (graphics cards, memories, etc.) Thus, the
overall (manufacturing + usage) energy consumption of PCs has increased over the
last 10 years. According to the Wikipedia definition 7, despite not being an official
source, we can draw a trend about the frequency and TDP behaviour of AMD CPUs
since 1996 as described in Figure 2.10.

Without taking into account punctual values we can see that over these 15 years
both frequency and TDP raised respectively 7 and 3 times. We must point out that
nowadays CPUs have multiple cores so TDP and Power Consumption are not the
right metrics to measure CPUs energy efficiency.

Data Center, and Infrastructure

According to [15], the major challenge in energy reduction talking about “Cloud
Computing” is the relation among system components and an optimal balance be-
tween performance, QoS, energy consumption, and self-aware runtime adaptation.

7http://en.wikipedia.org/wiki/List_of_CPU_power_dissipation Last Visited: 11 Apr
2013
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Figure 2.10. CPU Frequency and TDP trend

Amazon [44] calculated that the cost and operation of servers amount to 53% of
their total budget, while energy-related costs reach 42% of the total. Figure 15
shows a typical monthly cost distribution in a data centre.

Figure 2.11. Typical data centre monthly costs distribution [15]

According to [57], the electricity used in global data centers in 2010 accounted
for between 1.1% and 1.5% of total electricity use. This means that data centers
are using less energy than predicted by Environmental Protection Agency in 2007.
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2.3.4 Considerations

As a conclusion, an analysis of the trends in IT energy consumption and emissions
shows that the IT sector is responsible for a minority of them. However, the trend
is increasing, due to the large increase in the number of individual IT devices (PCs
and mobile phones), and the increase in energy used to manufacture them and,
in using them. It is a responsibility of the IT sector to research ways to become
sustainable, and to further reduce emissions and consumption, especially at the level
of individual devices.

2.4 Energy Efficiency: guidelines

As shown in Section 2.2, the literature proposes many tools to measure Energy Ef-
ficiency of IT devices and data centres. There are many works aimed at reducing
the consumption of PCs in enterprise environments [5] [6], or to manage the use of
green energy in datacentres [36] [34] [35] [90] [92], or to optimize the consumption of
idle server [70]. The next point is how to obtain Energy Efficiency also by software,
thus considering the OS and application layers and not only the hardware layer. We
have surveyed the literature and we have found guidelines from Intel and Siemens
[53] [95] [61] and also from Academy [40]. Most of the guidelines suggested in the
literature are not strictly code-related, but they are mainly high-level recommen-
dations for programmers and software designers (e.g. to implement lazy loading of
libraries). However, it is worth mentioning that such guidelines, despite being intu-
itive and acknowledged as effective by software industry specialists, did not receive
any empirical validation. For this reason, an empirical validation that quantitatively
assesses their impact on Energy Efficiency is needed. We summarise these guidelines
below, according to the taxonomy proposed in Section 2.1.

2.4.1 Infrastructure

1. Consider Cloud Platforms for energy-efficient Internet applications:
Cloud platforms use virtualization. This should improve energy efficiency of
the internet application [61].
Pros:

• Reduced costs.

• Hardware reduction.

• Less Power Consumption.

Cons:
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• Single point of failure.

• Lower performances.

2. Load balancing: Distributing workload evenly across two or more computers,
network links, CPUs, hard drives, or other resources.[40] reduces the CPU
temperature
Pros:

• Reducing the use of a mobile device can increase its average battery
lifetime.

Cons:

• Load balancing can be difficult to accomplish.

3. Provide information for system management tools to support over-
all optimisation: The use of power meters and energy-aware applications
provides information relating to the infrastructure energy consumption. This
data should be used as an input to support the energy optimization [53].
Pros:

• Instant Power consumption is available as a Context Information [12].

Cons:

• This solution requires dedicated hardware.

• The instant power consumption information must flow from the hardware
layer through the application layer. It is necessary that all the layers are
prepared to handle this information.

2.4.2 Application

1. Design Efficient UI: Efficient UIs can let the user complete a task quickly.
An inefficient UI can increase the application complexity, and consequently
the energy consumption [40].
Pros:

• An efficient UI may improve the energy consumption of the entire ap-
plication by simplifying the interaction with the user, and reducing the
time required to perform a specific operation

Cons:

• It requires a specific study of the UI.
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• It requires an empirical validation of the changes.

2. Use Event-Based Programming: Event-based programming avoids a waste
of resources involved in doing unnecessary operations. If polling cannot be
avoided, it is advised to select a fair time interval [40] [53] [61].
Pros:

• The application is put to sleep when not used.

Cons:

• The application may need to be redesigned.

• It is not always implementable.

3. Use low-level programming and avoid use of byte-code: With low-level
programming languages, developers have more details of the system which
she/he is developing, than when using high-level programming languages.
When possible, it is advised to develop the more computationally intensive
parts of the application at a low-level. Programming languages to increase
performances and energy efficiency. The virtual machine interpretation of
byte code can make the application energy inefficient [40] [61].
Pros:

• The developer has a greater control of the underlying hardware by devel-
oping at a lower level of abstraction.

Cons:

• Can be expensive in terms of costs and development time.

• Not always possible.

4. Batch I/O: Buffering I/O operations increases energy efficiency; the OS can
power down I/O devices when not used.[40] [53] [61]
Pros:

• Known technique already used for generic optimisations.

Cons:

• Not always possible. It depends on the application context.

5. Code Migration: To increase energy efficiency in devices where computation
can be energy consuming, it may be worth moving the task to another energy-
efficient environment and gathering results when available.[40]
Pros:
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• It simplifies the “client-side” code.

Cons:

• It is needed to consider the overheads due to the use of another system,
which performs complex operations.

6. Reduce data redundancy: Storage and transportation of redundant data
lowers energy efficiency.[40]
Pros:

• To be applied during the design phase.

Cons:

• A later change to an existing implementation can cause the modification
of a large part of the application.

7. Reduce QoS/Scale dynamically: The application has to be able to change
its behaviour in case of low-power situations.[40] [53] [61]
Pros:

• The creation of user profiles can save energy [12]

Cons:

• It needs metrics.

• The QoS reduction is not always possible.

8. Use Power/energy profiling tools: This kind of application models the
energy behaviour of the system in which it is run. This model should help the
developer to optimise the application energy usage [53].
Pros:

• With these tools it is possible to create energy consumption models, which
help to predict the energy consumption in different situations.

Cons:

• Models change based upon the device.
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2.4.3 Operating System

1. Implement Power Management APIs: The Operating System can export
power management APIs to enable applications to manage energy efficiency
at lower levels.[53] [61]
Pros:

• APIs are easily used by the application layer.

Cons:

• Needs OS modification.

2. Optimal use peripherals: The use of a correct power management feature
exploits properties and characteristic of peripherals[40]
Pros:

• The OS can use the peripherals in different operating modes.

Cons:

• Manufacturers have to create drivers that allow the OS to use the device
in different operating modes.

3. Use Compiler Optimisation: The Compiler can optimise the source code
according to specific platform architecture.[61] [40]
Pros:

• Low developing costs.

Cons:

• Not all the architectures can get the same optimisations.

4. Use only required services and background processes: Unused appli-
cations waste memory, resources and energy. [61]
Pros:

• It is possible to free resources used by unnecessary idle processes.

Cons:

• Killing a process can cause a device to misbehave.
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2.4.4 Hardware

1. Power down peripherals: Peripherals can be storage, I/O, or network de-
vices, GPS modules, etc. When not in use they should be set to a low power
state or shut down. [40]
Pros:

• The upper layers improve their performance in terms of energy consump-
tion transparently.

Cons:

• It is needed to limit the overheads caused by the transition between ON
and OFF.

2. Use specific-purpose hardware: A general-purpose hardware can be over-
sized for the specific problem. Oversized hardware can be translated in energy
inefficiency. [53]
Pros:

• Maximum optimisation of energy consumption for the current device.

Cons:

• High costs.

3. Dynamic Power Management Capabilities: Exploit features such as
ACPI, processor and idle management, configurable high performance vs. low
power components, to manage energy consumption. [53]
Pros:

• It provides to higher layers different configurations to save energy.

Cons:

• It is needed to redesign devices.

4. Power/ Energy metering support: Hardware metering support is often
needed by profiling tools to get a reliable estimation of device power consump-
tion. [53]
Pros:

• Provides information about the instant energy consumption of the device
to the upper layers.

• It is possible to create more accurate models.
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Cons:

• High costs.

2.4.5 Network

1. Efficient data traffic: Sending less data over the network can reduce energy
consumption because the network interface is left in idle for more time [40].
Pros:

• This action can also improve the application performances.

Cons:

• In order to send less traffic, the application architecture could be deeply
modified.

• It is necessary to take into account the additional computation needed to
implement data compression, proxying, etc.

2. Energy impact of communication protocols: An energy-efficient com-
munication protocol can reduce the amount of information exchanged.[53]
Pros:

• If a protocol is designed to reduce the amount of data exchanged to es-
tablish a communication, its correct implementation can give advantages
in terms of energy consumption.

Cons:

• It is needed to modify/extend the existing protocols.

2.5 Considerations

Green IT is becoming a popular topic, but no specific surveys are available yet. In
this paper we reported a survey of the literature about Energy Consumption & IT
systems, starting from the viewpoint of Green IT. The survey has been performed
searching for the following keywords: “Green IT”, “ICT Energy Consumption Re-
duction”, “Energy Efficiency”, “Energy Measurement”, “Power management”, “En-
ergy Consumption Analysis” in the following databases: IeeeXplore, ACM digital
library, IET Electronic Library and, more generally, Google Scholar. In order to
organise the large number of papers found we have defined a taxonomy, based on
two axes, the time axis (with activities such as design, manufacture, transport, use,

28



2.5 – Considerations

dismiss and possibly recycle) and the space axis (with physical components of vary-
ing sizes, from larger to smaller: the clouds, data centers, computing nodes such as
PCs, smartphones and mobile phones, applications, OS and hardware). In 2007 IT
electrical energy consumption in the usage phase is reported to be 830 TWh or 0,5
% of the total. In percentage this is a minimal amount; however, in absolute terms it
is relevant. Besides, estimates of IT consumption in the future show a fast-growing
trend. While we do believe that these figures are a good starting point, it should be
noted that the accuracy of data reported is questionable. For sure consumption data
is in many cases referred to several years ago (2007, 2009 for IT consumption) and
their precision is not reported. As regards to this, a lot of work should be done to
define and standardise the way consumption data is collected and reported. A first
observation on the space axis is that there is no agreement on how to consider smart
phones and mobile phones in general. Sometimes papers do not include them (strict
IT and Green IT), sometimes they do (ICT and Green ICT), and sometimes the
point remains fuzzy. Overall our point of view is that, considering the convergence
of mobile phones into Internet nodes, they should be included. Besides, nowadays
the production (and therefore the related consumption) of mobile phones is much
larger than that one of computers. Most of the literature is about the space axis,
and mainly about the usage phase. However, considering PCs at least, a study [72]
shows that the main contribution (about 50%) of energy consumption of a PC is
due to the design/manufacture phase while the usage phase contribution represents
only 20% of the total. The energy consumption of the usage phase, which currently
does not reach 1% of the total, can be considered the one in which it is possible
to intervene in a more distributed way. Small and distributed energy reductions
can lead to large reductions worldwide. For this reason, an intervention on energy
consumption reduction from a software point of view is to be considered interesting.
We did not find similar studies on mobile phones or data centres. However, if the
trend is confirmed, efforts to reduce energy consumption should concentrate on the
manufacturing phase and/or on increasing the duration of the usage phase. Again
considering the space axis, in 2009 data centres are the main users of energy (330
TWh) followed by (PCs, smartphones, tablets) (254 TWh) and network equipment
(6TWh). From these figures is clear that data centers and PCs/smartphones should
be the focus for energy consumption reduction during the usage phase. After this
data collection and analysis phase, we have focused on methods and techniques to
reduce energy consumption. In this regard we need precise ways to measure if con-
sumption is actually reduced. So before all we have summarised the measures that
can be used. Besides the obvious ones (energy and power) we have surveyed what
has been proposed, and placed it into our taxonomy. Basically all measures pro-
posed by different authors can be classified as measures of efficiency or productivity,
applied to a node of the taxonomy in the usage phase. For instance efficiency for
a data centre is the ratio between energy for computation and total energy used
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(including conditioning). Finally, we have surveyed for techniques (or guidelines) to
reduce consumption, and organized them in our taxonomy. What is available is a
good starting point, but in many cases the guidelines are quite high level, so their
effect on consumption is hard to express in quantitative terms. In summary, future
work by the Green IT community should be devoted to:

• Collect more precisely data about consumption, standardising the data collec-
tion process;

• Collect and analyse in more depth consumption in the non-usage phase;

• Develop more extended and more detailed guidelines for energy consumption
reduction;

• Validate and characterise quantitatively the effect of these guidelines.

The next chapter discusses Energy Consumption Measures and it will also in-
vestigate whether Energy Efficiency is eligible to be included in a software quality
model.
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Chapter 3

Energy consumption and quality
models

3.1 Energy Consumption Measures and Profiling

This Chapter deals with RG1 and RG2 by analysing how to measure the energy
consumption of a software application, and proposing to consider energy efficiency
as a software non-functional requirement. As described in Section 2.1.2, energy
(measured in Joule or Wh) and power (measured in J/s or W) are the metrics,
which can be used to characterise consumption of IT and ICT systems. However,
they are not specific to IT. In literature, other specific measures have been proposed.
We can summarise them into three broad categories:

• Power, in terms of consumed Watts.

• Efficiency, as the ratio of useful energy and total energy used

• Productivity, defined, at high level, on a production process, as output/re-
source on a time interval (ex. cars produced per worker in a day). In the
context of Energy and IT, the output is computational work while the re-
source is energy. Computational work needs to be defined at each level of the
taxonomy. For instance: in a CPU, an example may be operations performed,
in a network bits transmitted, in a web application hits managed.

More details are introduced in Table 2.1.

In any programmable device, although the ultimate responsibility of energy con-
sumption is always with the hardware, the way the energy is consumed is dictated
by the software. Consequently, it is necessary to draw a theoretical model of the
energy consumption, which depends both on hardware specifications and the way in
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which they are used by software artifacts. The abstract model underlying the power
consumption can be summarised as:

Power = Idle+
∑

c∈Components

Hwc · Swc

The total power consumption Power of an IT device – when turned on – is
composed by an Idle part that is present even when the device is sitting idle. The
additional consumption depends on the individual hardware components maximum
consumption Hwc which is modulated by what the software forces it to do, Swc.
Depending on the software requests the hardware component may run at full throttle
or remain idle.

This theoretical software power model supports higher – software level – strate-
gies for increasing software energy efficiency. As a matter of fact, it gives developers
a way to elaborate a strategy by analysing the causes of energy consumption and
also to validate the efficacy of the formulated strategies by measuring their impact
and effect. In this chapter, a framework for energy-efficient software strategies will
be introduced. The framework is represented in Figure 3.1.

The Refactoring strategy is shown on the left side. It focuses on minimizing soft-
ware instructions and code patterns (Energy Code Smells) that may cause higher
energy usage. This is achievable at design time, following code level guidelines, and
at implementation time, detecting the Energy Code Smells. The Self-Adaptation
strategy, shown on the right side of the figure, has the main goal of creating an
energy-aware application that is able to choose among different configurations, with
respect to different scenarios and contexts, that we call “Energy Profiles” (see Sec-
tion 4.5). The two strategies are not meant to be mutually exclusive: they can be
applied together in the same development process. In addition, other technological,
human or process strategies can be plugged in whenever their impact is measurable
and linkable to a software application and its power consumption, through modelling
and profiling. Both strategies should be applied iteratively, by verifying the energy
efficiency improvements, through power profiling tools, and consequently adapted.
They also should be applied carefully, keeping in mind the software mission and its
main functionalities, the required quality of service, and the interests of the stake-
holders. For example, applying Self-Adaptation to reduce the network usage might
improve energy efficiency, but it might also violate Service Level Agreements on
response time or availability. Therefore, the stakeholders’ network around the soft-
ware should be drawn in order to understand who might be affected by adopting
such strategies.

The bottom part of the figure shows the “Response” level, meant to identify
opportunities for energy optimisation and/or to assess the energy savings gained
by applying our strategies. Resource usage information, such as memory accesses,
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Figure 3.1. Framework for Energy-Efficient Software Strategies

device usage, CPU mode and such, is collected from the hardware. This information
is used as input for software profiling tools, that analyse software applications during
execution and provide on-line power consumption estimation values with different
granularity. Software power models represent a crucial component of our framework,
because they enable the formulation and validation of the strategies. The software
power consumption models are described in more detail in the following section,
along with their implementation inside software energy profiling tools (see Section
3.2: Software Power Profiling Tools).

3.2 Software Power Profiling Tools

This section will introduce some useful tools that developers may use in order to
profile the power consumption of their application. According to the framework
presented in Figure 3.1 these tools are included in the “Software Profiling Tools”
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block; the developer, after implementing one (or both) strategy (Refactoring and/or
Self-Adaptation) can verify the energy efficiency improvements, through such power
profiling tools.

3.2.1 Joulemeter

Developed by Microsoft Corp.1, Joulemeter is a software tool available for Windows
platforms, which provides a power consumption estimation for PCs. It needs an
initial calibration phase, which is done using battery data (on laptops) or using
an external power meter (on desktops). Currently, only one meter is supported:
the WattsUp Pro meter. There is also an option for manually inserting calibration
values, namely idle power consumption, peak CPU consumption (for high and low
frequencies) and monitor consumption. After calibration, Joulemeter provides power
consumption estimation in real time, with components breakdown (CPU, monitor,
disk). It is also possible to specify an application to get the estimation of a single
application. The estimation error is within 3-5% of the actual value [54].

• Pros:

– Ease of use

– Per-application estimation

– Good accuracy

• Cons:

– Needs initial calibration

– Only supports a specific model of power meter

– Windows-only

3.2.2 ARO

Application Resource Optimizer (ARO) is a diagnostic tool for analysing mobile
web applications performance, developed by AT&T. It is composed of two modules:
the Data Collector and the Data Analyzer. With the Data collector it is possible
to log data from a device: the collector must be started and then the target ap-
plication is run. It is also possible to record a video in order to better understand
the consequences caused by the user activity. The Data Analyzer processes the

1http://research.microsoft.com/en-us/projects/joulemeter/
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data acquired by the Data Collector and provides the following features: Visibil-
ity into radio resource and energy utilisation, benchmarking of resource efficiencies,
automatic diagnosis of application inefficiencies

• Pros:

– easy to use

– provides focused hints to improve the energy efficiency of the analysed
application

• Cons:

– works only on rooted android devices and windows 8 devices

– does not provide real-time monitoring

3.2.3 Power TOP

PowerTOP2 is a tool designed to monitor software power consumption in Linux-
based systemsby Intel Corp. in 2007PowerTOP mainly focuses on monitoring CPU
states and showing to the user which software processes are responsible for setting
the CPU into high power states. In this way, the tool helps in diagnosing power
consumption issues and identifying energy-inefficient software. More recent versions
of PowerTOP include monitoring of the activity of devices and peripherals (e.g.,
USB storage, WiFi modules, GPU) and support for power-management configura-
tion. PowerTOP is mainly designed for battery-powered devices, where it requires
a calibration phase to analyse battery discharge behavior. It uses the ACPI inter-
face to collect information on how much power is effectively consumed, and it also
provides an estimation of how many hours of battery are left.

• Pros:

– Per-application estimation

– Power management support

– Provides information about devices and peripherals

• Cons:

– Needs initial calibration

– Effective power consumption estimation only available on battery-powered
devices

– Linux-only

2https://01.org/powertop/
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3.2.4 Intel Energy Checker

Intel Energy Checker3 is an SDK developed by Intel Corp., designed for application
developers who want to build energy-efficient or energy-aware software. It is avail-
able for the most common platforms The SDK provides a simple API, in C language,
that developers can use to instrument their code. The instrumentation is done by
adding counters that can help to identify the ”useful work” done by the application:
these counters need to be defined according to the specific application domain (e.g.
a mail application can record the number of received emails)The second step is to
interface the application with energy meters, in order to collect energy consumption
information. The SDK provides drivers and libraries to communicate with different
models of hardware energy meters. Then, it is possible for the developer to visualise
and correlate the usage metrics with power consumption data in order to analyse the
energy efficiency of its application, or to implement energy-aware policies. The SDK
also provides an ecosystem of tools and utilities that assist developers in embedding
the components of Intel Energy Checker into their applications.

• Pros:

– Multi-platform compatibility

– Fully customisable productivity metrics

– Supports different models of power meters

• Cons:

– Configuration of devices and components can be time-consuming

– Low-level APIs (Wrapping of C libraries might be required)

– Only relies on external power meters for power consumption monitoring
(no estimation)

3.2.5 PowerTutor

PowerTutor is a mobile application for Android devices, which displays the power
consumed by their major hardware components, including CPU, displays as well
as Wi-Fi, Audio, GPS, Sensors and cellular interfaces within 5% of actual values.
It builds power consumption models by controlling the device power management.
PowerTutor includes a set of parameters for each state describing how the power
is consumed. In Android each app/process is considered as a separate user with

3http://software.intel.com/en-us/articles/intel-energy-checker-sdk
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its own UID. Under /proc/uid stat/<UID>/ directory, a lot of information are
available about the app/process, including data transmitted, memory usage etc.
PowerTutor maps process id by using UIDs then, based on the stats found under
the <UID> directory, it decides the states of each component. After that, based on
the power consumption model, PowerTutor computes the energy consumption.

• Pros:

– Available in the Google Play Store

– No root privileges required

– Graphs and charts are available or log files can be downloaded

• Cons:

– Valid values for a subset of Android phones only

– No APIs available

3.3 Energy as a non-functional requirement

The rapid growth and significant development of Information Technology (IT) sys-
tems has started to cause an increase of worldwide energy consumption [103]. This
issue moved technology producers, information systems managers, and researchers
to deal with energy consumption reduction [15]. For this reason, research has in-
creasingly focused on improving the Energy Efficiency of hardware, but the liter-
ature still lacks in quantifying accurately the energy impact of software. Software
does not consume energy directly; however, it has a direct influence on the energy
consumption of the hardware underneath. As a matter of fact applications and oper-
ating systems indicate how the information is processed and, consequently, drive the
hardware behaviour. Considering each IT device, it has its own theoretical energy
consumption, which can range from 0, when it is turned off, to x if all its internal
components are used simultaneously. Through the management of each part there
is a variation ∆x of its consumption that is between 0 and x. The management
of system components can be done either in hardware or software. Previous work
described in Chapter 4 suggested that software can reach up to 10% of the total
system power (measured as the difference between an idle activity, used as a base-
line, and the most power-consuming scenario). These figures ought to be taken into
account, especially when considering mobile environments and data centres. Mobile
handset sales are increasing sharply [3] and this class of devices has to deal with
battery-related issues, so energy savings can impact significantly on the device au-
tonomy. On the other hand, small energy reductions in data centres can result in
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big energy savings: for example, in 2009 alone, data centres consumed around 330
TWh [89].

3.3.1 SQALE

SQALE [62] is a methodology to support the evaluation of the software quality. It
is applicable to any software artifact (such as code, UML models, documentation,
and so on); however, the main focus is on source code, whose quality is perceived as
a non-functional requirement. The goal of using SQALE is to quantitatively assess
the distance between the code’s current quality and its expected quality objective.
To achieve that, the following main concepts are introduced:

1. A quality model

2. An analysis model

3. Indexes and Indicators

Quality model

The quality model proposed by SQALE is an orthogonal quality model derived from
the ISO/IEC 9126 [49] (revised by the ISO/IEC 25010 [50]) . It is organised into
three hierarchical levels, which are represented in Fig. 3.2. The first level is com-
posed of characteristics that are based on the theoretical lifecycle of a source file
and are from the ISO 9126 standard. They depend on the code’s internal proper-
ties and directly impact the typical activities of a software application’s lifecycle.
Characteristics are listed in the order they appear in a typical software application
lifecycle: Testability, Reliability, Changeability, Efficiency, Security, Maintainability,
Portability, Reusability.

Figure 3.2. Hierarchical quality model structure

The second level is composed of sub-characteristics, based on sub-activities and
requirements domain. There are two types of sub-characteristics: those correspond-
ing to lifecycle activities (e.g., unit test, integration test), and those resulting from
taxonomies in terms of good and bad practices relating to the software’s architecture
and coding. A sub-characteristic is attached to only one characteristic, the first in
the chronology of the characteristics (to preserve orthogonality). The third level
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is composed of requirements that relate to the source code’s internal attributes.
These requirements usually depend on the software’s context and language, and
they are also attached to the lowest possible level, i.e. in relation to the first quality
characteristic to which it chronologically contributes. In this way orthogonality is
preserved at the bottom level as well. Requirements relate to the artifacts that
compose the software’s source code, e.g. software applications, components, files,
classes, and so forth. TABLE 3.1 is an excerpt from the SQALE standard [62] and
it contains examples of how requirements in the Java language are inserted in the
structure of characteristics and sub-characteristics. Fig. 3.3 represents graphically
the hierarchy.
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Characteristic Sub-characteristic Generic Require-
ment Description

Maintainability Understandability File comment ratio >
35%

Maintainability Readability File size (LOC) <
1000

Maintainability Readability No commented-out
code

Efficiency RAM-related efficiency Class depth of inheri-
tance (DIT) < 8

Efficiency RAM-related efficiency No unused variables,
parameter or constant
in code

Changeability Logic-related changeability If, else, for, while
structures are bound
by scope

Reliability Fault tolerance Switch statements
must have a default
condition

Reliability Data-related reliability No use of unitialised
variables

Testability Integration level testability Coupling between ob-
jects (CBO) < 7

Testability Unit Testing testability No duplicate part over
100 token

Testability Unit Testing testability Number of parame-
ters in a module call
(NOP) < 6

Table 3.1: Example of SQALE model for Java language, from [62]

Analysis model

The SQALE Analysis Model contains the rules to normalise and control measures
relating to the code. For each violated source code requirement, a remediation
cost (a work unit, a monetary unit, or a time unit) is associated to make the code
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Figure 3.3. Hierarchical representation of the model described in TABLE 3.1

conformant to the quality objective. For instance, looking at TABLE I and Fig. 3.3,
the remediation cost for the requirement of ”Coupling between objects (CBO) < 7”
is the cost to decrease the coupling from its current value X to 7. The remediation
cost might not be constant but expressed by a remediation function. For example,
reducing the coupling from 13 to 7 (-6) might cost a more than twofold effort of
reducing it from 10 to 7 (-3). The total refactoring cost for a sub-characteristic is
the sum of the remediation cost of each requirement violation.

Indices and Indicators

All of the SQALE indices represent the costs related to a given characteristic, es-
timated by adding up all of the remediation costs of the requirement violations of
the connected sub-characteristics. For instance, in the example of TABLE 3.1, the
SQALE Testability Index STI is the sum of the remediation costs of all violated
requirements related to Integration level testability and Unit testing testability, i.e.
”No duplicate part over 100 token”, ”Number of parameters in a module call < 6”,
”Coupling between objects < 7”. The sum of all indexes is the Software Quality
Index (SQI). It is also possible to obtain consolidated indices in the following way:
the consolidated index of a given characteristic is equal to the sum of all the indices
of the previous characteristics. For instance, the SQALE Consolidated Reliability
Index (SCRI) is equal to STI + SRI, i.e. the sum of Testability and Reliability
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indexes. Moreover, a density index has to be associated with each absolute index
dividing it by a measure representing the size of the artifact (lines of code, com-
plexity, etc.). Finally the SQALE Method defines several synthesised indicators to
summarize the overall quality status of the application: since indicators are out of
the scope of the current work, we point the reader to the SQALE document for more
detailed information.

3.3.2 Tailoring SQALE quality model to include Energy ef-
ficiency

We propose to tailor the SQALE model to include Energy Efficiency. As stated in
the introduction, including Energy Efficiency in a quality model is an important step
towards a measurable, repeatable and objective way to evaluate and improve the
Energy Efficiency of a given application. We suggest introducing Energy Efficiency
as a sub-characteristic related to the main characteristic “Efficiency”. It cannot be
a characteristic itself, because it is not an activity in the typical software lifecycle,
but it is a sub-characteristic of second type (i.e. “a recognised taxonomy in terms
of good and bad practices relating to the software’s architecture and coding”). The
next step is to identify appropriate code requirements that can be applied to eval-
uate the Energy Efficiency of a software product. For this purpose, in this section
we propose a list of guidelines, derived from the literature [39] [61] [53], provided
as solutions to developers in order to produce energy-efficient software. From these
guidelines, we extract a set of proper requirements to be included in the SQALE
Quality Model. Most of the guidelines suggested in the literature are not strictly
code-related, but rather recommending general programming techniques. As a con-
sequence, we selected from the original list those requirements that can be traced
to actual code structures. These are listed in TABLE 3.2.
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Nr. Guideline Explanation

GD1 Decrease algorithm com-
plexity

Despite the fact that
different algorithms can
complete the same task,
the way the task is
performed can be to-
tally different. Reduc-
ing the algorithm com-
plexity can lead to sav-
ing energy.

GD2 Use Event-Based program-
ming

Event-based program-
ming avoids a waste
of resources involved
in doing unnecessary
operations. If polling
cannot be avoided, it is
advised to select a fair
time interval.

GD3 Batch I/O Buffering I/O opera-
tions increases Energy
Efficiency; the OS can
power down I/O devices
when not used.

GD4 Reduce data redundancy Storage and trans-
portation of redundant
data impacts Energy
Efficiency

GD5 Reduce memory leaks With memory leaks the
application can stall
or crash. This un-
predictable behaviour
can alter the energy
consumption and, more
generally, they must
always be avoided.

Table 3.2: Guidelines that can be translated into SQALE requirements
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Starting from the selected guidelines, we express the set of requirements for eval-
uating software Energy Efficiency. These requirements, as specified in the SQALE
Model Definition Document, [62], must be:

• Atomic

• Unambiguous

• Non-redundant

• Justifiable

• Acceptable

• Implementable

• Not in contradiction with any other requirement

• Verifiable

Our approach, in line with the SQALE methodology, is based upon translating
the guidelines into code patterns automatically detectable with static analysis tools.
We propose an estimate, based upon the presence of particular implementations that
may cause energy waste. Since requirements are meant by SQALE to be language-
dependant, we use the Java language as a reference in this chapter. TABLE 3.3
contains the requirements identified and mapped to the guidelines they are derived
from. This is not to be intended as an exhaustive list but a first step towards source
code Energy Efficiency quantification.
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Nr. Guideline Nr. Requirement

GD1 Decrease algorithm
complexity

R1 Halstead’s
Effort< K

GD2 Use Event-Based pro-
gramming

R2 Nr. of polling
cycles=0

GD3 Batch I/O R3 Nr. of
FileInput-
Stream.read()
method calls
= 0 [8]

GD4 Reduce data redun-
dancy

R4 Nr. of unused
variables = 0

GD5 Reduce memory leaks
R5.1 Nr. of Dead

Store issues
per class = 0

Nr. of
String|Boolean|
Integer|Double
constructor =
0

Table 3.3: Requirements for Energy Efficiency

R1: Halstead’s Effort < K

Halstead’s Effort [43] is a technique for describing the structural properties of al-
gorithms. This metric has been selected because it gives an estimation of algo-
rithm complexity, which is language-dependant, but not implementation-dependant
as other metrics commonly used in this field (such as McCabe’s Complexity [68]). K
is a parameter to be defined according to specific application domains and project
characteristics.

R2: Nr. of polling cycles = 0

To date and to our knowledge, no static analysis tool is able to detect the polling
cycle, because polling structures can be implemented in various ways. However, we
decided to keep this requirement and to devote further work to find a relevant metric
to detect polling.
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R3: Nr. of FileInputStream.read() method calls = 0

This requirement derives from a particular issue regarding the FileInputStream.read()
method, that triggers a direct call to the underlying OS. If inserted into a cycle, it
will realize an inefficient I/O policy. The use of a BufferedReader greatly improves
performance and supposedly Energy Efficiency of the operation [69]. For example,
the code shown in Listing 3.1 continuously calls the read() method of a FileIn-
putStream object, thus triggering a large number of RPC calls to the Operating
System.

Listing 3.1. Example of inefficient I/O policy

Fi leInputStream f i s = new Fi leInputStream ( f i l ename ] ) ;
i n t cnt = 0 ;
i n t b ;
whi l e ( ( b = f i s . read ( ) ) != −1)
{

i f (b == ’\n ’ )
cnt++;

}
f i s . c l o s e ( ) ;

The code shown in Listing 3.2 makes use of a BufferedInputStream, which reads
larger chunks of data than the FileInputStream. This greatly reduces Remote Pro-
cedure Calls, which improves Energy Efficiency by allowing the Operative System
(OS) to turn off the I/O device when not needed.

Listing 3.2. Example of efficient I/O policy

Fi leInputStream f i s = new Fi leInputStream ( f i l ename ) ;
BufferedInputStream b i s = new BufferedInputStream ( f i s ) ;
i n t cnt = 0 ;
i n t b ;
whi l e ( ( b = b i s . read ( ) ) != −1)
{

i f (b == ’\n ’ )
cnt++;

}
b i s . c l o s e ( ) ;

R4: Nr. of unused variables = 0

The code in Listing 3.3 shows an example of Unused Field issue: the AClass contains
a private field named ”b”, which is never used (the class does not provide a get()
method for that field).
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Listing 3.3. Example of Unused Field

pr i va t e c l a s s AClass
{

i n t a ;
i n t b ;

pub l i c i n t getA (){ r e turn a ;}
}

An optimisation of this code would be providing a get() method for the ”b” field,
or removing the field if unnecessary.

R5.1: Nr. of Dead Store issues = 0

The code shown in Listing 3.4 contains a Dead Store issue, which means assigning
a value to a local variable which is not read by any subsequent instruction.

Listing 3.4. Example of Dead Local Store

pub l i c i n t DeadLocalStore ( i n t x )
{

i n t cons tant a = x ;
cons tant a = 3

return cons tant a + x ;
}

In the code above, x is stored to constant a, but it is overwritten in the subsequent
code line. A more efficient code is shown in Listing 3.5.

Listing 3.5. Example of refactored Dead Local Store

pub l i c i n t noDeadLocalStore ( i n t x )
{

i n t cons tant a = 3 ;
re turn cons tant a + x ;

}
The value of x is no longer stored to constant a and then replaced.
The requirements specified above are derived from the guidelines [53] [61] of good

programming practices provided in the literature. However, it is worth mentioning
that such guidelines, despite being intuitive and acknowledged as effective by soft-
ware industry specialists [103], did not receive any empirical validation. For this
reason, and in order to make the choice of the above specified requirements justi-
fiable, an empirical validation that quantitatively assesses their impact on Energy
Efficiency is needed.
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The last steps in the introduction of Energy Efficiency into SQALE are: tailoring
the analysis model, tailoring the indices and the indicators. These steps are more
straightforward then the previous one. Regarding the analysis model, a remediation
function for each requirement violation ought to be defined in order to obtain the
remediation cost. An example of remediation function for the requirement

number of dead stores > 0

could be:

10 + 2x

where x is the number of deadstores, 10 is the cost (in time units) of running a static
analysis tool to detect them and 2 is the estimated time cost to review and refactor
each dead store. We plan to estimate the remediation cost of each requirement vio-
lation through controlled experiments (e.g. observing the time required by subjects
for a refactoring action) and questionnaires (i.e. asking directly to practitioners
for estimations of refactoring actions). Energy Efficiency being a sub-characteristic
of efficiency, the sum of the remediation costs of all its source requirements will
be added to the total cost of the other efficiency sub-characteristics, obtaining the
SQALE Efficiency Index. Finally, the indicators do not need tailoring because they
are at the highest level of the quality model.

3.3.3 Considerations and Future Work

Energy efficiency is becoming a key factor in software development, given the ubiq-
uity of software in everyday life and its hardware-related power consumption. More-
over, in devices running on batteries, efficient energy consumption is a key aspect.
For this reason we propose introducing Energy Efficiency into the existing quality
models. We selected SQALE, whose quality model is derived from the ISO/IEC
9126 and is strictly related to the software lifecycle activities. We tailor SQALE
inserting Energy Efficiency as a sub-characteristic of efficiency, and we propose a
set of specific requirements for the Java language starting from guidelines currently
developed in the literature. The requirements identified are:

• Halstead’s Effort < K

• Nr. of polling cycles = 0

• Nr. of FileInputStream.read() method calls = 0

• Nr. of dead store issues per class = 0

• Nr. of unread variables = 0
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• Nr. of String|Boolean|Integer|Double constructor = 0

We identified two major challenges in requirements elicitation:

1. The translation of the guidelines in measurable requirements, whose violations
are automatically identifiable by tools;

2. The validation of the requirements violation on energy consumption.

Future work will be devoted to execute the experiment to empirically validate the
requirements, estimating both their negative impact on power consumption and
the related remediation costs. We will also investigate whether other requirements
are eligible to be included in the quality model under the Energy Efficiency sub-
characteristic.

The next chapter will analyse the energy consumption profiling in data centres,
desktop computers, and mobile handsets.
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Chapter 4

Empirical Studies

This chapter contains the empirical studies carried out during this PhD programme,
and it covers three Research Goals:

• RG3: In Sections 4.1, 4.2, and 4.3

• RG4: in Section 4.4

• RG5: In Section 4.5

Over the years, the use of Information Technology has exploded and IT has also
contributed to environmental issues: the total electricity consumption by servers,
computers, monitors, data communication equipment, etc. is increasing steadily
[45]. According to [103], the ICT sector is responsible for a value between 2%
and 10% of worldwide energy consumption. Therefore, it is necessary to improve
awareness in the IT industry with regard to environmental problems, and this aspect
should be considered from the academic point of view [102]: in fact, turning on
research universities into living laboratories of the greener future [29], will permit
us to quickly develop best practices and to make them available to industry and
society in general. As an example we cite the work of Chiaraviglio et al. [24]: they
applied a fully automatic measurement that is able to scale and track the number
of devices powered on in real time. This technique has been applied at our same
university, Politecnico di Torino. They created PoliSave, a software to turn a PC
on/off by connecting directly to a website. PoliSave is being extended to all PCs in
the Campus, with the goal of saving about 250,000 per year from the University
energy bill. The study we present here is instead focused on the analysis of power
consumption data, and it is designed to find out usage patterns of IT devices’ energy
consumption and to identify situations in which there is a waste of energy. Pinckard
and Busch [85] also collected data on devices, focusing on the after-hours power state
of networked devices in office buildings: they showed that most of devices are left
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powered on during the night, concluding that this is the first cause of energy waste.
Usage analysis is a crucial step to optimize the energy consumption: this task is
even more necessary within data centres where the number of computers is large.
In this field, Bein et al. [14] tried to improve the energy efficiency of data centres:
they studied the cost of storing vast amounts of data on the servers in a data center
and they proposed a cost measure together with an algorithm that minimises such
cost. In our analysis the number of PCs is lower, but we observe data from a real
case [100].

4.1 Datacentres

4.1.1 Context of the analysis

One of the strategic goals of Politecnico di Torino is the green footprint cutting
and related costs reduction. Managers know that whenever a change is needed, the
first step is to figure out the current scenario in a quantitative way, that means
to measure [27]. Starting from the indicators, it is then possible to find solutions,
improve results and solve problems. Therefore, several measures should be present
on the dashboard of the green power manager, one of them is the electrical power
consumption of devices: for this reason, our University decided to install in several
departments sensors to monitor the power consumption of rooms, lighting and con-
ditioning systems, data elaboration centers and single IT devices such as servers,
printers, switches. We were involved in the measurement process of such data in a
research center affiliate to Politecnico di Torino, the Istituto Superiore Mario Boella
(ISMB), and we present in this paper data collected and some facts found.

Instrumentation

The measurement of power consumption was done through a power monitoring sys-
tem provided by an industrial partner. The system is composed by sensors inserted
between the monitored devices and the electrical plugs to which they are plugged
in. For entire sections of lighting and conditioning systems, instead, the sensor
is applied directly on the conductor through a pincer. Both type of sensors can
compute active and reactive power, voltage, current intensity, cos , with a desired
sampling time (we selected ten minutes). Data collected by sensors are sent to a
bridge through ZigBee, then the bridge forwards the data via Ethernet/Internet to
the central servers. Data are then accessible on a web portal and can be exported
to be analyzed. We monitor the active power consumption on the following devices
of the ISMB research center:

• Three distinct servers:
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– Server 1 (from 22nd April 2010 to 23rd November 2010)

– Server 2 (from 22nd April 2010 to 23rd November 2010)

– Server 3 (from 7th May 2010 to 23rd November 2010)

• A printer (from 5th March 2010 to 23rd November 2010)

• The conditioning system CED1, that is cooling the room where Server 1 and
2 are located (from 23rd November 2009 to 23rd November 2010)

• The lighting system in Server 3 Room (from 24th November 2009 to 23rd
November 2010)

We list in Table 4.1 the characteristics of the three servers. Server 1 and Server
2 are both used as web servers: they host websites of research projects, where
researchers share documents and files. Server 3 instead is used both as web server
and to perform graphical operations. The printer is HP Laserjet P3005dn, with an
operational power supply of 600W and standby consumption of 9W. Unfortunately
we do not have information on the conditioning and lighting system. Finally, we
define “instant power consumption as the average power consumption consumed in
the sampling unit time (ten minutes).

Server 1 Server 2 Server 3
Type Dell PE r300 Dell PE1950 III Dell Precision

T5400
RAM 8 GB DDR 2 4 GB 4 GB
Proc Quad Core Xeon

X5460 3.16 GHz
64 bits

Quad Core Xeon
E5410 2.33GHZ
32 bits

Dual Core Xeon
5200 2.49 GHz
64 bits

Power supply 400 W 670 W 875 W
Operating sys-
tem

Windows Server
2003 R2 Enter-
prise X64

Ubuntu 2.6.24-
19-server

i)Windows
Server 2008

ii)Ubuntu 10.04
Server
iii)Windows XP

Energy certifica-
tion

NO NO Energy Star 4.0

Table 4.1: Energy Metrics and Benchmarks
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Research questions

Eight different research questions drive data analysis. Firstly we have a group of
questions (Overview) that is very general, and aims at discovering what is the actual
average instant power consumption of the equipment in the ISMB research centre,
that we suppose to be the typical equipment of similar centres. Overview questions
are listed below:

1. What is the average instant power consumption of the servers in the last year?

2. What is the average instant power consumption of the printer in the last year?

3. What is the average instant power consumption of the other equipment (light,
conditioning)?

After that, we focus our analysis on the power consumption of servers, be-
cause we can reduce their consumption only by understanding how and how
much they consume. The first question that is raised is whether the power
consumption of the three servers is the same or not:

4. Are there differences between the servers instant power consumptions?

Assuming, from the exploratory data analysis, that the power consumption in
the studied context is not following any well-known distribution, we answer
question 5 performing the Wilcoxon Two Sample test [9]. The difference we
try to find with this question is an inter-server difference: the next step is
to explore the aspects related to the progress of the single servers’ power
consumptions. Initially, we investigate whether the power consumption is
homogeneous or variant:

5. Are there any peaks in instant power consumption or is it homogeneous? If
so, how long do they last? Are they relevant, in terms of power values?

We answer this question in a qualitative way, i.e. plotting, for each server, 2
different graphs: the power consumption over time and the estimated proba-
bility density. The first plot lets us identify the presence of peaks and trends
in the observed time window, whilst the latter permits us to see if power con-
sumption accumulated by peaks is relevant, looking to the frequency of the
values associated to the peaks. Peaks represent a rapid growth or decrease,
or deviations from a normal behaviour. However, a server could have several
behaviours in terms of power consumption, associated, for example, to a dif-
ferent load or a particular software or hardware configuration. Therefore the
scope of the next question is to understand the existence of different power
consumption “behaviours”, that we call “profiles”.
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6. Can we identify different usage profiles (e.g. active/standby)?

We perform a cluster analysis to answer question 7. We use the K-Means
algorithm [96] and the bivariate plots, obtained through normalisation and
rescaling of the variables (watt-time couples). The selected clustering algo-
rithm aims to group and find aggregations of data around certain values called
“centres, which could point out different power consumption “profiles” and
relationships between the variables (for instance, a typical profile in common
computers is the standby profile).

The plots let us visualize and verify the clusters found. If profiles are found,
it is also important to verify if they correspond to daily/nightly activities, re-
lating, for each server, the progress of power consumption with timetables of
human activities in ISMB. Hence, we plot, for each server, the power consump-
tion in a whole day, selecting for each week of the last 3 months a random day
between Tuesday, Wednesday and Thursday (we avoid weekends, Mondays and
Fridays because typically in these days human activities are not representative
of the typical work day). Observing the 12 plots obtained and interviewing
people working in the centre, we are able to identify the time range in which
the majority of activities on all the 3 servers are carried out, that is between
9 a.m. and 8 p.m. At this point, it is possible to divide data into daily and
nightly consumption, and then compare the two subsets, using the Wilcoxon
Two Sample test, since data is not normally distributed. Moreover, we are
interested in pointing out the power consumption of each profile, in order to
understand how much energy is saved/lost by applying the configurations and
conditions that determine the different power profiles. This is done by tag-
ging each observation with the profile it belongs to and then summing up the
cumulated consumption. Therefore, the research question is:

7. How much total energy did servers consume in the last year in the different
profiles?

Finally, the same question is replicated to the printer, which has two well-
known profiles: an active profile when it is printing, and a stand-by profile
when it is not.

8. How much energy can we save by turning off the printer when it doesn’t work?

All questions are about power, and related data are expressed in Watt (W),
with an exception given for RQ 7, and RQ 8 that measure energy (KWh).

Threats to validity

The first threat of this research is an external threat: the analysis is performed on
specific machines, thus generalising these results is not possible. However, it can be
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possible to look at this equipment as representative of a category of equipment with
similar characteristics. Further, a derived internal threat is that the information
on the technical characteristics of the IT equipment (printer, servers) and on their
usage (massive, constant, etc) could be not enough to deeply motivate all the curves
of the power consumption analysed and determine with precision the impact on
the measures. Therefore, the causes that we derive from the observation, can be
biased. Finally, we also identify a conclusion threat determined by the sampling
time (ten minutes): as a consequence we have average values even for instant power
consumption measures, and we could miss some fluctuations.

4.1.2 Analysis Results

• Overview(RQ1 to RQ3) We provide on Table 4.2 two descriptive statistics
about RQ1 to RQ4: the average instant power consumption and the index of
dispersion that quantifies how much data is sparse around the mean.

• Servers (RQ4 to RQ7)

– RQ4: Are there differences between the servers instant power
consumptions
We observe in Table 4.3 that power consumptions of Server 1 is very
different from the consumptions of Server 2 and 3. However, Server 2
and 3, even if similar in mean values (difference is only 8 Watts), have
statistically different mean power consumptions.

– RQ5: Are there any peaks in instant power consumption or is it
homogeneous? If so, how long do they last? Are they relevant,
in terms of power values?
Looking to the time plots, we observe for Server 1 (Figure 4.1) many high
spikes (that reach values that are more than the 50% of the mean), two
low spikes and frequent switches between low and high values. However,
the index of dispersion (see Table 4.2) is reduced, which means that the
time duration of the peaks is short. For Server 2 (Figure 4.2), data is
more concentrated around the mean value, and the peaks (3 low spikes
and a dozen of high peaks) lasts for short periods of time (but longer
than Server 1, as the index of dispersion suggests).
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RQ Device Average In-
stant Power
Consumption

Index of
dispersion
(var/mean)

1 Server 1 108.02 W 0.55
1 Server 2 145.12 W 2.3
1 Server 3 139.63 W 22.44
2 Printer 13.46 W 199.95
3 Light(Server 3) 107.76 W 877.56
4 Conditioning

(Server 1+2)
2713.77 W 880.12

Table 4.2: Average instant power consumption of selected devices

Comparison 95% Differ-
ence Confi-
dence Interval

P- val Different?

Server 1 vs.
Server 2

{ -37.78 , -37.68
}

< 2.2e-16 YES

Server 1 vs.
Server 3

{ -47.57 , -47.36
}

< 2.2e-16 YES

Server 2 vs.
Server 3

{ -8.43 , -8.33 } < 2.2e-16 YES

Table 4.3: Result of Wilcoxon test on servers instant power consumptions

Finally, for Server 3 (Figure 4.3) the situation is yet different: it has a
higher consumption and many high peaks until the end of August, then
lower power consumption and peaks starting from September 2010. The
change in the curve has a motivation: the server was used to perform con-
tinuous intensive tasks as image processing, parallel coding and massive
video/audio streaming until end of August. Then, it was used as a normal
web server, as Server 1 and Server 2. The variability of data has also the
same behavior: higher until September, then reduced. Moreover, there
is a very long period (about 20 days) of zero power consumption (it was
powered down), followed by 4 other smaller periods of zero consumption.
Plotting instead the probability density estimation of the servers’ power
consumptions, we can see around which values data is concentrated, and
therefore if peaks are relevant both in terms of power consumption and
duration. Server 1 (Figure 4.4) has 3 main concentrations of data: the
highest is around the mean value ( 108 W), then there is a similar peak at
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Figure 4.1. Instant power consumption over time (Server 1)

Figure 4.2. Instant power consumption over time (Server 2)

about 112 W and a lower one in their middle, finally two very low peaks
at the two extremes of the graph. We conclude that peaks of Server 1
are relevant in terms of duration, but not in terms of variation from the
mean value. The probability function of Server 2 (Figure 4.5) is totally
different: data is concentrated around the mean value, and the distri-
bution is very similar to a normal distribution with very low variance.
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Figure 4.3. Instant power consumption over time (Server 3)

The higher index of dispersion is due to the small peak toward the 10W
and the other one on the right of the mean. We observe that peaks for
Server 2 are irrelevant in terms of duration, but some are quite far from
the mean. Finally, we observe Server 3 in Figure 4.6: except the peak
around the mean, the 2 big peaks ( 0 W and 160 W) have high proba-
bilities, whilst the small peak on the right is quite far from the mean. As
a consequence, spikes of Server 3 are relevant both for time length and
power consumption. This concludes the answer of RQ6.

– RQ7: Can we identify different usage profiles (e.g. active/s-
tandby)?
We obtain from the K-Means algorithm 5 clusters for Server 1, 4 clusters
for Server 2 and 4 Clusters for Server 3. The centers of the clusters are
the following, in increasing order of power (W) :

∗ Server 1: 8.36, 105.23, 106.97, 109.44, 110.47

∗ Server 2: 14.64, 146.44, 146.68, 149.22

∗ Server 3: 2.80, 154.51, 160.56, 246.81

We can surely identify a “low power profile” for all the servers (the lowest-
value centre). Instead, active profiles could be more than one, especially
for Server 1 (data varies from 105 to 110 W) and Server 3 (where the
difference is clear, since values go from 154 to 246 W). For this reason,
we perform a further cluster analysis, focused only on the active profile,
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Figure 4.4. Probability density function estimation (Server 1)

Figure 4.5. Probability density function estimation (Server 2)

which allows us to gain more information. We find the following centres:

∗ Server 1: 104.93, 105.21, 105.92, 109.76, 111.10, 138.61

∗ Server 2: 146.46 , 146.63, 185.10
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Figure 4.6. Probability density function estimation (Server 3)

∗ Server 3 : 154.27, 160.64, 245.87

Reducing to significant values, we can identify for all the servers at least
two different high power profiles and a low power profile: we show val-
ues in Table 4.4. Subsequently, we investigate whether the two high
power profiles are related to the day/night human activities. Even if the
Wilcoxon statistical test (Table 4.5) verifies the difference between daily
and nightly power consumption with the standard level of confidence of
95%, this difference is in practice negligible, since it is in the order of W
for Server 1 and Server 2 and it is less then 1 W for Server 3.

– RQ8: How much total energy did servers consume in the last
year in the different profiles?
The estimated cumulated energy consumption of servers in the different
power profiles is shown in column kWh of Table 4.6, whilst the column %
shows the percentage of each cumulated power with respect to the total.

• Printer (RQ8)

– RQ9: How much energy can we save by turning off the printer when it
doesn’t work?

This is the overall data of the energy consumption of the printer in the
Active Standby profiles:
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∗ Active: 11.93 kWh

∗ Standby: 21.29 kWh

The difference is important indeed, 2/3 of energy are used (wasted) in
the standby mode.

Servers High power
profile 1 (W)

High Power
Profile 2 (W)

Low Power
Profile (W)

Server 1 ∼138 ∼105 ∼8
Server 2 ∼185 ∼146 ∼14
Server 3 ∼245 ∼160 ∼3

Table 4.4: Servers’ power consumption profiles - data clustering

Servers 95% Diff
C.I. Between
Day/Night
(W)

P- val Different?

Server 1 {-1.00 e-05, -1.80
e-05}

0.05 YES

Server 2 {3.86 e-05 , 4.22
e-05}

0.01 YES

Server 3 { 0.625 , 0.937 } < 2.2e-16 YES

Table 4.5: Servers’ power consumption comparison between day and night

Servers High power
profile 1

High power
profile 2

Low power
profile

kWh % kWh % kWh %
Server 1 20.37 3.75 523.05 96.21 0.22 0.04
Server 2 33.57 4.62 692.2 95.17 1.57 0.22
Server 3 89.09 13.82 554.25 85.98 1.29 0.2

Table 4.6: Cumulative power consumption by profiles

4.1.3 Considerations

We analysed the power consumption in the last months of the equipment in the
research center ISMB, which is affiliated to our University. We monitored at a
high level data about conditioning and lighting systems and general devices and we
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conducted a more detailed analysis on the servers and the printer. We draw from
the statistical analysis and the answers of the research questions the following facts,
and related further questions for future work.

Servers

Fact 1. We found differences between the power consumptions of the three servers
(RQ4), likely determined by software usage, not by hardware equipment. In fact,
despite Server 1 has a more powerful hardware equipment (CPU, memory), it has
the lowest power consumption.

Fact 2. The power consumption of servers is not homogeneous over time (RQ5).
There are several peaks. Peaks are determined by software usage: as a matter of
fact, Server 3 consumes up to 75% more when it is used for graphical operations.

Fact 3. Servers have different power consumption profiles (RQ7). This is de-
termined by software usage.

Fact 4. Conditioning and lighting for servers consume more than computation
(especially conditioning, that consumes approximately ten times more) (RQ3).

Fact 5. Low power profile (or Stand-by) for servers is useless (< 1%) (RQ7).

Fact 6. There is no substantial difference between day and night servers’ power
consumption (RQ7).

Printer

Fact 7. The printer consumed more energy in standby mode than in active mode
(RQ9).

Indeed, in our analysis, with a mechanism able to turn off the printer when it
doesn’t work, 21 kWh would have been saved in the period March-November 2010,
which is 64% of the printer’s total power consumption in that time range. Or,
alternatively, shutting down the printer during the night, it is possible to save the
standby power consumption (13 W, despite the 9W declared in the technical sheet),
which means saving 47.45 KWh per year.

Even if this analysis is very initial, and specific to a few machines that may
not be representative of the whole population, we believe it points out some sim-
ple checks that every energy manager should do as a first step to reduce energy
consumption: consumption of conditioners and lighting, consumptions of printers
in idle mode, consumption of servers both over day and night. Moreover, data
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we have presented could be compared to other analysis on equipment with similar
characteristics. Future work will be devoted to understand more the reasons of the
behaviours observed; notably to investigate deeper the motivations of the differences
of servers’ power consumptions, and to verify them experimentally by setting up dif-
ferent configurations/conditions in the machines to evaluate their impact on power
consumption. Secondly, we will repeat the same analysis on the Data Elaboration
Centre of our university, and we will compare it with the data presented in this pa-
per. We think that the research questions that drove this analysis could be adopted
and answered by other researchers in different universities and centres: building up
a common benchmark of power consumption, it is possible to identify common and
efficient solutions that can then be exported in industry and society.

4.2 Desktop PC

4.2.1 Background

In 2011, a post appeared on the MSDN Blog1 : it concerned the energy consump-
tion measurement of internet browsers. Authors measured power consumption and
battery life of a common laptop across six scenarios and different browsers. They
allowed each scenario to run for 7 minutes and calculated the average power con-
sumption over that duration. The different scenarios were: Browsers navigated to
about:blank (power consumption of the browser UI), loading a popular news Web
sites (common HTML4 scenario), running the HTML5 Galactic experience (repre-
sentative of graphical HTML5 scenario) and fish swimming around the FishIE Tank
(what test is complete without FishIE?). The baseline for scenarios comparison was
the Windows 7 without any browsers running. Authors ran IE9, Firefox, Opera
and Safari for each scenario and then they made a comparison of the obtained re-
sults. They executed the same operations with the different browsers, obtaining
very different results on power consumption and laptop battery life [82] [81].

[54] presented a solution for VM power metering. Since measuring the power
consumption of a Virtual Machine is very hard and not always possible, authors
built power models to get power consumption at runtime. This approach was de-
signed to operate with low runtime overhead. It also adapts to changes in workload
characteristics and hardware configuration. Results showed 8% to 12% of addi-
tional savings in virtualized data centres. Another related work is PowerScope [31]:
this tool uses statistical sampling to profile the energy usage of a computer system.
Profiles are created both during the data collection stage and during the analysis

1Browser Power Consumption - Leading the Industry with IE 9,
http://blogs.msdn.com/b/ie/archive/2011/03/28/browser-power-consumption-leading-the-industry-with-internet-explorer-9.aspx
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stage. During the first stage, the tool samples both the power consumption and
the system activity of the profiling computer and then generates an energy profile
from this data without profiling overhead. During data collection, authors use a
digital multimeter to sample the current drawn by the profiling computer through
its external power input. After that, they modified Odyssey platform for mobile
computing. When there is a mismatch between predicted demand and available
energy, Odyssey notifies applications to adapt. This is one of the first examples of
Energy-Aware software.
In 1995, the first attempts were made to profile the energy performance of a com-
puter. Lorch [64] in his M.S. thesis explained that there are two aspects to consider
while measuring the breakdown of power consumption on a portable computer: I)
Measuring how much power is consumed by each component, II) Profiling how often
each component is in each state.

Other works about profiling and measuring energy consumption are related to
embedded systems. For instance, JouleTrack [93] runs each instruction or short
sequences of instruction in a loop and measure the current/power consumption.
The user can upload his C source code to a Web Server which compiles, links and
executes it on an ARM simulator. Program outputs, assembly listing and the run-
time statistics (like execution time, cycle counts etc.) are then available and passed
as parameters to an engine which estimates the energy consumed and produces
graphs of different energy variables. Results showed that the error of predictions
was between 2% and 6%. The concept of energy-awareness is based upon a complete
knowledge on how and where energy is consumed on a device. In [20], authors
present a detailed analysis of power consumption in a mobile device, focusing on the
hardware subsystems, through common and realistic usage scenarios. Results show
that the GSM module and the display are the most power-consuming components:
for example, a GSM phone call on OpenMoko Neo Freerunner, HTC Dream G1 and
Google Nexus One consumes 1135 mW, 822 mW and 846 mW respectively.

Usually, an accurate power consumption analysis of mobile or embedded devices
is component-based. However, instantaneous information about discharge current
and remaining battery capacity is not always available, because most devices do not
have built-in sensors to collect these data. In [108], a technique called PowerBooter
is proposed to build a battery-based model automatically. Authors motivate this
decision by considering that different mobile devices of the same category show dif-
ferent power consumption, and a specific power consumption model for each device
is difficult to obtain. Thus, instead of using external metering instrumentation to
detect power consumption, only the internal battery voltage sensor is used, which
is found across many modern smartphones. Authors indicate that for a 10-second
interval, the PowerBooter technique has an accuracy of about 4.1% within measured
values.

From a software engineering point of view, most contributions are devoted to
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developing frameworks and tools for energy metering and profiling. Also in [108],
authors propose an on-line power estimation tool called PowerTutor. It implements
the PowerBooter model in order to profile power consumption of applications, based
upon their component usage. Another example, which makes use of external meter-
ing devices, is ANEPROF [25], which authors define as a real-measurement-based
energy profiler able to reach function-level granularity. It is developed for Android
OS-based devices, thus it is aimed at profiling Java applications. It is based on
JVM event profiling, using software probes to record runtime events and system
calls. Authors had to address several design issues, such as overhead control and
proper time synchronization. Power consumption profiling is made through corre-
lation of real-time power measurements done by an external DAQ, connected to
an ARM Computer-on-Module running Android 2.0. Authors also provide profiling
data of four popular applications (Android Browser, GMail, Facebook, Youtube).
The accuracy of ANEPROF depends on the hardware meter used. Its CPU over-
head is stated to be less than 5%. Finally, SEMO [28] is a smart energy monitoring
system, developed for Android, which also provides also application-level consump-
tion monitoring. This system is composed of three components: an inspector, which
monitors the information on the battery, warning users when the battery reaches
a critical condition; a recorder, which basically logs the actual charge of the bat-
tery and the running applications, and an analyzer, which calculates the energy
consumption rate for each application and ranks them according to it.

Another alternative for energy measurement is low-level power-analysis using
instruction-level models [98]. These models provide accurate power estimates for
small kernels of code. An example of this kind of model is presented in Equation
4.1 where [66] Energy is the total energy dissipation of the program.

Energy =
∑
i

(BCi) +
∑
i,j

(SCi,j Ni,j ) +
∑
k

(OCk) (4.1)

The first part is the summation of the base energy cost of each instruction (BCi

is the base energy cost and Ni is the number of times instruction i is executed). The
second part accounts for the circuit state (SCi,j is the energy cost when instruction
i is followed by during the program execution). The third part accounts for energy
contribution OCk of other instruction effects such as stalls and cache misses during
the program execution.

The study presented here is instead focused on the analysis of power consumption
data, and it is designed to find out usage patterns of IT devices’ energy consump-
tion and to identify situations in which there is a waste of energy. Pinckard and
Busch [104] also collected data on devices, focusing on the after-hours power state
of networked devices in office buildings: they showed that most of devices are left
powered on during the night, concluding that this is the first cause of energy waste.
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Usage analysis is a crucial step to optimise the energy consumption: this task is
even more necessary within data centres where the number of computers is large.
In this field, Bein et al. [14] tried to improve the energy efficiency of data centres:
they studied the cost of storing vast amounts of data on the servers in a data centre
and they proposed a cost measure together with an algorithm that minimises such
cost.

4.2.2 Study Design

Goal Description and Research Questions

The aim of this research is to assess the impact of software and its usage on power
consumption in computer systems. The goal is defined through the Goal-Question-
Metric (GQM) approach. [99]. This approach, applied to the experiment, led to
the definition of the model presented in Table 4.17. The first research question in-
vestigates whether and how much software impacts power consumption. Different
applications and usage patterns will be tested. The second research question in-
vestigates whether a categorization of usage scenarios with respect to functionality,
is also valid for power consumption figures. The third research question tries to
find a quantifiable relationship between power consumption and actual usage of the
computer system, by selecting four metrics relative to the main system resources
(CPU, Disk, Memory and Network).
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Goal

Evaluate software usage
for the purpose of assessing its energetic impact
with respect to power consumption
from the viewpoint of the System User
in the context of Desktop applications

Research Ques-
tion 8

Does software impact power consumption?

Metric Consumed Power (Watts)

Research Ques-
tion 9

Is it possible to classify software usage sce-
narios basing upon power consumption?

Metric Consumed Power (Watts)

Research Ques-
tion 10

What is the relationship between usage and
power consumption?

Metric CPU Usage (percentage)
Metric Memory Usage (reads/writes)
Metric Disk Usage (reads/writes)
Metric Network Usage (Packets/sec)
Metric Consumed Power (Watts)

Table 4.7: The GQM Model

Variable Selection

In order to answer the Research Questions, it is necessary to specify the indepen-
dent variables that will characterize the experiment. The following usage scenarios,
described in detail, will provide the basis for the analysis.

0 - Idle. This scenario aims at evaluating power consumption during idle states of
the system. In order to avoid variations during the runs, most of OS’automatic
services were disabled (i.e. Automatic Updates, Screen Saver, Anti-virus and
such).

1 - Web Navigation. This scenario depicts one of the most common activities for
a basic user - Web Navigation. During the simulation, the system user starts
a web browser, inputs the URL of a web page and follows a determined navi-
gation path. Google Chrome has been chosen as the browser for this scenario
because of its better performance on the test system, which allowed us to in-
crease navigation time. The website chosen for this scenario is the homepage
of the SoftEng research group http://softeng.polito.it, in order that the
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same contents and navigation path could be maintained during all the scenario
runs.

2 - E-Mail. This scenario simulates sending and receiving E-Mails. For this sce-
nario’s purpose, a dedicated E-Mail account has been created in order to always
send and receive the same message. In this scenario, the system user opens an
E-Mail Client, writes a short message, sends it to himself, then starts checking
for new messages by pushing on the send/receive button. Once the message
has been received, the user reads it (the reading activity has been simulated
with an idle period), then deletes the messages and starts over.

3 - Productivity Suite. This scenario evaluates power consumption during the us-
age of highly-interactive applications, such as office suites. For this scenario,
Microsoft Word 2007 has been chosen, the most used Word Processor applica-
tion. During the scenario execution, the system user launches the application
and creates a new document, filling it with content and applying several text
editing/formatting functions, such as enlarge/shrink Font dimension, Bold,
Italics, Underlined, Character and background colors, Text alignment and in-
terline, lists. Then the document is saved on the machine’s hard drive. For
each execution a new file is produced, thus the old file gets deleted at the end
of the scenario.

4 - Data Transfer (Disk). This scenario evaluates power consumption during op-
erations that involve the File System, and in particular the displacement of a
file over different positions of the hard drive, which is a very common opera-
tion. For this scenario’s purpose, a data file of a relevant size (almost 2 GB)
has been prepared in order to match the file transfer time with the prefixed
scenario duration (5 minutes). The scenario structure is as follows: the sys-
tem user opens an Explorer window, selects the file and moves it to another
location. It waits for file transfer to end, then closes Explorer and exits.

5 - Data Transfer (USB). As using portable data storage devices has become a
very common practice, this scenario has been developed to evaluate power
consumption during a file transfer from the system hard drive to an USB
Memory Device. This scenario is very similar to the previous one, except for
the file size (which is slightly lower, near 1.8 GB) and the file destination,
which is the logical drive of the USB Device.

6 - Image Browsing/Presentation. This scenario evaluates power consumption
during another common usage pattern, which is a full-screen slide-show of
medium-size images, which can simulate a presentation as well as browsing
through a series of images. In this scenario, the system user opens a PDF File
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composed of several images, using the Acrobat Reader application. It sets the
Full-Screen visualisation, then manually switches through the images every 5
seconds (thus simulating a presentation for an audience).

7 - Skype Call (Video Disabled). For an average user, the Internet is without any
doubt the most common resource accessed via a Computer System. Moreover,
as broadband technologies become increasingly available,it has been thought
to be reductive not to consider usage scenarios that make a more intensive use
of the Internet than Web Navigation and E-Mails. Thus, the Skype scenario
has been developed. Skype is the most used application for Video Calls and
Video Conferences among private users. For this scenario’s purposes, a Test
Skype Account was created, and the Skype Application was deployed on the
test machine. Then, for each run, a test call is made to another machine
(which is a laptop situated in the same laboratory) for 5 minutes, which is the
prefixed duration of all scenarios.

8 - Skype Call (Video Enabled). This scenario is similar to scenario 7, but the
Video Camera is enabled during the call. This allows an evaluation of the
impact of the Video Data Stream both on power consumption and on system
resources.

9 - Multimedia Playback (Audio). This scenario aims to evaluate power consump-
tion during the reproduction of an Audio content. For this scenario’s purpose,
an MP3 file has been selected, with a length of 5 minutes, to reproduce through
a common multimedia player. Windows Media Player has been chosen, as it
is the default player in Microsoft systems, and thus one of the most diffused.

10 - Multimedia Playback (Video). Same as above, but in this case the subject for
reproduction is a Video File in AVI format, same duration.

11 - Peer-to-Peer. As for the Skype scenarios, the decision has been made to also
take into account a Peer-to-Peer scenario, which has proven to be a very com-
mon practice among private users. For this scenario, BitTorrent was selected
as a Peer-to-Peer application, because of its large diffusion and less-variant
usage pattern if compared to other Peer-to-Peer networks with more com-
plex architectures. During this scenario, the system user starts the BitTorrent
client, opens a previously provided .torrent archive, related to an Ubuntu dis-
tribution, and starts the download, which proceeds for 5 minutes. After every
execution, the partially downloaded file is deleted, in order to repeat the sce-
nario with the same initial conditions.

In Table 4.8 all the scenarios are summarized with a brief description of each of
them. The last column reports the category which the scenarios belong to, from a
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functional point of view, according to the following:

• Idle (Scenario 0): it is the basis of the analysis, evaluates power consumption
during the periods of inactivity of the system.

• Network (Scenarios 1,2,7,8,11): it represents activities that involve network
subsystems and Internet.

• Productivity (Scenario 3): it is related to activities of personal productivity.

• File System (Scenarios 4,5): it concerns activities that involve storage devices
and File System operations.

• Multimedia (Scenarios 6,9,10): it represents activities that involve audio/video
peripherals and multimedia contents.
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Nr. Title Description Category

0 Idle No user input, no applications run-
ning, most of OS’automated services
disabled.

Idle

1 Web Navigation Open browser, visit a web-page, oper-
ate, close browser.

Network

2 E-Mail Open e-mail client, check e-mails, read
new messages, write a short message,
send, close client.

Network

3 Productivity
Suite

Open word processor, write a small
block of text, save, close.

Productivity

4 Data Transfer
(disk)

Copy a large file from a disk position
to another.

File System

5 Data Transfer
(USB)

Copy a large file from an USB Device
to disk.

File System

6 Presentation Execute a full-screen slide-show of a
series of medium-size images.

Multimedia

7 Skype Call (no
video)

Open Skype client, execute a Skype
conversation (video disabled), close
Skype.

Network

8 Skype Call
(video)

Open Skype client, execute a Skype
conversation (video enabled), close
Skype.

Network

9 Multimedia (Au-
dio)

Open a common media player, play an
Audio file, close player.

Multimedia

10 Multimedia
(Video)

Open a common media player, play a
Video file, close player.

Multimedia

11 Peer-to-Peer Open a common peer-to-peer client,
put a file into download queue, down-
load for 5 minutes, close.

Network

Table 4.8: Software Usage Scenarios Overview

Moreover, as anticipated in the previous section, four metrics have been selected
to evaluate the system usage. These metrics were measured by means of software
logging (as will be explained in the Instrumentation section) considering the follow-
ing values:

• CPU

– CPU Time Percentage, intended as time spent by the CPU doing active
work in a second

– CPU User Time Percentage, intended as time spent by the CPU executing
user instructions (i.e. applications) in a second
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– CPU Privileged Time Percentage, intended as time spent by the CPU
executing system instructions (services, daemons) in a second

– CPU Deferred Procedure Calls Percentage, intended as time spent by the
CPU executing DPC in a second

– CPU Interrupt Time Percentage, intended as time spent by the CPU
serving interrupts in a second

– CPU C1 Time Percentage, intended as time spent by the CPU in low-
power (C1) State

– CPU C2 Time Percentage, intended as time spent by the CPU in low-
power (C2) State

– CPU C3 Time Percentage, intended as time spent by the CPU in low-
power (C3) State

• Memory

– Memory Page Writings per second

– Memory Page Readings per second

– Memory Available (KiloBytes) per second

• Hard Disk

– Physical Disk Transfers (Read/Write) per second

– Logical Disk Transfers (Read/Write) per second

• Network

– Network Packets per second as seen by the Network Interface Card

The dependent variable selected for the experiment is P i.e. the instant power
consumption (W). Therefore, Pn is the average power consumption during Scenario
n = 1..11 and Pidle|net|prod|file|MM is the average power consumption of (respectively)
Idle, Network, Productivity, File System and Multimedia scenarios.

Hypotheses Formulation

Based upon the GQM Model, the Research Questions can be formalised into Hy-
potheses. In order to formally express Research Question 10, ρ(x, y) expresses the
correlation coefficient between variables x and y. β represents a significant correla-
tion value, which will be defined later in this Section.

• RQ 8: Does Software impact Power Consumption?
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H10: Pidle ≥ Pn, n ∈ [1,11]
H1a: Pidle < Pn, n ∈ [1,11]

• RQ 9: Is it possible to classify software usage scenarios based upon power
consumption?

H20: Pidle = Pnet = Pprod = Pfile = PMM

H2a: Pidle /= Pnet /= Pprod /= Pfile /= PMM

• RQ 10: What is the relationship between usage and power consumption?

H30: ρ(ICPU , P ) = ρ(IMemory, P ) = ρ(IDisk, P ) = ρ(INetwork, P ) = 0
H3a: max[ρ(ICPU , P ), ρ(IMemory, P ), ρ(IDisk, P ), ρ(INetwork, P )] > β

Instrumentation

Every scenario has been executed automatically by means of a GUI Automation
Software for 5 minutes, obtaining 30 runs per scenario, each composed of 300 obser-
vations (one per second) of the instant power consumption value (W).

The test machines selected are two Desktop PCs of different generations. In
Table 4.9, the Hardware/Software configuration of the machines is presented. As
can be seen, the difference in terms of hardware is relevant; this will allow us to
make some evaluations about how power consumption varied over the years, with
the evolution of hardware architectures.
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Desktop 1 (old gen-
eration)

Desktop 2 (new
generation)

CPU AMD Athlon XP
1500+

Intel Core i7-2600

Memory 768 MB DDR
SDRAM

4 GB DDR3 SDRAM

Display Adapter ATI Radeon 9200
PRO 128 MB

ATI Radeon HD 5400

HDD Maxtor DiamondMax
Plus 9 80GB Hard
Drive

Western Digital 1 TB

Network Adapter NIC TX PCI 10/100
3Com EtherLink XL

Intel 82579V Gigabit
Ethernet

OS Microsoft Windows
XP Professional SP3

Windows 7 Profes-
sional SP1

Table 4.9: HW/SW Configuration of the test machine

Different software and hardware tools have been used to do monitoring, mea-
surement and test automation. The Software tool adopted is Qaliber2, (see Figure
4.7) which is mainly a GUI Testing Framework, composed of a Test Developer Com-
ponent, that allows a developer to write a specific test case for an application, by
means of ”recording” GUI commands, and a Test Builder Component, which allows
the creation of complex usage scenarios by combining the use cases. One of the
most important features of Qaliber is its possibility to log system information dur-
ing scenario execution, using Microsoft’s Performance Monitor Utility. By defining
a specific Counter Log, adding all the variables of interest, it is possible to tell Qal-
iber to start Performance Monitor simultaneously with the Scenario, thus allowing
a complete monitoring of all the statistics needed for this analysis.

The measurement of power consumption was done through two different devices.
For the old-generation PC, PloggMeter3 (see Figure 4.8) device was used. This de-
vice is capable of computing Active and Reactive Power, Voltage, Current Intensity,
Cosφ. The data is stored within the PloggMeter’s 64kB memory and can be down-
loaded in a text file format via Zigbee wireless connection to a Windows-enabled
PC or Laptop or viewed as instantaneous readings on the installed Plogg Manager

2Qaliber - GUI Testing Framework, http://www.qaliber.net/
3Youmeter - Plogg Technologies, http://www.youmeter.it/youmeter
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Figure 4.7. Qaliber Test Builder screenshot

software. The device drivers were slightly modified to adapt the PloggMeter record-
ing capability to this analysis’ purposes, specifically to decrease the logging interval
from 1 minute (which is too wide if compared to software time) to 1 second.

Figure 4.8. The PloggMeter device
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For the new-generation PC, WattsUp PRO ES4 (see Figure 4.9) device was used.
This device is capable of measuring current power consumption (Watts), power
factor, line voltage and other metrics. The data is stored within the device’s internal
memory, and then downloadable via USB interface. The sampling rate resolution is
1 second.

Figure 4.9. The WattsUp Pro ES device

4WattsUp Pro ES, https://www.wattsupmeters.com/secure/products.php?pn=0&wai=0&spec=2
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Analysis Methodology

The goal of data analysis is to apply appropriate statistical tests to reject the null
hypothesis. The analysis will be conducted separately for each scenario in order to
evaluate which one has an actual impact on power consumption.

In order to extract a Power Consumption profile for each Usage Scenario, a set of
descriptive statistics was derived from the experimental data. For a single scenario,
a total of 30 runs were executed, each composed of 300 observations (one per second)
of the power consumption value. Thus, the calculations for the descriptive statistics
were made using two approaches: firstly, the average of each run is extracted, ob-
taining a short vector of 30 elements, which was used as the subject of our analysis.
This method allowed us to speed up the calculations, and because of the decreased
sampling rate, the data was less variant and showed an almost regular distribution.

Afterwards, the same analysis on the full datasets was applied, which means a
total of 9000 observations. Comparing the results from these two approaches, focus-
ing on the Index of Dispersion and the variance, the variability of a single scenario
can be appreciated, which was also a useful tool for validating the experiment.

First of all, the null hypothesis H10 will be tested for each scenario. Then the
scenarios will be grouped into categories and H20 will be tested for each category.

First of all, data distribution must be analysed, in order to determine the ap-
propriate testing method for each hypothesis. The data distribution analysis was
conducted using the Shapiro-Wilk normality test. Since its results pointed out
that the data was not normally distributed, non-parametric tests were adopted, in
particular the Mann-Whitney test [46] for testing H20, and the Spearman’s rank
correlation coefficient (also known as Spearman’s ρ) for testing H30.

The first hypothesis H10 is clearly directional, thus the one-tailed variant of the
test will be applied. The second and third hypotheses H20, H30 are not directional,
therefore the two-sided variant of the tests will be applied.

We will draw conclusions from our tests based on a significance level α = 0.05,
that is we accept a 5% risk of type I error – i.e. rejecting the null hypothesis
when it is actually true. Moreover, since we perform multiple tests on the same
data – precisely twice: first overall and then by category – we apply the Bonferroni
correction to the significance level and we actually compare the test results versus
a αB = 0.05/2 = 0.025. As regards Spearman’s ρ significance, using 298 degrees of
freedom (since 300 observations per scenario are available) the significance level of
the ρ coefficient is 0.113. Thus, correlations’ coefficients resulting higher than this
value can be considered as significant positive or negative correlations.
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Validity evaluation

The threats of experiment validity can be classified in two categories: internal
threats, derived from treatments and instrumentation, and external threats re-
garding the generalization of the work.

There are three main internal threats that can affect this analysis. The first
concerns the measurement sampling : measurements were taken with a sampling
rate of 1 second. This interval is a compromise between the power metering device
capability and the software logging service. However, it could be a wide interval if
compared to software time.

Subsequently, network confounding factors could arise: as several usage sce-
narios involving network activity and the Internet are included in our treatments,
the unpredictability of the network behaviour could affect some results. Another
confounding factor is represented by OS scheduling operations : the scheduling of
user activities and system calls is out of the experiment control. This may cause
some additional variability in the scenarios, especially for those that involve the File
System.

In addition, the two machines on which our tests are performed are different in
terms of hardware and software configuration. This is done on purpose, because
we wanted to test devices which could represent common machines used in home
and office scenarios, for both generations. Thus, installing an old version of an
operating system on a new machine or vice versa would have altered this assumption.
However, this will introduce another confounding factor, but still, will provide useful
information regarding the evolution of these systems, even if no specific research
hypotheses can be verified about the comparison.

Finally, the main external threat concerns a possible limited generalization of
the results: this is due to the fact that the experiment was conducted on only two
different test machines, which is a limited population to be representative of a whole
category.

4.2.3 Results

Preliminary Data Analysis

We present in Tables 4.10, 4.11 the following descriptive statistics about measure-
ments for each scenario. Tables reports in this order mean (Watts), median (Watts),
standard error on the mean, 95% confidence interval of the mean, variance, standard
deviation (σ), variation coefficient (the standard deviation divided by the mean),
index of dispersion (variance-to-mean ratio, VMR).

Power consumption shows an excursion of about 11 W for both PCs, even if the
baseline is quite different (an average of 87 W in Idle scenario for the Old PC, 51 W
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for the New PC). Moreover, the very low variability indexes ensure that the different
samples for each scenario are homogeneous.

Old-Generation PC

Mean Median S.E. C.I. Variance σ Var.Co. VMR

0 - Idle 86.81 86.69 0.007 0.013 0.424 0.650 0.007 0.005

1 - Web 89.09 88.57 0.011 0.022 3.372 1.836 0.021 0.038

2 - E-Mail 88.03 87.11 0.024 0.047 5.195 2.279 0.026 0.059

3 - Prod 90.12 89.40 0.025 0.500 5.862 2.421 0.027 0.065

4 - Disk 94.12 97.21 0.048 0.095 21.12 4.595 0.049 0.224

5 - USB 96.41 97.10 0.024 0.046 5.047 2.246 0.023 0.052

6 - Image 91.97 91.48 0.041 0.081 15.474 3.934 0.043 0.168

7 - Skype 91.87 91.69 0.015 0.029 1.981 1.407 0.015 0.022

8 - SkypeV 95.40 95.75 0.020 0.040 3.844 1.960 0.020 0.040

9 - Audio 88.14 87.94 0.013 0.025 1.429 1.195 0.013 0.016

10 - Video 88.61 88.57 0.009 0.017 0.677 0.823 0.009 0.008

11 - P2P 88.46 88.25 0.010 0.019 0.842 0.917 0.010 0.009

Table 4.10: Scenarios Statistics Overview: Old-Generation PC
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New-Generation PC

Mean Median S.E. C.I. Variance σ Var.Co. VMR

0 - Idle 51.39 51.20 0.007 0.015 0.507 0.712 0.013 0.009

1 - Web 54.05 53.9 0.014 0.028 1.883 1.372 0.025 0.035

2 - E-Mail 53.40 53.40 0.011 0.021 1.123 1.059 0.019 0.021

3 - Prod 53.09 52.70 0.016 0.032 2.369 1.539 0.029 0.044

4 - Disk 60.24 62.10 0.037 0.072 12.38 3.518 0.058 0.205

5 - USB 61.29 61.90 0.023 0.046 4.901 2.214 0.036 0.080

6 - Image 52.75 52.50 0.011 0.023 1.214 1.102 0.021 0.023

7 - Skype 56.23 56.30 0.016 0.032 2.420 1.555 0.027 0.043

8 - SkypeV 62.13 62.90 0.036 0.070 11.428 3.380 0.054 0.184

9 - Audio 52.87 52.70 0.006 0.012 0.315 0.561 0.010 0.006

10 - Video 54.14 54.00 0.007 0.013 0.420 0.648 0.012 0.008

11 - P2P 54.32 54.50 0.008 0.016 0.609 0.780 0.014 0.011

Table 4.11: Scenarios Statistics Overview: New-Generation PC

Hypothesis Testing

The results of hypotheses testing of the research questions are exposed in this section.

The testing of hypothesis H1 and H2 are exposed in Table 4.12 and 4.13. These
table report the scenarios tested, the p-value of Mann-Whitney test and the esti-
mated difference of the medians between Idle scenario and the other ones.

In Figure 4.10 is shown the Bar Plot of the Power Consumption values, which pro-
vide a graphical and immediate comparison between the different scenarios’ Power
Consumption profiles. In Figure 4.11 is shown the Bar Plot of the Power Consump-
tion increase (in watts), with respect to idle, of each scenario. Figure 4.12 shows
the Box Plot of scenario categories for each PC. As regards hypothesis H3, which
evaluates correlations between resource usage and power consumption, more steps
are needed. First of all, Table 4.14 reports the results of the Data Distribution Anal-
ysis. Then, in Tables 4.15 and 4.16, are presented the results of the correlation test
using Spearman’s method, with a 95% confidence interval, applied to every couple
(watt, variable) for each scenario. Only the significant coefficients are listed.
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Question 1: Does software impact power consumption?

H1 : Pidle /= Pn∀n ∈ [1,11].

Old-Gen PC New-Gen PC

Scenario Comparison p-value Est. Diff p-value Est. Diff

0 - Idle vs. 1 - Web Navigation < 0.0001 -1.87 < 0.0001 -2.60
0 - Idle vs. 2 - E-Mail < 0.0001 -0.52 < 0.0001 -2.10
0 - Idle vs. 3 - Productivity Suite < 0.0001 -2.71 < 0.0001 -1.50
0 - Idle vs. 4 - IO Operation (Disk) < 0.0001 -10.41 < 0.0001 -10.80
0 - Idle vs. 5 - IO Operation (USB) < 0.0001 -10.41 < 0.0001 -10.60
0 - Idle vs. 6 - Image Browsing < 0.0001 -4.69 < 0.0001 -1.20
0 - Idle vs. 7 - Skype Call (No Video) < 0.0001 -5.10 < 0.0001 -5.00
0 - Idle vs. 8 - Skype Call (Video) < 0.0001 -9.05 < 0.0001 -11.50
0 - Idle vs. 9 - Multimedia Playback (Audio) < 0.0001 -1.25 < 0.0001 -1.50
0 - Idle vs. 10 - Multimedia Playback (Video) < 0.0001 -1.87 < 0.0001 -2.80
0 - Idle vs. 11 - Peer-to-Peer < 0.0001 -1.66 < 0.0001 -3.30

Table 4.12: Hypotheses H1 Test Results

Figure 4.10. Per-scenario Power Consumption average values
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Figure 4.11. Per-scenario Power Consumption increase with respect to Idle

Question 2: Is it possible to classify software usage scenarios based upon
power consumption?

H2 : Pidle /= Pnet /= Pprod /= Pfile /= PMM

Old-Gen PC New-Gen PC
Scenario Comparison p-value Est. Diff p-value Est. Diff
Idle vs. Network < 0.0001 -2.08 < 0.0001 -3.20
Idle vs. Productivity < 0.0001 -2.71 < 0.0001 -1.50
Idle vs. File System < 0.0001 -10.41 < 0.0001 -10.60
Idle vs. Multimedia < 0.0001 -1.67 < 0.0001 -1.60
Network vs. Productivity < 0.0001 -0.31 < 0.0001 1.70
Network vs. File System < 0.0001 -6.97 < 0.0001 -6.80
Network vs. Multimedia < 0.0001 0.31 < 0.0001 1.60
Productivity vs. File System < 0.0001 -6.87 < 0.0001 -9.10
Productivity vs. Multimedia < 0.0001 0.73 < 0.0001 -0.20
File System vs. Multimedia < 0.0001 8.53 < 0.0001 8.60

Table 4.13: Hypothesis H2 Test Results

Question 3: What is the relationship between usage and
power consumption?

H3a :/= max[ρ(ICPU , P ), ρ(IMemory, P ), ρ(IDisk, P ), ρ(INetwork, P )] > β
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Figure 4.12. Box Plots of Scenario Categories

Old-Gen PC New-Gen PC
Scenario Data

Distr.
Max
p-val.

Data
Distr.

Max
p-val.

0 - Idle Not Nor-
mal

1.5e-63 Not Nor-
mal

2.2e-39

1 - Web Navigation Not Nor-
mal

4.4e-36 Not Nor-
mal

1.1e-20

2 - E-Mail Not Nor-
mal

9e-73 Not Nor-
mal

1.2e-19

3 - Productivity Suite Not Nor-
mal

1e-45 Not Nor-
mal

9.4e-29

4 - IO Operation (Disk) Not Nor-
mal

1.2e-46 Not Nor-
mal

8.7e-51

5 - IO Operation (USB) Not Nor-
mal

6.4e-52 Not Nor-
mal

2.5e-29

6 - Image Browsing Not Nor-
mal

1.1e-35 Not Nor-
mal

6.7e-22

7 - Skype Call (No Video) Not Nor-
mal

8.2e-30 Not Nor-
mal

3e-67

8 - Skype Call (Video) Not Nor-
mal

1.3e-35 Not Nor-
mal

5.2e-36

9 - Multimedia Playback (Audio) Not Nor-
mal

7.9e-54 Not Nor-
mal

5.2e-44

10 - Multimedia Playback (Video) Not Nor-
mal

1.6e-44 Not Nor-
mal

6.6e-81

11 - Peer-to-Peer Not Nor-
mal

8.9e-36 Not Nor-
mal

2.2e-35

Table 4.14: Data Distribution Analysis
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Old-Generation PC

Scenario Title Variable p-value ρ R2

2 - E-Mail CPUC1Time. < 0.0001 -0.36 13 %
4 - IO Operation (Disk) CPUTime. < 0.0001 0.35 12 %
4 - IO Operation (Disk) CPUC1Time. < 0.0001 -0.35 12 %
5 - IO Operation (USB) CPUTime. < 0.0001 0.47 22 %
5 - IO Operation (USB) CPUC1Time. < 0.0001 -0.47 22 %
7 - Skype Call (No Video) CPUC1Time. < 0.0001 -0.39 15 %
8 - Skype Call (Video) CPUTime. < 0.0001 0.63 40 %
8 - Skype Call (Video) CPUUserTime. < 0.0001 0.53 28 %
8 - Skype Call (Video) CPUC1Time. < 0.0001 -0.7 49 %
11 - Peer-to-Peer MemoryKByteAvailable < 0.0001 -0.34 12 %

Table 4.15: Spearman’s ρ Coefficient between Power and Resource variables
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New-Generation PC

Scenario Title Variable p-value ρ R2

2 - E-Mail CPUUserTime. < 0.0001 0.42 17 %
2 - E-Mail CPUPrivTime. < 0.0001 0.43 18 %
3 - Productivity Suite CPUUserTime. < 0.0001 0.33 11 %
4 - IO Operation (Disk) PhysicalDiskTransfers < 0.0001 0.45 20 %
4 - IO Operation (Disk) LogicalDiskTransfers < 0.0001 0.45 20 %
4 - IO Operation (Disk) MemoryPages < 0.0001 0.44 19 %
4 - IO Operation (Disk) MemoryKByteAvailable < 0.0001 -0.54 29 %
4 - IO Operation (Disk) CPUC3Time. < 0.0001 -0.59 35 %
4 - IO Operation (Disk) CPUTime. < 0.0001 0.55 31 %
4 - IO Operation (Disk) CPUUserTime. < 0.0001 0.58 34 %
4 - IO Operation (Disk) CPUPrivTime. < 0.0001 0.39 15 %
6 - Image Browsing CPUUserTime. < 0.0001 0.34 12 %
7 - Skype Call (no video) NetworkPkts < 0.0001 0.62 39 %
7 - Skype Call (no video) MemoryKByteAvailable < 0.0001 -0.45 20 %
7 - Skype Call (no video) CPUC3Time. < 0.0001 -0.66 43 %
7 - Skype Call (no video) CPUTime. < 0.0001 0.52 27 %
7 - Skype Call (no video) CPUUserTime. < 0.0001 0.63 39 %
8 - Skype Call (Video) NetworkPkts < 0.0001 0.67 46 %
8 - Skype Call (Video) MemoryKByteAvailable < 0.0001 -0.62 39 %
8 - Skype Call (Video) CPUC3Time. < 0.0001 -0.88 77 %
8 - Skype Call (Video) CPUTime. < 0.0001 0.87 76 %
8 - Skype Call (Video) CPUUserTime. < 0.0001 0.9 81 %
9 - Multimedia Playback (Audio) MemoryKByteAvailable < 0.0001 -0.34 12 %
11 - Peer-to-peer NetworkPkts < 0.0001 0.45 20 %
11 - Peer-to-peer MemoryKByteAvailable < 0.0001 -0.42 18 %
11 - Peer-to-peer CPUPrivTime. < 0.0001 0.35 12 %

Table 4.16: Spearman’s ρ Coefficient between Power and Resource variables
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4.2.4 Discussion

The collected data shows several facts, and gives the answers for the Research Ques-
tions. As observed in Table 4.12, in both our test machines, every usage scenario
consumes more power than the Idle scenario. This difference is even more evident
in the New-Generation PC, where we obtain our highest increase percentage (up to
20%).

Figure 4.13. Per-scenario Power Consumption increase with respect to Idle (in %)

As regards RQ9, scenarios’ classification, results are not homogeneous: for in-
stance, in Figure 4.12 it can be observed that Network category has a very wide
range if compared to the others. Moreover, the comparison does not always give a
clear distinction between the profiles. This suggests that a classification based on
functionality can be inadequate for power consumption. Another classification may
arise from the analysis of every single scenario. As can be seen from Tables 4.10, 4.11
and 4.12, the most power-consuming scenarios are those that involve File System,
followed by Skype (both with and without Video Enabled) and Image Browsing.
From the hardware point of view, these scenarios are also the most expensive in
terms of system resources. Thus, classifying our scenarios based upon resource uti-
lization can be a more accurate way to estimate their power consumption. For
instance, the power consumption profile of Skype is very different (about 4-5 Watts
in average) with and without enabling the Video Camera.

Another interesting question that arises from the analysis is, in the case of ap-
plying these Scenarios in groups, if their power consumption would follow a linear
composition rule (thus summing up the values). That is, for example, supposing a
composed Usage Scenario S that involves a Skype Call, a Web Navigation and a
Disk Operation performed simultaneously, their linear composition would give, on
our Old-Gen PC, an estimated Power Consumption per second of
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Pidle +∆PS = 86.81W + 21.33W = 108.14W

introducing a 25% overhead on power consumption. On the New-Gen PC, the
estimated Power Consumption would be

Pidle +∆PS = 51.39W + 24.90W = 76.29W

which gives a 48% overhead on power consumption.

Taking a look at the results of the correlation analysis, represented by RQ 10,
more conclusions can be made. First of all, we can observe that the coefficients
related to the New-Gen PC are higher with respect to the Old-Gen PC. This may
suggest that as hardware evolves, the software usage is even more significant for
determining the power consumption of the system. This assumption is confirmed
by Figure 4.13, where we can observe that the percentage increase of the New-Gen
PC is higher, in most cases, with respect to the Old-Gen.

However, it is remarkable that, for both machines, the variables that show higher
correlation coefficients are undoubtedly those related to CPU Usage and Memory
Usage. High coefficients are also present in the Hard Disk Index, but only in those
scenarios that, clearly, involve File System operations. This means that those re-
sources have a greater influence upon power consumption related to the others se-
lected for the analysis. Further researches should probably focus upon these two
variables.

AAs expected, power consumption always has a negative correlation with the
time spent by the CPU in the C1 and C3 states, which are power saving, low-activity
states, and with the available memory, which means that using more memory has a
positive correlation with power, which is a reasonable and correct behaviour. This
is also a confirmation that the analysis was conducted with the right premises.

Moreover, as expected, the scenarios which exhibit higher correlations are those
which use more resources, such as Skype and IO scenarios. In particular, the Skype
scenario with video enabled has a strong correlation with the CPU usage, probably
because the real-time video elaboration makes the CPU the dominant resource for
power consumption.

4.2.5 Considerations and Future Work

This experiment assessed quantitatively the energetic impact of software usage. It
consisted of building up common application usage scenarios (e.g.: Skype call, Web
Navigation, Word writing) and executing them independently to collect power con-
sumption data. Each single scenario introduced an overhead on power consumption,
which may raise up to 20% for recent systems: if their power consumption would
follow a linear composition rule, the impact could be even higher.
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The relationship between usage and power consumption was also analysed in
terms of correlation between resource usage. Although a clear linear relationship
did not arise, the analysis showed that some resources drive power consumption more
than others, such as memory and CPU usage. Using a precise control over how an
application consumes these resources, it can be possible to predict its power con-
sumption, thus including dedicated countermeasures in the Software Design Phase
– which, by itself, is the essence of Energy-Aware Programming.

Our experiment also gives us the indication that modern Desktop systems, al-
though being more energy efficient in standby and idle states, due to their higher
scalability, are even more sensitive to the impact of software usage on power con-
sumption. This indicates that research should focus on reducing this impact, as it
will always be more significant as time goes by.

Moreover, results set the basis for future work and research projects. A more
accurate correlation analysis will be conducted, focusing on the more relevant re-
sources and also taking into account different kinds of relationships (not just linear).
Moreover, we will focus our attention on battery-powered mobile devices, where soft-
ware power consumption is a key issue. Our idea is that re-factoring applications
by considering a more efficient resource utilisation, the impact of software on power
consumption could easily be reduced.

4.3 Mobile

The energy profiling of mobile devices is an active research stream, especially as
regards mobile and embedded devices. The concept of energy-awareness is based
upon a complete knowledge on how and where energy is consumed on a device. In
[20], authors present a detailed analysis of power consumption in a mobile device,
focusing on the hardware subsystems, through common and realistic usage scenarios.
Results show that the GSM module and the display are the most power-consuming
components: for example, a GSM phone call on OpenMoko Neo Freerunner, HTC
Dream G1 and Google Nexus One consumes 1135 mW, 822 mW and 846 mW
respectively.

Usually, an accurate power consumption analysis of mobile or embedded devices
is component-based. However, instantaneous information about discharge current
and remaining battery capacity is not always available, because most devices do not
have built-in sensors to collect these data. In [108], a technique called PowerBooter
is proposed to build a battery-based model automatically. Authors motivate this
decision by considering that different mobile devices of the same category show dif-
ferent power consumption, and a specific power consumption model for each device
is difficult to obtain. Thus, instead of using external metering instrumentation to
detect power consumption, only the internal battery voltage sensor is used, which
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is found across many modern smartphones. Authors indicate that for a 10-second
interval, the PowerBooter technique has an accuracy of about 4.1% within measured
values.

From a software engineering point of view, most contributions are devoted to
developing frameworks and tools for energy metering and profiling. Also in [108],
authors propose an on-line power estimation tool called PowerTutor. It implements
the PowerBooter model in order to profile power consumption of applications, based
upon their component usage. Another example, which makes use of external meter-
ing devices, is ANEPROF [25], which authors define as a real-measurement-based
energy profiler able to reach function-level granularity. It is developed for Android
OS-based devices, thus it is aimed at profiling Java applications. It is based on
JVM event profiling, using software probes to record runtime events and system
calls. Authors had to address several design issues, such as overhead control and
proper time synchronization. Power consumption profiling is made through corre-
lation of real-time power measurements done by an external DAQ, connected to
a ARM Computer-on-Module running Android 2.0. Authors also provide profiling
data of four popular applications (Android Browser, GMail, Facebook, Youtube).
The accuracy of ANEPROF depends on the hardware meter used. Its CPU over-
head is stated to be less than 5%. Finally, SEMO [28] is a smart energy monitoring
system, developed for Android, which also provides application-level consumption
monitoring. This system is composed of three components: a inspector, which moni-
tors the information on the battery, warning users when the battery reaches a critical
condition; a recorder, which basically logs the actual charge of the battery and the
running applications, and a analyser, which calculates the energy consumption rate
for each application and ranks them according to it.

As we have shown in this section, several efforts have been made as regards
energy profiling in mobile devices. However, these works differ greatly in terms
of methodologies and formalisms used. Palit et al. in [78] propose an interesting
framework for performing experiments to measure the energy cost of software appli-
cations on smartphones. They define the concept of user-level test case γi as a pair
< input; output > where the input is composed of an application setting αi and a
device configuration βi, and the output is the energy cost θi, expressed as a custom
metric depending on battery capacity and amount of current consumed. Formally:
γi =< αi, βi; θi >
Authors also describe a typical workbench for experimentation, which is very similar
to the one we used in this work.
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4.3.1 Study Design

The aim of our research [10] is to compare the impact of software usage on power
consumption in two different Android OS-based mobile phones. For this purpose, we
performed two experiments: the first one, called “training tools”, fixes a set of high
level features in order to compare the power consumption between the two devices,
while the second one, called “gLCB”, executes different profiles of a Context-Aware
application and compares its power consumption on the two devices according to
the selected profiles.

4.3.2 Goal Description and Research Questions

We define our goal through the Goal-Question-Metric (GQM) approach. [99]. This
approach, applied to our experiment, lead to the definition of the model presented
in table 4.17.
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Goal 1 Analyse usage scenarios of two mobile devices for the
purpose of assessing differences with respect to power
consumption from the viewpoint of the System User in
the context of mobile applications

Question
11.1

Do usage scenarios have the same power consumption?

Metric Pi, j Power consumed by the scenario i by device j;
i[0, 10], j[1,2]

Question
11.2

Is the energy consumption the same among the devices?

Metric Pi, j Power consumed in every scenario i by device j;
i[0, 10], j[1,2]

Goal 2 Analyse usage profiles of gLCB source code for the pur-
pose of assessing differences with respect to power con-
sumption from the viewpoint of the System User in the
context of mobile applications

Question
12.1

Does gLCB cause a variation of the devices power con-
sumption?

Metric Power (Watt)
Question
12.2

Are there statistical differences between different user
profiles?

Metric Power (Watt)
Question
12.3

Are there statistical differences between the behaviour
of gLCB in different devices?

Metric Power (Watt)

Table 4.17: The GQM Model for our experiments

4.3.3 Variable selection

Experiment 1: Training Tools. We aim at quantifying, in two different models
of smartphone, the power consumption of hardware components, when performing
daily activities for a common user. We selected two independent variables: the
smartphone model (M) and the specific scenario (S). Each has been executed 30
times, with a fixed duration of 4 minutes per scenario. Our dependent variable is
the consumed power (P).
S0: Standby. This scenario provides the baseline for our analysis. During this sce-
nario, there are no user applications in execution, and 2G and 3G connections are
enabled.
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S1: Phone call over 2G network. This scenario executes a phone call to a prefixed
number, for a duration of 4 minutes.
S2: Phone call over 3G network. Same as above, except that the call is made using
the UMTS network.
S3: File download through WiFi connection. In this scenario, the scheduled task
launches a new thread, which downloads a remote file, the Ubuntu 11.10 disk im-
age, up until the scheduled timeout (4 minutes).
S4: File download through 2G (EDGE/GPRS) connection. Same as above, except
that the downloaded file is the Android SDK, which is smaller in size.
S5: File download through 3G (UMTS) connection. Same as above, except that the
UMTS network is used.
S6: Localization activity through GPS. This scenario manages position updates. The
task simply registers on location updates and reads the new values of latitude and
longitude, up to the 4 minutes timeout.
S7: Scan for Bluetooth devices. In this scenario, a scan for Bluetooth devices is per-
formed. The scan process lasts, according to specifications, 12 seconds on average.
At the end of the scan procedure, the task simply restarts, up until the prefixed
duration.
S8: CPU-intensive activity. The aim of this scenario is maintaining a high CPU
workload while gathering power consumption data. For this purpose, repeated cryp-
tography operations are performed, with a pool of 20 threads, each of them iterating
the procedure 10 times.
S9: Playback of an audio file. This scenario plays an mp3 compressed audio file,
4.78 MB in size, played in loop up until the scheduled timeout.
S10: Active display with 50% Brightness. The aim of this scenario is assessing the
impact of the active display over power consumption. This scenario is similar to
S0, the only difference being that all radios (2G, 3G, WiFi) and the SIM card were
disabled.

Experiment 2: gLCB. We analyse the energetic behaviour of an application,
called gLCB, the Android porting of a Context-Awareness5 application developed
by Telecom Italia Lab, which will be described in detail in section 4.5. Basically,
its purpose is to retrieve diverse context information (such as geographical location,
WiFi hotspots, Bluetooth devices, etc.) from a portable device, in order to send it
to a remote Context Provider for the implementation of Context-Aware services to
the end user. gLCB is based on an event mechanism, that triggers the data upload
only when a context change is detected. Depending on the usage profile chosen for

5Telecom Italia, Context Awareness: servizi mobili su misura,
http://www.telecomitalia.it/TIPortale/docs/innovazione/012007/Pag11-22%20contextawareness.pdf
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the application, which can be one of the following: VERY LOW, LOW, NORMAL,
HIGH, AUTO, CUSTOM, the data retrieving and upload ratio are adjusted, thus
affecting the energy behaviour of the application. In our experiment, each profile
was set through a server application and data was collected during execution sessions
of the gLCB application of the fixed duration of 60 minutes for each profile.

Hypothesis Formulation

Based upon our GQM Model, we can formalise our Research Questions into Hy-
potheses.

Experiment 1: Training Tools

• RQ 11.1: Do usage scenarios have the same power consumption?
H0,1 : P0,1 = P1,1 = ... = P10,1

H0,2 : P0,2 = P1,2 = ... = P10,2

HA,1 : P0,1 /= P1,1 /= ... /= P10,1

HA,2 : P0,2 /= P1,2 /= ... /= P10,2

• RQ 11.2: Is the energy consumption the same among the devices?
H0: Pi,1 = Pi,2 , i ∈ [0, 10]
HA: Pi,1 /= Pi,2 , i ∈ [0, 10]

Experiment 2: gLCB

• RQ 12.1: Does gLCB cause a variation of the devices power consumption?
H0,1: P1 with gLCB = P1 without gLCB

H0,2: P2 with gLCB = P2 without gLCB

HA,1: P1 with gLCB /= P1 without gLCB

HA,2: P2 with gLCB /= P2 without gLCB

• RQ 12.2: Are there statistical differences between different user profiles?
H0,1: P1 high = P1 normal = P1 low = P1 verylow

H0,2: P2 high = P2 normal = P2 low = P2 verylow
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HA,1: P1 high /= P1 normal /= P1 low /= P1 verylow

HA,2: P2 high /= P2 normal /= P2 low /= P2 verylow

• RQ 12.3: Are there statistical differences between the behaviour of gLCB in
different devices?
H0: P i,1 = Pi,2, i ∈ (high, normal, low, verylow)
HA: P i,1 /= Pi,2, i ∈ (high, normal, low, verylow)

Instrumentation and Experiment Design

The selected usage scenarios have been implemented in Java code using the Android
SDK. In order to obtain a statistically relevant data set, each scenario has a fixed
execution time of 4 minutes, and each execution was repeated 30 times. This pro-
cedure was equally applied on each smartphone.

Hardware Instrumentation. The experiments were performed on two dif-
ferent models of smartphones: the “Galaxy i7500”, first announced in April, 2009,
which is the first model produced by Samsung based on Android OS; and the “Nexus
S”, first announced in December, 2010, produced by Google and Samsung. Their
technical specifications are listed in the producer website6.

The power consumption data was acquired through a power metering architec-
ture. The battery was removed from the devices, in order to avoid bias due to
discharge and subsequent OS power saving procedures. The battery terminals were
directly connected to a DC power supply, providing 5 V steadily. This value was
chosen after different tests, that showed how lower values were not able to maintan
the device operational during the most of the power consuming scenarios, because
of the voltage drop on the shunt resistance. The DC power supply used is the TPS-
2000D produced by Topward Electric Instruments Co. A Data Acquisition Board
(DAQ), the DAQLite produced by Eagle Technology, was used to acquire the power
consumption data. The DAQ was set to a sampling frequency of 350Hz, in order to
produce an amount of data statistically relevant, but not prohibitive for subsequent
computation.

Software Setup. In order to automate scenario execution in our experiments,
a supporting software environment was developed, composed of two Android ap-
plications, a server-side application and macro scripts, to be executed by the tool
AutoHotKey7. The developed Android application allows the enabling or disabling

6http://www.samsung.com/

7AutoHotKey, a macro open-source utility , http://www.autohotkey.com
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components, such as Bluetooth, GPS or WiFi interface, in order to avoid bias dur-
ing scenarios that do not use them. For our second experiment, another Android
application has been developed to control the execution of gLCB, specifying an ex-
ecution time and a usage profile. With this solution, we assessed how the execution
of different profiles of the application affected the power consumption of the device.
These applications communicate with a server machine, which is then connected to
the DAQ via USB. The server application then launches a AutoHotKey script that
performs the needed operations for data acquisition and logging.

Analysis methodology

The goal of data analysis is to apply appropriate statistical tests to reject the null
hypothesis. As we expected, the collected power consumption values, for both
smartphones, do not follow normal distribution. This was verified by means of the
Shapiro-Wilk test, with a resulting p-value lower than 0.05. This is true for our first
experiment, “Training tools” as well as for the second one, “gLCB”. Thus, in order
to verify our hypotheses, we used non-parametric versions of the Kruskal-Wallis and
Wilcoxon-Mann-Whitney tests, to assess the statistical independence between the
different scenarios and profiles evaluated during our experiments. Again, we will
draw conclusions from our tests based on a significance level α = 0.05, that is we
accept a 5% risk of type I error – i.e. rejecting the null hypothesis when it is actually
true.

Threats to validity

We will classify threats of experiment validity into two categories: internal threats,
derived from our treatments and instrumentation, and external threats, regarding
the generalization of our work. A possible internal threat concerns the sampling
frequency adopted by the DAQ, namely 350 Hz. We chose this frequency value for
practical reasons, in order not to obtain a huge amount of data which could not be
computed in a reasonable time by our servers. However, this frequency, compared
to the operational frequencies of the selected smartphones, could be seen as quite
low. A more significant threat comes from the usage, in some of our scenarios,
of different communication networks which are characterised by an unpredictable
behaviour. This behaviour may add bias to our measurements, introducing a high
data variability. For example, as regards the cellular network, power consumption
could be affected by the following mechanism: the base station to which the mobile
device is connected detects the signal power, and if the SINR (Signal-to-Interference
Plus Noise Ratio) is below or above a specific threshold it may negotiate a signal
power increase or reduction to the device antenna. Finally, although is it not possible
to generalize our results, because we performed our experiments on two specific
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models of smartphones, it is however possible to consider them as representatives of
a category of devices with similar specifications.

4.3.4 Preliminary Data Analysis

We present in tables 4.18, 4.19, 4.20, 4.21 the following descriptive statistics about
collected data. Tables report in this order: mean (milliWatts), median (milliWatts),
standard deviation (σ), variation coefficient (the standard deviation divided by the
mean). Tables 4.18, 4.19 contain descriptive statistics for each scenario of our “Train-
ing Tools” experiment, while tables 4.20, 4.21 contain descriptive statistics for each
profile of our “gLCB” experiment.

Scenario Median(mW) Mean(mW) Std.Dev. Var.Co.

2G Standby 8.663 17.840 65.763 3.686
3G Standby 8.663 27.248 97.592 3.581
2G Call 658.618 746.447 371.118 0.497
3G Call 957.803 988.069 97.313 0.098
WiFi Down-
load

628.724 646.604 61.403 0.094

2G Download 669.467 784.099 742.696 0.947
3G Download 955.175 947.515 181.155 0.191
GPS 450.189 484.753 79.748 0.164
Bluetooth Scan 251.526 273.960 78.018 0.284
CPU-Intensive 606.923 608.708 38.442 0.063
Mp3 Audio 324.720 374.971 142.073 0.378
Display 386.252 408.754 81.598 0.199

Table 4.18: “Training Tools”: Scenarios Statistics - Galaxy i7500

Scenario Median(mW) Mean(mW) Std.Dev. Var.Co.

2G Standby 8.663 26.830 55.572 2.071
3G Standby 8.663 18.958 48.708 2.569
2G Call 379.488 543.487 565.230 1.040
3G Call 846.688 878.850 126.708 0.144
WiFi Down-
load

455.733 513.046 166.444 0.324

2G Download 605.874 722.422 854.086 1.182
3G Download 965.368 931.798 208.819 0.224
GPS 296.626 300.444 20.375 0.067
Bluetooth Scan 217.571 227.051 42.882 0.188
CPU Intensive 886.552 877.747 54.055 0.061
Mp3 Audio 155.035 164.709 26.666 0.161
Display 598.734 708.075 177.169 0.250

Table 4.19: “Training Tools”: Scenarios Statistics - Nexus S
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Profile Median(mW) Mean(mW) Std.Dev. Var.Co.

Very-low 396.474 521.565 213.243 0.408
Low 396.474 544.451 226.976 0.416
Normal 455.869 594.340 248.253 0.417
High 514.952 617.016 253.448 0.410

Table 4.20: “gLCB”: Profile Statistics - Galaxy i7500

Profile Median(mW) Mean(mW) Std.Dev. Var.Co.

Very-low 420.271 536.863 225.055 0.419
Low 435.116 556.254 244.286 0.439
Normal 690.392 834.233 315.046 0.377
High 808.711 876.160 334.903 0.382

Table 4.21: “gLCB”: Profile Statistics - Nexus S

Hypothesis Testing

In this section we provide the results of hypothesis testing for our research questions.
All p-values have been verified to be lower than the chosen significance level α = 0.05.
For further details, full values are available on our group website8.

• Research Question 11.1 - Do usage scenarios have the same power consump-
tion?

– H1,1 : P0,1 /= P1,1 /= ... /= P10,1

Our values range from an average of 17.8 mW for Scenario S0 to an
average of 988 mW for Scenario S2. The Kruskal-Wallis test for the
hypothesis resulted in a p-value lower than 2.2e-16. Thus, we reject the
null hypothesis.

– H1,2 : P0,2 /= P1,2 /= ... /= P10,2

Our values range from an average of 18 mW for Scenario S0 to an average
of 931.8 mW for Scenario S5. The Kruskal-Wallis test for the hypothesis
resulted in a p-value lower than 2.2e-16. Thus, we reject the null hypoth-
esis.

• Research Question 11.2 - Is the energy consumption the same among the
devices?

8http://softeng.polito.it/pvalues.pdf

98



4.3 – Mobile

– H2: Pi,1 /= Pi,2 , i ∈ [0, 10]
The Mann-Whitney test resulted in a p-value lower than 0.001 for each
scenario. Thus, we reject the null hypothesis.

• Research Question 12.1 - Does gLCB cause a variation of the devices power
consumption?

– H1,1: P1 with gLCB /= P1 without gLCB

The Mann-Whitney test resulted in a p-value lower than 2.4e-09 for each
profile compared to the standby consumption. Thus, we reject the null
hypothesis.

– H1,2: P2 with gLCB /= P2 without gLCB

The Mann-Whitney test resulted in a p-value lower than 1.5e-09 for each
profile compared to the standby consumption. Thus, we reject the null
hypothesis.

• Research Question 12.2 - Are there statistical differences between different
user profiles?

– H2,1: P1 high /= P1 normal /= P1 low /= P1 verylow

Our values range from an average of 521.5 mW for Very Low profile to
an average of 617 mW for High profile. The Kruskal-Wallis test for the
hypothesis resulted in a p-value lower than 1.146e-15. Thus, we reject
the null hypothesis.

– H2,2: P2 high /= P2 normal /= P2 low /= P2 verylow

Our values range from an average of 536.8 mW for Very Low profile to
an average of 876 mW for High profile. The Kruskal-Wallis test for the
hypothesis resulted in a p-value lower than 3.433e-15. Thus, we reject
the null hypothesis.

• Research Question 12.3 - Are there statistical differences between the be-
haviour of gLCB in different devices?

– H3: P i,1 /= Pi,2, i ∈ (high, normal, low, verylow)
The Mann-Whitney test resulted in a p-value lower than 2e-10 for each
profile. Thus, we reject the null hypothesis.
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Figure 4.14. Instant Power Consumption (avg values) comparison

The barplot in figure 4.14 shows the average power consumption values in mW
for each scenario, on both smartphone models. As we expected, we may notice that
the standby values are the lowest, below 27 mW in the worst case. From the graph,
it is evident how the most recent smartphone, the Samsung Nexus S, consumes
a significantly lower amount of power in each scenario, an exception given by the
CPU-Intensive and the Active Display scenarios. The percentage variations between
the two smartphones, reported in table 4.22, spread from a minimum -56,08% in the
Mp3 Audio scenario, to a +73,23% in the Active Display scenario.

Scenario Samsung
Galaxy

Samsung
Nexus
S

Galaxy vs Nexus

Display 408,75 708,08 +73,23%(299,33 mW)
CPU Inten-
sive

608.71 877,75 +44,19% (269 mW)

3G Down-
load

947,51 931,80 -1,65% (15,7 mW)

2G Down-
load

784,10 722,42 -7,86% (61,6 mW)

3G Call 988,06 878,85 -11,05% (109 mW)
Bluetooth
Scan

273,96 227,05 -17,12% (46,9 mW)

WiFi 646,60 513,05 -20,65% (133,5 mW)
2G Call 746,45 543,49 -27,19% (202,9 mW)
GPS 484,75 300,45 -38,02% (184,3 mW)
Mp3 Audio 374,98 164,70 -56,08% (210,2 mW)

Table 4.22: Smartphones power consumption comparison

As regards our gLCB experiment, the barplot in figure 4.15 shows the average
power consumption values in mW for each profile, on both smartphone models. It
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is possible to notice that, between the two, the most recent smartphone consumes
less in verylow and low profiles.

Figure 4.15. Instant Power Consumption (avg values) of gLCB energy profiles

4.3.5 Discussion

Experiment 1: “Training Tools”
From the results obtained from our first experiment, we can conclude that the
most power consuming user activities, among the ones we selected, on both the
smartphone models used, are those that use the radio module, namely the phone
call and data transfer on both 2G (EDGE/GPRS) and 3G (UMTS) networks. This
finding is coherent with [20], in which the most power consuming scenario is indeed
the phone call. Also in [78], examining some of the network-related scenarios, it
emerges that the battery lasts longer in all cases if the WiFi network interface is
used, rather than 2G or 3G. From our results, it is worth noticing how 3G network
causes a sensible increase in power consumption with respect to 2G, in both voice
and data communications. Moreover, as regards the power consumption difference
between the two smartphone models, we notice that the most recent model has in
general a lower power consumption, the only exception being the CPU-intensive
and active display scenarios: this can be justified, considering the increase in CPU
frequency (1 GHz compared to 528 MHz) and in display dimensions (4” compared
to 3.2”) which characterise the most recent model.

Experiment 2: “gLCB”
As regards our gLCB experiment, it is immediately noticeable that in every profile
the Samsung Nexus S consumes a higher amount of power. This is likely because
during this experiment, the display of the smartphone was active, in order to verify
the correct execution of the application, and the switching between profiles and
execution sessions. This was done on purpose, in order not to introduce random bias
due to occasional checking of the application behaviour. Instead, we may subtract
the display overhead from the power consumption values, and this is valid because we
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know that, from the previous experiment, the display consumption is characterised
by low variance and dispersion values. The recalculated values, without the display
overhead, are shown in table 4.23. It is interesting to notice how, from these results,
it emerges that the Nexus S actually has lower power consumption values than the
Galaxy in profiles verylow and low, namely 47,5% and 42,1% respectively. The
other profiles show a significantly higher power consumption. Given that the step-
up from low to normal profile is characterized by the activation of WiFi, Bluetooth
and GPS components, during normal and high profiles a higher computational load
is expected. Thus, we may conclude that the power consumption increase is due
to the CPU activating more frequently than in the other two profiles, also because
we know, from the results of the previous experiment, that the CPU has a higher
impact on the Nexus S smartphone. These results show that the impact of the
gLCB application in terms of power consumption gradually reduces, by adopting
lower energy profiles, on both smartphones.

Profile Samsung Galaxy (mW) Samsung Nexus S (mW)

Very-low 112.811 59.185
Low 135.697 78.576
Normal 185.586 356.555
High 208.262 398.482

Table 4.23: Smartphones power consumption comparison (no display overhead)

4.3.6 Considerations and future work

From the analysis of the results provided by our experiments, we can conclude that
the most recent device, in terms of OS and hardware components, shows significantly
lower power consumptions than the least recent one, except for the CPU-intensive
and active display cases. This proves that technology improvements have a great
impact over power consumption reduction. Moreover, we showed that different exe-
cution profiles of the same application can significantly affect the power consumption
of a device. This finding proves that energy-aware software applications can greatly
improve the energy efficiency of mobile devices, while providing the same function-
alities.

As regards future work, it would be interesting to profile the energy consump-
tion of other usage scenarios, for example those who require a higher interaction
between the user and the device. Moreover, because of our experiment design, the
smartphones were constrained to a single physical location; it could be interesting
profiling the power consumption of a moving user, in order to get closer to the real
case and evaluate with more precision the contribute of the subsequent handoffs be-
tween different cells in mobile networks. Another interesting point of view could be
analysing the power consumption of different generations of smartphones running
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the same version of the Android OS, in order to isolate the only impact of hardware
changes. The issue of sustainability is starting to be addressed among the soft-
ware engineering community. Although, during the First International Workshop on
Green and Sustainable Software9, there was common agreement that sustainability
is and will be a key aspect of software, it is still unclear how to design sustainable
software. While for other characteristics (reliability, performance, security, etc.)
processes and metrics have been proposed and widely investigated by the SE com-
munity, as regards sustainability the discussion is still in its initial phase. In addition
to that, software sustainability has an intrinsic difficulty because the topic invests
not only technological aspects, but also economic, social and environmental, which
are under the broad umbrella of sustainability as defined in 1987 by the Bruntland
commission10. Among the kaleidoscope of aspects related to software sustainability,
one of the most visible is the energy (or, alternatively, power) consumption of soft-
ware systems. Indeed, software does not consume energy directly; however it has
a direct influence on the energy consumption of the hardware underneath. In fact,
applications and operating systems indicate how the information is processed and,
consequently, drive the hardware behaviour: as described in chapter 4, software can
increase the total power consumption of a computer system up to 10%. This and
other initial findings open investigation spaces on the optimization of energy and
power consumption of IT devices acting on the software instead of the hardware.
Moreover, nowadays the same software runs on multiple devices, thus it might be
more productive and feasible for software houses to green the single software rather
than relying on the greening of all the hardware implementations underneath (that
could require competences commonly not owned by software houses). Optimizing a
software product in terms of energy efficiency also has some issues. The absence of
a standard procedure, or a benchmark, to compare systems is the most prominent
one. This is because software is intangible and it is deployed on devices with their
own specifications and features. This makes it really difficult to standardise a trans-
parent, platform-independent measuring system for every software system. Another
consideration must be done regarding software architectures. During recent years,
software engineers always tried to increase the number of software layers - that is, for
improving interoperability, abstraction, decoupling, etc. However, the steep increase
of software layers directed the optimisation efforts only on each layer (“horizontal”
optimisation) and not across them (“vertical” optimisation). Since energy efficiency

9http://greens.cs.vu.nl/, last visited on September 13th, 2012
10In 1987 the Brundtland commission defined sustainable development as “a development that

meets the needs of the present, without compromising the ability to meet the needs of the future
[18]”
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directly relates with hardware technologies, a more intense communication flow be-
tween hardware and software is needed to achieve significant optimisations. In this
sense, embedded systems make a perfect case study, because their architecture is
simplified by design, and also because power consumption issues acquire a peculiar
importance, for operational reasons (most embedded systems are battery-powered).
For this reason our work uses an embedded system as the testbed to validate a new
approach for the design and implementation of sustainable software. We investi-
gate, and here we also introduce the goal and main contribution of this study; how
software can be optimised by identifying code patterns that use in a sub-optimal
way the hardware resources. These code patterns ought to be refactored in order
to improve the energy efficiency of the software at run time. We define and name
the code patterns Energy Code Smells, inspired by the well-known book of Fowler
and Beck [33]. This study empirically validates the impact of Energy Code Smells
over power consumption [101]. In Section 4.4, we provide some background and
we give our definition of Energy Code Smells, then in Section 4.4.1 we describe the
used approach for the validation of the concept. In Section 4.4.3 we describe the
experimental setup of our analysis. In Sections 4.4.5, 4.4.6 and 4.4.6 we present and
discuss our experimental results, along with the threats to validity that might affect
our research. Finally we expose (Section 4.4.7) our conclusions and future research.

4.4 Energy Code Smells: background and defini-

tion

The term “code smells” was coined by Fowler and Beck [33] referring to poor imple-
mentation choices that make the software difficult to maintain. These bad imple-
mentation practices can be characterised as patterns in source code. For instance,
the smell “Long Method” refers to a method that has grown too large: typically, the
longer the method is, the more difficult it is to maintain it. One or more refactoring
actions are associated to code smells: for example, all you have to do to refactor a
Long Method is to extract parts of the method that seem to go nicely together and
make a new method. As a result the original method is shorter and easier to main-
tain. The goal of identifying and refactoring code smells is to make the code more
understandable and flexible to evolution, i.e. more maintainable, and many studies
in the literature have been devoted to this aspect [107] [55]. However refactoring
code smells might also have an effect on other properties of the software, such as
the portability, the testability or, as in the case of this work, the energy efficiency
of the code. As a consequence, we take inspiration from the original work of Fowler
and Beck and we introduce the concept of smells into the Green IT community,
introducing the Energy code Smells:
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An Energy Code Smell is an implementation choice that makes the software execu-
tion less energy efficient.
Since software has different levels of abstractions and organisations, Energy Code
Smells can be located at code, design or architectural level. Therefore, Energy Code
Smells are implementation choices at source code level (code patterns) that make a
sub-optimal usage of the hardware resources underneath. As a consequence, they
provoke a higher energy (or alternatively, power) consumption.

4.4.1 Validation of Energy Code Smells

The aim of our research is to identify Energy Code Smells. In addition to that, we
are also interested in understanding whether the Energy Code Smells also degrade
the performances of the application in terms of execution time. We set up two
research questions for our investigation:

RQ13. Which code patterns have an effect on power consumption (i.e., which code
patterns are Energy Code Smells)?

RQ14. Do code smells that have an effect on execution time also have an effect on
energy consumption (i.e. are Energy Code Smells also Performance Smells)?

The epistemological approach adopted for this research is the empirical one. We set
up an experiment observing two dependent variables: power consumption (W) for
RQ13 and execution time (ms) for RQ14. The two dependent variables are measured
on the execution of C++ functions running on an embedded device. The choice of
the embedded device has several advantages, the main two being:

• it has no operating system and thus confounding factors in the experiment are
minimised;

• it runs on a battery and it really needs energy-efficient code.

In other terms, refactoring Energy Code Smells in such an environment might
lengthen the life of the battery. The potential Energy Code Smells selected for
the experiment are code patterns used by two popular static analysis tools. For
each code pattern selected for the experiment, we set up a C++ function with two
implementations, one that violates the code pattern (thus contains a Code Smell)
and the refactored one without the violation. Therefore the treatment is the refac-
toring of the smell and it is possible to observe an effect on the two variables by
comparing the measurements on the two versions of the code. Figure 4.16 represents
the design described.
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Figure 4.16. Experiment design.

4.4.2 Potential Energy Code Smells selection

As introduced above, the software that runs on the selected device is C++ code. In
order to identify Energy Code Smells on C++ code we look at already existing code
patterns. In particular, we examined patterns implemented by Automatic Static
Analysis (ASA) tools. ASA tools examine source and compiled code and check it
against good programming practices and possible bug patterns. The advantage of
using ASA tools is the speed of the verification and the applicability before test-
ing or production phase. The two tools selected for this study are Cpp-Check11

and Findbugs12. CppCheck is a well-known static analysis tool for C/C++, which
contains many patterns regarding a variety of desired software properties: safety,
portability, performance, etc . An example of C/C++ pattern on portability is
“64 bits portability”, i.e. assign address to int or long. An example of checked
pattern on performance is instead “Address not taken” of the category “Memory
leaks”, which detects when the address to allocated memory is not taken. In order
to identify which patterns can be considered relevant for energy efficiency, two of
the authors carefully read all patterns and selected independently which ones could
cause a higher power consumption of the Waspmote. All conflicts (a pattern selected
by only one expert) were resolved in a reconciliation meeting, where patterns were
discussed and a final decision taken. In addition to the Cpp-Check patterns, we
also reviewed the patterns of another static analysis tool, Findbugs. It is similar
to Cpp-Check, but it analyses Java code. The same two authors reviewed all Find-
Bugs patterns and decided firstly if they can be applied to C++ code, then whether
they might be related to energy efficiency. The selection process ended up with the
patterns shown in TABLE 4.24.

11http://cppcheck.sourceforge.net/, last visited on September 13th, 2012
12http://findbugs.sourceforge.net/, last visited on September 13th, 2012
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Pattern Name Pattern Description Tool
Parameter By
Value

Passing a parameter by value to a func-
tion

CppCheck

Self Assignment Assignment of a variable to itself. (e.g.,
x=x).

CppCheck

Mutual Exclusion
OR

OR operator between two mutually ex-
clusive conditions (thus always evaluat-
ing to true).

CppCheck

Switch Redundant
Assignment

Redundant assignment in a switch
statement: for example, assigning a
value to a variable in a case block with-
out a following break instruction, then
re-assigning another value to the same
variable in the subsequent case block.

CppCheck

Dead Local Store A statement assigning a value to a local
variable, which is not read or used in
any subsequent instruction.

FindBugs

Dead Local Store
Return

A return statement assigning a value
to a local variable, which is not read
or used in any subsequent instruction.
(i.e. return(x=1); )

FindBugs

Repeated Condi-
tionals

A condition evaluated twice (e.g.,
x==0 —— x==0).

FindBugs

Non Short Circuit Code using non-short-circuit logic
boolean operators (e.g., & or ∥) rather
than short-circuit logic ones (&& or
∥∥). Non-short-circuit logic causes
both sides of the expression to be eval-
uated even when the result can be in-
ferred from knowing the left-hand side.

FindBugs

Useless Control
Flow

Control flow constructs, which do not
modify the flow of the program, re-
gardless of whether or not the branch
is taken (e.g., an if statement with an
empty body).

FindBugs

Table 4.24: Potential Energy Code Smells selected for validation.

Subsequently, we wrote for each of the patterns a pair of C++ functions, one
containing a potential smell and another one refactored without that smell. For
example, the “Non-Short Circuit Logic” pattern has the following two functions:
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void NonShortCircuit With()
{

int count = 0;
int total = 345;
if ( count > 0 & total / count > 80 )
count=0;

}
void NonShortCircuit Without()
{

int count = 0;
int total = 345;
if ( count > 0 && total / count > 80 )
count=0;

}

The function NonShortCircuit With() is the one with the potential smell “Non-
short circuit logic”. The smell is in the line if(count > 0 & total/count > 80)
because the AND operator is single & and so both predicates in the expressions will
be evaluated at run-time. In the function, NonShortCircuit Without() the code is
refactored replacing & with &&. All functions are available online for the sake of
replication13.

4.4.3 Experiment setup

Context: the WASP

The device used for the experiment is the Waspmote V1.1 (Libelium Comunicaciones
Distribuidas S.L. Esso). The hardware architecture is based on a ATmega 1281
microcontroller with a CPU frequency of 8 MHz and 8KB of SRAM. It has no
operating system: programs are directly loaded on a FLASH memory of 128 K. This
architecture well suits our experiment because no other threads run in parallel with
the chosen program, thus eliminating any software noise for the energy measurement.
The device is basically a motherboard with connectors to plug in other elements such
as sensors, wireless modules (ZigBee, XBee, Bluetooth), GSM/GPRS modules and
a GPS (Global Positioning System) module. For this reason it is used in different
fields, such as Smart Metering, Building Automation, Agriculture etc. It runs on a
lithium battery (3.7V and 1150mAh), so the energy consumption of software has a
key role here. To compile and load the C++ programs it is sufficient to use the IDE
provided by the manufacturer and connect it to a computer via USB cable.

13http:softeng.polito.it/greensmells/
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Experiment setup

The objective of the experiment is to measure power consumption and execution
time on each function pair, in order to evaluate if the potential smell affects the
two dependent variables. We divide the experiment in two parts: one for measuring
power consumption, and another one for the execution time. Measuring power
consumption and execution time for a single function is a challenging task because
usually execution is too fast to get reliable data. We control this threat repeating
each function 1 million times, which makes one sample. We collect 50 samples in
order to reach statistical significance. Each function pair is loaded on the Waspmote
and evaluated two times: the first one for the execution time, the latter one for the
power consumption. No specific instrumentation was needed to obtain the execution
time, because the Waspmote embeds a Real-Time Clock (RTC) with a millisecond
accuracy. We measure the execution time of every loop (i.e. 50 measurements). On
the other side, analysing power consumption is more complicated. The only way to
obtain a precise measure of the power consumption is using a power meter. The RTC
is powered by an auxiliary battery, which makes it completely independent from the
main power supply. Therefore it is possible to power the Waspmote with a constant
voltage (VG = 3.7 V) by means of a generator, and use a shunt resistor to measure
the current intensity. An analog to digital converter (ADC) connected to the PC
reads the voltage drop across a resistor R of 1 Ω. The current flowing in the circuit
can be computed by measuring the voltage drop on the resistor (I = VADC/R). The
instant power consumption value can be computed as:

P = VL · I = (VG − VADC)
VADC

R
=

VGVADC−V 2
ADC

R

Figure 4.17 represents the circuit described. The device used to measure the power

Figure 4.17. Circuit built to measure the power consumption.

consumption has a frequency of 49KHz, i.e. it gets 49000 measurements each second.
In order to precisely measure the power consumption relative to the execution of the
function pairs, we inserted a sleep interval at the beginning of the data acquisition
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to exclude the peak of device power on, and we filtered out, through a threshold,
all the measurements corresponding to the idle consumption between the iterations
of the function execution. As shown in Figure 4.18, the threshold filters out the
transient and includes only the peaks corresponding to the actual execution of the
function.

Figure 4.18. Sampling current intensity: an example.

4.4.4 Analysis methodology

For each research question we derived a pair of null and alternative hypotheses to
test.

RQ13:

H10 : Pwith ⩽ Pwithout

H1a : Pwith > Pwithout

where P is the power consumption of the function, with and without the potential
smell. If the refactored version of the function consumes less than the function with
the smell, the null hypothesis is rejected in favour of the alternative one. As a
consequence we consider the pattern a Energy Code Smell. The hypothesis is tested
with the Mann-Whitney test, given α = 0.05.

RQ14:

H20 : Twith ⩽ Twithout

H2a : Twith > Twithout

where T is the execution time of the two functions. If the smell has a negative
impact on performance, the refactored function will be faster and the null hypothesis
is rejected. In that case, we consider the pattern a Performance Smell. In order to
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answer RQ14, we compare which Energy Code Smells are also Performance Smells.
We also use Mann-Whitney and α = 0.05 to test the hypotheses. At the end of
the experiment each function has 50 measurements of execution time and about 25
millions of power measures. Then, after filtering out values below the idle threshold
(8mW), we obtained about 8 million values for power measurement, on which we
ran the analysis.

4.4.5 Results

We report results on the power consumption and execution time respectively in TA-
BLE 4.25 and 4.26. The two tables report the name of the smell, the means and
their difference for both the dependent variables, the p-value of the Mann Whitney
test and the difference in percentage of the power consumption (or execution time)
between the execution of the code with the smell and the execution with the refac-
tored code. We observe from Table 4.25 that all power consumptions ranged from

Smell name Mean
with
smell
(µW )

Mean
w/o
smell
(µW )

Diff.
Means
(µW )

P-value Impact%

DeadLocalStoreReturn 41241 41278 -37 1 -0.09
DeadLocalStore 40249 40205 44 < 0.01 0.11
MutualExclusionOR 40758 40772 -14 1 -0.03
NonShortCircuit 41113 41043 70 < 0.01 0.17

ParameterByValue 40967 40723 244 0 0.60
RepeatedConditionals 41155 41126 29 < 0.01 0.07

SelfAssignment 40952 40879 73 < 0.01 0.18
SwitchRedundantAssignment 40724 40756 -32 1 -0.08

UselessControlFlow 41051 41142 -91 1 -0.22

Table 4.25: Results of power consumption.

40mW to about 42mW. Five code patterns over nine have a p-value < 0.05 (in bold)
and therefore the null hypothesis is rejected for them. The code patterns are:

• DeadLocalStore

• NonShortCircuit

• ParameterByValue

• RepeatedConditionals
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• SelfAssignment

Overall the saved power consumption is less than 1%. The answer to RQ13 is:
five code patterns (DeadLocalStore, NonShortCircuit, ParameterByValue, Repeated-
Conditionals, SelfAssignment) are Energy Code Smells, and their impact is in the
order of µW . Focusing on performance, from Table 4.26 it becomes evident that

Smell name Mean
with
smell
(ms)

Mean
w/o
smell
(ms)

Diff.
Means
(ms)

P-value Impact%

DeadLocalStoreReturn 3288.76 3288.74 0.02 0.41 6.08e-04
DeadLocalStore 17707.3417707.38-0.04 0.66 -2.26e-04

MutualExclusionOR 3540.76 3540.60 0.16 0.04 4.52e-03
NonShortCircuit 3288.74 3288.80 -0.06 0.76 -1.82e-03
ParameterByValue 3288.76 3288.74 0.02 0.41 6.08e-04

RepeatedConditionals 3288.80 3288.74 0.06 0.24 1.82e-03
SelfAssignment 3288.66 3288.78 -0.12 0.90 -3.64e-03

SwitchRedundantAssignment 3540.58 3540.62 -0.04 0.65 -1.13e-03
UselessControlFlow 3288.80 3288.74 0.06 0.24 1.82e-03

Table 4.26: Results of execution time.

there is no difference in execution time. The null hypothesis is rejected only for
MutualExclusionOr, however the magnitude order is µ seconds. We also notice that
DeadLocalStores are about 5 times slower. Thus, our answer to RQ14 is: Energy
Code Smells are not Performance Smells.

4.4.6 Discussion

We identified five smells which provoked a higher power consumption of the Wasp-
mote in the use cases prepared for the experimentation. However, we observe that
the saved power is less than 1 %. A first motivation resides in the implementa-
tion choices: the function pairs executed only differ in a single instruction, and the
operations are done with primitive types (e.g., integer). The motivation of such im-
plementation was the exclusion of any possible confounding factor in the analysis,
but the drawback of such a choice is a very small achievement in energy efficiency
improvements. Let us take dead stores as an example: the smell DeadLocalStore
is implemented with an integer (we save a value on a variable and immediately
overwrite it with another integer). Using a struct with several members is totally
different and might lead to a higher impact, because the resulting compiled code
requires the CPU to produce more instructions and interact more intensively with
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the memory. If increasing the complexity of the data structure will result in still
negligible power consumption saving, the next step is to increase the logical com-
plexity of the function, i.e. comparing complete algorithms that are functionally
equivalent but differ in the implementation. A further step is to move the focus to-
wards the comparison of functionally equivalent design choices. Understanding the
impact of Energy Code Smells over real power consumption could also contribute
to build more precise models of the power consumption of software. As a matter
of fact, it may be possible to categorise software instructions beforehand in terms
of energy efficiency, then subsequently use this information in order to predict the
resulting energy efficiency of a complete software product. Yet another research di-
rection that is suggested by this first leap is: can the impact of Energy Code Smells
be higher in code that drives a hardware resource with higher energy needs? For
instance the impact on the code that handles the GPS transmitter is expected to
be very different from the one used in this experiment, where the small functions
use only CPU and RAM, besides not using them in an intensive way. The same
investigation approaches can be applied to the domain of execution time. As can
be noticed from the results, all the execution times are equal, with an exception
given for the DeadLocalStore function pairs. We have observed that Energy Code
Smells do not degrade the performances, but we cannot generalise the findings for
more complex code structures and usage scenarios, with different hardware resources
involved (e.g, sensors).

Threats to validity

In this section, we expose the threats to validity that might affect our study. As
regards construct validity, our main threat regards instrumentation. We carefully
evaluated the precision of our measures, comparing them with the specifications
from Waspmote manufacturers. During our experimentation, the difference between
actual and expected values was negligible and inside the specified ranges. Internal
validity is represented by confounding factors such as other processes running during
execution. However, the Waspmote does not have an operating system and the only
thread in execution during the tests is the code loaded. As regards external validity,
we do not aim at generalising our results to a family of embedded devices. This
study aims at assessing the existence of the Energy Code Smells in a single context:
other empirical validations are necessary for other environments or devices.

4.4.7 Considerations

This is an exploratory study: we defined for the first time the concept of Energy
Code Smells and we performed a first validation to understand not only the impact,
but also the boundaries of the concept. We identified some Energy Code Smells
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starting from code patterns implemented by two common Automatic Static Analysis
tools - namely, CppCheck and FindBugs. We performed an experiment, on an
embedded system, in order to assess the energetic impact of those code patterns,
also taking into account the impact on execution time, to determine whether Energy
Code Smells are also performance smells. Our experimental results showed that
some of the code patterns actually have an impact over power consumption. This
impact, however, is in the magnitude order of µW . Our future research works will be
devoted to analysing more complex data structures and using hardware resources,
which could increase this impact with respect to the overall power consumption.
As regards time analysis, only one pattern had an actual impact over execution
time (a few µ seconds), and it is not identified as an Energy Code Smell. Thus, we
conclude that Energy Code Smells are not Performance Smells. However, results
suggest that the target and applicability of Energy Code Smells should be refined
with further investigations. The lessons learned in this exploratory study let us
identify several research threads that the research community might address, such
as the identification of Energy Code Smells that are higher-level constructs and use
more complex data structures, the identification of Green Design Smells and the
use of more complex systems as test beds. Finally, the experimental results that
will be collected might be also be used to build more precise models of the power
consumption of software.

4.5 Self- adaptation

The increasing proliferation of mobile devices and the intention of defining universal
standards related to the mobile market, motivate many companies to implement
context-aware standards, with the purpose of stimulating a rapid and wide adop-
tion of a variety of useful applications. A context-aware system has to be able to
combine contextual information, which is related to the bounded environment. This
info, called context data, is any information that can be used to characterise a spe-
cific entity situation [4].In this way it is possible to describe the actual situation, by
determining some automatic behavioural variations or by notifying the user about
some specific event. This kind of system has to be constantly in execution to gather
raw data and to execute different types of operations based on context reasoning.
Context-Aware services collect contextual information automatically. With a wide
range of possible user situations, it is important that services have a way to adapt
appropriately to best support low battery scenarios. A system is context-aware
whether it uses the context to provide relevant information and/or services to the
user, where relevancy depends on the user’s task. Many approaches are not com-
pletely dynamic, flexible or effective when we need to automatically match battery
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consumption requirements in differing contexts. A Context and Energy-Aware sys-
tem has to be flexible and able to react to environment variations. Many features
of modern devices like high processor speed, more efficient displays, more powerful
data storage and WiFi/GPRS/UMTS network adapters, and specific hardware to
enable advanced 3D graphics, considerably influence the device energy costs. Cur-
rent approaches are not able to implement energy-aware self-adaptation because
they do not consider aspects related to context management policies. Context can
be used to find a lower energy consumption performance as well as implementing
proper adaptation policies. An energy-aware context broker has to deal with:

• Sensing: to detect as much contextual information as possible,

• Transmission: to send gathered information to a context platform (for further
processing),

• Adaptation: to manage the energy cost caused by sensing and transmission
phases.

The context broker should be able to collect (and to send) context data only when
really needed to avoid useless duplicated data management. It is also fundamental
to include the battery charge state in the optimization strategy the context broker
is adopting: the context broker shall be able to manage the information granularity
depending on the battery level. It is also indispensable to respect the following
fundamental principles [53] in order to reduce the energy consumption to the lowest
possible level:

• less work requires less energy,

• event programming avoids polling,

• multi-core environment programming,

• periodic timer should be avoided and

• the system should be scalable.

A context-aware application has to be able to minimize its operations in situations
where the device is running out of energy [65]. In order to cut the device runtime
operations, it is important to:

• to implement an efficient algorithm or to modify an existing one to reduce
operations have to be carried out to a minimum,

• to improve the compilation process by introducing optimizations based on
target processor and
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• to prefer a compiled and optimized code instead of an interpreted one.

Nowadays, operating systems for mobile devices provide different APIs to check
the battery state (e.g. battery charge percentage, battery technology and tem-
perature). Software components can be notified whenever batteries state changes.
Energy Awareness is concerned with several aspects: the quantity of energy that is
used, what this energy is used for, where it comes from, the resulting effects (e.g.
environmental impact, resources consumption). In addition it poses the problem of
how to reduce the energy consumption and its collateral effects. Even if software
does not consume energy directly, it does, however, have a direct influence on the
energy consumption of the hardware underneath. As a matter of fact, applications
and operating systems indicate how the information is processed and, consequently,
drive the hardware behaviour. We think that writing energy-efficient code in a mo-
bile environment can be more appreciated by users because there is a direct effect
on their mobile batteries lifetime. The Energy-aware middleware we are going to
introduce in this paper uses certain resources (i.e. GPS, Bluetooth) related to differ-
ent operations that have a high impact on energy consumption. gLCB implements
features, which focus on reducing the energy consumption by avoiding the execution
of redundant operations [12]. gLCB is responsible for retrieving context information
through device hardware sensors, and it is also responsible for delivering such data
to a Context Awareness Platform (CAP) [30]. The CAP allows the collection of con-
text data from users’ devices. Context data can eventually be processed by other
components of the platform and become high-level context information (e.g. GPS
coordinates can be translated into a civil address). This process is called reasoning
[13]. Figure 4.19 describes the functional architecture of our CAP. From the figure
we can deduce how context is transformed from raw data into high-level information
and how high-level information is exposed to external applications.

Context Capturing Layer

In this layer, raw context data are retrieved from the available device sensors (e.g.
GPS, phone, Bluetooth, WiFi, etc) and aggregated. The aggregated data are then
asynchronously transferred to the CAP. This layer of abstraction collects context
data in a fast and economic way, in order to integrate heterogeneous information
sources and consequently support various protocols and different kind of data for-
mats. This is the layer where gLCB acts.

4.5.1 Context Analysis Layer

gLCB captures the low level data representations, which may not be meaningful
to applications, and sends them to the Context Broker. The CAP will modify
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Figure 4.19. Context Awareness Platform: from raw data to high-level information

this information in high-level representations which are easier to interpret and to
use (e.g., an address is more significant that GPS coordinates). In context-aware
architectures, the reasoning component elaborates raw data and generates high-level
information. The reasoning process may require significant computational effort so it
is usually a server-side operation. Besides reasoning, the CAP may also try to learn
user behaviours: this technique is known as learning. Learning usually involves
the analysis of a context history database and may be executed offline or online.
Offline learning is a batch process, which runs periodically (daily, weekly, etc.) and
is applied to the whole context history. Online learning is executed at every context
change and receives continuous feedback.

Service Integration Layer

This layer exposes context information towards the service platforms via API. The
interfaces exposed by the CAP also allow third party applications to provide context
data. As pictured in figure 4.20 the actors involved in the CAP are:

• Context source: a component, which feeds context data into the CAP. A source
typically provides raw data (e.g. a mobile phone);
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• Context consumer: a component which uses context information (e.g. an
application);

• Context provider: a context source which is also capable of producing higher
level information by acting as a consumer of raw data and a source of high
level information;

• Context broker: the component which stores context data.

Figure 4.20. Context Awareness Platform: actors

Context Capturing Layer

More than one context consumer and context source can access the platform to re-
quest and send context data. Specifically the context data are sent from applications
executed in mobile devices. In this way, it is possible to perform data mining and
clustering operations. Context Consumers can retrieve context through synchronous
requests to the Context Broker or asynchronously by registering to context changes.
This second scenario optimises the allocation of resources and the network traffic:
applications do not need timers to poll the CAP, the CAP triggers applications only
whenever a meaningful context change takes place.
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4.5.2 gLCB

The middleware software we developed for Android OS, is based on two levels: the
first one is associated to the local context broker, and the second one to the sensors
layer. The lower level establishes a communication channel to the higher level by
sharing an interface. Mobile context-aware applications can rely on the local context
broker to retrieve context data. To do so, the application is requested to bind to
the LCB [60] service; when the binding is established, the application can perform
context queries which will result in the retrieval of context data from the current
device (if the requested information is available locally) or from the CAP. The local
context broker manages its sensors via a Sensor Manager (Figure 2). The Sensor
Manager is responsible for:

• discovering new sensors,

• the management of sensors life cycle and,

• the management of their settings.

This component also exposes an interface, which allows the local context broker
to perform one-shot requests to sensors or to subscribe to context data variations.
Every sensor is installed as a service and runs in the background on the device.

Figure 4.21. LCB sensors management

Critical aspects

We needed to guarantee a starting sensors mechanism in order to provide the in-
dependence of the components involved during the application execution. Indepen-
dence is crucial as the number of developed sensors may vary and the test phase
cannot depend on a newer release of gLCB. In this way the Android operating
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system is able to recognize each sensor as an independent application. The other
critical aspect concerns the way in which data are obtained from sensors. A possi-
ble solution should be the sequential scanning of every sensor and the consequent
data publishing in the server side. This approach introduces some critical problems
mainly related to:

• High device battery consumption;

• Static data search and data publishing based on specific movement;

• Redundant context data transmission;

• A single monolithic application including every sensor.

Limited Search and Publishing

Context data search and publishing are the most relevant stages related to device
battery consumption. Sensors that manage data provided by the operating system
(e.g. IMEI number, ringtone volume etc.) do not reveal critical problems related to
information management because such information is fixed. On the other hand, the
scanning of new wireless networks, the nearby Bluetooth devices or the geographic
position calculation, represents expensive operations in terms of energy consump-
tion. These operations have to be limited whenever unnecessary.

Asynchronous Sensors Association

We created a sensor starting mechanism that was not dependent on the main ap-
plication starting mechanism. In this way, new sensors are independent services
associated with different starting components. Each sensor is characterized by a
component called BroadcastReceiver. This component is an independent class that
intercepts a specific system message called Intent. gLCB broadcasts an Intent when-
ever it is launched. Every sensor is able to intercept such intent and to react with a
“Sensor Available” intent which notifies gLCB about its availability. In this way, it
is possible to associate an undefined number of sensors with the main application.
The only restriction is that they must be installed in advance on the device. Table
4.27 lists every available sensor.
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Sensor Description
WiFi List of WiFi networks
DeviceActivity Information about current applications

running
Location Geographical user position
DeviceStatus Terminal publishing status
Phone GSM or UMTS cell on which is

connected
Bluetooth Bluetooth neighbours
Data Connectivity device info
Call Call status

Table 4.27: Sensors Description

Asynchronous Context Data Publishing

Another critical issue about power consumption is the redundant publication of
unchanged context data. A periodical sequential scanning of all sensors will cause
a waste of energy as every sensor is activated at each scan. A possible solution to
this problem is to implement a more efficient context scanning algorithm, e.g. an
event-based algorithm which activates the sensors only in response to specific events.
Table 4.28 lists every available sensor and the events that trigger the data update
on the server side.
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Sensor Events triggering a data update
WiFi Sensor Start

Out-of-date Context Data
New WiFi Networks

DeviceActivity Sensor Start
Out-of-date Context Data

Location Sensor Start
Out-of-date Context Data
Movement Greater Than Threshold

DeviceStatus Sensor Start
Out-of-date Context Data
User Profile Change

Phone Sensor Start
Out-of-date context data
New Cell Connection

Bluetooth Sensor Start
Out-of-date Context Data
New Bluetooth Handsets

Data Sensor Start
Out-of-date Context Data
Connectivity change (3G or WiFi)

Call Sensor Start
Out-of-date Context Data
10 Calls (Incoming or Outgoing)

Table 4.28: Sensors Events Description

All the sensors share two events: Sensor Start and Out-of-date Context Data.
The first event means that the sensor collects and sends context data whenever the
sensor is started. The second event means that after a certain period the sensor must
refresh the context data because it is deleted by the CAP. This time period can be
managed to increase or decrease the number of context updates regardless of data
variation. To save energy we introduced a new parameter called mindelta. With
this parameter the user can set, for each sensor, the minimum time period which
must elapse between two updates. Mindelta must be lower than the data expire
time to ensure the context data availability. Basically, by managing expire time and
mindelta parameters, the user can find a good trade-off between data processing and
energy efficiency. In this way, the data stored on the server side is stable, updated,
and available for Context Consumers.
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Different Update Policies

We created seven user profiles: VERY LOW (Table 4.29), LOW (Table 4.30),
NORMAL (Table 4.31), HIGH (Table 4.32), AUTO, and CUSTOM. Each one can
change the gLCB behaviour in terms of context data searching and publishing by
managing:

• the number of active sensors;

• the expire time parameter;

• the mindelta parameter.

The LocationSensor is more complex than the others and manages three further
parameters, which trigger a context data update:

• enables or disables the GPS module;

• computes the distance in meters between the actual value and the previous;

• computes the accuracy ratio between the actual value and the previous.

The AUTO profile selects the best profile from VERY LOW, LOW, NORMAL,
HIGH, profiles basing upon the actual battery level (see Table 4.33). By selecting
the CUSTOM profile, the user can decide the updating policy for every sensor.

Sensor State Texp(s) Mindelta(s)
Phone ON 3600 180

Location OFF - -
WiFi OFF - -

Bluetooth OFF - -
DeviceInfo ON 3600 3600

DeviceStatus ON 3600 1200
DeviceSettings ON 3600 3600
DeviceActivity OFF - -
DataSensor ON 3600 1200

Table 4.29: VERY LOW user profile configuration
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Sensor State Texp(s) Mindelta(s)
Phone ON 3000 180

Location ON 3000 120
D=5000m
A=10

GPS OFF
WiFi OFF - -

Bluetooth OFF - -
DeviceInfo ON 3600 3000

DeviceStatus ON 3000 180
DeviceSettings ON 3000 360
DeviceActivity OFF - -

Data ON 3600 180

Table 4.30: LOW user profile configuration

Sensor State Texp(s) Mindelta(s)
Phone ON 1200 120

Location ON 1200 120
D=5000m

A=2
GPS ON

WiFi ON 1200 120
Bluetooth ON 1200 300
DeviceInfo ON 3600 300

DeviceStatus ON 1200 120
DeviceSettins ON 1200 120
DeviceActivity ON 1200 120
DataSensor ON 3600 120

Table 4.31: NORMAL user profile configuration
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Sensor State Texp(s) Mindelta(s)
Phone ON 900 30

Location ON 900 0
D=250m
A=1

GPS ON
WiFi ON 900 120

Bluetooth ON 900 120
DeviceInfo ON 3600 120

DeviceStatus ON 900 60
DeviceSettings ON 900 60
DeviceActivity ON 900 60
DataSensor ON 3600 30

Table 4.32: HIGH user profile configuration

Interval Profile selected
Re-charger connected HIGH
100% - 61% HIGH
60% - 41% NORMAL
40% - 16% LOW
15% - 5% VERY LOW
<5% LCB Switched off

Table 4.33: AUTO profile behaviour

Application Execution

When started, gLCB loads the configurations used during the last execution. At
the first start gLCB triggers the HIGH profile. For every sensor, it is possible to
identify the update state, name, the time of the latest update attempt, and the
outcome result. There are three possible outcomes:

• Update OK,

• KO.net (no publishing because of net error) and

• KO.cb (no publishing because of context broker error).
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After that, gLCB displays the actual selected profile and if it is selected manually
or automatically, shows the number of successful publications, the date and time in
which the application has been started. In figure 4.22, we can identify the user has

Figure 4.22. A screenshot of gLCB log activity

7 tasks in execution, the ringtone is enabled, new geographic position information
was revealed, the battery level is at 56%, DeviceInfo and PhoneSensor sensors are
enabled, and BluetoothSensor sensor is not enabled. When the user switches off
gLCB, a special context publication will be carried out to the server, which recognizes
gLCB is switching itself off and cancels every context data related to that device.
This avoids other Context Consumers reading data that is not valid.

4.5.3 Validation Criteria

We chose an empirical approach to demonstrate the algorithm optimisation effective-
ness and we employed two different techniques to measure our middleware energy
consumption. The first technique – “user side” – measures the time required by
each profile to run out the phone battery (Time Measurements), while the second
–“lab side” – aims at measuring the instant power consumption of each different user
profile (Instant Power Measurements). For both the approaches we scheduled the
execution of a set of automated tests which did not require the user participation in
order to get a better measurement precision. The reference device is a Smartphone
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Figure 4.23. BatterySwitch

Samsung Galaxy (i7500) connected to the net through Telecom Italia Mobile (TIM)
3G network.

4.5.4 Results

Time Measurements

The procedure we adopted to perform the battery duration measurement consists
of the following steps:

• charge the battery until maximum battery level;

• select a specific gLCB user profile and let it start collecting data;

• record the time instants when the battery charge level changes;

• stop when the battery charge level reaches a predefined minimum value (5%);

Such a procedure lends itself to an easy automatic repetition of several measurement
cycles. We carried out measures for each profile and each configuration automati-
cally for thirty times in order to have statistical evidence. In addition to the total
discharge time, the above procedure, although in a quantitative way, can show how
the battery behaviour changes. From the user perspective it is a very useful finding.
In order to conduct the above measurement procedure we built a dynamic battery
charger, which allows starting or interrupting the battery charging through a spe-
cific command sent by a controlling PC. We called this particular battery charger
BatterySwitch and it has two USB ports as shown in figure 4.23:

• One port is connected to a pc (USB PORT A),

• The other port is connected to the mobile phone to manage the charge of the
battery (USB PORT B).

127



4 – Empirical Studies

Figure 4.24. Circuit developed to get instant power consumption values

BatterySwitch has a small firmware that can manage the supply of the USB port
B, which will be connected to the mobile phone. BatterySwitch is detected as a
HID-interface once plugged into a pc and it is possible to interact with it through a
simple application. For this reason it is needed a program that will:

• Be executed on the pc,

• Analyze the USB stack,

• Detect the device,

• Send bit ‘0’ to start charging the battery,

• Send bit ‘1’ to stop charging the battery.

This simple program has a thread listening to the port number 20248. The smart-
phone opens a socket to that port and it sends character ‘a’ or character ‘s’. The
program will send respectively bit ‘0’ or bit ‘1’ to BatterySwitch to start or stop
charging the device battery. It is possible to set up a group of configurations so
that, at the end of each measurement, the device publishes the collected data to the
server, and starts the next measure.

Instant Power Measurements

To measure the instant power consumption, we followed the procedure below:

• select a specific gLCB user profile and let it start collecting data;

• record the power consumption;

• stop after a predefined time (1 hour) has elapsed .
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The device we used to measure power consumption is presented in figure 4.24. A
power supply behaves like an ideal voltage generator with a constant 5 V tension.
An analog to digital converter (ADC) connected to the PC reads the voltage drop
across a resistor R = 1Ω. The current flowing in the circuit can be computed by
measuring the voltage drop on the resistor ( I = VADC/R). The instant power
consumption value can be computed as:

P = VL · I = (VG − VADC)
VADC

R
=

VGVADC − V 2

ADC
R

The ADC sampling frequency is 49 MHz and each user profile is measured for 1
hour. Each measurement is repeated 30 times to get statistical evidence. To ease
the collection of all these sets of measures execution, we developed a simple scheduler
on the mobile side, which runs gLCB with different user profiles.

Time measurements

The complete battery discharge curves for each profile are presented in Figure 4.26.
We can easily appreciate the non-linearity of the behaviour, which represents the
main reason that led us to consider the total discharge time. In the figure, the
rightmost abscissa reached by each profile represents the time required to achieve
a 5% charge level: this is the time we consider as the total discharge time. Table
4.34 reports, for each user profile, the total discharge time. The different profiles
essentially differ for the frequency of context data updates transmitted by the gLCB
to the CAP server, the second column presents the average number of updates per
hour. The average duration of our Samsung Galaxy battery in stand-by (without
applications running) is 15 hours 33 minutes and 22 seconds. Since this value is
expected to decrease according to the selected user profile, table 4.34 also reports
the discharge variation in percentage with respect to the stand-by configuration (last
column). We can observe that as the number of publications increase, the mobile
phone battery discharge time decreases linearly. The battery discharge time (t) is
linked to the update frequency (f) by a linear relationship:

t = 13h : 28m : 14s− 39m : 33s · f

The above equation captures the observed behaviour precisely (R2 = 97%). The
offset of the equation does not correspond to the stand-by time since the execution
of gLCB, even without updates, consumes power. Also the profile labelled ”AUTO”
does not match the linear relationship because it dynamically adapts the update
frequency to the battery charge level. Actually, with an average update frequency
of 7.54 we could have expected a discharge time of 8 hours and 30 minutes, which
is shorter than the one achieved using the AUTO heuristic. We can also notice
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Figure 4.25. Discharge battery curves per user profile

that the LOW profile needs to be reconfigured because its values are too close to
the VERYLOW profile. The energy consumption measures we carried out do not
consider either battery quality and temperature, nor which resources are used by
gLCB. This is just an approximate view, but despite that we can see our expectations
have been verified: different user profiles have different energy consumption patterns.

Profile Updates per hour Discharge Time
STANDBY - 15h 33min 22sec
VERYLOW 1,25 13h 8 min 8 sec
LOW 1,32 12h 7 min 35 sec
NORMAL 6,35 9h 13 min 6 sec
HIGH 8,48 7h 55 min 55 sec

AUTO 7,54 11h 41min 33sec

Table 4.34: Battery Duration and Updates per User Profile
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Figure 4.26. Update frequency vs. discharge time

Instant Power Measurement

The measurement with a fixed power supply allowed us to collect instant power
figures during the operations of gLCB. Table 4.35 reports, for each profile, the mean
instant power measured during the test time. In addition the last column shows
the percentage of increment w.r.t. the stand-by profile. The AUTO profile could
not be measured because it adapts on the basis of the battery charge level, but in
this configuration the power is provided by an external power supply and not by a
battery. Figure 4.27 contains the box plots of instant power measured, it shows the
actual distribution of power consumption in each experimental run. To test whether
the difference among the different profiles is statistically significant also in presence
of the measured variance, we performed a set of statistical tests. We selected non-
parametric tests due to the non-normal distribution of the data. In particular we
applied the Kruskal-Wallis test to detect overall difference among the profiles, and
the Mann-Whitney test for pair-wise comparisons. According to the Kruskal-Wallis
test there is evidence of a significant difference in terms of power consumption among
the profiles (p-value < 0.001). In more detail, on a pair-wise comparison basis,
we observed a significant difference between the following pairs: Normal and Low
(p < 0.001), Low and Verylow (p = 0.003), and Verylow and Standby (p < 0.001).
The magnitude of the difference, measured in terms of standardised effect size can
be considered large. The only non-statistically significant difference is between High
and Normal.
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Figure 4.27. Box Plot of profiles average instant power consumption

Profile Power
STANDBY 473 [mW]
VERYLOW 522 [mW]
LOW 544 [mW]
NORMAL 594 [mW]
HIGH 617 [mW]

Table 4.35: User Profiles average instant power consumption and variations

4.5.5 Considerations and future scenarios

The main goal of context-aware systems is to provide relevant information, and/or
services, based on current user context. In this paper we analysed the energy con-
sumption behaviour of gLCB : a context-aware middleware, which runs in back-
ground in Android OS based mobile phones, and sends context information to a
remote platform. We described the architecture of gLCB, which is designed to adapt
its behaviour on the basis of the remaining battery information. We analysed some
principles based on Energy-Aware software to determine how mobile devices should
behave according to scarce or plentiful energy, and how context information can be
used to infer energy consumption policies. These aspects are important to improve
the efficiency of context-aware systems in terms of energy consumption. The energy
consumption analysis involved two different empirical experiments: in the first one
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we measured the average time employed to run out the mobile device battery in
each user profile, while in the second one we measured the average instant power
consumed by each user profile. Since the behaviour of a mobile terminal in motion
is not predictable because the network signal received is not stable, we consider av-
erage values and we repeated each experiment 30 times. In this way we normalised
the data and obtained statistical evidence. Considering the results obtained, we
provided information related to:

• the battery average discharge-time,

• the average power consumption,

• the number of context updates per hour

of each user profile. These results have been associated with the battery duration
in standby conditions, as a reference point to compare how efficient the proposed
approach is. Time measurements show that AUTO profile provides the best perfor-
mance between energy consumed and data uploaded. As a first result of the time
measurements we are planning to reconfigure the LOW Profile because there are
big differences, in terms of average battery duration, average power consumption,
and context updates per hour, from VERYLOW and NORMAL profiles. Then we
can see that the impact of software in power consumption is real and a self-adaptive
behaviour can help to increase the battery life of a mobile device. Even if the bat-
tery discharge measure needs a very complex system, we use these results only in a
qualitative way. We gathered the instant power consumption value to get a more
detailed view about the device energy consumption. This deeper analysis, followed
by a statistical treatment of the data collected, highlights a significant difference in
terms of power consumption among the profiles. Other information such as CPU
usage percentage, battery temperature, technology and voltage, could be used to
evaluate how long and how many resources the application uses. It could be pos-
sible to improve even more the efficiency of gLCB by considering single resources
usage. These results lead to defining a technique for mobile applications, which
exploits self-adaptation driven by real-time energy consumption data, to increment
battery life. The requirement is that energy consumption data should be collected
from the Hardware Layer up to the Application Layer in real time (e.g. by built-in
power meters) as shown in Figure 4.28 Once energy consumption data is available
at runtime, it is possible to apply different self-adaptation techniques such as: Con-
ditional Operation, Function Selection, Control Flow Adaptation, etc. as described
by Peddersen and Parameswaran in [80]. The technique I am proposing in this
paper works as follows: the Operating System Layer manages the overall energy
consumption data coming from the Hardware Layer by means of a Smart Power
Management module called SPM [8]. SPM divides the overall energy consumption
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Figure 4.28. Energy Consumption Data Flow

data based on current usage of running applications, and sends this data to each
application. SPM also imposes constraints and target thresholds based on different
user profiles. When necessary, SPM notifies the apps exceeding the threshold. The
notifications are intended as asynchronous messages sent by the Operating System
(such as Android Intents) so that every application can receive them. If an ap-
plication can manage the notifications sent by SPM, it will modify its behaviour
exploiting self-adaptation techniques. The notified applications will finally find the
best trade-off between energy consumption and features provided to the user. The
data, on which the self-adaptation is performed, is the instant energy consump-
tion of the peripherals that compose the device. This mechanism can be better
explained with an example: when a self-adapting application APP1 starts, it sends
an asynchronous message to SPM to subscribe to future notifications from SPM.
Based on the user profile defined by the user, SPM will send the application the
energy constraints in a string format through a notification as described in Figure
4.29. An example should be the following: ”Resource: GPS, Max Power: 380mW,
Max Time over power limit: 60sec”. If APP1 crosses both the thresholds, SPM
will send a warning message: ”Warning, Resource: GPS, Limit: 380mW, Measured:
440mW”. This warning triggers APP1 self-adaptation. If the desired result is not
reached after a predefined number of iterations, or if an application has not sub-
scribed to receive notifications, SPM will notify the user about the energy issue,
and he/she can choose whether to ignore the message or kill one of the proposed
applications. After the implementation phase, further studies are needed to verify
the energy overhead required by this technique. The methodological approach I
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Figure 4.29. Smart Power Management operation

adopt for the validation of this technique is that of empirical software engineering
[106] [91], performing experiments and case studies. Managing energy consumption
data in real-time by exploiting it to drive self-adaptation in mobile applications is
the main contribution of this research. This technique will enable mobile developers
to be more aware of the energy efficiency of their code. Moreover it will improve
the battery life of mobile phones providing a better user experience.
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Chapter 5

Conclusions

This dissertation thoroughly investigated the responsibility for the software on the
energy consumption of a device. The contributions can be followed as five research
goals:

• RG1. Is it possible to measure the energy consumption of an appli-
cation?

• RG2. Could Energy Efficiency be considered as a software non-
functional requirement?

• RG3. Is it possible to profile the energy consumption of a software
application?

• RG4. Is there a relationship between the way a program is written
and its energy consumption?

• RG5. Is it possible to use the energy consumption information to
trigger self-adaptation?

As a starting point, the literature has been surveyed in order to: introduce a tax-
onomy of concepts related to energy and IT, present recent data on energy con-
sumption trends organised according to the taxonomy, present some guidelines to
write energy-efficient software organised according to the taxonomy, underline what
is missing and what should be done in future research. This work, described in
Chapter 2 provides a twofold contribution represented by the taxonomy. Through
this taxonomy it is possible to repeat this work in the future and compare results in
terms of energy consumption and in terms of verification of the selected guidelines,
which nowadays are little more than simple advice.
A framework, which is useful to researchers and practitioners, who intend to create
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5 – Conclusions

energy-efficient software has been defined in Chapter 3, and it uses software profil-
ing tools (described in Section 3.2) in order to measure the power consumption of
the device when running the code under test. The framework provides two kinds
of strategies (not mutually exclusive) to reduce the energy consumption: the first
one is related to the source code refactoring and the progressive identification and
removal of the energy code smells, while the second one provides design changes in
order to introduce the user profiles and the self-adaptation. Once the changes have
been made, the developer can again use software profiling tools in order to verify
the effective energy consumption reduction.
Given the growing interest with regard to the energy consumption of software appli-
cations it is good to wonder if energy efficiency can be considered as a non-functional
requirement. Chapter 3 addresses the problem and proposes an extension of SQALE
in order to introduce energy efficiency. The suggestion is to introduce Energy Effi-
ciency as a sub-characteristic related to the main characteristic “Efficiency”. Energy
efficiency cannot be a characteristic itself, because it is not an activity in the typical
software lifecycle, but it is a sub-characteristic of the second type.
It was also necessary to assess whether it was possible to empirically prove a relation-
ship between the software and power consumption. These experiments described in
Chapter 4 have involved a small datacenter, desktop PCs and mobile devices. The
result is that there is a relationship between software and power consumption but
the main issue that affects this kind of experiment is the lack of generalisability of
results, which depend strictly on the tested device. However, the various scenarios
described in Chapter 4 demonstrate that energy consumption varies depending on
the software running, and this allowed us to continue our studies on the topic. After
this study it is necessary to empirically prove that the way in which a program is
written can alter the power consumption of the device. The goal of the study de-
scribed in Section 4.4 is how to optimise software by identifying code patterns that
use the hardware resources in a sub-optimal way. These code patterns ought to be
refactored in order to improve the energy efficiency of the software at run time.
The progress on this topic led us to wonder if it was possible to design a software,
which can automatically adapt to the energy situation in which the device is in that
moment. To do this it is possible to use the energy information as context infor-
mation and to create user profiles, which modify the behaviour of the application
according to the energy information gathered from the device. This approach, called
self-adaptation, is explained in Section 4.5. This Section also shows some empirical
experiments that demonstrate the effectiveness of this approach.
The efficiency of a software application can be highlighted by applying energy la-
bels to it. Nowadays, we have energy labels for almost everything: home appliances,
ICT devices, buildings, etc. A typical use of energy labels is related to buildings and
home appliances, which are ranked by their energy consumption. In the first case,
building owners or facility managers can see where energy is wasted and eventually

138



they can take targeted countermeasures in case of excessive energy consumption. In
the second case, a user can decide whether to buy a home appliance or not, and
they can select the most energy-efficient, even if it has a more expensive price tag.
These mechanisms make the user aware of the energy issue and in the long run they
change the users behaviour. There are many eco-labels related to IT equipment
(such as Energy Star), however these do not cover the detailed device usage. Soft-
ware applications have a responsibility in the energy consumption of a device, and
consequently the user, when she/he uses applications on a device, modifies the device
energy behaviour. Currently there are no energy efficiency labelling mechanisms for
software applications (for smartphones, tablets, desktop computers or data centres).
Starting from the work of this dissertation we can create different user scenarios,
which summarise high-level functionalities, for different classes of users. After that
we need to define a set of labels, which will be assigned to software applications.
The software application will be tested on the basis of the aforementioned scenarios,
by assigning the appropriate label based on the energy consumed.
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