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Notation and Symbols

We brie�y introduce some basic notations that we will use throughout the thesis without further

reference. More advanced notations can be found in the appendix.

First of all, N = {1, 2, . . .} denotes the natural numbers and the symbols Z, Q, R and C are

used as common. I denotes either the unit interval [0, 1] or the identity operator on a normed

linear space. In the latter case we sometimes add the space E on which the identity acts by

writing IE . Unless otherwise stated we assume all linear spaces that we consider to be de�ned

over the complex numbers. For two normed linear spaces E and F we denote by L(E,F ) the

space of bounded linear operators with the usual operator norm. For the sake of simplicity we

assume all topological spaces to be Hausdor�. Hence a space is paracompact if and only

if it admits partitions of unity subordinated to any open cover. For a locally compact space X

we denote by X+ its one point compacti�cation and set X+ = X ∪ {∗} if X is compact, where

∗ is a disjoint point.

Cc(Ω): The space of continuous functions with compact support in Ω.

C∞c (Ω): The space of C∞- functions with compact support in Ω.

(C∞c (Ω))′: The space of distributions on Ω.

supp(u): The support of the function u.∑
(ψ) := {z ∈ C, z 6= 0, |argz| < ψ}, C+ :=

∑
(π2 ).

u+ := sup(u, 0) the positive part of u, u− := sup(−u, 0) the negative part.

f ∧ g := inf(f, g), f ∨ g := sup(f, g).

sign u(x) =

{
u(x)
|u(x)| if u(x) 6= 0,

0 if u(x) = 0.

R: Real part, I: Imaginary part.

χΩ: Characteristic function of Ω.

Lp(X,µ,K): The classical Lebesgue spaces of functions with values in K.

|| · ||p: The norm of Lp(X,µ,K).

dx: Lebesgue measure.

W s,p: Sobolev spaces.

H1(Ω) := W 1,2(Ω), H1
0 (Ω) is the closure of C∞c (Ω) in H1(Ω).

Di = ∂
∂xi

and ∆ = ∂2

∂x2
1

+ · · ·+ ∂2

∂x2
d
is the Laplacian.

L(E,F ): The space of bounded linear operators from E into F . L(E) := L(E,E).

||T ||L(E,F ): The operator norm of T in L(E,F ).

ρ(A): Resolvent set of the operator A. σ(A): Spectrum of A.

Cα(Rn): where 0 < α < 1, Hölder space in Rn.

D′(Ω): The space is the dual of C∞0 (Ω) and E′(Ω) is the dual of C∞(Ω).

F: Fourier transform, we also denote û.

Hs(Rn) = (1−∆)−s/2L2(Rn): Sobolev space.
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Lsp(R
n) = (1−∆)−s/2Lp(Rn), s ∈ R and W k

p (Rn) = Lkp(Rn), 1 < p < ∞: Lp Style Sobolev

spaces.

OPSmρ,δ: The operator p(x,D) classes with symbol p(x, ξ) ∈ Smρ,δ.
p(x,D) =

∑
|α|≤k aα(x)Dα is a di�erential operator.

qjk(u) = supx∈Rn{(1 + |x|2)j/2|Dαu(x)| : |α| ≤ k}: The seminorms on functions on Rn.

S(Rn): The space consists of smooth functions u on Rn for which each qjk(u) is �nite, with

the Frechet space topology determined by these seminorms and S′(Rn) is dual.

Smρ,δ(Ω): The symbol class on Ω be an open subset of Rn, m, ρ, δ ∈ R and 0 ≤ ρ, δ ≤ 1.

Sm(Ω): The symbol p(x, ξ) classes, if p ∈ Sm1,0(Ω) and there are smooth pm−j(x, ξ), homoge-

neous of degree m− j in ξ for |ξ| ≥ 1.

Smρ,δ1,δ2(Ω× Ω×Rn): The symbol classes, where 0 ≤ ρ, δ1, δ2.

4



Introduction

In recent years much attention has been extended in the study of di�erential equations of non-

classical types. These articles need, on one hand, �uid mechanics, hydro-and gas dynamics and

other applied disciplines, and on the other hand, the actual needs of the mathematical sciences.

One of the most important classes of equations of non-classical type is the third-order equation

with multiple characteristics

uxxx − αuy = Φ(x, y, u, ux, uxx),

which is a generalization of linear Korteweg-de Vries-Burgers equation (see [121])

βuxxx + uy + αux − µuxx = 0,

special cases which occur in the dissemination of waves in weakly dispersive media (see [67]), the

propagation of waves in a cold plasma, magneto-hydrodynamics (see [15]), problems of nonlinear

acoustics (see [102]), the hydrodynamic theory of space plasma (see [15]).

A pioneering work in the theory of odd order partial di�erential equations with multiple

characteristics was done by E.Del Vecchio [115-117], H.Block [19], in which they studied the

technique of constructing fundamental solutions of these equations.

Consequently, the theory of equations with multiple characteristics has been greatly developed

by the Italian mathematician L.Cattabriga [26-27]. In his works, he built the potentials for partial

di�erential equations with multiple characteristics and investigated various properties of these

potentials, when the transition lines are straight.

Following the results of L.Cattabriga [26], T.D.Dzhuraev and his research group [30-32], [1-6]

developed the theory further, where they proposed new boundary problems and worked on new

approaches to the solution of equations. In these works, the technique of constructing the Green's

function for the solution of boundary value problems were developed along with fundamental

solutions of odd-order equations with multiple characteristics and with many variables, and a

study of their asymptotic properties. In the work of E.L.Roetman [100] , the author has identi�ed

the largest class of functions in which there exists a unique solution of the Cauchy problem.

Other Russian mathematicians with notable contributions in this �eld are S.N.Kruzhkov and

A.V.Fominskogo [80], N.N.Shopolov [105], A.Eleev [33], A.I.Kozhanov [77-79], and others, whose

results are taken for the third order equations.
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In the �rst part of Ph.D thesis we develop and study boundary value problems for third-

order equations with multiple characteristics in areas with curved boundaries, as well as some

properties of the fundamental solutions of the equations, when the transition line is a curve. In

addition, we construct a solution of the Cauchy problem in the classes of functions growing at

in�nity, depending on the behavior of the right-hand side of the equation.

The theory of the equations of even order with multiple characteristics are developed relatively

complete. The presentation of fundamental propositions of the theory with a detailed overview of

the main results can be found in the works of V.P.Mikhailov [93] E.A.Baderko [14], L.I.Kamynin

[63-66], V.A.Solonnikov, C.D. Eydelman, etc.

Theory of nonlinear problems is an important and relevant section of the modern theory of

partial di�erential equations. In spite of the interesting facts and variety of the original research

techniques and the analytic solutions of nonlinear problems, this area of mathematics does not yet

have a thorough theoretical foundation methods. Boundary problems with nonlinear boundary

conditions for the equations of odd order is a relatively new trend. In this regard, work of

S.Abdinazarov and A.R.Khashimov [6] may be noted, where the equations of the third order

were delivered to boundary value problems with nonlinear boundary conditions along with a

study of their existence and uniqueness solution.

In the work by S.N.Kruzhkov and A.V.Fominskogo, the authors studied a generalized solution

of the Cauchy problem for the nonlinear Korteweg-de Vries equation, depending on the nature

of the nonlinearity.

Our thesis explores both linear and nonlinear boundary value problems for linear and non-

linear third-order equation with multiple characteristics in the domain with curved boundaries.

Throughout this thesis under the regular solution of the problem is the function that has

continuous derivatives and satis�es the equations inside the domain. The boundary conditions

are satis�ed by continuity from inside the domain.

The main result of the �rst chapter is to prove the unique solvability of the general boundary

value problem for the third-order equation with multiple characteristics in curved domains.

We consider the following equation

Li(ui) ≡
∂3ui
∂x3

+ ai1(x, y)
∂ui
∂x

+ ai0(x, y)ui −
∂ui
∂y

= fi(x, y), i = 1, 2, (1)

in the domains Di = {(x, y) : hi(y) < x < hi+1(y), 0 < y ≤ Y }, i = 1, 2, where ai1(x, y),

ai0(x, y) has discontinuous �rst type in the curve x = h2(y).

The functions hj(y), j = 1, 2, 3 are bounded in the domains Di, and satisfy the Lipschitz

conditions:

|hj(y)− hj(η)| ≤ C|y − η|,

where C is a constant.

De�nition. The class of functions Ci,jx,y(D) said the class of of continuously di�erentiable

functions, if the derivatives of the orders i and j with respective x and y of the functions exist

and are continuous.
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We will discuss the following problem

Problem. To �nd the solution of equation (1) in the domain Di(i = 1, 2, ) which is ui(x, y) ∈
C3,1
x,y(Di)

⋂
C2,0
x,y(D̄i), that satis�es the following boundary conditions

ui(x, 0) = Fi(x), hi(0) ≤ x ≤ hi+1(0), i = 1, 2,

u1x(h1(y), y) = ϕ1(y), 0 ≤ y ≤ Y,

α1(y)u1xx(h1(y), y) + α2(y)u1(h1(y), y) = ϕ2(y), 0 ≤ y ≤ Y,

β1(y)u2xx(h3(y), y) + β2(y)u2x(h3(y), y) + β3(y)u2(h3(y), y) = ϕ3(y), 0 ≤ y ≤ Y,

and the conditions of discontinuous coe�cients in the line x = h2(y)

lk(u1, u2) ≡ ∂ku1(h2(y), y)

∂xk
− ∂ku2(h2(y), y)

∂xk
= rk(y), 0 ≤ y ≤ Y, k = 0, 2,

and also the compatibility conditions

α1(0) · F ′′1 (h1(0)) + α2(0) · F1(h1(0)) = ϕ2(0),

β1(0)F ′′2 (h3(0)) + β2(0) · F ′2(h3(0)) + β3(0) · F2(h3(0)) = ϕ3(0),

F
(k)
1 (h2(0))− F (k)

2 (h2(0)) = rk(0), k = 0, 2,

ϕ′(0) = h′1(0)F ′′1 (h1(0)), r′0(0) = h′2(0)(F ′1(h2(0))− F ′2(h2(0))).

We introduce the following notations

P1(y) ≡ β2
2(y)

β2
1(y)

− 2
α2(y)

α1(y)
− h′1(y) + a11(h1(y), y),

P̃1(y) ≡ K2 − 2
α2(y)

α1(y)
− h′1(y) + a11(h1(y), y),

P2(y) ≡ h′3(y) + 2
β3(y)

β1(y)
− β2

2(y)

β2
1(y)

+ α21(h3(y), y),

where K is a positive number.

Theorem 2.1. Let ai0(x, y) ∈ C(D̄i), ai1 ∈ C1,0
x,y(D̄i), i = 1, 2, a21(h2(y), y) ≥ a11(h2(y), y)

and satisfy one of the following conditions:

if α1(y) 6= 0, β1(y) 6= 0, then let β2(y)α1(y) ≥ 0, P1(y) ≥ 0, P2(y) ≥ 0,

if α1(y) 6= 0, β1(y) = 0, then let β2(y) = 0, β3(y) 6= 0, P̃1(y) ≥ 0,

if α1(y) = 0, β1(y) = 0, then let α2(y) 6= 0, P2(y) ≥ 0,

if α1(y) = 0, β1(y) = 0, then let β2(y) = 0, α2(y) 6= 0.
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Then the solution of the problem is unique.

Theorem 2.2. Let the conditions of Theorem 2.1 be satis�ed along with the following

conditions: aij ∈ C1,2
x,y(D̄i), (i = 1, 2, j = 0, 1); hi(y) ∈ C2[0, Y ], i = 1, 2; h3(y) ∈ C1[0, Y ];

F1(x) ∈ C4[c1, c2]; F2(x) ∈ C4[c3, c4]; ϕ1(y), ϕ2(y), α1(y), α2(y), β1(y), β2(y), r0(y) ∈ C2[0, Y ];

r2(y) ∈ C1[0, Y ]; ϕ3(y), β3(y), r1(y) ∈ C[0, Y ]; fi(x, y) ∈ C0,2
0,Y (D̄i); fi(x, 0) = fiy(x, 0) = 0, i =

1, 2,

where c1 ≤ h1(y) < h2(y) ≤ c2, c3 ≤ h2(y) < h3(y) ≤ c4, cl = constant, l = 1, 4.

Then the solution of the problem exists.

To prove the uniqueness theorem of the solution, we use the method of energy integrals. For

the existence theorem, we �nd equivalent systems of Volterra second type integral equations.

In the next chapter, we will study boundary value problem and Cauchy problem for model

third order equation.

First we consider the following boundary value problem for the equation

∂3u

∂x3
− ∂u

∂y
= f(x, y) (2)

in the domain D = {(x, y) : h1(y) < x < h2(y), 0 < y ≤ Y }, where hi(y)(i = 1, 2) are the curves,

and the intersection point of the two curves doesn't exist.

Problem. Find the function u(x, y) ∈ C3,1
x,y ∩C3,1

x,y(D)∩C2,0
x,y(D̄), which is a regular solution

of equation (2) in the domain D and satis�es following boundary conditions

u(x, 0) = F (x), h1(0) ≤ x ≤ h1(0), (3)

ux(h1(y, y)) = ϕ1(y), 0 ≤ y ≤ Y, (4)

ux(h2(y), y) = ϕ2(y), 0 ≤ y ≤ Y, (5)

uxx(h1(y), y) = ϕ3(y), 0 ≤ y ≤ Y, (6)

and the compatibility conditions

F ′(h1(0)) = ϕ1(0), F ′′(h1(0)) = ϕ3(0), F ′(h2(0)) = ϕ2(0).

Where F (x), ϕi(x), i ∈ {1, 3}, f(x, y) are the given bounded smooth functions.

Theorem 3.1. If hi(y) ∈ C1[0, Y ], i = 1, 2, then the solution of problem (2)-(6)is unique.

Theorem 3.2. Let F (x) ∈ C3[c1, c2], (c1 ≤ h1(y) < h2(y) ≤ c2); x
3
4 +δFx(x, y)ϕ2(y) ∈

C1[0, Y ]; f(x, y) ∈ C0,1
x,y(D̄); f(x, 0) = 0 and h1(y) ∈ C1[0, Y ]. Then there exists u(x, y) ∈

C3,1
x,y(D) ∩ C2,0

x,y(D̄) which is the solution of the problem (2)-(6).

The proof of the theorem will be shown in the next paragraph.
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Next we concentrate on the Cauchy problem.

We study the model equation

uxxx − uy = F (x, y) (7)

in the domain D = {(x, y) : −∞ < x < +∞, 0 < y ≤ Y } with initial conditions

u(x, 0) = 0. (8)

Moreover, the problem (7)-(8) has been studied by E.L.Roetman (see [100]), but the behavior

of its solutions depending on the behavior of the right-hand side of the equation has not been

studied. Our purpose of the study is to construct the solutions of the problem (7)-(8) in the

classes of functions that are growing at in�nity.

Theorem 3.3. Let the function of bounded variation F (x, y) belongs to any bounded subdo-

mainD[a,b] = {(x, y) : a < x < b, 0 < y ≤ Y } ofD. Suppose, the variation functions x
3
4 +δF (x, y)

and x
3
4 +δFx(x, y) are bounded for any x < a, but at large x we can get the following upper bound

F (x, y) < c1exp{c2|x|
3
2−η},

where δ, η are su�ciently small positive number, c1, c2 are some constant.

Then the function

u(x, y) = − 1

π

∫ t

0

∫ +∞

−∞
U(x− ξ; y − η)F (ξ, τ)dξdτ

satis�es in the domain D the equation (7) and the condition (8).

U(x− ξ; y − η) is a fundamental solution of the equation uxxx − uy = 0 and has the form

U(x, y; ξ, η) =
1

(y − η)1/3
f

(
x− ξ

(y − τ)1/3

)
≡ U(x− ξ; y − τ),

where f(t) =
∫∞

0
cos(λ3 − λt)dλ is the Airy function which satis�es the following equation

f ′′(t) +
t

3
f(t) = 0,

and is true for the following asymptotes:

f (n)(t) ∼ C+
n t

n
2−

1
4 sin(

2

3
t
3
2 ), at t→ +∞,

f (n)(t) ∼ C+
n t

n
2−

1
4 exp(−2

3
|t| 32 ), at t→ −∞,∫ 0

−∞
f(t)dt =

2π

3
,

∫ +∞

0

f(t)dt =
π

3
,

where C+
n , C

−
n are positive constants.

The next chapter consists of three sections and it investigates the problem with nonlinear

boundary conditions for linear and non-linear equations of the third order with multiple charac-

teristics.
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In the �rst section of the this chapter, we consider the equation (2) in the domain D =

{(x, y) : h1(y) < x < h2(y), 0 < y ≤ Y }. The curves x = hi(y) ∈ C1[0, Y ], (i = 1, 2) de�ne the

lateral boundaries of D and the intersection point of the two curves doesn't exist.

Problem. Find in the domain D the regular solution of equation (2), which is continuous

together with its derivatives ux, uxx in the domain D̄ and satisfy the boundary conditions

u(x, 0) = F (x), h1(0) ≤ x ≤ h2(0), (9)

ux(h1(y), y) = g(u(h1(y), y), y), 0 ≤ y ≤ Y, (10)

uxx(h1(y), y) = ϕ1(y), 0 ≤ y ≤ Y, (11)

u(h2(y), y) = ϕ2(y), 0 ≤ y ≤ Y (12)

and the compatibility conditions

F ′(h1(0)) = g(u(h1(0), 0), F (h2(0)) = ϕ2(0), F ′′(h1(0)) = ϕ1(0).

The given functions F (x), g(u, y), ϕi(y), (i = 1, 2), f(x, y) are bounded, su�ciently smooth

functions and the function g(ξ, y) satis�es Lipschitz condition on ξ

|g(ξ1, y)− g(ξ2, y)| < l(y)|ξ1 − ξ2|, (13)

where

0 < l(y) ≤ −k +

√
k2 +

3k exp{−k(h2(y)− h1(y))}
h2(y)− h1(y)

, k = const > 0. (14)

Theorem 4.1. If the conditions (13)-(14) are satis�ed, the solution of the problem (2),

(9)-(12) is unique.

The energy integrals are used to prove the uniqueness of the solutions of (2), (9) - (12) .

Theorem 4.2. Let F (x) ∈ C3[c1, c2], (c1 ≤ h1(y) < h2(y) ≤ c2), ϕi(y) ∈ C3−j [0, Y ],

(i, j = 1, 2), |g(u, y)| < M for any �xed |u| < ∞ and satisfy the condition of Theorem 3.1.1.

Then the solution of problem (2), (9)-(12) exists.

In the proof of the existence of solutions of (2), (9) - (12), we constructed the Green's function

for the auxiliary problem and used the method of potentials so that our problem became a

nonlinear integral equation of Hammerstein type. The existence and uniqueness of solutions of

nonlinear integral equation were proved by the method of successive approximations. In the

second section we investigate the nonlinear boundary value problem for the nonlinear equations

of odd order with multiple characteristics.

Linear boundary value problem for nonlinear equations with multiple characteristics of the

third order was considered by T.D.Dzhuraeva (see [31]), and non-linear boundary value problems

for linear equations with multiple characteristics in the works of Abdinazarov and Khashimov

(see [6]).
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Problem. Determine the function u(x, y) in the domain D = {(x, y) : h1(y) < x <

h2(y), 0 < y ≤ 1} where u(x, y) has the following properties:

1) u(x, y) is a regular solution of equation

Lu ≡ uxxx − uy = f(x, y, u(x, y)) (15)

2) u(x, y) ∈ C3,1
x,y(D) ∩ C1,0

x,y(D̄) ∩ C2,0
x,y(D̄ \ (x = h1(y))) ∩ C(D̄);

3) the solution satis�es the boundary conditions:

u(x, 0) = u0(x), h1(0) ≤ x ≤ h2(0), (16)

ux(h1(y), y) = g(u(h1(y), y), y), 0 ≤ y ≤ 1, (17)

uxx(h1(y), y) = σ(u(h1(y), y), y), 0 ≤ y ≤ 1, (18)

u(h2(y), y) = ϕ(y), 0 ≤ y ≤ 1. (19)

The given functions u0(x), g(ξ, y), σ(η, y), ϕ(y), f(x, y) are bounded and smooth in the

domain, which satisfy the compatibility conditions at the end points in suitable domain

u′0(h1(0)) = g(u(h1(0), 0), 0), u′′0(h1(0)) = σ(u(h1(0), 0), 0), u0(h2(0)) = ϕ(0).

We will prove the theorem, which is unique solvability of the problem (15)-(19).

Theorem 4.3. Let hi(y) ∈ C1([0, 1]) i = 1, 2 and g(u(h1(y), y), y) ∈ C([0, 1]); σ(u(h(y), y), y) ∈
C([0, 1]); f(x, y, u(x, y)) ∈ C(D̄); |g(u1, y) − g(u2, y)| ≤ l(y)|u1 − u2|; |σ(u1, y) − σ(u2, y)| ≤
k(y)|u1 − u2|, |f(x, y, u1)− f(x, y, u2)| ≤ p(x, y)|u1 − u2|.

Then the solution of (15)-(19) is unique.

Theorem 4.4. Let the conditions of Theorem 4.3 be satis�ed and let the following conditions

hold

ϕ(y) ∈ C1[0, 1], u0(x) ∈ C3[c1, c2] (c1 ≤ h1(y) < h2(y) ≤ c2).

Moreover, there exist constants M ,N1,N2,Mi (i ∈ {1, 7}), such that for a �xed y ∈ [0, 1] and

|u| < ∞ , the inequalities given below are true |g(u, y)| < N1, |σ(u, y)| < N2, |gu(u, y)| < M1,

|gy(u, y)| < M2, |σu(u, y)| < M3, |σy(u, y)| < M4,

for (x, y) ∈ D and any �xed |u| <∞

|f(x, y, u(x, y))| < M, |fx(x, y, u(x, y))| < M5,

|fy(x, y, u(x, y))| < M6, |fu(x, y, u(x, y))| < M7

Then the solution of (15)-(19) exists.

To prove the existence and uniqueness theorems, we will use methods of integral energy and

theory of integral equations.

In the last part of the thesis we analyze basic properties of pseudodi�erential operators,

such as the behavior of products and adjoints of such operators, their continuity on L2, Lp and

Sobolev spaces (see Appendix A.2). There are numerous excellent books giving more leisurely
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and complete treatments et al. Taylor's Pseudodi�erential Operators [109], Boggiatto, Buzano

an Rodino's Global hypoellipticity and spectral theory [20], Nicola and Rodino's Global Pseudo-

Di�erential Calculus on Euclidean Spaces [99], Schulze's Boundary value problems and singular

pseudo-di�erential operators, Shubin's Pseudodi�erential operators in Rn and Pseudodi�erential

operators and spectral theory and Wong's An introduction to pseudo-di�erential operators [119].

M.E.Taylor studies the pseudodi�erential operators and some of their basic properties , such

as the behavior of products and adjoints of such operators, their continuity on L2 and Sobolev

spaces, the fact that they do not increase the singular support of distributions to which they are

applied, and the Garding inequality, generalizing following inequality

Re(Pu, u) ≥ c1||u||2Hm − c2||u||2L2
, u ∈ C∞0 (Ω)

for a partial di�erential operator

P =
∑
|α|≤2m

aα(x)Dα,

assuming

ReP2m(x, ξ) = Re

 ∑
|α|=2m

aα(x)ξα

 ≥ c|ξ|2m.
Here

||u||2Hm =
∑
|α|≤m

||Dαu||2L2

de�nes a norm on a space Hm known as a Sobolev space, when P is a second order scalar

di�erential operator, Garding's inequality is proved simply by integration by parts. They applied

this calculus of pseudodi�erential operators to some basic questions of existence and regularity of

solutions to elliptic, hyperbolic, and parabolic equations, and elliptic boundary value problems.

They also study the behavior of various classes of pseudodi�erential operators on Lp and Hölder

spaces and include a treatment of estimates for solutions to regular elliptic boundary value

problems within these categories. In this work they make use of results of Marcinkiewicz, Mikhlin,

and Hörmander on continuity of certain Fourier multipliers on Lp(Rn). Other results are devoted

to the Calderon-Vaillancourt theorem on L2 boundedness of pseudodi�erential operators in a

borderline case, and to Hörmander-Melin inequalities, on the semiboundedness of second order

pseudodi�erential operators. The continuity on Lp and Hölder space theory of pseudodi�erential

operators have been studied by multiple authors like Marcinkiewicz [87], Mikhlin [94], Hörmander

[49-55], Stein [106], and Taibleson [109], and we discuss some of the results that were obtained

by them.

P (D)u =

∫
eixξp(ξ)û(ξ)dξ

on Lp(Rn) and Cα(Rn). P (D) simply multiplies the Fourier transform of u by p(ξ), hence P (D)

is called a Fourier multiplier. It can also be written as a convolution operator

P (D)u = p̂ ∗ u.

12



The basic results on continuity of such an operator on Lp and Cα are merely stated here, and the

reader is referred to various places in the literature for proofs. We can see Taibleson's theorem

and show it is equivalent to a condition which is somewhat parallel to Hörmander's version of the

Marcinkiewicz multiplier theorem. Marcinkiewicz [87] studied the Lp continuity of convolution

operators on the torus Tn and Mikhlin [94] translated some of these results to the Rn setting.

In the thesis we study the Lp - boundedness of vector weighted pseudodi�erential operators

with symbols which have derivatives with respect to x only up to order k, in the Hölder continuous

sense, where k > n/2 (the case 1 < p ≤ 2) and k > n/p (the case 2 < p < ∞). First, set

m(ξ) bounded continuous function, ||a|| = ||a||m,k if a ∈ Λmk (Rn × Rn) and ||a|| = ||a||m,k,k′ if
a ∈ Λmk,k′(Rn × Rn). Then we have the following theorems.

Theorem 5.1.17. Let 1 < p ≤ 2, k > n/2, k 6∈ N, E a compact subset of Rn and

Ω1 = {x ∈ Rn|d(x,E) ≤ 1}. If a ∈ Λmk (Rn × Rn) and supp a ⊆ E × Rn, then a(x,D) is

continuous from Lp(Rn) to Lp(E) with its norm bounded by CE,n,p,k|Ω1|1/p|m(ξ)|||a||, where ||
denotes the Lebesgue measure.

Theorem 5.1.18. Let 2 < p < ∞, k > n/p, k 6∈ N and E a compact subset of Rn. If

a ∈ Λmk (Rn × Rn) and supp a ⊆ E × Rn, then a(x,D) is continuous from Lploc(Rn) to Lp(E).

Theorem 5.1.19. let 1 < p ≤ 2, k > n/2, k′ > n/p and k, k′ 6∈ N. If a ∈ Λmk,k′(Rn × Rn),

then a(x,D) is continuous from Lp(Rn) to Lp(Rn) with its norm bounded by Cn,p,k,k′ |m(ξ)|||a||.
Theorem 5.1.20. Let 2 < p <∞, k > n/p, k′ > n/2 and k, k′ 6∈ N. If a ∈ Λnk,k′(R

n × Rn),

then a(x,D) is continuous from Lp(Rn) to Lp(Rn) with its norm bounded by Cn,p,k,k′ |m(ξ)|||a||.
This results also are given by Hwang [57], we only analyze our approach some other Symbol

classes and we use to proof our results the same technical methods.

The main purposes objectives of the thesis are:

- The study of general boundary value problems for third-order equation with multiple char-

acteristics and discontinuous coe�cients in curved domains.

- The study of the properties of potentials for the third-order equation, when the transition

line is a curve.

- The study of problems with nonlinear boundary conditions for linear and non-linear equation

of the third order with multiple characteristics in curved domains.

- The construction of the solution of the Cauchy problem in classes of functions growing at

in�nity, depending on the behavior of the right-hand side of the equation.

- To get the Lp- boundedness for the Pseudodi�erential operators with some Symbol classes.

The general procedure for the study: To apply methods of energy integrals, Green's

functions, potential theory and integral equations, Pseudodi�erential operators, Symbol classes,

Fourier transform.

Scienti�c novelty of dissertational research.

- We prove the unique solvability of the general linear boundary value problems for third-order

equation with multiple characteristics and discontinuous coe�cients in curved domains.

- The problem of a nonlinear boundary conditions for linear and non-linear third-order equa-
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tion with multiple characteristics in curved domains.

- The solution of the Cauchy problem in classes of functions growing at in�nity, depending

on the behavior of the right-hand side of the equations.

- The result of Lp- boundedness for some Symbol classes for the Pseudodi�erential operators.

The theoretical and practical value. The results of the work are primarily of theoretical

interest. They can be applied in the study of linear and non-linear problems for a wide class

of partial di�erential equations, and can also be used to study speci�c applications leading to

such equations. We also studied the boundedness and continuity problems for Pseudodi�erential

operators are very important to study the various classes of symbols.

Thesis results were regularly discussed at the seminar on "Modern problems of the theory

of partial di�erential equations" (Institute of Mathematics, Academy of Sciences of Uzbekistan,

(Heads of seminar are professors T.D.Dzhuraev and M.S.Salakhitdinov, both members of Uzbek-

istan Academy of Sciences). The main results were also discussed at the seminar on "Modern

Problems of Computational Mathematics and Mathematical Physics" (Head of seminar professor

Sh.Alimov member of Uzbekistan Academy of Sciences). Several time are given the talks in the

Universita Degli Studi di Torino (professors L.Rodino and J.Seiler). Some parts of the thesis

were also presented at various international conferences.

Structure of the thesis. The thesis consists of an introduction, six chapters and a list

of bibliography. The equation numbering is twofold: �rst number indicates the number of the

chapter, while the second number indicates the number of the formula in it. The numbering

of the allegations is twofold: �rst number indicates the number of the chapter and the second

represents the approval number in it.

We shall review the content of the Ph.D thesis.

The �rst chapter we give introduction, second chapter we study the boundary value problem

for third order linear equation with multiple characteristics and discontinues coe�cients and

this consists of three sections. The �rst section contains the formulation a problem, the second

section the general properties of the potentials, �nally last section shown the solvability of the

classical initial-boundary value problems. In the third chapter we give Cauchy and linear bound-

ary value problems, there are two sections, which are �rst section a boundary value problems,

second section the Cauchy problem in the class increasing functions at in�nity. Next chapter we

introduce the nonlinear boundary value problems. In the chapter V we give some Symbol classes

of Pseudodi�erential operators and �nally last chapter VI is Appendix.
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Part 2

Boundary value problem for third

order linear equation with multiple

characteristics and discontinues

coe�cients
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2.1 The formulation a problem

We will study the domain Di = {(x, y) : hi(y) < x < hi+1, 0 ≤ y ≤ Y, } i = 1, 2. The intersection

point of the curves hj(y), (j = 1, 2, 3) don't exist on the bound of domain Di. Next, the functions

satisfy Lipschiz condition

|hj(y)− hj(η)| ≤ C|y − η| (2.1)

where C - positive constant.

In the domain Di we consider following equation

Li(ui) ≡
∂3ui
∂x3

+ ai1(x, y)
∂ui
∂x

+ ai0(x, y)ui −
∂ui
∂y

= fi(x, y), (i = 1, 2) (2.2)

and study the following problem: to �nd regular solutions of equation (2.2) in the domain Di,

such that ui(x, y) ∈ C3,1
x,y(Di) ∩ C2,0

x,y(D̄i) and satisfy the boundary conditions

ui(x, 0) = Fi(x), hi(0) ≤ x ≤ hi+1(0), i = 1, 2, (2.3)

u1x(h1(y), y) = ϕ1(y), 0 ≤ y ≤ Y, (2.4)

α1(y)u1xx(h1(y), y) + α2(y)u1(h1(y), y) = ϕ2(y), 0 ≤ y ≤ Y, (2.5)

β1(y)u2xx(h3(y), y) + β2(y)u2x(h3(y), y) + β3(y)u2(h3(y), y) = ϕ3(y), 0 ≤ y ≤ Y, (2.6)

and the coupling conditions on the coe�cients are discontinues of the line x = h2(y)

lk(u1, u2) ≡ ∂ku1(h2(y), y)

∂xk
− ∂ku2(h2(y), y)

∂xk
= rk(y), 0 ≤ y ≤ Y, k ∈ {0, 2} (2.7)

as well as the appropriate compatibility conditions

F ′1(h1(0)) = ϕ1(0),

α1(0) · F ′′2 (h1(0)) + α2(0) · F1(h1(0)) = ϕ2(0),

β1(0) · F ′′2 (h3(0)) + β2(0) · F ′2(h3(0)) + β3(0) · F2(h3(0)) = ϕ3(0),

F
(k)
1 (h2(0))− F (k)

2 (h2(0)) = rk(0), k = 0, 2,

ϕ′1(0) = h′1(0)F ′′1 (h1(0)), r′0(0) = h′2(0)(F ′1(h2(0))− F ′2(h2(0))).


(2.8)

Note that the problem (2.2)-(2.7) at α1(y) = β1(y) = β2(y) = 0, β3(y) ≡ 1 was studied in [26]

in the rectangular region. In the work [1] , was considered the equation (2.2) with the boundary

conditions (2.3) - (2.6) in the domain Ω = {(x, y) : 0 < x < 1, 0 < y ≤ 1}.
Always assume that

hi(y) ∈ C2[0, Y ], i = 1, 2; h3(y) ∈ C1[0, Y ]; F1(x) ∈ C4[c1, c2];

F2(x) ∈ C4[c3, c4]; ϕ1(y), ϕ2(y), α1(y), α2(y), β1(y), β2(y), r0(y) ∈ C2[0, Y ];

r2(y) ∈ C1[0, Y ]; ϕ3(y), r1(y), β3(y) ∈ C[0, Y ];

fi(x, y) ∈ C0,2
x,y(D̄i); fi(x, 0) = fiy(x, 0) = 0, i = 1, 2,

 (2.9)

where c1 ≤ h1(y) < h2(y) ≤ c2, c3 ≤ h2(y) < h3(y) ≤ c4, cl-constant, l ∈ {1, 4}
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We introduce the following notation

P1(y) ≡ β2
2(y)

β2
1(y)

− 2
α2(y)

α1(y)
− h′1(y) + a11(h1(y), y),

P̃1(y) ≡ K2 − 2
α2(y)

α1(y)
− h′1(y) + a11(h1(y), y),

P2(y) ≡ h′3(y) + 2
β3(y)

β1(y)
− β2

2(y)

β2
1(y)

+ α21(h3(y), y),

whereK- is a su�ciently large positive number. We assume that one of the conditions is satis�ed:

If α1(y) 6= 0, β1(y) 6= 0, then β2(y)α1(y) ≥ 0, P1(y) ≥ 0, P2(y) ≥ 0, (2.10)

If α1(y) 6= 0, β1(y) = 0, then β2(y) = 0, β3(y) 6= 0, P̃1(y) ≥ 0, (2.11)

If α1(y), β1(y) = 0, then α2(y) 6= 0, P2(y) ≥ 0, (2.12)

If α1(y) = 0, β1(y) = 0, then β2(y) = 0, α2(y) 6= 0. (2.13)

Theorem 2.1. If one of the conditions (2.10) - (2.13) is satis�ed and also ai0(x, y) ∈ C(D̄i),

ai1(x, y) ∈ C1,0
x,y(D̄i), i = 1, 2, a21(h2(y), y) ≥ a11(h2(y), y), then the solution (2.2)-(2.7) is

unique.

Proof. We consider the case of (2.10). Suppose that there are two solutions of the problem,

which are ui1(x, y), ui2(x, y), and consider their di�erence v̄i(x, y) = ui1(x, y) − ui2(x, y). The

function v̄i(x, y) satis�es the homogenous equation Li(v̄i) = 0 and the homogeneous boundary

conditions

v̄i(x, 0) = 0, hi(0) ≤ x ≤ hi+1(0), i = 1, 2,

v̄1x(h1(y), y) = 0, 0 ≤ y ≤ Y,
α1(y)v̄1xx(h1(y), y) + α2(y)v̄1(h1(y), y) = 0, 0 ≤ y ≤ Y

β1(y)v̄2xx(h3(y), y) + β2(y)v̄2x(h3(y), y) + β3(y)v̄2(h3(y), y) = 0, 0 ≤ y ≤ Y,
lk(v̄1, v̄2) = 0, 0 ≤ y ≤ Y, k ∈ {0, 2}.


(2.14)

We prove that the function v̄i(x, y) is identically equal to zero. We set

v̄i(x, y) = vi(x, y) · exp(Miy), i = 1, 2, (2.15)

where Mi = const > 0,

Then the functions vi(x, y) have solutions of the equations

M i(vi) ≡ vixxx + ai1(x, y)vix + (ai0 −Mi)vi − viy = 0, (i = 1, 2) (2.16)

with boundary conditions

vi(x, 0) = 0, hi(0) ≤ x ≤ hi+1(0), i = 1, 2

v1x(h1(y), y) = 0, 0 ≤ y ≤ Y,
α1(y)v1xx(h1(y), y) + α2(y)v1(h1(y), y) = 0, 0 ≤ y ≤ Y,

β1(y)v2xx(h3(y), y) + β2(y)v2x(h3(y), y) + β3(y)v2(h3(y), y) = 0, 0 ≤ y ≤ Y,
lk(v1, v2) = 0, 0 ≤ y ≤ Y, k ∈ {0, 2}.


(2.17)
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We have the identity∫ ∫
Di

C(x, y)vi(x, y)M i(vi)dxdy = 0, i = 1, 2, (2.18)

where

C(x, y) = exp

{
−β2(y)

β1(y)
(x− h2(y))

}
. (2.19)

We integrate the (2.18) by parts and using the corresponding homogeneous boundary condi-

tions (2.17), we obtain

2∑
i=1

∫ ∫
Di

(
−1

2
Cxxx −

1

2

∂(Cai1)

∂x
+ (ai0(x, y)−Mi)C +

1

2

∂C

∂y

)
v2
i dxdy+

+
3

2

∫ ∫
Di

Cxv
2
ixdxdy −

1

2

2∑
i=1

∫ hi+1(Y )

hi(Y )

Cv2
i |y=Y dx−

−1

2

∫ Y

0

CP1(y)v2
1 |x=h1(y)dy −

1

2

∫ Y

0

CP2(y)v2
2 |x=h3(y)dy−

−1

2

∫ Y

0

C (a21(x, y)− a11(x, y)) v2
2 |x=h2(y)dy −

1

2

∫ Y

0

Cv2
2x|x=h3(y)dy = 0. (2.20)

To get (2.20), we used the fact that the function C(x, y) at x = h3(y) satis�es equation

Cx + β2(y)
β1(y)C = 0.

From (2.19) and conditions (2.10), we get C(x, y) > 0, Cx(x, y) ≤ 0, P1(y) ≥ 0, P2(y) ≥ 0.

We will choose the numbers Mi (i = 1, 2), which satisfy the inequality

Mi >
1

minDi C(x, y)
max

(
−1

2
Cxxx −

1

2

∂(ai1C)

∂x
+ ai0(x, y)C +

1

2

∂C

∂y

)
It is always possible in the view of the assumptions of Theorem 2.1.

Then, given the conditions of Theorem 2.1, we can conclude that (2.20) is possible only if

v1(h1(y), y) = v2(h3(y), y) = v2x(h3(y), y) = vi(x, y) = vi(x, Y ) = 0, i = 1, 2. Hence, v̄i(x, y) ≡ 0

in the domainDi(i = 1, 2) and the above problem is proved. The other cases are treated similarly.

Theorem 2.2. Let the condition of Theorem 2.1 be satis�ed by the conditions below

aij ∈ C0,2
x,y(D̄i) (i = 1, 2, j = 0, 1); hi(y) ∈ C2[0, Y ], i = 1, 2; h3(y) ∈ C1[0, Y ]; F1 ∈

C4[c1, c2];F2(x) ∈ C4[c3, c4], ϕ1(y), ϕ2(y), α1(y), α2(y), β1(y), β2(y), r0(y) ∈ C2[0, Y ]; r2(y) ∈
C1[0, Y ]; ϕ3(y), r1(y), β3(y) ∈ C[0, Y ]; fi(x, y) ∈ C0,2

x,y(D̄i); fi(x, 0) = fiy(x, 0) = 0, i = 1, 2,

where c1 ≤ h1(y) < h2(y) ≤ c2, c3 ≤ h2(y) < h3(y) ≤ c4.
Then ui(x, y)- the solutions of problem (2.2,(2.3)-(2.7) exist which are continuous with �rst

and second derivatives uix, uixx in closed domain D̄i, (i = 1, 2).

Proof. Let F1(x) ∈ C4[c1, c2], F2(x) ∈ C4[c3, c4], (c1 ≤ h1(y) < h2(y) ≤ c2, c3 ≤ h2(y) <

h3(y) ≤ c4), and

f1(x, y) ∈ C0,2
x,y(D̄1), f1(x, 0) = f1y(x, 0) = 0,

f2(x, y) ∈ C0,2
x,y(D̄2), f2(x, 0) = 0.

}
(2.21)
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Then we can write Fi(x) ≡ 0, (i = 1, 2).

We construct solution

ui(x, y) = vi(x, y) + Fi(x), i = 1, 2, (2.22)

we get by vi(x, y) the following problems

L(i)(vi) = f̄i(x, y), i = 1, 2, (2.23)

vi(x, 0) = 0, hi(0) ≤ x ≤ hi+1, i = 1, 2,

v1x(h1(y), y) = ϕ̄1(y), 0 ≤ y ≤ Y,
α1(y)v1xx(h1(y), y) + α2(y)v1(h1(y), y) = ϕ̄2(y), 0 ≤ y ≤ Y,

β1(y)v2xx(h3(y), y) + β2(y)v2x(h3(y), y) + β3(y)v2(h3(y), y) = ϕ̄3(y), 0 ≤ y ≤ Y,

 (2.24)

with coupling conditions of coe�cients on the line x = h2(y)

lk(v1, v2) ≡ ∂kv1(h2(y), y)

∂xk
− ∂kv2(h2(y), y)

∂xk
= r̄k(y), 0 ≤ y ≤ Y, k ∈ {0, 2} (2.25)

where

f̄i(x, y) = fi(x, y)− F ′′i (x)− ai1(x, y)F ′i (x)− ai0(x, y)Fi(x), i = 1, 2

ϕ̄1(y) = ϕ1(y)− F ′1(h1(y)),

ϕ̄2(y) = ϕ2(y)− α1(y)F ′′1 (h1(y))− α2(y)F1(h1(y)),

ϕ̄3(y) = ϕ3(y)− β1(y)F ′′2 (h3(y))− β2(y)F ′2(h3(y))− β3(y)F2(h3(y)),

r̄k(y) = rk(y)−
2∑
i=1

∂kFi(h2(y))

∂xk
, k ∈ {0, 2}.

The functions ϕ̄1(y), ϕ̄2(y), ϕ̄3(y), r̄k(y) satisfy the coupling conditions ϕ̄1(0) = ϕ̄2(0) = ϕ̄3(0) =

r̄k(0) = 0, k =∈ {0, 2}.
Firstly, we consider the inhomogeneous model equations

∂3ui
∂x3

− ∂ui
∂y

= gi(x, y), i = 1, 2. (2.26)

We can show that functions

Wi(x, y) =
1

π

∫ Y

0

∫ hi+1(η)

hi(η)

U(x, y, ξ, η)gi(ξ, η)dξdη, i = 1, 2, (2.27)

satisfy the equations (2.26) and with initial condition Wi(x, 0) = 0, if gi(ξ, η) ∈ C0,1
x,y(D̄),

gi(x, 0) = 0, i = 1, 2, where U(x, y; ξ, η)- fundamental solution of (2.26)(see [26]), which is

U(x, y; ξ, η) =

{
1

(y−η)1/3
f( x−ξ

(y−η)1/3
), y > η, x 6= ξ

0 y ≤ η
(2.28)

where

f(t) =

∫ ∞
0

cos(λ3 − λt)dλ, t = (x− ξ)/(y − η)1/3.
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The function f(t)- Airy function which satis�es the equation below

f ′′(t) +
t

3
f(t) = 0. (2.29)

The f(t) function has the asymptotic (see [35])

fn(t) ∼ C+
n t

n
2−

1
4 sin(

2

3
t3/2) at t→ +∞, (2.30)

fn(t) ∼ C+
n t

n
2−

1
4 exp(−2

3
|t|3/2) at t→ −∞, (2.31)

C+
n , C

−
n - const.

We �nd the solutions of the problems (2.26), (2.24) of the form

ui(x, y) = ωi(x, y) +Wi(x, y), i = 1, 2. (2.32)

Then by function ω(x, y), i = 1, 2 we get the following problem

L̃iωi ≡
∂3ωi
∂x3

− ∂ωi
∂y

= 0, i = 1, 2 (2.33)

ωi(x, 0) = 0, hi(0) ≤ x ≤ hi+1(0), i = 1, 2,

ω1x(h1(y), y) = ϕ̃1(y), 0 ≤ y ≤ Y,
α1(y)ω1xx(h1(y), y) + α2(y)ω1(h1(y), y) = ϕ̃2(y), 0 ≤ y ≤ Y,

β1(y)ω2xx(h3(y), y) + β2(y)ω2x(h3(y), y) + β3(y)ω2(h3(y), y) = ϕ̃3(y), 0 ≤ y ≤ Y,
lk(ω1, ω2) = r̃k(y), k ∈ {0, 2}, 0 ≤ y ≤ Y,


(2.34)

where

ϕ̃1(y) = ϕ1(y)−W1x(h1(y), y)− F ′1(h1(y)),

ϕ̃2(y) = ϕ2(y)− α1(y)W1xx(h1(y), y)

−α2(y)W1(h1(y), y)− α1(y)F ′′1 (h1(y))− α2(y)F1(h1(y)),

ϕ̃3(y) = ϕ3(y)− β1(y)W2xx(h3(y), y)− β2(y)W2x(h3(y), y)

−β3(y)W2(h3(y), y)− β1(y)F ′′2 (h3(y))− β2(y)F ′2(h3(y))− β3(y)F2(h3(y)),

r̃k = rk(y)−
∑2
i=1(∂

kWi(h2(y),y)
∂xk

+ ∂kFi(h2(y))
∂xk

), k ∈ {0, 2}.


(2.35)

The functions ϕ̃j(y), r̃k(y), (j ∈ {1, 3}, k ∈ {0, 2}) satisfy the coupling conditions ϕ̃j(0) =

r̃k(0) = 0, (j ∈ {1, 3}, k ∈ {0, 2}). Therefore the function ϕ̄j(y), r̄k(y) (j ∈ {1, 3}), k ∈ {0, 2}
satisfy the condition (2.9), we suppose the functions gi(x, y) satisfy the condition (2.21). We

di�erentiate (2.27) and get

Wix(x, y) = − 1

π

∫ ∫
Di

Ux(x, y; ξ, η)gi(ξ, η)dξdη, i = 1, 2, (2.36)

Let i = 1. Suppose

ω1(x, y) = 3(y − η)1/3f ′
(

x− ξ
(y − η)1/3

)
+ (x− ξ)

∫ (x−ξ)/(y−η)1/3

−∞
f(t1)dt1.
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We di�erentiate above function several time and get the following

∂ω1

∂x
=

∫ (x−ξ)/(y−η)1/3

−∞
f(t1)dt1, ω1xx = U, ω1xxx = Ux = ω1y = −ω1η.

From (2.36) we can get

W1x(x, y) = − 1

π

∫ ∫
D1

ω1(x, y; ξ, η)g1η(ξ, η)dξdη +
1

π

∫ x

h1(y)

ω1(x, y; ξ, y)g1(ξ, y)dξ.

Let x = h2(y). Then

W1x(h2(y), y) = − 1

π

∫ ∫
D1

ω1(h2(y), y; ξ, η)g1η(ξ, η)dξdη +
1

π

∫ h2(y)

h1(y)

[h2(y)− ξ)]g1(ξ, y)dξ.

Hence, in view of (2.21) it is easy to show that

W1x[h2(y), y] ∈ C1[0, 1].

The solution of (2.33), (2.34) is given in the form

ωi(x, y) =

∫ y

0

U(x, y;hi(η), η)ρ2i−1(η)dη +

∫ y

0

∂(2−i)U(x, y;hi+1(η), η)

∂x2−i ρ2i(η)dη+

∫ y

0

V (x, y;hi(η), η)δi(η)dη, i = 1, 2. (2.37)

Hence

V (x, y; ξ, η) =

{
1

(y−η)1/3
ϕ( x−ξ

(y−η)1/3
), y > η, x 6= ξ

0 y ≤ η
(2.38)

where

ϕ(t) =

∫ ∞
0

exp(−λ3 − λt) + sin(λ3 − λt)dλ, t = (x− ξ)/(y − η)1/3.

The function ϕ(t) is the Airy function that satis�es

ϕ′′(t) +
t

3
ϕ(t) = 0. (2.39)

The function ϕ(t) has the asymptotes (see [35])

ϕ(n)(t) ∼ C+
n t

n
2−

1
4 sin

(
2

3
t3/2

)
at t→ +∞, (2.40)

ϕ(n)(t) ∼ C+
n t

n
2−

1
4 exp

(
−2

3
|t|3/2

)
at t→ −∞, (2.41)

C+
n , C

−
n - const.

Before proceeding to the proof of the existence of solutions of (2.33)-(2.34), we will present

the following lemmas, which we will need in the future.
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2.2 General properties of potentials

Lemma 2.3. Let the functions h(y) ∈ Cα(0 ≤ y ≤ Y ), α > 3
4 and ρ(y)- be continuous in the

interval [0,Y]. Then

lim
(x,y)→(h(y),y)

∫ y

0

∂2U(x, y;h(η), η)

∂ξ2
ρ(η)dη =

π

3
ρ(y)+

∫ y

0

∂2U(h(y), y;h(η), η)

∂ξ2
ρ(η)dη, at x < h(y), (2.42)

∣∣∣∣∂2U(h(y), y;h(η), η)

∂ξ2

∣∣∣∣ ≤ C

|y − η| 54−α
, (2.43)

Proof. Due to the fact that the function f(t) value is true (2.29), we obtain the following

expression

∂2U(x, y;h(η), η)

∂ξ2
= − x− h(η)

3(y − η)4/3
f

(
x− h(η)

(y − η)1/3

)
.

Here we assume that y > η. Then∫ y

0

∂2U(x, y;h(η), η)

∂ξ2
ρ(η)dη = −

∫ y

0

x− h(η)

3(y − η)4/3
f

(
x− h(η)

(y − η)1/3

)
ρ(η)dη.

We transform this expression as follows

−
∫ y

0

x− h(η)

3(y − η)4/3
f

(
x− h(η)

(y − η)1/3

)
ρ(η)dη =

−
∫ y

0

x− h(y)

3(y − η)4/3
f

(
x− h(η)

(y − η)1/3

)
ρ(η)dη−

∫ y

0

h(y)− h(η)

3(y − η)4/3
f

(
x− h(η)

(y − η)1/3

)
ρ(η)dη−

∫ y

0

x− h(y)

3(y − η)4/3

{
f

(
x− h(η)

(y − η)1/3

)
− f

(
x− h(y)

(y − η)1/3

)}
ρ(η)dη =

J1(x, y) + J2(x, y) + J3(x, y). (2.44)

Let us consider each integral on the right side of (2.44) separately. We have

J1(x, y) =

∫ y

0

∂2U(x, y;h(y), η)

∂ξ2
(ρ(η)− ρ(y))dη+

∫ y

0

∂2U(x, y;h(y), y)

∂ξ2
ρ(y)dη = J11(x, y) + ρ(y)J12(x, y).

Then

lim
(x,y)→(h(y),y)

J12(x, y) = lim
(x,y)→(h(y),y)

−
∫ y

0

x− h(y)

3(y − η)4/3
f

(
x− h(y)

(y − η)1/3

)
dη =
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lim
(x,y)→(h(y),y)

∫ x−h(y)
y1/3

−∞
f(t)dt =

∫ 0

−∞
f(t)dt =

π

3
;

where t = x−h(y)
(y−η)1/3

.

Now, assume t = h(y)−x
(y−η)1/3

, we have

J11(x, y) =

∫ +∞

h(y)−x
y1/3

{
f(−t)

(
ρ(y − (h(y)− x)3

t3
)− ρ(y)

)}
dt.

Further, the continuity ρ(η) at the point y for any ε > 0 for available that δ(ε), such that

|ρ(y)− ρ(y − η)| < ε (2.45)

at h < δ(ε).

For any �xed y > 0 we can always assume that 0 < δ(ε) < y1/3.

Then
h(y)− x
y1/3

<
h(y)− x
δ(ε)

< +∞

and it makes sense to view

J11(x, y) =

∫ h(y)−x
δ(ε)

h(y)−x
y1/3

{·}dt+

∫ +∞

h(y)−x
δ(ε)

{·}dt ≡ J111(x, y) + J112(x, y).

Obviously, we get

|J111(x, y)| ≤ 2 max
0≤η≤1

|ρ(η)|
∫ h(y)−x

δ(ε)

h(y)−x
y1/3

|f(−t)|dt,

for �xed δ(ε) and y > 0 due to the fact that the function f(−t) value is true (2.31), we have

lim
(x,y)→(h(y),y)

|J111(x, y)| = 0.

Further, we are noting that
h(y)− x
δ(ε)

≤ z < +∞

we have the inequality

0 ≤ h(y)− x
z

≤ δ(ε),

we see that

|J112(x, y)| ≤ sup
|h|≤δ(ε)

|ρ(y)− ρ(y − h)|
∫ +∞

0

|f(−t)|dt.

By (2.31) we have

|J112(x, y)| ≤ c max
|h|≤δ(ε)

|ρ(y)− ρ(y − h)|
∫ +∞

0

|t|− 1
4 e−

1
2 |t|

3/2

dt =

c max
|h|≤δ(ε)

|ρ(y)− ρ(y − η)|
∫ +∞

0

|z|− 1
2 e−|z|dz.
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Hence, by (2.45) and any ε it follows that

lim
(x,y)→(h(y),y)

|J112(x, y)| = 0.

Finally, we have

lim
(x,y)→(h(y),y)

J1(x, y) =
π

3
ρ(y).

Now we prove that

lim
(x,y)→(h(y),y)

J2(x, y) =

∫ y

0

h(y)− h(η)

3(y − η)4/3
f

(
h(y)− h(η)

(y − η)1/3

)
ρ(η)dη.

To this end, we estimate the following di�erence

|J2(x, y)− J2(h(y), y)| ≤
∫ y

0

|h(y)− h(η)|
(y − η)4/3

∣∣∣∣f ( x− h(η)

(y − η)1/3

)
− f

(
h(y)− h(η)

(y − η)1/3

)∣∣∣∣ ρ(η)dη.

It is known that f(t) ∈ C∞(R1) (see [35]). Then∣∣∣∣f ( x− h(η)

(y − η)1/3

)
− f

(
h(y)− h(η)

(y − η)1/3

)∣∣∣∣ ≤ K1
|x− h(y)|
(y − η)5/12

.

Therefore

|J2(x, y)− J2(h(y), y)| ≤ K2|x− h(y)|yα− 3
4 .

Accordingly

lim
(x,y)→(h(y),y)

|J2(x, y)− J2(h(y), y)| = 0.

Note that, by the mean value theorem∣∣∣∣f ( x− h(η)

(y − η)1/3

)
− f

(
x− h(η)

(y − η)1/3

)∣∣∣∣ = f ′
(
x− x(λ, η)

(y − η)1/3

)
h(y)− h(η)

(y − η)1/3
;

where 0 < λ < 1, x(λ, η) = h(y) + λ(h(η)− h(y)).

In view of this, we have

|J3(x, y)| ≤ K1|x− h(y)|
∫ y

0

|h(y)− h(η)|
(y − η)5/3

|f ′
(
x− x(λ, η)

(y − η)1/3

)
|ρ(η)dη.

This integral is evaluated depending on the location of the point (x, y) and the nature of the

curve h(y).

1) If the function h(y) is monotonically decreasing, then x < x(λ, η).

Therefore, in this case, we use the asymptotic expansion (2.31).

Then

|J3(x, y)| = K1|x− h(y)|
∫ y

0

h(y)− h(η)

(y − η)5/3

(
|x− x(λ, η)|1/4

(y − η)1/12

)
×

exp

(
−2

3

|x− x(λ, η)|3/2

(y − η)1/2

)
ρ(η)dη ≤ K2|x− h(y)|yα− 2

3 . (2.46)
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2) If the function h(y) is monotonically increasing, then the expression x− x(λ, η) will be alter-

nating. The function J3(x, y) is estimated as follows

|J3(x, y)| ≤ K1|x− h(y)|
∫ y

0

|h(y)− h(η)|
(y − η)5/3

|x− x(λ, η)|1/4

(y − η)1/12
ρ(η)dη ≤

K2|x− h(y)|yα− 3
4 . (2.47)

3) If h(y) ≡ const, then J3(x, y) ≡ 0.

In the investigated cases the nature of the curves h(y) in di�erent segments contained in the

de�nition may be di�erent.

Therefore, the division of produce D follows. The point (x, y) can be in the domain D1, D2,

D3.

If the point (x, y) is in the domain D1 the integral J3(x, y) to be the estimate (2.46).

If the point (x, y) is in the domains D2, D3 then the integral J3(x, y) will be true to the

estimate (2.47).

Hence

lim
(x,y)→(h(y),y)

J3(x, y) ≡ 0.

A similar argument proves the validity of estimate (2.43).

Lemma 2.4. Let functions h(y) ∈ Cα[0, Y ], α > 3
4 , and ρ(y) be continuous and bounded

variation in [0,Y]. Then

lim
(x,y)→(h(y),y)

∫ y

0

∂2U(x, y;h(η), η)

∂ξ2
ρ(η)dη =

−2π

3
ρ(y) +

∫ y

0

∂2U(h(y), y;h(η), η)

∂ξ2
ρ(η)dη (2.48)

at x > h(y),

lim
(x,y)→(h(y),y)

∫ y

0

∂2V (x, y;h(η), η)

∂ξ2
ρ(η)dη =

∫ y

0

∂2V (h(y), y;h(η), η)

∂ξ2
ρ(η)dη (2.49)

Proof. Similarly as in the proof of lemma 2.3 we obtain expression (2.44) and consider integral

J1(x, y)

J1(x, y) =

∫ y

0

∂2U(x, y;h(y), η)

∂ξ2
(ρ(η)− ρ(y))dη+

∫ y

0

∂2U(h(y), y;h(η), η)

∂ξ2
ρ(y)dη = J11(x, y) + ρ(y)J12(x, y).

Then

lim
(x,y)→(h(y),y)

J12(x, y) = lim
(x,y)→(h(y),y)

−
∫ y

0

x− h(y)

3(y − η)4/3
f

(
x− h(y)

(y − η)1/3

)
dη =
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= − lim
(x,y)→(h(y),y)

∫ +∞

x−h(y)
y1/3

f(t)dt = −
∫ +∞

0

f(t)dt = −2π

3
;

where

t =
x− h(y)

(y − η)1/3
.

The expression J11(x, y) is of the form below

J11(x, y) =

(∫ y−δ

0

+

∫ y

y−δ

)
x− h(y)

3(y − η)4/3
f

(
x− h(y)

(y − η)1/3

)
(ρ(η)− ρ(y))dη =

J111(x, y) + J112(x, y).

Any δ > 0, then lim(x,y)→(h(y),y) J111(x, y) = 0.

We leave the proof of integral J112(x, y) to the reader and we give without proof the following

lemma in (see [35]).

Lemma 2.5. Let the variation of function P (x) be bounded on interval [a, b] and let

max

∣∣∣∣∣
∫ β

α

Q(x)dx

∣∣∣∣∣ < M, where (α, β) ⊂ (a, b).

Then ∣∣∣∣∣
∫ b

a

P (x)Q(x)dx

∣∣∣∣∣ < M{|P (a)|+ V ba (P (x))},

where V ba (P (x))- full variation function P (x) on the interval [a, b].

We use above inequality and get

|J112(x, y)| < K{ max
y−δ≤η≤y

|ρ(η)− ρ(y)|+ V yy−δ(ρ(y))},

where

max

∣∣∣∣∫ y2

y1

x− h(y)

3(y − η)4/3
f

(
x− h(y)

(y − η)1/3

)
dη

∣∣∣∣ < K, (y1, y2) ⊂ (y − δ, y).

Hence

lim
(x,y)→(h(y),y)

|J111(x, y)| = 0.

Finally, we have

lim
(x,y)→(h(y),y)

J1(x, y) =
2π

3
ρ(y).

Similar to the proof obtained in above results, we get

lim
(x,y)→(h(y),y)

J2(x, y) =

∫ y

0

h(y)− h(η)

3(y − η)4/3
f

(
h(y)− h(η)

(y − η)1/3

)
ρ(η)dη,

lim
(x,y)→(h(y),y)

J3(x, y) = 0.

Similarly we can prove the validity of (2.49). Only in this case we use the fact that∫ +∞

0

ϕ(t)dt = 0.
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Lemma 2.6. If the function g(x) ∈ Cγ (0 < γ < 1), then

G(x) =

∫ x

a

g(s)

(x− s)γ
ds, 0 < γ < 1, (g(a) = 0),

this can be di�erentiated by x, and we can get

G′(x) =
g(x)

(x− a)γ
− γ

∫ x

a

g(s)− g(x)

(x− s)γ+1
ds.

The proof is elementary (see [47]).

Lemma 2.7. If h(y) ∈ C1(0 ≤ y ≤ Y ), then

lim
η→z

∫ z

η

(
∂

∂z

∫ z

t

1

(z − y)(2−k)/3

∂kU(h(y), y;h(t), t)

∂xk
dy

)
dt = 0, (2.50)

lim
η→z

∫ z

η

(
∂

∂z

∫ z

t

1

(z − y)(2−k)/3

∂kV (h(y), y;h(t), t)

∂xk
dy

)
dt = 0, (2.51)

where k ∈ {0, 1}.
Proof. Let k = 0. We set

J(z, η) =

∫ z

η

(
∂

∂z

∫ z

t

1

(z − y)(2−k)/3
f

(
h(y)− h(t)

(y − t)1/3

)
dy

)
dt = 0

We perform the integration in the following way

dv =
dy

(z − y)2/3(y − t)1/3

G(z, y, t) ≡ v =

∫ z

y

du

(z − u)2/3(u− t)1/3
,

u = f

(
h(y)− h(t)

(y − t)1/3

)
,

du =

{
h′(y)

(y − t)1/3
− (h(y)− h(t))

3(y − t)4/3

}
f ′
(
h(y)− h(t)

(y − t)1/3

)
dy

where G(z, z, t) = 0, G(z, t, t) = 2π
3 . Then

J(z, η) =

∫ z

η

(
∂

∂z

{
f

(
h(y)− h(t)

(y − t)1/3

)
G(z, y, t)|zy=z+

∫ z

t

G(z, y, t)

(
h′(y)

(y − t)1/3
− h(y)− h(t)

3(y − t)4/3

)
f ′
(
h(y)− h(t)

(y − t)1/3

)
dydt.(∗)

Hence, using the properties of the function G(z, y, t), and given the fact that

∂

∂z
G(z, y, t) =

∂

∂z

∫ z

y

(z − u)2/3(u− t)1/3du =

∂

∂z

∫ z−y
z−t

0

s−2/3(1− s)−1/3ds =
1

z − t
(y − t)2/3

(z − y)2/3
,
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from (*), performing the di�erentiation, we obtain

J(z, η) =

∫ z

η

dt

z − t

∫ z

t

(y − t)2/3

(z − y)2/3

{
h′(y)

(y − t)1/3
− h(y)− h(t)

3(y − t)4/3

}
×

f ′
(
h(y)− h(t)

(y − t)1/3

)
dy.

Using the asymptotic f(t) have

|J(z, η)| ≤ c2(z − η).

Then

lim
η→z
|J(z, η)| = 0.

Let k = 1, then

J(z, η) =

∫ z

η

(
∂

∂z

∫ z

t

1

(z − y)1/3(y − t)2/3
f ′
(
h(y)− h(t)

(y − t)1/3

)
dy

)
dt.

By making arguments similar to the above, we obtain the following expression

J(z, η) =

∫ z

η

dt

z − t

∫ z

t

(y − t)1/3

(z − y)1/3

{
h(y)− h(t)

3(y − t)2/3
f

(
h(y)− h(t)

(y − t)1/3

)
×

(
h′(y)− h(y)− h(t)

3(y − t)

)
dy.

Hence

|J(z, η)| ≤ c4(z − η).

Then

lim
η→z
|J(z, η)| = 0.

Similarly we can prove the validity of (2.51).

Lemma 2.8. If hi(y), hj(y) ∈ C1[0, Y ] and hi(y) < hj(y), then

lim
η→z

∫ z

η

1

(z − y)(2−k)/3

∂k+2U(hi(y), y;hj(η), η)

∂xk+2
dy = 0, (2.52)

lim
η→z

∫ z

η

1

(z − y)(2−k)/3

∂k+1U(hi(y), y;hj(η), η)

∂xk∂y
dy = 0, (2.53)

lim
η→z

∫ z

η

1

(z − y)(2−k)/3

(∫ y

η

∂kU(hj(y), y;hi(η), η)

∂xk
dt

)
dy = 0, (2.54)

lim
η→z

∫ z

η

1

(z − y)(2−k)/3

(∫ y

η

∂kV (hj(y), y;hi(η), η)

∂xk
dt

)
dy = 0, (2.54)

where k ∈ {0, 1}, η ≤ y ≤ z.
Proof. Let k = 1. We set

J(z, η) =

∫ z

η

1

(z − y)1/3

∂3U(hi(y), y;hj(η), η)

∂x3
dy.
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Transform the integral as follows

J(z, η) =

∫ z

η

1

(z − y)1/3

∂3U(hi(y), y;hj(η), η)

∂x3
dy+

∫ z

η

1

(z − y)1/3

{
∂3U(hi(y), y;hj(η), η)

∂x3
− ∂3U(hi(y), y;hj(η), η)

∂x3

}
dy =

J1(z, η) + J2(z, η).

By condition of lemma hi(y) < hj(y). Therefore, using the asymptotic expansion (2.31), we have

|J1(z, η)| ≤ K1

∫ z

η

1

(z − y)1/3

|hi(y)− hj(η)|5/4

|y − η|21/12
exp

(
−3|hi(y)− hj(η)|3/2

2|y − η|1/2

)
dy ≤

≤ K2(z − η)2/3

It follows that

lim
η→z
|J1(z, η)| = 0.

We are applying the mean value theorem to the expression J2(z, η) and transform it as follows

J2(z, η) =

∫ z

η

1

(z − y)1/3
[hi(y)− hj(η)]

∂4U(hi(y), y;hj(y) + λ(hi(y)− hj(y)), η)

∂x4
dη =

∫ z

η

hi(y)− hj(y)

(z − η)1/3(y − η)5/3
f (IV )

(
hi(y)− hj(y)− λ(hj(η)− hj(y))

(y − η)1/3

)
dη.

So as we explore this integral at η → z , we should take advantage of the asymptotic behavior

(1.31). Indeed, if η → z that η → y. Consequently λ(hj(η) − hj(y)) → 0. Since by assumption

hj(η)− hj(y) ≥ c0 > 0, the argument functions f (IV )(t) are committed to the −∞. This makes

it possible to use the asymptotic expansion (2.31). Hence at z − η1 < ε1, y− η < ε2 the integral

is estimated as follows

|J2(z, η)| ≤ K2(z − η)25/36,

where ε1 and ε2 are su�ciently small positive number. Hence

lim
η→z
|J2(z, η)| = 0.

the validity of the remaining relations can be proved similarly.

Lemma 2.9. If h(y) ∈ C2[0, Y ], then∣∣∣∣ ∂∂z
∫ z

η

(
∂

∂z

∫ z

t

1

(z − y)(2−k)/3

∂kU(h(y), y;h(t), t)

∂xk
dy

)
dt

∣∣∣∣ < c4 (2.56)

∣∣∣∣ ∂∂z
∫ z

η

(
∂

∂z

∫ z

t

1

(z − y)(2−k)/3

∂kV (h(y), y;h(t), t)

∂xk
dy

)
dt

∣∣∣∣ < c5 (2.57)

where k ∈ {0, 1}, c4,c5 - const > 0.
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Proof. Let k = 1.

We set

I =
∂

∂z

∫ z

η

[
∂

∂z

∫ z

t

1

(z − y)1/3(y − t)2/3
f ′
(
h(y)− h(t)

(y − t)1/3

)
dy

]
dt.

Using the properties of the function

G(z, y, t) ≡ v =

∫ z

y

du

(z − u)1/3(u− t)2/3
,

G(z, z, t) = 0, G(z, t, t) =
2π

3
,

we take di�erentiation, as well as taking into account Lemma 2.6, we have

I =
∂

∂z

∫ z

η

t

(z − t)

∫ z

t

1

(z − y)1/3
f ′′
(
h(y)− h(t)

(y − η)1/3

)(
h′(y)− h(y)− h(t)

3(y − η)

)
dy,

where
∂

∂z

(
f ′
(
h(y)− h(t)

(y − t)1/3

)
G(z, y, t)|zy=t

)
= 0.

Integrating by parts, we have

I =
∂

∂z

∫ z

η

t

(z − t)

∫ z

t

(z − y)2/3

(y − t)1/3

{
f

(
h(y)− h(t)

(y − η)1/3

)
{(h′(y)−

2h(y)− h(t)

3(y − η)

[
h′(y)− h(y)− h(t)

3(y − η)

]
+

(
h′′(y)(y − t) +

2(h(y)− h(t))

9(y − η)

)[
h′(y)− h(y)− h(t)

(y − η)2/3

]
+

f

(
h(y)− h(t)

(y − t)1/3

)
[h(y)− h(t)]

[
h′(y)− h(y)− h(t)

3(y − η)

]2

dy,

where

f

(
h(y)− h(t)

(y − t)1/3

)[
h′(y)− h(y)− h(t)

3(y − η)

] ∫ z

y

du

(z − u)2/3

∣∣z
y=t

dy = 0.

Di�erentiating and taking into account that

lim
η→z

∫ z

t

(z − y)2/3

(y − t)1/3

{
f

(
h(y)− h(t)

(y − η)1/3

)[
h′(y)− 2h(y)− h(t)

3(y − η)

]
×

[
h′(y)− h(y)− h(t)

3(y − η)

]
+
h(y)− h(t)

(y − η)2/3

[
(y − t)h′′(y) +

2(h(y)− h(t))

9(y − t)

]
+

f ′
(
h(y)− h(t)

(y − t)1/3

)
(h(y)− h(t))

[
h(y)− h(t)

3(y − t)
+ h′(y)

]2

dy = 0,

We get

I =

∫ z

η

dt

2(z − t)

∫ z

t

1

(z − y)1/3(y − t)1/3

{
f

(
h(y)− h(t)

(y − η)1/3

)
{(h′(y)−

2(h(y)− h(t))

3(y − t)
+
h(y)− h(t)

(y − t)2/3

[
(y − t)h′′(y) +

2(h(y)− h(t))

9(y − t)

]
+
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f ′
(
h(y)− h(t)

(y − t)1/3

)
(h(y)− h(t))

[
h(y)− h(t)

3(y − t)
+ h′(y)

]2

dy.

In view of the condition of the lemma we have

|I| < c4.

Other cases can be proved similarly

Lemma 2.10. If hi(y) ∈ C1[0, Y ], then∣∣∣∣ ∂∂z
∫ z

η

(
1

(z − y)(2−k)/3

[∫ y

η

∂kU(h2(y), y;h1(t), t)

∂xk
dt

]
dy

∣∣∣∣ < c6 (2.58)∣∣∣∣ ∂∂z
∫ z

η

(
1

(z − y)(2−k)/3

[∫ y

η

∂kV (h2(y), y;h1(t), t)

∂xk
dt

]
dy

∣∣∣∣ < c7 (2.59)

where k ∈ {0, 1}, c6, c7 - const > 0.

Proof Let k = 0. We consider

I =
∂

∂z

∫ z

η

1

(z − y)1/3

[∫ y

η

1

(z − y)1/3
f(
h2(y)− h1(t)

(y − η)1/3
)dt

]
dy =

∂

∂z

∫ z

η

1

(z − y)1/3

{∫ y

η

1

(z − y)1/3
f

(
h2(y)− h1(t)

(y − η)1/3

)
dt+

∫ y

η

1

(y − t)1/3

[
f

(
h2(y)− h1(t)

(y − t)1/3

)
− f

(
h2(y)− h1(y)

(y − t)1/3

)]
dtdy =

I1 + I2.

If we put

s =
h2(y)− h1(y)

(y − t)1/3
,

then

I1 =
∂

∂z

∫ z

η

1

(z − y)2/3

[
3(h2(y)− h1(y))2

∫ ∞
µ

f(s)

s3
ds

]
dy,

where

µ =
h2(y)− h1(y)

(y − t)1/3
.

Di�erentiating, we get

I1 =

∫ z

η

1

(z − y)2/3

{
6[h2(y)− h1(y)][h′2(y)− h1(y)]

∫ ∞
µ

f(s)

s3
ds−

3

(y − η)1/3

[
h′2(y)− h′1(y)

h2(y)− h1(y)
(y − η)−1/3

]
f

(
h2(y)− h1(y)

(y − t)1/3

)
dy.

It follows that |I1| < c6, where c6 − const > 0. In respect that

lim
η→z

∫ z

η

1

(y − t)1/3

[
f

(
h2(y)− h1(t)

(y − t)1/3

)
− f

(
h2(y)− h1(y)

(y − t)1/3

)]
dt = 0,
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We have

I2 =

∫ z

η

1

(z − y)2/3

{
∂

∂y

∫ y

η

1

(y − t)1/3

[
f

(
h2(y)− h1(t)

(y − t)1/3

)
− f

(
h2(y)− h1(t)

(y − t)1/3

)]
dt

}
dy.

Di�erentiating, we get

I2 =

∫ z

η

1

(z − y)2/3

{
1

(y − t)1/3

[
f

(
h2(y)− h1(y)

(y − t)1/3

)
+ f

(
h2(y)− h1(t)

(y − t)1/3

)]}
dy+

+

∫ z

η

1

(z − y)2/3

{
∂

∂y

∫ y

η

1

(y − t)1/3

[
f

(
h2(y)− h1(y)

(y − t)1/3

)
− f

(
h2(y)− h1(t)

(y − t)1/3

)]
dt

}
dy =

I21 + I22.

It is easy to show that |I21| < c62, c62 = const > 0. We get s = y − t.
Then

I22 =

∫ z

η

1

(z − y)2/3

{
∂

∂y

∫ y−η

η

1

(s)1/3

[
f

(
h2(y)− h1(y − s)

(s)1/3

)
−

f

(
h2(y)− h1(y)

(s)1/3

)
dsdy =

∫ z

η

1

(z − y)2/3

{∫ y

0

1

(z − y)1/3
×[

h′2(y)− h′1(y)

(y − t)1/3
f ′
(
h2(y)− h1(t)

(y − t)1/3

)
− h′2(y)− h′1(y)

(y − t)1/3
f ′
(
h2(y)− h1(y)

(y − t)1/3

)]
dtdy+∫ z

η

1

(z − y)2/3

1

(y − η)1/3

[
f

(
h2(y)− h1(η)

(y − η)1/3

)
− f

(
h2(y)− h1(y)

(y − η)1/3

)]
dy

Hence

|I22| < c63, c63 − const > 0.

Finally we can take the following bound

|I| < c6, c6 − const > 0.

Similarly we can prove the other case.

2.3 Solvability of the classical initial-boundary value prob-

lems

Now we will analyze the solution of problems (2.33)-(2.34).

The solution of problems (2.33)-(2.34) is given by (2.37) with boundary conditions and match-

ing condition, and we use lemma 2.3-2.10 to get

d

dz

∫ z

0

ϕ̃(y)

(z − y)1/3
dy =

2π√
3
f ′(0)ρ1(z) +

2π√
3
ϕ′(0)δ1(z)+

∫ z

0

ρ′1(η)dη
∂

∂z

∫ z

η

[
∂

∂z

∫ z

t

1

(z − y)1/3

∂U(h1(y), y;h1(t), t)

∂x
dy

]
dt+
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∫ z

0

δ′1(η)dη
∂

∂z

∫ z

η

[
∂

∂z

∫ z

t

1

(z − y)1/3

∂V (h1(y), y;h1(t), t)

∂x
dy

]
dt+

∫ z

η

ρ2(η)dη
∂

∂z

∫ z

η

1

(z − y)1/3

∂3U(h1(y), y;h2(t), t)

∂x3
dy,

ϕ̄2(z) = −2π

3
α1(z)ρ1(z) + α1(z)

∫ z

0

∂2U(h1(z), y;h1(η), η)

∂x2
ρ1(η)dη+

α1(z)

∫ z

0

∂3U(h1(z), y;h2(η), η)

∂x3
ρ2(η)dη+

α1(z)

∫ z

0

∂2V (h1(z), z;h1(η), η)

∂x2
δ1(η)dη+

α2(z)

{∫ z

0

U(h1(z), z;h1(η), η)ρ1(η)dη+∫ z

0

∂U(h1(z), z;h2(η), η)

∂x
ρ2(η)dη +

∫ z

0

V (h1(z), z;h1(η), η)δ1(η)dη; (2.61)

ϕ̃3(z) = β1(z)

(∫ z

0

(∫ +∞

µ

f(t1)dt1

)
ρ′3(z)dη

)
+
π

3
ρ4(z)+

+β1(z)

∫ z

0

Uxx(h3(z), z;h3(η), η)ρ4(η)dη + β1(z)

(∫ z

0

(∫ +∞

µ

ϕ(t1)dt1

)
δ′2(η)dη

)
+

β2(z)

∫ z

0

Ux(h3(z), z;h2(η), η)ρ3(η)dη + β2(z)

∫ z

0

Ux(h3(z), z;h3(η), η)ρ4(η)dη+

β2(z)

∫ z

0

Vx(h3(z), z;h2(η), η)δ2(η)dη+

β3(z)

∫ z

0

U(h3(z), z;h2(η), η)ρ3(η)dη + β3(z)

∫ z

0

U(h3(z), z;h3(η), η)ρ4(η)dη)+

β3(z)

∫ z

0

V (h3(z), z;h2(η), η)δ2(η)dη, (2.62)∫ z

0

r̄′0(y)dy

(z − y)2/3
=

∫ z

0

ρ1(η)dη
∂

∂z

∫ z

η

1

(z − y)2/3
[

∫ y

η

U(h2(y), y;h1(t), t)dt]dy+

∫ z

0

ρ2(η)dη
∂

∂z

∫ z

η

1

(z − y)2/3(y − η)1/3
f

(
h2(y)− h1(η)

(y − η)1/3

)
dy∫ z

0

δ1(η)dη
∂

∂z

∫ z

η

1

(z − y)2/3
[

∫ y

η

V (h2(y), y;h1(t), t)dt]dy−

2π√
3
f(0)ρ3(z)− 2π√

3
ϕ(0)δ2(z)−∫ z

0

ρ3(η)dη
∂

∂z

∫ z

η

1

(z − y)2/3
U(h2(y), y;h2(η), η)dy−∫ z

0

δ2(η)dη
∂

∂z

∫ z

η

1

(z − y)2/3
V (h2(y), y;h2(η), η)dy−
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∫ z

0

ρ4(η)dη
∂

∂z

∫ z

η

1

(z − y)2/3
U(h2(y), y;h3(η), η)dy, (2.63)

r̃1(z) =
π

3
ρ2(z) +

∫ z

0

∂2U(h2(z), z;h2(η), η)

∂x2
ρ2(η)dη+∫ z

0

Ux(h2(z), z;h1(η), η)ρ1(η)dη +

∫ z

0

Vx(h2(z), z;h1(η), η)δ1(η)dη−∫ z

0

Ux(h2(z), z;h2(η), η)ρ3(η)dη −
∫ z

0

Ux(h2(z), z;h3(η), η)ρ4(η)dη−∫ z

0

Vx(h2(z), z;h2(η), η)δ2(η)dη. (2.64)

r̃2(z) =

∫ z

0

Uxx(h2(z), z;h1(η), η)ρ1(η)dη+∫ z

0

Uxx(h2(z), z;h2(η), η)ρ2(η)dη +

∫ z

0

Vxx(h2(z), z;h1(η), η)δ1(η)dη+

2π

3
ρ3(z)−

∫ z

0

Uxx(h2(z), z;h2(η), η)ρ3(η)dη −
∫ z

0

Uxx(h2(z), z;h2(η), η)ρ3(η)dη−∫ z

0

Vxx(h2(z), z;h2(η), η)δ2(η)dη, (2.65)

where µ = (h2(z)− h1(η))/(y − η)−1/3.

The system of integral equations (2.60)-(2.65) is equivalent to the system of Volterra integral

equations of the second kind

Ψl(z) = Rl(z) +

6∑
s=1

∫ z

0

Nsl(z, η)Ψs(η)dη, l ∈ {1, 6}, (2.66)

where Ψl(z)- unknown functions which match the densities ρ
(3−i)
2i−1 (z), ρ2i(z), δ

(3−i)
i , (i = 1, 2),

accordingly Rl(z) are known functions, which are expressed in terms of the given functions

ϕ̃k+1(z) and r̃k(z), (k ∈ {0, 2}); Nsl(z, η) - matrix whose elements are expressed in terms of the

fundamental solutions of the equation (2.33).

It is easy to show that the kernel Nsl(z, η) has a weak singularity of the form

|Nsl(z, η)| < c

|z − η|2/3
, c = const > 0, (2.67)

Then, from the general theory [113] that the system (2.66) is uniquely solvable in the class of

continuous functions which can be represented in the form

Ψl(z) = Rl(z) +

6∑
s=1

∫ z

0

Hsl(z, η)Rs(η)dη, l ∈ {1, 6}. (2.68)

Hsl(z, η) - resolution has a weak singularity of the form (2.67).
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According to the representations (see [1]), (2.35) and (2.26) the solution of (2.25), (2.14) is

given by following formula

ui(x, y) = − 1

π

∫ ∫
Dyi

Gi(x, y; ξ, η)gi(ξ, η)dξdη, i = 1, 2, (2.69)

where Gi(x, y; ξ, η)- known functions, which are expressed fundamental solutions of the equation

(2.33).

Now we are turn to the solution of the problem (2.2)-(2.7). As we have seen, the function

(2.69) for the given gi(x, y) of the relevant class satis�es the equation (2.25) and the homogeneous

boundary conditions (2.14). The solution of (2.2) and (2.14) that we are looking is in the form

(2.69), where gi(x, y) is to be determined, i.e, now we chose gi(x, y), so that the function (2.69)

satis�es the equation (2.2). We substitute (2.69) to the equation (2.2), and obtain

gi(x, y) = fi(x, y) +
1

π

∫ ∫
Dyi

Ki(x, y; ξ, η)gi(ξ, η)dξdη, i = 1, 2, (2.70)

where

Ki(x, y; ξ, η) = a1i(x, y)Gix(x, y; ξ, η) + a0i(x, y)Gi(x, y; ξ, η), i = 1, 2.

Thus, we determine the functions gi(x, y) obtained from the integral equation (2.70). If we take

into account, Gi(x, y; ξ, η) which is expressed in terms of functions U(x, y; ξ, η), it is easy to see

that for the function Gi(x, y; ξ, η) same estimates hold as those for U(x, y; ξ, η). Consequently,

the kernels Ki(x, y; ξ, η) have a weak singularity. Hence, by the uniqueness theorem it is implied

that the integral equation (2.70) is uniquely solvable. It's enough that the functions fi(x, y)

satisfy the condition (2.9). According to the results presented above, the solutions of problems

(2.2)-(2.7) have the form:

ui(x, y) = ωi(x, y) + Zi(x, y) +Hi(x, y), i = 1, 2,

where the functions ωi(x, y)- the solution of the problems (2.33)-(2.34), Zi(x, y)- the solutions of

the problems (2.2)and (2.14), Hi(x, y)- the solutions of the following equation

Hixxx −Hiy + a1i(x, y)Hix + a0i(x, y)Hi = (−a1iωix + a0i(x, y)ωi), i = 1, 2,

satisfy the homogeneous boundary conditions (2.14).
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Part 3

Linear boundary value problems

and Cauchy problems for

third-order equations with multiple

characteristics
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3.1 A problem for the third-order equation with multiple

characteristics

In this section we consider the following problem.

Problem We consider the equation

L̃(u) ≡ ∂3u

∂x3
− ∂u

∂y
= f(x, y) (3.1)

in the domain D = {(x, y) : h1(y) < x < h2(y), 0 < y ≤ 1} with boundary conditions

u(x, 0) = F (x), h1(0) ≤ x ≤ h2(0), (3.2)

ux(h1(y), y) = ϕ1(y), 0 ≤ y ≤ 1, (3.3)

uxx(h1(y), y) = ϕ2(y), 0 ≤ y ≤ 1, (3.4)

ux(h2(y), y) = ϕ3(y), 0 ≤ y ≤ 1, (3.5)

and a condition of compatibility

F ′(h1(0)) = ϕ1(0), F ′′(h1(0)) = ϕ2(0), F ′(h2(0)) = ϕ3(0).

Where F (x), ϕi(x), i ∈ {1, 3}, f(x, y)- are given, which are bounded as well as su�ciently

smooth functions; the curves x = hi(y) ∈ C1[0, 1], (i = 1, 2) are de�ned on the lateral boundaries

and don't have intersection points.

We note that a similar study for the equation (3.1) with other boundary conditions was

carried out in [27], [30-32], [1-6].

Uniqueness of solutions of the problem

Theorem 3.1. If hi(y) ∈ C1[0, 1], i = 1, 2, then the solution u(x, y) ∈ C3,1
x,y(D) ∩ C2,0

x,y(D̄) of

the problems (3.1)-(3.5) is unique.

Proof. Suppose there are two solutions of the problem u1(x, y) and u2(x, y). We set v(x, y) =

u1(x, y)− u2(x, y). Then for the function v(x, y) we get the following problem

L̃(v) = 0,

v(x, 0) = 0, h1(0) ≤ x ≤ h2(0),

vx(h1(y), y) = 0, 0 ≤ y ≤ 1,

vxx(h1(y), y) = 0, 0 ≤ y ≤ 1,

vx(h2(y), y) = 0, 0 ≤ y ≤ 1.

 (3.6)

We consider the identity ∫ ∫
D

vxx(vxxx − vy)dxdy = 0. (3.7)

Integrating by parts and using the homogeneous boundary conditions (3.6) to (3.7) , we obtain
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1

2

∫ 1

0

v2
xx(h2(y), y)dy +

1

2

∫ h2(1)

h1(1)

v2
x(x, 1)dx = 0.

Hence vxx(h2(y), y) = 0, vx(x, 1) = 0. Therefore v(x, 1) = const.

Now let v(x, y) = ω(x, y)eMy, M = const 6= 0.

Then ∫ ∫
D

ωxxL1(ω) · eMydxdy =
M

2

∫ ∫
D

ω2
x · eMydxdy = 0,

where

L1(ω) = ωxxx − ωy −Mω. (3.8)

Hence ωx(x, y) = 0. Therefore ω(x, y) = w(y). Substituting the function w(y) on (3.8) and (3.2)

we get

w′(y) +Mw(y) = 0,

w(0) = 0.
(3.9)

It is known that the solution of (3.9) is trivial. Which means that v(x, y) = 0 in the closed

domain D̄.

Existence of the solution to the above problem.

Theorem 3.2. Let F (x) ∈ C3[c1, c2] c1 ≤ h1(0) < h2(0) ≤ c2; ϕ1(y), ϕ3(y) ∈ C2[0, Y ],

ϕ2 ∈ C1[0, Y ], f(x, y) ∈ C0,1
x,y(D̄), f(x, 0) = 0 and hi(y) ∈ C1[0, Y ].

Then the solution u(x, y) ∈ C3,1
x,y(D) ∩ C2,0

x,y(D̄) of the problems (3.1)-(3.5) exists.

Proof. Let F (x) ∈ C3[c1, c2] (c1 ≤ h1(y) < h2(y) ≤ c2). Then, without loss of generality, we

can put F (x) = 0.

Indeed, if we put

u(x, y) = v(x, y) + F (x),

then for the function v(x, y) we get the following problem:

L̃(v) = f̄(x, y),

v(x, 0) = 0, h1(0) ≤ x ≤ h2(0),

vx(h1(y), y) = ϕ̄1(y), 0 ≤ y ≤ 1,

vxx(h1(y), y) = ϕ̄2(y), 0 ≤ y ≤ 1,

vx(h2(y), y) = ϕ̄3(y), 0 ≤ y ≤ 1,


(3.10)

where

ϕ̄1(y) = ϕ1(y)− F ′(h1(y)), ϕ̄2(y) = ϕ2(y)− F ′′(h1(y)),

ϕ̄3(y) = ϕ3(y)− F ′(h2(y)), f̄(x, y) = f(x, y)− F ′′′(x).

As shown in [26], the function

W (x, y) =
1

π

∫ ∫
D

U(x, y; ξ, η)f̄(ξ, η)dξdη (3.11)
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satis�es (3.1) and the condition W (x, y) = 0, if f̄(ξ, η) ∈ C0,1
x,y(D̄), f̄(x, 0) = 0. Here U(x, y; ξ, η)-

fundamental solution of equation (3.1) (see [26]), is de�ned by (2.28). With this in mind, the

solution of (3.10)is in the form

v(x, y) = ω(x, y) +W (x, y).

Then for the function ω(x, y) we get the problems

L̃ω = 0, (3.12)

ω(x, 0), h1(0) ≤ x ≤ h2(0),

ωx(h1(y), y) = ϕ̃1(y), 0 ≤ y ≤ 1,

ωxx(h1(y), y) = ϕ̃2(y), 0 ≤ y ≤ 1,

ωx(h2(y), y) = ϕ̃3(y), 0 ≤ y ≤ 1,

 (3.13)

where

ϕ̃1(y) = ϕ1(y)− F ′(h1(y))−Wx(h1(y), y),

ϕ̃2(y) = ϕ2(y)− F ′′(h1(y))−Wxx(h1(y), y),

ϕ̃3(y) = ϕ3(y)− F ′(h2(y))−Wx(h2(y), y),

The solution of (3.12)-(3.13) that we are looking for is in the form

ω(x, y) =

∫ y

0

U(x, y; 0, η)α1(η)dη +

∫ y

0

U(x, y; 1, η)α2(η)dη+

∫ y

0

V (x, y; 0, η)α3(η)dη. (3.14)

Here U(x, y; ξ, η), V (x, y; ξ, η) are de�ned respectively by the formulas (2.28) and (2.38). Satis-

fying the boundary conditions (3.13), we obtain

ϕ̃1(y) =

∫ y

0

Ux(h1(y), y;h1(η), η)α1(η)dη +

∫ y

0

Ux(h1(y), y;h2(η))α2(η)dη+

∫ y

0

Vx(h1(y), y;h1(η), η)α3(η)dη,

ϕ̃2(y) =

∫ y

0

Uxx(h1(y), y;h1(η), η)α1(η)dη +

∫ y

0

Uxx(h1(y), y;h2(η), η)α2(η)dη+∫ y

0

Vxx(h1(y), y;h1(η), η)α3(η)dη,

ϕ̃3(y) =

∫ y

0

Ux(h2(y), y;h1(η), η)α1(η)dη +

∫ y

0

Ux(h2(y), y;h2(η), η)α2(η)dη+∫ y

0

Vx(h2(y), y;h1(η), η)α3(η)dη,
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Applying Abel's transformation, given Lemma 2.3-2.10 and after some simple calculations we

obtain the system of the form∫ z

0

ϕ̃′′1(y)

(z − y)1/3
dy =

2π√
3
f ′(0)α′1(z) +

2π√
3
ϕ′(0)α′3(z) +

∫ z

0

α′1(η)dη×

∂

∂z

∫ z

η

(
∂

∂z

∫ z

t

1

(z − y)1/3

∂U(h1(y), y;h1(t), t)

∂x
dy

)
dt+

∫ z

0

α′3(η)dη×

∂

∂z

∫ z

η

(
∂

∂z

∫ z

t

1

(z − y)1/3

∂V (h1(y), y;h1(t), t)

∂x
dy

)
dt+∫ z

0

α2(η)dη
∂

∂z

∫ z

η

1

(z − y)1/3

∂2U(h1(y), y;h2(t), t)

∂x∂y
dy, (3.15)

ϕ̃2(z) =
π

3
α′1(z) +

∫ z

0

α′1(η)dη
∂

∂z

∫ z

η

∂2U(h1(z), z;h1(t), t)

∂z2
dt+∫ z

0

α2(η)
∂

∂z

(
∂2U(h1(z), z;h2(η), η)

∂x2

)
dη, (3.16)∫ z

0

ϕ̃′′3(y)

(z − y)1/3
dy =

∫ z

0

α′1(η)dη
∂

∂z

∫ z

η

∂

∂z

(∫ z

t

1

(z − y)1/3

∂U(h2(y), y;h1(t), t)

∂x
dy

)
dt+∫ z

0

α2(η)dη
∂

∂z

∫ z

η

1

(z − y)1/3

∂2U(h2(y), y;h2(t), t)

∂x∂y
dy+∫ z

0

α′3(η)dη
∂

∂z

∫ z

η

(
∂

∂z

∫ z

t

1

(z − y)1/3

∂2V (h2(y), y;h1(t), t)

∂x∂y
dy

)
dt. (3.17)

The system of integral equations (3.15), (3.16), (3.17) is equivalent to a system of Volterra

integral equations of the second kind (see [113])

αl(z) = Rl(z) +

3∑
s=1

∫ z

0

Nsl(z, η)αs(η)dη, l ∈ {1, 3} (3.18)

where αl(z)- unknown functions, Rl(z)- known function, which are expressed at given functions

ϕ̃i(z) (i ∈ {1, 3}),and Nsl(z, η)- matrix whose elements are expressed in terms of the fundamental

solution of equation (3.1).

It is easy to show that the kernel has a weak singularity of the form

|Nsl(z, η)| < C

|z − η|1/2
, (3.19)

where C = const > 0. Then, from the general theory [113] , the system (3.18) is uniquely solvable

in the class of continuous functions and can be represented in the form

αl(z) = Rl(z) +

3∑
s=1

∫ z

0

Hsl(z, η)Rs(η)dη, l ∈ {1, 3}.

Here the resolution Hsl(z, η) has a weak singularity of the form (3.19).

42



3.2 The solution of Cauchy problem for third-order equa-

tion with multiple characteristics in the class increasing

functions at in�nity.

In the section we study the solution of the equation

uxxx − uy = F (x, y) (3.20)

in the domain D = {(x, y) : −∞ < x < +∞, 0 < y ≤ Y }, with initial condition

u(x, 0) = 0. (3.21)

Note that the problem (3.20)-(3.21) has been considered in [100], but the behavior of its solutions

with |x| → ∞, depending on the behavior of the right-hand side of the equation, has not been

studied.

The purpose of the study is to construct solutions of (3.20)-(3.21) in the classes of functions

growing at in�nity.

It is known (see [26]), that is the fundamental solution of (3.20) has the following form

U(x, y; ξ, η) =
1

(y − η)1/3
f

(
x− ξ

(y − η)1/3

)
≡ U(x− ξ; y − η),

where f(t) =
∫∞

0
cos(λ3 − λt)dλ, −∞ < t < +∞, is the Airy function, which satis�es the

equation (2.29) with relations (2.30), (2.31) and following properties∫ 0

−∞ f(t)dt = 2π
3 ,

∫ +∞
0

f(t)dt = π
3 ,∫ +∞

−∞ U(x, y)dx =
∫ +∞
−∞ f(t)dt = π.

(3.22)

Theorem 3.3. Let the function of bounded variation F (x, y) belongs to any bounded sub-

domain D[a,b] = {(x, y) : a < x < b, 0 < y0 < Y } of domain D. Suppose that the variation

functions x
3
4 +δF (x, y) and x

3
4 +δFx(x, y) are bounded by any x < a and at high of x

F (x, y) < c1 exp
{
c2|x|

3
2−η
}
, (3.23)

where δ, η- su�ciently small positive numbers, c1, c2 - some constants.

Then the function

u(x, y) = − 1

π

∫ y

0

∫ +∞

−∞
U(x− ξ; y − τ)F (ξ, τ)dξdτ (3.24)

satis�es the equation (3.20) in the domain D and initial condition (3.21).

Proof. Di�erentiating formally the expression (3.24) with respective x and y, we obtain

∂3u(x, y)

∂x3
= − 1

π

∫ y

0

∫ +∞

−∞

∂3U(x− ξ, y − τ)

∂x3
F (ξ, τ)dξdτ =
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1

π

∫ y

0

∫ +∞

−∞

∂3U(x− ξ; y − τ)

∂ξ3
F (ξ, τ)dξdτ =

1

π

∫ y

0

∫ +∞

−∞

∂3U(ξ; y − τ)

∂ξ3
F (x− ξ, τ)dξdτ.

On the other hand

∂3U(x− ξ; y − τ)

∂x3
=

1

3(y − τ)
(U(x− ξ; y − τ) + (x− ξ)Ux(x− ξ; y − τ)) =

∂U(x− ξ; y − τ)

∂y
,

uy(x, y) = −F (x, y)− 1

π

∫ y

0

dτ

∫ +∞

−∞
Uy(x− ξ; y − τ)dξ.

By the change of variables z = x−ξ
(y−τ)1/3

we obtain

∂3u

∂x3
=

1

π

∫ y

0

∫ +∞

−∞

1

3(y − τ)
(f(z) + zf ′(z))F

(
x− z(y − τ)

1
3 , τ
)
dzdτ. (3.25)

Furthermore, we have

uxxx(x, y) =
1

3π

∫ y

0

dτ

y − τ

∫ +∞

−∞

d

dz
(zf(z))F

(
x− z(y − τ)

1
3 , τ
)
dz =

1

3π

∫ y

0

dτ

t− τ

(∫ −r
−∞

+

∫ r

−r
+

∫ +∞

r

)
d

dz
(zf(z))F

(
x− z(y − τ)1/3, τ

)
dz =

I1(x, y) + I2(x, y) + I3(x, y), (3.26)

where r - a su�ciently large positive number.

Now we study I1(x, y) in the domain D[a,b] a su�ciently large positive r.

I1(x, y) =
1

3π

∫ y

0

dτ

y − τ

∫ +∞

−∞
(f(z) + zf ′(z))F (x− z(y − τ)

1
3 , τ)dz =

I11(x, y) + I12(x, y). (3.27)

First, we consider the second term on the right hand side of (3.27). By (3.24) and (2.31) we have

I12(x, y) =

∫ y

0

dτ

y − τ

∫ r

−∞
zf ′(z)F

(
x− z(y − τ)

1
3 , τ
)
dz =

= O

(∫ y

0

dτ

y − τ
c2

∫ +∞

r

z
5
4 exp

{
−z 3

2

(
c1 − c3z−η|

x

z
+ (y − τ)1/3| 32−τ

)}
dz

)
,

where ci = const, (i ∈ {1, 3}).
Hence the I12(x, y) uniformly converges to zero at r → +∞ in the domainD[a,b]. Similarly, we

can show the uniform convergence of the integral I11(x, y). As a result, we obtain the convergence

of the integral I1(x, y).
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Now we study I3(x, y) in the domain D[a,b] for a su�ciently large positive number r. Inte-

grating by parts in the expression for I3(x, y), we obtain

I3(x, y) = − 1

3π

∫ y

0

dτ

y − τ

(
zf(z)F

(
x− z(y − τ)

1
3 , τ
) ∣∣+∞

r
+

∫ +∞

r

zf(z)Fξ

(
x− z(y − τ)1/3, τ

)
(y − τ)1/3dz ) = I31(x, y) + I32(x, y).

We have to use (2.30) and obtained

I31(x, y) ≤
∣∣∣∣ 1

3π

∫ y

0

dτ

y − τ

∫ +∞

r

{
z−δ sin

(
2

3
z

2
3

)(x
z
− (y − τ)1/3

)− 3
4−δ ×

(
x− z(y − τ)

1
3

) 3
4 +δ

F
(
x− z(y − τ)

1
3 , τ
)
dz } | ≤ 1

3π

∫ y

0

dτ

y − τ
M1M2

(y − τ)
δ
3

(x− ξ)δ
∣∣−r
−∞ =

1

3π

M1M2

(x+ r)δ

∫ y

0

dτ

(y − τ)1− δ3
− 1

3π
lim

ξ→−∞

M1M2

(x− ξ)δ

∫ y

0

dτ

(y − τ)1− δ3
=

1

3π(x+ r)δ
y
δ
3 .

Therefore I31(x, y) uniformly converges to zero at r → +∞ in the domain D[a,b].

Now we consider the expression I32(x, y)

I32(x, y) = − 1

π

∫ y

0

dτ

(y − τ)
2
3

∫ +∞

r

z−δ sin

(
2

3
z

3
2

)(
x

y
− (y − τ)1/3

)− 3
4−δ

×

(
x− z(y − τ)

1
3

) 3
4 +δ

Fξ

(
x− z(y − τ)

1
3 , τ
)
dz = − 1

π

∫ y

0

dτ

(y − τ)
2
3

×

∫ +∞

ρ

v−
2
3 sin

(
2

3
v

) ∣∣∣∣ xv 2
3

− (y − τ)
1
3

∣∣∣∣− 3
4−δ ∣∣∣x− v 2

3 (y − τ)
1
3

∣∣∣ 34 +δ

×

Fξ

(
x− v 2

3 (y − τ)
1
3 , τ
) 2

3
v−

1
3 dv = − 2

3π

∫ y

0

dτ

(y − τ)
2
3

∫ +∞

ρ

v−
2δ−1

3 ×

sin

(
2

3
v

)
µ(v)

∣∣∣x− v 2
3 (y − τ)

1
3

∣∣∣ 34 +δ

Fξ

(
x− v 2

3 (y − τ)
1
3 , τ
)
dv,

where ρ = (x+r)
3
2

(y−τ)
1
2
, v = z

3
2 .

This integral at su�ciently large positive r is bounded by the following expression

− 2

3π

∫ y

0

dτ

(y − τ)
2
3

{∣∣∣x− r(y − τ)
1
3

∣∣∣ 34 +δ ∣∣∣Fξ(x− r(y − τ)
1
3 , τ)

∣∣∣+
V
v≥ (x+r)

3
2

(y−τ)
1
2

[(
x− v 2

3 (y − τ)
1
3

) 3
4 +δ

Fξ

(
x− v 2

3 (y − τ)
1
3 , τ
)]
×

sup

{∣∣∣∣∫ n

m

v−
2−δ
3 µ(v) sin(

2

3
v)dv

∣∣∣∣} ,
where ρ ≤ m ≤ n.
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The existence of the integrals∫ ∞
0

x−p sinxdx =
π

2Γ(p)

(
sin

pπ

2

)−1

, 0 < p < 2,

it means that the argument of the sup uniformly tends to zero at r → ∞ in the domain D[a,b].

From equation (3.24), it is not di�cult to show the realization of condition (3.21).

Now select the class of solutions u(x, y) depending on the behavior of the functions F (x, y)

at |x| → ∞.

By (3.22) we have

u(x, y) = − 1

π

∫ y

0

∫ +∞

−∞
U(x− ξ; y − τ)F (ξ, τ)dξdτ =

− 1

π

∫ y

0

∫ +∞

−∞
U(ξ; y − τ)F (x− ξ, τ)dξdτ =

− 1

π

∫ y

0

∫ +∞

−∞
f(z)F (x− z(y − τ)

1
3 , τ)dzdτ = − 1

π

∫ y

0

dτ

(∫ −r
−∞

+

∫ r

−r
+

∫ +∞

r

)
×

f(z) · F (x− z(y − τ)
1
3 , τ)dz = u1(x, y) + u2(x, y) + u3(x, y),

where r is a su�ciently large positive number.

Now we consider the expression u1(x, y) in the domain D[a,b].

Then

exp
(
−c2|x|

3
2 +η
)
· u1(x, y) = − 1

π

∫ y

0

∫ −r
−∞

exp
(
−c2|x|

3
2 +η
)
×

f(z)F (x− z(y − τ)
1
3 , τ)dzdτ = u′1(x, y).

According to the conditions of the theorem and the relations (3.22), the integral in the domain

D[a,b] is estimated as follows

u′1(x, y) = O

(
− 1

π

∫ y

0

∫ +∞

r

exp

{
−c2

∣∣∣|x| 32 +η − c2|z|3/2 + c3|x− z(y − τ)1/3|
∣∣∣ 32−τ} dzdτ) .

Hence u′1(x, y) uniformly converges to zero at r → +∞ in the domain D[a,b]. Furthermore

|u′1(x, y)| ≤ K. Therefore |u1(x, y)| ≤ K · exp(c2|x|
3
2−η) for su�ciently large x.

Now we study u3(x, t) for a su�ciently large positive r in the domain D[a,b]. According to

(2.30) we have∣∣∣x 3
4 +δu3(x, y)

∣∣∣ ≤ | 1
π

∫ y

0

dτ

∫ +∞

r

|x| 34 +δz−1−δ sin(
2

3
z3/2) · |x

z
− (y − τ)

1
3 |− 3

4−δ×

|x− z(y − τ)
1
3 | 34 +δ|F (x− z(y − τ)1/3, τ)dz| ≤

M3

∣∣∣∣∣∣∣
1

π

∫ y

0

dτ

∫ ∞
r

z−1−δ sin

(
2

3
z

3
2

)
·


∣∣∣x− z(y − τ)

1
3 + z(y − τ)

1
3

∣∣∣∣∣∣x− z(y − τ)
1
3

∣∣∣


3
4 +δ

dz

∣∣∣∣∣∣∣ =
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M3

∣∣∣∣∣∣ 1π
∫ y

0

dτ

∫ ∞
r

z−1−δ sin

(
2

3
z

3
2

)
·

(
1 +

z(y − τ)
1
3

x− z(y − τ)
1
3

) 3
4 +δ

dz

∣∣∣∣∣∣ ≤
M4

∣∣∣∣∣∣∣
1

π

∫ y

0

dτ

∫ ∞
ρ

q−
1
3−δ sin(q)

∣∣∣∣∣∣1 +
(y − τ)

1
3

x
3
2 q

2
3
− (y − τ)

1
3

∣∣∣∣∣∣
3
4 +δ

dq

∣∣∣∣∣∣∣ ≤M5,

where

M3 =

{
max

(x,y)∈D[a,b]

∣∣∣P (x− r(y − τ)
1
3 )
∣∣∣+ Vz≥r1(x,y)∈D[a,b]

(
P
(
x− r(y − τ)

1
3

))}
,

ρ =
2

3
r3/2.

Hence u3(x, y) uniformly convergence to zero at r → +∞.

Therefore we have

|x| 34 +δ|u3(x, y)| ≤M,

|u3(x, y)| ≤M |x|− 3
4−δ,

for x < a and any y ≥ y0 > 0.

In our approach, any a, b and y0 are true in the domain D
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Part 4

Nonlinear boundary value problem

for linear and nonlinear third-order

equation with multiple

characteristics.
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4.1 A problem for the third-order equation with multiple

characteristics and nonlinear boundary conditions

We consider a plane (x, y) domain D = {(x, y) : h1(y) < x < h2(y), 0 ≤ y ≤ Y }. The curves

x = hi(y) ∈ C1[0, Y ], (i = 1, 2), are de�ned on the lateral boundaries of domain D and are

without intersection points. In the domain D we study the following problem for the equation

(3.1).

Problem Find the solutions of the equation (3.1) in the regular domain D , there exist the

derivatives ux, uxx, which are continuous in D̄ and satisfy the boundary conditions

u(x, 0) = F (x), h1(0) ≤ x ≤ h2(0), (4.1)

ux(h1(y), y) = g(u(h1(y), y), y), 0 ≤ y ≤ Y, (4.2)

uxx(h1(y), y) = ϕ1(y), 0 ≤ y ≤ Y, (4.3.)

u(h2(y), y) = ϕ2(y), 0 ≤ y ≤ Y (4.4)

and the compatibility conditions

F ′(h1(0)) = g(u(h1(0), 0)), F (h2(0)) = ϕ2(0), F ′′(h1(0)) = ϕ1(0).

Here given functions F (x), g(u, y), ϕi(y), (i = 1, 2), f(x, y)- are bounded and su�ciently smooth,

and the function g(ξ, y) satis�es a Lipschitz condition with respective to ξ

|g(ξ1, y)− g(ξ2, y)| < l(y)|ξ1 − ξ2|, (4.5)

where

0 < l(y) ≤ −k +

√
k2 +

3k exp{−k(h2(y)− h1(y))}
h2(y)− h1(y)

, k = const > 0. (4.6)

Theorem 4.1. If the condition (4.5),(4.6) are true, then a solution of (3.1) (4.1) - (4.4) is unique.

Proof. Suppose that there are two solutions u1(x, y), u2(x, y) of the problem. Then v(x, y) =

u1(x, y)− u2(x, y) satis�es the equation L̃(v) = 0 and conditions

v(x, 0) = 0, h1(0) ≤ x ≤ h2(0),

vx(h1(y), y) = g(u1(h1(y), y), y)− g(u2(h1(y), y), y), 0 ≤ y ≤ Y,
vxx(h1(y), y) = 0, 0 ≤ y ≤ Y,
v(h2(y), y) = 0, 0 ≤ y ≤ Y.

 (4.7)

We consider the identity ∫ ∫
D

C(x, y)vL(v)dxdy = 0, (4.8)

where

C(x, y) = exp{−kx− βk3y}, β ≥ 1, k > 0, β, k = const. (4.9)
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Integrating the identity (4.8) by parts and using the suitable boundary conditions (4.7), we get∫ Y

0

Cx(x, y)v(g(u1(h1(y), y), y)− g(u2(h2(y), y), y))|x=h1(y)dy−

1

2

∫ ∫
D

(Cxxx − Cy)v2dxdy +
3

2

∫ ∫
D

Cxv
2
xdxdy−

1

2

∫ Y

0

(
(Cxx + h′1(y)C)v2|x=h1(y) + Cv2

x|x=h2(y)

)
dy+

1

2

∫ Y

0

Cv2
x|x=h1(y)dy −

1

2

∫ h2(0)

h1(0)

Cv2|y=Y dx = 0 (4.10)

We set

I =
1

2

∫ ∫
D

(Cxxx − Cy)v2dxdy +
1

2

∫ h2(0)

h1(0)

Cv2|y=Y dx+

1

2

∫ Y

0

{(k2 + h′1(y))Cv|x=h1(y) + Cv2
x|x=h2(y)}dy. (4.11)

By choosing a su�ciently large number k, we can always assume that k2 + h′1(y) > 0, i.e I ≥ 0.

By (4.11) and from expression (4.10) we have

I ≡ −3

2

∫ ∫
D

kCv2
xdxdy −

∫ Y

0

kCv(g(u1(h1(y), y), y)− g(u2(h1(y), y), y))dy+

1

2

∫ Y

0

Cv2
x|x=h1(y)dy. (4.12)

Taking into account the inequality

v2(h1(y), y) ≤ (h2(y)− h1(y))

∫ h2(y)

h1(y)

v2
xdy

and conditions (4.5) from (4.12) we can get

I ≤
∫ ∫

D

{1

2
l2(y)C(h1(y), y)(h2(y)− h1(y))+

kC(h1(y), y)(h2(y)− h1(y))l(y)− 3

2
kC(h2(y), y)}v2

xdxdy.

Which the condition (4.6) is true, we can get the inequality I ≤ 0. Hence I = 0. It follows that

v ≡ 0 in the domain D. Then from (4.11) we get v(x, y) = 0 in the domain D̄, if β > 1. Let

β = 1. Then from 3.11 we have the following additional conditions

v(h1(y), y) = 0, vx(h2(y), y) = 0, v(x, Y ) = 0,

when the problem reduces to Cattabriga problem, and is simultaneously satis�ed by the above

conditions and (4.7)

The uniqueness of the solution of this problem is proved in the paper (see [26-27]).
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Theorem 4.2. Let F (x) ∈ C3[c1, c2], (c1 ≤ h1(y) < h2(y) ≤ c2); ϕi(y) ∈ C3−i[0, Y ],

(i = 1, 2); |g(u, y)| < M for any �xed |u| <∞ and satis�es the conditions of Theorem 4.1. Then

the solution of the problems (3.1),(4.1)-(4.4) exists.

Proof. First, we consider the auxiliary problem: it is required to de�ne in the domain D

the regular solution u(x, y) ∈ C3,1
x,y(D) ∩ C1,0

x,y(D̄) ∩ C2,0
x,y(D̄ \ (x = h2(y))) of the equation (3.1),

satisfying the boundary conditions (4.1),(4.3),(4.4) and

ux(h1(y), y) = ϕ3(y), 0 ≤ y ≤ Y (4.2′)

We construct the Green's function for the problem (3.1), (4.1), (4.3), (4.4) and (4.2').

We have the identity

ϕL̃(ψ)− ψM(ϕ) =
∂

∂ξ
(ϕψξξ − ϕξψξ − ϕξξψ)− ∂

∂η
(ϕψ),

where M ≡ ∂
∂y −

∂3

∂x3 - di�erential operator is adjoint to operator L̃; ϕ and ψ are su�ciently

smooth functions. Integrating the identity of the domain D, we get∫ ∫
D

(ϕL̃(ψ)− ψM(ϕ))dξdη =

∫
Γ

(ϕξξψ − ϕξψξ + ϕψξξ)dη + (ϕψ)dξ, (4.13)

where Γ = ∂D.

Now, in the formula (4.13) for the functions ψ and ϕ we will take the respective functions

(any regular solution of equation (3.1)), and U(x, y; ξ, η). We call the function U(x, y; ξ, η)-

fundamental solution of the equation (3.1) and it is de�ned by (2.28).

Let

Dε = {(ξ, η) : h1(η) < ξ < h2(η), 0 < η ≤ y − ε},

where ε > 0 is su�ciently small number.

Then the identity (4.13) reduces to the following form∫ ∫
Dε
U(x, y; ξ, η)f(ξ, η)dξdη =

∫ y−ε

0

{
(uξU − uξUξ + uUξξ)|ξ=h2(η)−

(uξξU − Uξuξ + uUξξ)|ξ=h1(η) } dη +

∫ h2(0)

h1(0)

uU |η=0dξ−

∫ h2(y−ε)

h1(y−ε)
uU |η=y−εdξ +

∫ y−ε

0

(h′2(η)uU |ξ=h2(η) − h′1(η)uU |ξ=h1(η))dη.

Sending ε to zero and taking into account the equality

lim
ε→∞

∫ h2(y−ε)

h1(y−ε)
U(x, y; ξ, y − ε)u(ξ, y − ε)dξ = πu(x, y),

we get

πu(x, y) =

∫ y

0

(uξξU − uξUξ + uUξξ)|ξ=h2(η)dη−
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∫ y

0

(uξξU − uξUξ + uUξξ)|ξ=h1(η)dη +

∫ h2(0)

h1(0)

uU |η=0dξ+∫ y

0

h′2(η)uU |ξ=h2(η)dη −
∫ y

0

h′1(η)uU |ξ=h1(η)dη−∫ ∫
Dy

U(x, y; ξ, η)f(ξ, η)dξdη. (4.14)

Now we suppose that W (x, y; ξ, η) - any regular solution of the equation

M(v) ≡ ∂v

∂η
− ∂3v

∂ξ3
= 0, (4.15)

and u(x, y) is any regular solution of (3.1). Then, assuming formula (4.13), ϕ = W , ψ = u we

have

−
∫ ∫

D

W (x, y; ξ, η)f(ξ, η)dξdη =

∫ y

0

{(uξξW − uξWξ + uWξξ)|ξ=h2(η)−

−(uξξ − uξWξ + uWξξ)|ξ=h1(η)}dη +

∫ y

0

h′2(η)uW |ξ=h2(η)dη+∫ h2(0)

h1(0)

uW |η=0dξ −
∫ h2(y)

h1(y)

uW |η=ydξ −
∫ y

0

h′1(η)uW |ξ=h1(η)dη. (4.16)

From (4.14) and (4.16) we obtain

πu(x, y) =

∫ y

0

(uξξ(U −W ) + uξ(−U +W )ξ + u(U −W )ξξ)|ξ=h2(η)dη+

∫ y

0

(uξξ(−U +W )− uξ(U −W )ξ + u(−U +W )ξξ)|ξ=h1(η)dη +

∫ h(0)

h1(0)

u(U −W )|η=0dξ+∫ y

0

h′2(η)u(U −W )|ξ=h2(η)dη −
∫ h2(y)

h1(y)

uW |η=ydξ +

∫ y

0

h′1(η)u(U −W )|ξ=h1(η)dη−∫ ∫
Dy

(U(x, y; ξ, η)−W (x, y; ξ, η))f(ξ, η)dξdη. (4.17)

If the regular solution W (x, y; ξ, η) of the equation (4.15) satis�es boundary conditions

Wξ|ξ=h2(η) = Uξ|ξ=h2(y);

(Wξξ + h′1(η)W )|ξ=h1(η) = (Uξξ + h′1(η)U)|ξ=h1(η); W |η=y = 0, (4.18)

then from (3.17) we have

πu(x, y) = −
∫ y

0

G(x, y;h1(η), η)uξξ(h1(η), η)dη+

∫ y

0

Gξ(x, y;hη, η)uξ(h1(η), η)dη +

∫ y

0

Gξξ(x, y;h2(η), η)u(h2(η), η)dη+∫ h2(0)

h1(0)

G(x, y; ξ, 0)u(ξ, 0)dξ −
∫ ∫

D

G(x, y; ξ, η)f(ξ, η)dξdη, (4.19)
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whereG(x, y; ξ, η) = U(x, y; ξ, τ)−W (x, y, ξ, η)- Green's function for the problems (3.1), (4.1),(4.3),(4.4)

and (4.2').

The formula (4.19) gives us the solution of the problems (3.1),(4.1),(4.3),(4.4) and (4.2'). We

need to prove the existence of the function W (x, y; ξ, η) that satis�es the equation (4.15) and the

condition (4.18).

Now we consider the following expression

−W (x, y; ξ, η) =

∫ y

η

U(h2(τ), τ ; ξ, τ)α1(x, y; τ)dτ+

∫ y

τ

U(h1(τ), τ ; ξ, τ)α2(x, y; τ)dτ +

∫ y

τ

V (h2(τ), τ ; ξ, τ)α3(x, y; τ)dτ, (4.20)

where U(x, y; ξ, τ) and V (x, y; ξ, τ) are given by the formula (2.28), (2.38) and αi(x, y; τ)(i ∈
{1, 3}) unknown functions.

Satisfying boundary condition (4.18) and by Lemma 2.4 and 2.6 from (4.20) we have

U(x, y;h2(η), η) =

∫ y

η

U(h2(τ), τ ;h2(τ), τ)α1(x, y; τ)dτ+

∫ y

τ

U(h1(τ), τ ;h2(τ), τ)α2(x, y; τ)dτ +

∫ y

τ

V (h2(τ), τ ;h2(τ), τ)α3(x, y; τ)dτ, (4.21)

Uξ(x, y;h2(η), η) =

∫ y

η

Uξ(h2(τ), τ ;h2(τ), τ)α1(x, y; τ)dτ+∫ y

τ

Uξ(h1(τ), τ ;h2(τ), τ)α2(x, y; τ)dτ +

∫ y

τ

Vξ(h2(τ), τ ;h2(τ), τ)α3(x, y; τ)dτ, (4.22)

Uξξ(x, y;h2(η), η) + h′1(τ)U(x, y;h1(τ), τ) =

∫ y

η

Uξξ(h2(τ), τ ;h1(τ), τ)α1(x, y; τ)dτ+∫ y

τ

Uξξ(h1(τ), τ ;h1(τ), τ)α2(x, y; τ)dτ +

∫ y

τ

Vξξ(h2(τ), τ ;h1(τ), τ)α3(x, y; τ)dτ+

h′1(τ)

∫ y

τ

U(h2(τ), τ ;h1(τ), τ)α1(x, y; τ)dτ+

h′1(η)

∫ y

η

U(h1(τ), τ ;h1(τ), τ)α2(x, y; τ)dτ+

h1(η)

∫ y

η

V (h2(τ), τ ;h1(τ), τ)α3(x, y; τ)dτ, (4.23)

Using the properties of the functions U(x, y; ξ, τ) and V (x, y; ξ, τ) and Lemma 2.3-2.8 we �nd

the solution of the problems (4.21)-(4.23), αi(x, y, τ) ∈ C(D)(i = 1, 3); α2(x, y, η) ∈ L2(D).

It is easy to show that the Green's function G(x, y; ξ, η) has the same estimate that holds for

U(x, y; ξ, η) (see [1,26]).

Now we turn to the solution of the problem (3.1), (4.1)-(4.4). We are looking for it to be in

the form (4.19). Then (4.19) takes the form

πu(x, y) =

∫ y

0

Gξ(x, y;h1(η), η)g(u(h1(η), η), η)dη +H(x, y) (4.24)
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where

H(x, y) =

∫ y

0

Gξξ(x, y;h2(η), η)ϕ2(η)−

∫ y

0

G(x, y;h1(η), η)ϕ1(η)dη +

∫ h2(0)

h1(0)

G(x, y; ξ, 0)F (ξ)dξ−∫ ∫
D

G(x, y; ξ, η)f(ξ, η)dξdη.

From (4.24) at x = h1(y) we arrive at the Nonlinear Integral Equations of the Hammerstein type

for the function τ(y) = u(h1(y), y)

τ(y) =

∫ y

0

Gξ(h1(y), y;h1(η), η)g(τ(η), η)dη +H(y), (4.25)

where

H(y) =

√
3

2πϕ′(0)

∫ y

0

G1(h1(y), y, η)dη

∫ η

0

(
ϕ′(t)− h′1(t)F ′′′(h1(t))

(τ − t)1/3
−

∂Wξξ(h1(t),t)
∂t

(τ − t)1/3

)
dt+

∫ y

0

G3(h1(y), y, η)(ϕ2(η)− F (h2(η))−W (h2(η), η))dη −
∫ y

0

G2(h1(y), y, η)×

(F ′(h1(η)) +Wx(h1(η), η))dη + F (h1(y)) +W (h1(y), y).

The equation (4.25) will be solved by the method of successive approximations.

Let

|H(y)| < N1, |g(u, y)| < M, |τ(y)| < N, N = N1 + 1 (4.26)

We set

τ0(y) ≡ H(y) ≤ N1 < N,

τ (n)(y) = H(y) +

∫ y

0

Gξ(h1(y), y;h1(η), η)g(τ (n−1)(η), η)dη. (4.27)

Hence, by setting n = 1 and using the estimate (4.27) we have

|τ (1)(y)| ≤ N1 + C1M

∫ y

0

(y − τ)−2/3dη = N1 + 3C1My1/3. (4.28)

Because |τ1(y)| < N , we require the inequality to satisfy

N1 + 3C1My1/3 < N.

By the choice N here we have the inequality 3C1My1/3 < 1 which is true at

y <

(
1

3C1M

)3

(4.29)

Then from (4.27) at n = 2 we �nd that

|τ (2)(y)| ≤ N1 + 3C1My1/3 < N,
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if y < ( 1
3C1M

)3.

Hence, by induction we conclude that all the successive approximations will be assessed the

same amount, if the inequality (4.26) is satis�ed.

Now we show that the limit of the sequence exists. It is enough to prove the convergence of

the series

τ0 + (τ1 − τ0) + (τ2 − τ1) + ...+ (τn − τ (n−1)) + .... (4.30)

We estimate the absolute values of the terms of (4.30). We have

|τ (1) − τ (0)| ≤ C1M

∫ y

0

(y − τ)−1/3dτ = C1My1/3B(1,
2

3
),

where B(ν, µ) =
∫ 1

0
xν−1(1− x)µ−1dx - Beta Function.

|τ2 − τ1| ≤ C1

∫ y

0

1

(y − η)−2/3
|g(τ (1)(η))− g(τ0(η))|dτ ≤

C1L

∫ y

0

1

(y − τ)−2/3
|τ (1)(η)− τ (0)(η)|dτ ≤ C2

1ML

∫ y

0

(y − η1)−2/3dη1

∫ η1

0

(η1 − η2)−2/3dη2 =

C2
1MLy2/3B

(
1,

2

3

)
B

(
5

3
,

2

3

)
,

where L-const, which is L ≥ l(y).

Using induction, it is easy to show that

|τ (n) − τ (n−1)| ≤ Cn−1
1 Ln−1My

2n
3

n∏
j=1

B

(
2(j − 1)

3
+ 1,

2

3

)
.

It follows that each term of series (4.30) does not exceed the relevant terms of the power module

series
∞∑
n=1

Cn1 L
n−1My

n
3

n∏
j=1

B

(
2(j − 1)

3
+ 1,

2

3

)
.

We will show the convergence of (4.30). Applying D'alembert principle we get

lim
n→
|un+1

un
| = lim

n→∞
C1LMy

1
3B

(
2(n− 1)

3
+ 1,

2

3

)
= 0. (4.31)

Then the series (4.30) converges absolutely and uniformly. Therefore, the sequence {τ (n)(y)}
converges uniformly to τ(y).

We have proved that the solution of (3.1) (4.1)-(4.4) exists in the domain D1 = {(x, y) :

h1(y) ≤ x ≤ h2(y), 0 ≤ y ≤ Y0} for some Y0, although the problem was given in the domain

D = {(x, y) : h1(y) ≤ x ≤ h2(y), 0 ≤ y ≤ Y }. If it turns out that Y0 ≥ Y , obviously,

our problem is completely solved. If Y0 < Y , however, it was found that the solution can be

extended in domain D1 = {(x, y) : h1(y) ≤ x ≤ h2(y), 0 ≤ y ≤ Y0} . This can be done as follows.

We consider the problem (3.1), (4.1)-(4.4) in the domainD1 = {(x, y) : h1(y) ≤ x ≤ h2(y), 0 ≤
y ≤ Y0}.
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To solve the problem in this domain by applying the above scheme, we obtain a nonlinear

integral equation of Volterra second form

τ(y) = H(y) +

∫ y

y0

Gξ(h1(y), y;h1(η), η)g(τ(η), η)dη,

which can be solved by successive approximations in the domain D2 = {(x, y) : h1(y) ≤ x ≤
h2(y), 0 ≤ y ≤ Y1}. If, it turns out that even after that , Y1 < Y then the above procedure can

be repeated and eventually run out [0, Y ].
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4.2 A nonlinear boundary value problem for nonlinear third-

order equation with multiple characteristics

In this section we study a nonlinear boundary value problem for the nonlinear third-order equa-

tion with multiple characteristics in the domain having curved boundary.

Problem Is required to determine in the domainD = {(x, y) : h1(y) < x < h2(y), 0 < y ≤ 1}
the function u(x, y) with the following properties:

1) It is a regular solution of the equation

Lu = uxxx − uy = f(x, y, u(x, y)); (4.32)

2) u(x, y) ∈ C3,1
x,y(D) ∩ C2,0

x,y(D̄ \ (x = h1(y)) ∩ C(D̄));

3) It satis�es the following conditions:

u(x, 0) = u0(x), h1(0) ≤ x ≤ h2(0), (4.33)

ux(h1(y), y) = g(u(h1(y), y), y), 0 ≤ y ≤ 1, (4.34)

uxx(h1(y), y) = σ(u(h1(y), y), y), 0 ≤ y ≤ 1, (4.35)

u(h2(y), y) = ϕ(y), 0 ≤ y ≤ 1. (4.36)

The given functions u0(x), g(ξ, η), σ(η, y), ϕ(y), f(x, y, u(x, y)) are required to be bounded and

smooth in their domain, as well as to satisfy the compatibility conditions at the corner points of

consideration domains i.e.

u′0(h1(0)) = g(u(h1(0), 0), 0), u′′0(h1(0)) = σ(u(h1(0), 0), 0), u0(h2(0)) = ϕ(0).

The uniqueness of solution of the problem

Theorem 4.3. Let hi(y) ∈ C1(0 ≤ y ≤ 1), i = 1, 2 and g(u(h1(y), y), y) ∈ C(0 ≤ y ≤ 1),

σ(u(h1(y), y), y) ∈ C(0 ≤ y ≤ 1), f(x, y, u(x, y)) ∈ C(D̄), |g(u1, y) − g(u2, y)| ≤ l(y)|u1 − u2|,
|σ(u1, y)−σ(u2, y)| ≤ k(y)|u1−u2|, f(x, y, u1)−f(x, y, u2) ≤ p(x, y)|u1−u2|. Then the solution

of the problems (4.32)-(4.36) is unique.

Proof Suppose that, there are two solutions to this problem, which are u1(x, y), u2(x, y).

We consider the di�erence between them ω(x, y) = u1(x, y) − u2(x, y). Then we get for ω(x, y)

the following problem:

L(ω) ≡ ωxxx − ωy = f(x, y, u1(x, y))− f(x, y, u2(x, y)), (4.37)

ω(x, 0) = 0, h1(0) ≤ x ≤ h2(0),

ωx(h1(y), y) = g(u(h1(y), y), y)− g(u2(h2(y), y), y), 0 ≤ y ≤ 1,

ωxx(h1(y), y) = σ(u1(h1(y), y), y)− σ(u2(h2(y), y), y), 0 ≤ y ≤ 1,

ω(h2(y), y) = 0, 0 ≤ y ≤ 1,

 (4.38)
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and
|g(u1, y)− g(u2, y)| ≤ l(y)|u1 − u2| = l(y)|ω|,
|σ(u1, y)− σ(u2, y)| ≤ k(y)|u1 − u2| = k(y)|ω|,
|f(x, y, u1)− f(x, y, u2)| ≤ p|u1 − u2| = p(ω),

 (4.39)

Integrating identity

vωL̃(ω) ≡ ωxxx − ωy = vω{f(x, y, u1(x, y))− f(x, y, u2(x, y))}

in the domain D, where v = e−αx−βy, α > (
√

2− 1)k, β > α3 + p we have∫ 1

0

vωωxx
∣∣h2(y)

h1(y)
dy − 1

2

∫ 1

0

vω2
x

∣∣h2(y)

h1(y)
dy −

∫ 1

0

vxωωx
∣∣h2(y)

h1(y)
dy+

1

2

∫ 1

0

vxxω
2
∣∣h2(y)

h1(y)
dy +

3

2

∫ ∫
D

vxω
2
xdxdy −

1

2

∫ ∫
D

vxxxω
2dxdy−

1

2

∫ h2(y)

h1(y)

vω2
∣∣1
0
dx− 1

2

∫ 1

0

h′1(y)vω2
∣∣
x=h1(y)

dy +
1

2

∫ 1

0

h′2(y)vω2
∣∣
x=h2(y)

dx+

1

2

∫ ∫
D

vyω
2dxdy =

∫ ∫
D

vω(f(x, y, u1(x, y))− f(x, y, u2(x, y)))dxdy. (4.40)

We have used the boundary conditions (4.38) and introduced the following notation:

I =
1

2

∫ 1

0

vω2
x

∣∣
x=h2(y)

dy +
1

2

∫ h2(1)

h1(1)

vω2
∣∣
y=1

+
3α

2

∫ ∫
D

vω2
xdxdy ≥ 0. (4.41)

According to the conditions (4.38)-(4.39) from (4.40) ,we get

I ≤ 1

2

∫ 1

0

(2k(y)− h′1(y) + l2(y)− 2αl(y)− α2)vω2
∣∣
x=h1(y)

dy+

1

2

∫
D

(α3 − β + p(x, y))vω2dxdy. (4.42)

The constants α and β can be chosen so that there will be a relationship I ≤ 0. Since by

assumption I ≥ 0 it follows that I = 0.

Then from (4.41) we obtain the following conditions: if ωx(x, y) = 0 at x = h1(y); if ω(x, y) =

0 at y = 1; if ωx(x, y) = 0 at (x, y) ∈ D.

Hence we have

ω(x, y) = w(y), (x, y) ∈ D.

As ω(h2(y), y) = 0 then w(y) = 0. By the continuity ω(x, y) we get ω(x, y) = 0 in the domain

D̄.

The existence of solutions of the problem

Theorem 4.4. Suppose that along with the terms of the uniqueness theorem, the following

conditions are satis�ed

ϕ(y) ∈ C1[0, 1]; u0(x) ∈ C3[c1, c2] (c1 ≤ h1(y) < h2(y) ≤ c2).
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Moreover, let there exist constantsM , N1, N2, Mi (i =∈ {1, 7}) such that for y ∈ [0, 1] any �xed

|u| <∞ we get the inequalities

|g(u, y)| < N1, |σ(u, y)| < N2, |gu(u, y)| < M1,

|gy(u, y)| < M2, |σu(u, y)| < M3 |σy(u, y)| < M4,

for (x, y) ∈ D and for any �xed |u| <∞

|f(x, y, u(x, y))| < M, |fx(x, y, u(x, y))| < M5,

|fy(x, y, u(x, y))| < M6, |fu(x, y, u(x, y))| < M7,

Then the solution of the problem (4.32)-(4.36) exists.

Proof. The solution of (4.32)-(4.36) has the representation in (see [6])

u(x, y) =
1

π

∫ y

0

Gξ(x, y;h1(η), η)g(τ(η), η)dη +
1

π

∫ h2(0)

h1(0)

G(x, y; ξ, 0)u0(ξ)dξ+

1

π

∫ y

0

Gξξ(x, y;h2(η), η)ϕ(η)dη − 1

π

∫ y

0

G(x, y;h1(η), η)σ(τ(η), η)dη−

1

π

∫ ∫
D

G(x, y; ξ, η)f(ξ, η, u(ξ, η))dξdη, (4.43)

where

u(h1(y), y) = τ(y), (4.44)

G(x, y; ξ, η) = U(x, y; ξ, η)−W (x, y; ξ, η) - Green's function, U(x, y; ξ, η) - fundamental solu-

tion of the equation (4.32), W (x, y; ξ, η) - a regular solution of the following problems

−Wξξξ +Wη = 0,

W |η=y = 0,

(Uξξ + h′1(y)U)|ξ=h1(η) = (Wξξ + h′1(y)W |ξ=h1(η),

U |ξ=h2(η) = W |ξ=h2(η), Uξ|ξ=h2(η) = Wξ|ξ=h2(η).

Now we pass to the limit at x→ h1(y), and according to the notation (4.44) from (4.43) we have

τ(y) =
1

π

∫ y

0

Gξ(h1(y), y;h1(η), η)g(τ(η), η)dη +
1

π

∫ h2(0)

h1(0)

G(h1(y), y; ξ, 0)u0(ξ)dξ+

1

π

∫ y

0

Gξξ(h1(y), y;h2(η), η)ϕ(η)dη − 1

π

∫ y

0

G(h1(y), y;h1(η), η)σ(τ(η), η)dη−

1

π

∫ ∫
D

G(h1(y), y; ξ, η)f(ξ, η, u(ξ, η))dξdη. (4.45)

The system (4.43)-(4.45)- is a system of nonlinear integral equations of Hammerstein type with

respective u(x, y) and τ(y). The unique solvability of this system will be proven by the contraction
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mapping principle. Let set Gθ of a pair of continuous functions F{u(x, y), τ(y)} in the domain

Dθ{(x, y) : h1(y) < x < h2(y), 0 ≤ y ≤ θ} with bounded norm ||F || = ||u||+ ||τ || in the interval

0 ≤ y ≤ θ, where
||u|| = max

(x,y)∈D
|u|, ||τ || = max

0≤y≤θ
|τ |.

Let Gθ,N = {F : F ∈ Gθ, ||F || ≤ N} be a subset of the Gθ.

We denote the right hand side of (4.43), (4.45) respectively by A1(u, τ), A2(u, τ) and we

de�ne the map A = (A1(u, τ), A2(u(τ), τ)).

We establish an estimate ux(x, y) in the domain D̄.

ux(x, y) =
1

π

∫ y

0

Gξx(x, y;h1(η), η)g(τ(η), η)dη +
1

π

∫ h2(0)

h1(0)

Gx(x, y; ξ, 0)u0(ξ)dξ+

1

π

∫ y

0

Gξξx(x, y;h2(η), η)ϕ(η)dη − 1

π

∫ y

0

Gx(x, y;h1(η), η)σ(τ(η, η))dη−

1

π

∫ ∫
D

Gx(x, y; ξ, η)f(ξ, η, u(ξ, η))dξdη.

||ux(x, y)|| ≤ |J1|+ |J2|+ |J3|+ |J4|+ |J5|,

where

J1 =
1

π

∫ y

0

Gξx(x, y;h1(η), η)g(τ(η), η)dη,

J2 =
1

π

∫ h2(y)

h1(0)

Gx(x, y; ξ, 0)u0(ξ)dξ,

J3 =
1

π

∫ y

0

Gξξx(x, y;h2(η), η)ϕ(η)dη,

J4 =
1

π

∫ y

0

Gx(x, y;h1(η), η)σ(τ(η), η)dη,

J5 =
1

π

∫ ∫
D

Gx(x, y; ξ, η)f(ξ, η, u(ξ, η))dξdη.

According to Lemmas 2.3-2.10, and by the condition of the theorem we can get

|J1| ≤ K1, |J4| ≤ K4, |J5| ≤ K5,

and at u0(x) ∈ C3[h1(0), h2(0)], we have |J2| ≤ K2, at ϕ(y) ∈ C1[0, 1], we have |J3| ≤ K3, where

Ki = const > 0, i = 1, 5. Hence, we have that

||ux(x, y)|| ≤ K, K = max
i
{Ki}, i ∈ {1, 5}.

Then, under the conditions of the theorem for each N > 0 for a su�ciently small θ and 0 < y < θ

the operator A transforms into itself in Gθ,N . Thus the inequalities ||Ai|| ≤ N/2, i = 1, 2 are

true when (u, τ) ∈ Gθ,N . To do this we assume that A(u, τ) is identi�ed in the Gθ,N i = 1, 2.

Also, a suitable choice θ can be made for the contracting operator A . Then, by the contraction

mapping principle, it has a unique �xed point (u, τ) ∈ Gθ,N .
Therefore, (u, τ) is a solution of the systems (4.43), (4.45) at 0 < y < θ.
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Part 5

Some boundedness classes of

pseudodi�erential operators
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5.1 Background materials and basic results continuity and

boundedness of pseudodi�erential operators. Symbol

Classes

In this section we give basic results and background material of global pseudodi�erential calculus.

These results were developed more systematically by a number of people in long time. There

are the results by Hörmander [49-55], Taylor [109], Beal [17] and others. Now we give some

important results, which is to help to study our new problems. So we give the some basic results,

which is Taylor [109] gets the following results:

De�nition 5.1. Let Ω be an open subset of Rn, m, ρ, δ ∈ R, and suppose 0 ≤ ρ, δ ≤ 1. We

de�ne the symbol class Smρ,δ(Ω) to consist of the set of p ∈ C∞(Ω×Rn) with the property that,

for any compact K ⊂ Ω, any multi-indices α, β, there exist a constant CK,α,β such that

|Dβ
xD

α
ξ p(x, ξ)| ≤ CK,α,β(1 + |ξ|)m−ρ|α|+δ|β|

for all x ∈ K, ξ ∈ Rn. We drop the Ω and use Smρ,δ when the context is clear. The class Smρδ was

introduced by Hörmander in [55]. The subclass Sm1,0 de�ned by Kohn and Nirenberg [106]

|Dβ
xD

α
ξ p(x, ξ)| ≤ CK,α,β(1 + |ξ|)m−|α|.

De�nition 5.2. The symbol p(x, y) belongs to Sm(Ω) if p ∈ Sm1,0(Ω) and are smooth

pm−j(x, rξ), homogeneous of degree m− j in ξ for |ξ| ≥ 1, i.e.,

pm−j(x, rξ) = rm−jpm−j(x, ξ), |ξ| ≥ 1, r ≥ 1

such that

p(x, ξ) ∼
∑
j≥0

pm−j(x, ξ)

where the asymptotic condition means that

p(x, ξ)−
N∑
j=0

pm−j(x, ξ) ∈ Sm−N−1
1,0 (Ω).

If p(x, ξ) is homogeneous of degreem in ξ and if ϕ(ξ) = 0 for |ξ| ≤ C1, ϕ(ξ) = 1 for |ξ| ≥ C2 > C1,

ϕ ∈ C∞, then ϕ(ξ)p(x, ξ) ∈ Sm ⊂ Sm1,0.
Proposition 5.3. Let p ∈ Smρ,δ(Ω), q ∈ Sµρ′,δ′ . Then pαβ = Dβ

xD
α
ξ p ∈ S

m−ρ|α|+δ|β|
ρ,δ , and

p(x, ξ)q(x, ξ) ∈ Sm+µ
ρ′′,δ′′ where ρ

′′ = min(ρ, ρ′), δ′′ = max(δ, δ′).

If |p(x, ξ)−1| ≤ C(1 + |ξ|)−m, then p(x, ξ)−1 ∈ S−mρ,δ .
De�nition 5.4. If p(x, ξ) ∈ Smρ,δ, the operator p(x,D) is said to belong to OPSmρ,δ. More

generally, if Σ is any symbol class and p(x, ξ) ∈ Σ, we say p(x,D) ∈ OPΣ.

Theorem 5.5. If p ∈ Smρ,δ(Ω), then p(x,D) is continuous operator

p(x,D) : C∞0 → C∞.
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If δ < 1, then the map can be extended to a continuous map

p(x,D) : E ′(Ω)→ D′(Ω)

Proof. If p ∈ Smρ,δ(Ω), u ∈ C∞0 (Ω), then the integral

p(x,D)u =

∫
p(x, ξ)û(ξ)eixξdξ

is absolutely convergent, and one can di�erentiate under the integral sign, obtaining always

absolutely convergent integrals. To prove above result need a lemma

Lemma 5.6. Let p ∈ Smρ,δ(Ω), v ∈ C∞0 . Then for all ξ, η ∈ Rn,

|
∫
v(x)p(x, ξ)eixηdx| ≤ CN (1 + |ξ|)m+δN (1 + |η|)−N .

Proof. Integration by parts yields

|ηα
∫
v(x)p(x, ξ)eixηdx| = |

∫
Dα
x (v(x)p(x, ξ))eixηdx| ≤ Cα(1 + |ξ|)m+δ|α|.

To complete the proof of Theorem 5.5, to show that the functional

v →< p(x,D)u, v >, v ∈ C∞0 (Ω)

is de�ned u ∈ E ′(Ω). There is

< p(x,D)u, v >=

∫
v(x)p(x, ξ)û(ξ)eixξdξdx =

∫
pv(ξ)û(ξ)dξ

where pv(ξ) =
∫
v(x)p(x, ξ)eixξdx. This de�ned for ∀u ∈ E ′(Ω) with pv(ξ) be rapidly decreasing.

But the lemma implies that

|pv(ξ)| ≤ CN (1 + |ξ|)m−(1−δ)N .

5.2 The pseudolocal property.

Theorem 5.7. If p(x, ξ) ∈ Smρ,δ(Ω), δ < 1 and if ρ > 0, we have for u ∈ E ′(Ω),

singsupp p(x,D)u ⊂ singsupp u.

Here the singular support of a distribution u, denoted singsupp u is the complement of the open

set on which u is smooth.

If K ∈ D′(Ω × Ω), then there is associated a map K : C∞0 (Ω) → D′(Ω) de�ned by <

Ku, v >=< K,u(x)v(y) >. The converse is also true, and is known as the Schwartz kernel

theorem.

Lemma 5.8.(Singular support lemma) Suppose K ∈ D′(Ω× Ω) satis�es

K : C∞0 → C∞(Ω)
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and

K : E ′(Ω)→ D′(Ω).

K is C∞ o� the diagonal in Ω× Ω.

Then singsupp Ku ⊂ singsupp u for u ∈ E ′(Ω).

To prove Theorem 5.7, to study the kernel K of p(x,D) and

< K,uv >=< p(x,D)u, v >=

∫
v(x)p(x,D)u(x)dx =

∫ ∫
p(x, ξ)eixξv(x)û(ξ)dξdx

= (2π)−n
∫ ∫ ∫

p(x, ξ)ei(x−y)ξv(x)u(y)dydξdx.

Thus, with the appropriate interpretation as a distribution integral,

K = (2π)−n
∫
p(x, ξ)ei(x−y)ξdξ

Consequently,

(x− y)αK =

∫
e(x−y)ξdξ.

The integral is absolutely convergent for large α that m−ρ|α| < −n, generally with j derivatives
yields abs. convergent integral provided m − ρ|α| < −n − j, so (x − y)αK ⊂ Cj(Ω × Ω). K is

smooth o� the diagonal x = y, and end proof.

Remark 5.9. For x, y in compact subset of Ω,

|Dβ
x,yK| ≤ C|x− y|−k

where k ≥ 0 is any integer strictly greater than (1/ρ)(m+n+ |β|). This isn't sharp, for example,

if p(x, ξ) ∈ Sm1,0 it is true that

|K(x, y)| ≤

{
C|x− y|−(m+n) if m > −n
C| log |x− y|| if m = −n.

5.3 Asymptotic expansions of a symbol

Theorem 5.10. Suppose pj ∈ S
mj
ρ,δ (Ω), mj → −∞. Then there exists p ∈ Sm0

ρ,δ (Ω) such that,

for all N > 0,

p−
N−1∑
j=0

pj ∈ SmNρ,δ (Ω). (5.1)

If (5.1) holds and

p ∼
∑
j≥0

pj .

Proof. There are Kj , K1 ⊂ K2 ⊂ ... → Ω compact sets and ϕ ∈ C∞(Rn) with ϕ(ξ) = 0 for

|ξ| ≤ 1/2, ϕ(ξ) = 1 for |ξ| ≥ 1. p(x, ξ) is of the form

p(x, ξ) =

∞∑
j=0

ϕ(εjξ)pj(x, ξ) (5.2)
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where εj are small that

|Dβ
xD

α
ξ ϕ(εjξ)pj(x, ξ)| ≤ 2−j(1 + |ξ|)mj+1−ρ|α|+δ|β|

for |α|+ |β|+ i ≤ j and x ∈ Ki. (5.2) is convergent and p(x, ξ) satis�es (5.1).

Theorem 5.11. Let Pj ∈ S
mj
ρ,δ (Ω), mj → −∞, j ≥ 0. Let p ∈ C∞(Ω × Rn) and assume

there are Cα,β , µ = µ(α, β) such that

|Dβ
xD

α
ξ p(x, ξ)| ≤ Cαβ(1 + |ξ|)µ.

If there exist µk →∞ such that

|p(x, ξ)−
k∑
j=0

pj(x, ξ)| ≤ Ck(1 + |ξ|)−µk (5.3)

then p ∈ Sm0

ρ,δ and p ∼ Σpj sense that (5.1) holds.

Proof. By Theorem 5.10 there exist q ∈ Sm0

ρ,δ (Ω) such that q ∼ Σpj and remains to show that

p− q ∈ S−∞. (5.3) implies that

|p(x, ξ)− q(x, ξ)| ≤ CK,N (1 + |ξ|)−N , x ∈ K.

This inequality holds for Dβ
xD

α
ξ (p− q), they use the inequality∑

|α|=1

sup
K1

|Dαf |2 ≤ C sup
K2

|f |
∑
|α|≤2

|Dαf |, (5.4)

where K1 ⊂ intK2 ⊂ K2, Kj compact. To proof of (5.4) they apply to the functions

Fξ(x, ξ) = p(x, ξ + η)− q(x, ξ + η)

taking K1 = K × 0, K2 a small neighborhood of K1, they get

sup
x∈K
|∇x,ξ(p− q)(x, ξ)|2 ≤ C sup

(x,η)∈K2

|p(x, ξ + η)− q(x, ξ + η)|

×(
∑
|α|≤2

sup
(x,η)∈K2

|Dα
(x,η)(p− q)(x, ξ + η)|) ≤ C ′µ(1 + |ξ|)−µ,

the �rst factor is rapidly decreasing, second factor has polynomial growth and Dβ
xD

α
ξ (p − q) is

rapidly decreasing, the proof is complete.

Proposition 5.12. Let the closed linear operator A generate a contraction semigroup on a

Banach space X. Then, for u ∈ D(A2), there exist

||Au||2 ≤ 4||u||||A2u||.

Proof. From the identity

−tAu = t(t−A)−1A2u+ t2u− t2t(t−A)−1u
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and

||t(t−A)−1|| ≤ 1,

valid for the generator of a contraction semigroup, they get for t > 0

t||Au|| ≤ ||A2u||+ 2t2||u||,

and

||Au|| ≤ inf
t>0

((1/t)||A2u||+ 2t||u||) = 2||A2u||1/2||u||1/2.

Corollary 5.13. For all u ∈ C∞0 (Rn),

|| ∂
∂xj

u||2L∞ ≤ 4||u||L∞ ||
∂2

∂x2
j

u||L∞ .

They consider the operator of the form

Au(x) = (2π)−n
∫ ∫

a(x, y, ξ)u(y)ei(x−y)ξdydξ. (5.5)

To study the above pseudodi�erential operators they give following de�nitions:

De�nition 5.14. Let 0 ≤ ρ,δ1,δ2. We say a(x, y, ξ) ∈ Smρ,δ1,δ2(Ω × Ω × Rn) if, on compact

subsets of Ω× Ω, we have

|Dγ
yD

β
xD

α
ξ a(x, y, ξ)| ≤ C(1 + |ξ|)m−ρ|α|+δ1|β|+δ2|γ|.

This inequality and by above lemma shows, if u ∈ C∞0 (Ω), then∣∣∣∣∫ u(y)a(x, y, ξ)e−iyξdy

∣∣∣∣ ≤ CN (1 + |ξ|)m−(1−δ2)N

if δ2 < 1, for u ∈ C∞0 (5.5) is absolutely integrable and A : C∞0 (Ω)→ C∞(Ω), δ2 < 1.

De�nition 5.15. A distribution A ∈ D′(Ω × Ω) is said to be properly supported if supp A

has compact intersection with K × Ω and with Ω×K for any compact K ⊂ Ω.

A is properly supported provided A : C∞0 → E ′(Ω) and At : C∞0 → E ′(Ω), hence A : C∞ →
D′(Ω), if b(x, y) has proper support, then the operator Ã given by (5.3) with a(x, y, ξ) replaced

by b(x, y)a(x, y, ξ) is properly supported.

De�nition 5.16. If A is given (5.5) with a(x, y, ξ) ∈ Smρ,δ1,δ2 and if A is properly supported,

we say A ∈ OPSmρ,δ1,δ2 .
If A ∈ OPSmρ,δ1,δ2 , δ2 < 1, then A : C∞(Ω)→ C∞(Ω). We know that A : C∞0 (Ω)→ C∞(Ω),

if u ∈ C∞(Ω) and K ⊂ Ω is compact, pick v ∈ C∞0 (Ω) such that supp A ∩ (Ω×K) is contained

in K̂ × K̂ with K̂ compact and v = 1 on a neighborhood of K̂. It follows that Au = A(vu) on

K, so Au, which a priori belongs to D′(Ω), is smooth on the interior of K.

Theorem 5.17. Let A ∈ OPSmρ,δ1,δ2 and 0 ≤ δ2 < ρ ≤ 1. The there is p(x, ξ) ∈ Smρ,δ with

δ = max(δ1, δ2), such that A = p(x,D).
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In fact, p(x, ξ) = e−ixξA(eixξ), and there exist the asymptotic expansion

p(x, ξ) ∼
∑
α≥0

i|α|

α!
Dα
ξD

α
y a(x, y, ξ)|y=x. (5.6)

Proof. p(x, ξ) = e−ixξA(eixξ) is smooth function and they apply the linear operator A to

u(x) =

∫
û(ξ)eixξdξ,

they get

Au(x) =

∫
û(ξ)p(x, ξ)eixξdξ.

To show that p ∈ Smρ,δ and (5.6) holds. The general term in the sum in (5.6) belongs S
m−(ρ−δ2)|α|
ρ,δ .

Let b(x, y, η) = a(x, x+ y, η) and b̂(x, ξ, η) = (2π)−n
∫
b(x, y, η)e−iyξdy so

p(x, η) =

∫
b̂(x, ξ, η + ξ)dξ.

The hypotheses on a(x, y, ξ) imply

|Dγ
yD

β
xD

α
η b(x, y, η)| ≤ C(1 + |η|)m+δ|β|+δ2|γ|−ρ|α|, δ = δ1 ∨ δ2.

a(x, y, ξ) can be replaced of the form â(x, y)a(x, y, ξ), here ã(x, y) has proper support in Ω× Ω,

ã = 1 on an appropriate neighborhood of the diagonal, a(x, y, η) is properly supported. Thus

x belong to any compact subset of Ω, b(x, y, η) vanishes for y outside some compact set. There

exist

|Dα
xD

α
η b̂(x, ξ, η)| ≤ Cν(1 + |η|)m+δ|β|+δ2ν−ρ|α|(1 + |ξ|)−ν .

If to take Taylor expansion of b̂(x, ξ, η + ξ) above inequality yields

|b̂(x, ξ, η + ξ)−
∑
|α|<N

1

α!
(iDη)αb̂(x, ξ, η)ξα| ≤

≤ Cν |ξ|N (1 + |ξ|)−ν sup
0≤t≤1

(1 + |η + tξ|)m+δ2ν−ρN

where nu ≥ 0. If ν = N they obtain a bound

C(1 + |η|)m−(p−δ2)N if |ξ| ≥ 1

2
|η|,

if N is large, they get

|p(x, η)−
∑
|α|<N

1

α!
(iDη)αDα

y b(x, y, η)|y=0| ≤ C(1 + |η|)m+n−(ρ−δ2)N .
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5.4 Adjoints and products

In this section we give several result the properties of pseudodi�erential operator. We can �nd

this results Taylor book's.

Theorem 5.18. If p(x,D) ∈ OPSmρ,δ δ < 1 is properly supported, then

p(x,D)∗ ∈ OPSmρ,0,δ.

Proof. There exists

(p(x,D)u, v) = (2π)−n
∫
v̄(y)

∫ ∫
ei(y−x)ξp(y, ξ)u(x)dxdξdy

= (2π)n
(∫

ū(x)

∫ ∫
ei(x−y)ξp(y, ξ)∗v(y)dydξdx

)∗
,

so

p(x,D)∗v = (2π)−n
∫ ∫

p(y, ξ)∗ei(x−y)ξv(y)dydξ

which is (5.5) with a(x, y, ξ) = p(y, ξ)∗.

Theorem 5.19. If p(x,D) ∈ OPSmρ,δ is properly supported, 0 ≤ δ < ρ ≤ 1, then

p(x,D)∗ ∈ OPSmρ,δ

and indeed p(x,D)∗ = p∗(x,D) with

p∗(x, ξ) ∼
∑
α≥0

i|α|

α!
Dα
ξD

α
xp(x, ξ)

∗.

Proof. This immediate yield by (5.6).

Theorem 5.19'. Let p(x,D) ∈ OPSmρ′,δ′ and q(x,D) ∈ OPSµρ′′,δ′′ be properly supported,

0 ≤ δ′′ < ρ′′ ≤ 1. Then

p(x,D)q(x,D) ∈ OPSm+µ
ρ,δ′,δ′′ , ρ = min(ρ′, ρ′′).

They apply Theorem 5.18-5.19 to the operator q(x,D)∗ = q∗(x,D).

q(x,D)u(x) = q(x,D)∗∗u = (2π)−n
∫ ∫

q ∗ (y, ξ)∗u(y)dydξ.

This implies

̂q(x,D)u(ξ) = (2π)−n
∫
e−iyξq∗(y, ξ)∗u(y)dy

0 ≤ δ′′ < δ′′ ≤ 1. Thus

p(x,D)q(x,D)u =

∫
eixξp(x, ξ) ̂q(x,D)u(ξ)dξ

= (2π)−n
∫ ∫

ei(x−y)ξp(x, ξ)q∗(y, ξ)∗u(y)dydξ.
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Thus p(x,D)q(x,D) is of the form (5.5) with a(x, y, ξ) = p(x, ξ)q∗(y, ξ)∗ the proof is complete.

Theorem 5.20. Let p(x,D) ∈ OPSmρ′,δ′ and q(x,D) ∈ OPSρ′′,δ′′ be properly supported.

Suppose 0 ≤ δ′′ < ρ ≤ 1 with ρ = min(ρ′, ρ′′). Then

p(x,D)g(x,D) ∈ OPSm+µ
ρ,δ , δ = max(δ′, δ′′)

and p(x,D)q(x,D) = r(x,D) with

r(x, ξ) ∼
∑
α≥0

i|α|

α!
Dα
ξ p(x, ξ)D

α
x q(x, ξ).

Proof. From (5.6) there exists

r(x, ξ) ∼
∑
α

i|α|

α!
Dα
ξD

α
y (p(x, ξ)q∗(y, ξ)∗)|y=x. (5.7)

Consequently,

p∗(x, ξ)− p(x, ξ)∗ ∈ Sm−(ρ−δ)
ρ,δ ;

r(x, ξ)− p(x, ξ)q(x, ξ) ∈ Sm+µ−(ρ′−δ′′)
ρ,δ .

If p(x, ξ) ∈ Sm1,0, q(x, ξ) ∈ S
µ
1,0, we have

p∗(x, ξ)− p(x, ξ)∗ ∈ Sm−1
1,0 ,

r(x, ξ)− p(x, ξ)q(x, ξ) ∈ Sm+µ−1
1,0 .

Remark 5.20'. The Theorem 5.20 remains the hypothesis δ′′ < min(ρ′, ρ′′) is relaxed to δ′′ < ρ′,

which the terms in (5.7) still have order tending to −∞.

By Hörmander [55] used q(x,D)∗∗, doesn't work in this more general case, and a proof is

referred to Hörmander [53].

5.5 L2 and Sobolev space continuity

In this section we give the continuity results and proves. There are results given by Taylor how

to prove that if A ∈ OPSmρ,δ(Ω) and δ < ρ, then A : Hcomp(Ω)→ Hs−m
loc (Ω)

Proposition 5.21. If p(x, ξ) ∈ S0
0,0(Rn) has support in |x| ≤ C0, then p(x,D) : L2(Rn) →

L2(Rn), continuously.

Proof. To proof this result they write p(x, ξ) =
∫
pη(ξ)eixηdη where

pη = (2π)−n
∫
p(x, ξ)e−ixηdx.

p(x, ξ) implies that pη(ξ) ≤ CN (1 + |η|)−N , since

ηαpη(ξ) = (2π)−n
∫
Dα
xp(x, ξ)e

−ixηdx.
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And

||pη(D)u||L2 ≤ CN (1 + |η|)−N ||u||L2 .

Since p(x,D) =
∫
eixηpη(D)dη and eixη = 1, they get that

||p(x,D)u||L2 ≤ CN
∫

(1 + |η|)−Ndη||u||L2 ≤ C1||u||L2 .

where N > n. If δ > 0 they only conclude that |pη(ξ)| ≤ CN (1+|ξ|)δN (1+|η|)−N . By Hörmander

argument's the positive linear functional |λ| on C(K), the space of continuous functions on a

compact Hausdor� space K is continuous, with norm ||λ|| = λ(1).

Lemma 5.22. If p(x, η) ∈ S0
ρ,δ(Ω), δ < ρ, and if Re p(x, ξ) ≥ C > 0, then there exists a

B ∈ OPS0
ρ,δ such that, with Re P = (1/2)(P + P ∗),

Re p(x,D)−B∗B ∈ OPS∞.

Proof. They construct the symbol b(x, ξ) ∼ Σbj(x, ξ) with bj ∈ S
−j(ρ−δ)
ρ,δ . Firstly, b0(x, ξ) =

(Re p(x, ξ))1/2 ∈ S0
ρ,δ. Furthermore,

Re p(x,D)− b0(x,D)∗b0(x,D) = R1 ∈ OPS−(ρ−δ)
ρ,δ .

By induction there exist the terms b0, ..., bj in the asymptotic expansion. There is bj+1 ∈
S
−(j+1)(ρ−δ)
ρ,δ such that

Re p(x,D) = ((b∗0 + ...+ b∗j ) + b∗j+1)((b0 + ...+ bj) + bj+1) +Rj+1.

with Rj+1 ∈ OPS−j(ρ−δ)ρ,δ . The right-hand side is equal to

Re p(x,D) +Rj + b∗j+1(b0 + ...+ bj+1) + (b∗0 + ...+ b∗j+1)bj+1 +Rj+1

= Re p(x,D) +Rj + b∗j+1b
∗
0bj+1 mod OPS−(j+1)(ρ−δ)

ρ ,

Rj = R∗j so principal symbol is real or, if a matrix, self adjoint. They require bj+1 is

b∗j+1b0 + b0bj+1 = −Rj . (5.8)

They pick bj+1 = −(1/2)b−1
0 Rj in the scalar case.

p(x, ξ) is a k× k system, with Re p(x, ξ) = (1/2)(p(x, ξ) + p(x, ξ)∗) ≥ C > 0 and b0(x, ξ) is a

positive self-adjoint matrix. It follows that (5.8) has a unique self-adjoint solution bj+1(x, ξ) =

bj+1(x, ξ)∗. The map Φ(A) = Ab0 + b0A have eigenvalues {λj + λi} where λj > 0 are the

eigenvalues of b0.

They obtain the following L2 estimate.

Theorem 5.23. Let A ∈ OPS0
ρ,δ(Ω), 0 ≤ δ < ρ ≤ 1 assume that

lim
|ξ|→∞

sup |A(x, ξ)| < M <∞.
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If K ⊂⊂ Ω, there is an R ∈ OPS−∞ such that

||Au||2L2(K) ≤M
2||u||2 + (Ru, u).

Proof. The operator C = M2 − A∗A has principal symbol C(x, ξ) = M2 − |A(x, ξ)|2 > 0, by

lemma 5.22 there is B ∈ OPS0
ρ,δ such that

C −B∗B = M2 −A∗A−B∗B = −R ∈ OPS−∞.

Thus

||Au||2L2 ≤ (Au,Au) + (Bu,Bu) ≤M2||u||2L2 + (Ru, u).

Corollary 5.24. If lim|ξ|→∞A(x, ξ) = 0, then A : L2(K) → L2
loc(Ω) is compact. From

OPSmρ,δ : Hs → Hs−m if 0 ≤ δ < ρ ≤ 1 follows L2 continuity result of Theorem 5.23, via use of

the operators Λσ ∈ OPSσ1,0(Rn), where Λσu =
∫

(1+|ξ|2)σ/2eixξû(ξ)dξ. Clearly Λσ : Hs → Hs−σ

has isomorphism and properly supported.

Theorem 5.25. If A ∈ OPSmρ,δ(Ω) is properly supported, 0 ≤ δ < ρ ≤ 1, then

A : Hs
loc(Ω)→ Hs−m

loc (Ω).

Proof. To proof this theorem they show that Λs−mAΛ−s ∈ OPS0
ρ,δ takes L2

loc(Ω) to L2
loc(Ω)

by Theorem 5.23. Calderon and Vaillancourt have shown A ∈ OPS0
ρ,ρ is continuous on L2,

0 ≤ ρ < 1. The key in the proof of this the L2 continuity of p(x,D) on L2(Rn) we assume

|Dβ
xD

α
ξ p(x, ξ)| ≤ Cα,β , x, ξ ∈ Rn

p doesn't has compact support in x. For OPS0
1,0 has continuity on Lp, 1 < p < ∞ and also on

Hölder spaces.

5.6 Families of pseudodi�erential operators: Friedrichs' mol-

li�ers

Smρ,δ(Ω) into a Frechet space has the seminorms

|p|K,α,β = sup
x∈K
|Dβ

xD
α
ξ p(x, ξ)|(1 + ξ)−m+ρ|α|−δ|β|.

The map p(x, ξ)→ p(x,D) is a continuous map from Smρ,δ(Ω) to S(Hs
comp(Ω), Hs−m

loc (Ω)) if δ < ρ.

If M is a compact manifold, 0 ≤ 1− ρ ≤ δ < ρ ≤ 1 we give OPSmρ,δ(M) a natural Frechet spase

topology, all maps

OPSmρ,δ(M)→ S(Hs(M), Hs−m(M))

are continuous.

Let p(ξ) ∈ Sσ1,0(Rn), σ ≤ 0, and let pε(ξ) = p(εξ) of the chain rule shows {pε : 0 < ε ≤ 1} is
bounded in S0

1,0(Rn), if we take p(ξ) ∈ S−∞(Rn) and p(ξ) = e−|ξ|
2

.
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De�nition 5.26. A Friedrichs' moli�er on M is a family Jε of scalar pseudodi�erential

operators, 0 < ε ≤ 1, such that a) Jε ∈ OPS−∞(M) for each ε ∈ (0, 1]; b) {Jε : 0 < ε ≤ 1} is a
bounded subset of OPS0

1,0(M); c) Jεu→ u in L2(M) as ε→ 0, for each u ∈ L2(M).

Proposition 5.27. Let A ∈ OPSmρ,δ(M), 1 − ρ ≤ δ < ρ. If Jε is a Friedrich's molli�er on

M , then [A, Jε] = AJε − JεA has following properties: a) [A, Jε] ∈ OPS−∞(M), 0 < ε ≤ 1. b)

{[A, Jε] : 0 < ε ≤ 1} is a bounded subset of OPS
m−ρ∧(1−δ)
ρ,δ (M). Friedrichs' molli�ers apply to

prove the weak and strong solutions to pseudodi�erential equations.

De�nition 5.28. Let M be a compact manifold, A : C∞ → C∞(M) and A : D′(M) →
D′(M). Take f ∈ L2(M). A function u ∈ L2(M) is said to be a weak solution of the equation

Au = f

if this equation holds when A is applied to u in the distribution sense. On the other hand, u is

said to be a strong solution of above equation if there exists a sequence uj → u in L2(M), with

uj ∈ C∞(M), such that Auj = fj → f in L2(M).

Proposition 5.29. If A ∈ OPS1
1,0(M), then every weak solution to above equation is a

strong solution.

Proof. With Jε a Friedrichs' molli�er, let εj → 0 and set uj = Jεju. To show that ||Auj −
f ||L2 → 0, write

Auj = JεjAu+ [A, Jεj ]u = Jεjf + [A, Jεj ]u.

If A ∈ OPSm1,0(M) with m > 1, weak and strong solutions need not coincide, though they do if

A is elliptic (since by elliptic regularity u must belong to Hm(M))

5.7 Garding's inequality

Theorem 5.30. Let p(x,D) ∈ OPSmρ,δ(Ω) and assume 0 ≤ δ < ρ ≤ 1. Suppose Re p(x, ξ) ≥
C|ξ|m for |ξ| large, with C > 0. Then, for any s ∈ R, for any compactK ⊂ Ω, and all u ∈ C∞0 (K),

we have

Re (p(x,D)u, u) ≥ C0||u||2Hm/2 − C1||u||2Hs .

Proof. Replacing p(x,D) by q(x,D) = Λ−m/2p(x,D)Λ−m/2, suppose Re p(x, ξ) ≥ C > 0,

p(x, ξ) ∈ S0
ρ,δ. We have r(x, ξ) = Re p(x, ξ)−(1/2)C, to yield B ∈ OPS0

ρ,δ with r(x,D)−B∗B =

S ∈ OPS−∞, and hence

Re (p(x,D)u, u)− 1

2
C(u, u) = (Bu,Bu) +Re (Su, u)

which implies above inequality in the case m = 0. The sharp form of Garding inequality which

Re p(x, ξ) ≥ 0 if p(x,D) ∈ OPSm1,0, it follows that

Re (p(x,D)u, u) ≥ −C1||u||2H(m−1)/2 , u ∈ C∞0 (K).
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The operator p(x,D) ∈ OPSmρ,δ, 0 ≤ δ < ρ ≤ 1, which satis�es the condition

Re p(x, ξ) ≥ C|ξ|m for |ξ| large

some C = const > 0, is called strongly elliptic.

5.8 Lp and Hölder space theory of pseudodi�erential oper-

ators

Fourier multipliers on Lp and Hölder Spaces.

In this section we give the continuity of pseudodi�erential operators on Lp and Cα spaces,

which is obtained by various authors, scattered throughout the literature, thought perhaps a few

results are stated in sharper form here. We describe some results, due to Marcinkiewicz, Mikhlin,

Hörmander, Stein, Taibleson and Taylor, on the behavior of following operator

P (D)u =

∫
eixξp(ξ)û(ξ)dξ

on Lp(Rn) and Cα(Rn). P (D) is simply multiplies the Fourier transform of u by p(ξ), hence

P (D) is called a Fourier multiplier. It also write as a convolution operator

P (D)u = p̂ ∗ u.

Marcinkiewicz [87] studied the Lp continuity of convolution operators on the torus Tn.

Mikhlin translated these result to the Rn.

Theorem 5.31.(Mikhlin)[94] P (D) : Lp → Lp(Rn), 1 < p <∞, provided

|ξ||α||Dα
ξ p(ξ)| ≤ Cα, |α| ≤ [

n

2
] + 1.

Hörmander's theorem is following.

Theorem 5.32.(Hörmander) P (D) : Lp(Rn)→ Lp(Rn), 1 < p <∞, provided

R−n
∫
R<|ξ|<2R

||ξ|αpα(ξ)|2dξ < C, |α| ≤ [
n

2
] + 1

with C independent of R, 0 < R <∞.

We restate this result, let Ω = {ξ ∈ Rn : 1 ≤ |ξ| ≤ 4}, and pr(ξ) = p(rξ).

Corollary 5.33. P (D) : Lp(Rn)→ Lp(Rn), 1 < p <∞, provided

||pr||H[n/2]+1(Ω) ≤ C, 0 < r <∞

where C <∞ is independent of r.

This result sharpened as follows:

Theorem 5.34. P (D) : Lp(Rn)→ Lp(Rn), 1 < p <∞, provided

||pr||Hn/2+ε(Ω) ≤ C, 0 < r <∞ (5.9)
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for some ε > 0, where C is independent of r.

Theorem 5.35. P (D) : Lp(Rn)→ Lp(Rn), 1 < p <∞, provided

|ξαpα(ξ)| ≤ Cα, ξ ∈ Rn

for all multi-indices α = (α1, ..., αn) with each αj either 0 or 1.

They consider the be behavior of P (D) on Cα(Rn). For 0 < α < 1, and de�ne Cα(Rn) to

consist of those functions u on Rn such that

||u||Cα = ||u||L∞ + sup
x,h∈Rn,|h|≤1

|h|−α|u(x+ h)− u(x)| <∞.

Taibleson [109] has found a necessary and su�cient condition that P (D) : Cα(Rn)→ Cα(Rn).

For s ∈ R
L1,s = (1−∆)s/2L1(Rn).

Theorem 5.36. P (D) : Cα(Rn)→ Cα(Rn), 0 < α < 1, i� p̂ ∈ L1,s for some s > 0, and the

following holds:

sup
0<t<1

||t∆et∆p̂||L1 + ||p̂||L1,s <∞.

In fact for p̂ = k0(x)
|x|n , the important term in above inequality,

sup
0<t<1

||t∆et∆p̂||L1 ,

is �nite, ||p̂||1,s is in�nite in this case. Any p̂ ∈ E ′(Rn) belongs to L1,s for s > 0 su�ciently large.

If p̂ ∈ E ′(Rn), we have P (D) : Cα(Rn)→ Cα(Rn) i�,

sup
0<t<1

||t∆et∆p̂||L1 <∞. (5.10)

Theorem 5.37. Suppose p̂ ∈ E ′(Rn). Then P (D) : Cα(Rn)→ Cα(Rn), 0 < α < 1, i� for some

C independent of r,

||ψpr||FL1 ≤ C, 0 < r <∞. (5.11)

Here the FL1 norm is ||u||FL1 = ||û||L1 . FL1 is a Banach algebra under multiplication, since

L1 is a convolution algebra. The Sobolev theorem that elements of Hn/2+ε(Rn) are continuous

i.e., Hn/2+ε(Rn) ⊂ FL1. (5.11) is just a little weaker than (5.9).

Proof. By Taibleson's theorem, we show (5.11)and (5.9) are equivalent. So suppose (5.11)

holds and
∫∞
−∞ ψ(e−yξ)dy = 1. Let µy(ξ) = ψ(ξ)p(eyξ), so (5.11) is equivalent to ||µy||FL1 ≤

C <∞, −∞ < y <∞. We have

p(ξ) =

∫ ∞
∞

µy(e−yξ)dy.

To desire to estimate

||t|ξ|2e−t|ξ|
2

p(ξ)||FL1 ,
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0 < t < 1. There exist

t

∫ ∞
−∞
||µy(e−yξ)|ξ|2e−t|ξ|

2

||FL1dy = t

∫ ∞
−∞

e2y||µy(ξ)|ξ|2e−te
2y|ξ|2 ||FL1dy

since ||g||FL1 = ||gr||FL1 , 0 < r <∞. We dominate the integrand by

Ce2y||µy||FL1 |||ξ|2e−te
2y|ξ|2 ||Hs(Ω) ≤ C ′e2y(1 + tse2ys)e−te

2y

where s > n/2. Thus

||t|ξ|2e−t|ξ|p(ξ)||FL1 ≤ Ct
∫ ∞
−∞

e2ye−te
2y

dy + Ct1+s

∫ ∞
−∞

e2y(1+s)e−te
2y

dy = C ′′ <∞.

(5.3) implies (5.9).

Conversely, (5.9) is equivalent to

|||ξ|2e−|ξ|
2

pr||FL1 ≤ C <∞

for r > 1, p̂ ∈ E ′, p(ξ) is smooth, so above inequality is true for 0 < r <∞. We have

||ψpr||FL1 ≤ ||ψ|ξ|−2e|ξ|
2

||FL1 |||ξ|2e−|ξ|
2

pr||FL1 = C0|||ξ|2e−|ξ|
2

pr||FL1 .

By Stein [106] take the result of (1−∆)m/2 on Hölder spaces.

Theorem 5.38. If k + α and k + α−m are both positive and nonintegral, m ∈ R,

(1−∆)m/2 : Ck+α
comp(R

n)→ Ck+α−m
loc (Rn).

Here, for k = 0, 1, 2, .., α ∈ (0, 1), we set Ck+α(Rn) = {u ∈ Ck(Rn) : Dβu ∈ Cα(Rn), |β| ≤ k}.
Finally, we give the Marcinkiewicz interpolation theorem

Theorem 5.39. Let T : C∞0 (Rn)→ L∞(Rn) satisfy the conditions

meas{x : |Tu(x)| > λ} ≤ C1λ
−p||u||Lp , (5.11′)

meas{x : |Tu(x)| > λ} ≤ C2λ
−q||u||Lq , (5.12)

where 1 ≤ p < q. Then T : Lr(Rn) → Lr(Rn), p < r < q, with operator norm determined by

C1, C2, r, n.

T : Lq(Rn)→ Lq(Rn) implies (5.12), T is weak (q, q) if (5.12) satis�ed.

Lp and Cα behavior of operators in OPSm1,0

Theorem 5.40. Let p(x,D) ∈ OPS0
1,0. Then

p(x,D) : Lpcomp → Lploc, 1 < p <∞,

and

p(x,D) : Cαcomp → Cαloc, 0 < α < 1.

Here Lpcomp is the space of Lp functions with compact support, LPloc is the space of locally Lp

functions.
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Proof. Let u ∈ BR ball. p(x,D) is pseudolocal if u ∈ Lp, then p(x,D)u ∈ Lp on B2R. We

have ||||S the operator norm of T : Cα0 (BR)→ Cα(B2R) 0 < α < 1, or of T : Lp(BR)→ Lp(B2R),

1 < p <∞. By theorem 5.35 and 5.36 for Fourier multiplier pη(D)

||pη(D)||S ≤ C sup
ξ

∑
|β|≤[n/2]+1

|ξ||β||pβη (ξ)|

where C depends on α or p.

By the pseudolocal property p(x, ξ) vanishes for |x| ≥ 2R. We write

p(x, ξ) = (2π)−n
∫
Rn

e−ixηpη(ξ)dη

where

pη(ξ) =

∫
Rn

p(x, ξ)eixηdx.

It follows that

p(x,D)u = (2π)−n
∫
Rn

e−ixηpη(D)udη.

A multiplication operator on Lp, e−ixη has norm 1 and a multiplication operator on Cα, e−ixη

has norm < C(1 + |η|)α. We have

||p(x,D)||S ≤
∫
Rn

C(η)||pη(D)||Sdη

where C(η) = 1 of Lp and C(η) = C(1 + |η|)α of Cα.

To show that ||pη(D)||S is rapidly decreasing, as |η| → ∞. In fact

ηγp(β)
η (ξ) =

∫
RN

Dβ
ξ p(x, ξ)D

γ
xe
ixηdx =

∫
Rn

Dγ
xD

β
ξ p(x, ξ)e

ixηdx.

Therefore,

|ηγ ||p(β)(ξ)
η | ≤ Cβγ(1 + |ξ|)−|β|.

We have after summing over |γ| ≤ N

||pη(D)||S ≤ CN (1 + |η|)−N , CN = CN (p) or CN (α)

�nally we have ||p(x,D)||S <∞.

Theorem 5.41. Let M be a compact manifold. Let p(x,D) ∈ OPS0
1,0 on M . Then

p(x,D) : Lp(M)→ Lp(M), 1 < p <∞

and

p(x,D) : Cα(M)→ Cα(M), 0 < α < 1.

The operator norms are bounded

||p(x,D)||S ≤ C max
|α|≤[n/2]+1,|β|≤n+1

sup
(x,ξ)∈T∗(M)

|Dβ
xD

α
ξ p(x, ξ)||ξ|α
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where C depends on p or α.

Corollary 5.42. Let pj(x, ξ) be a bounded set of symbols on M , in S0
1,0. Then pj(x,D)

form a bounded family of operators on Lp(M), 1 < p <∞, and on Cα(M), 0 < α < 1.

They take results on Ssp Sobolev and Ck+α Holder spaces for k = 1, 2, .., 0 < α < 1, Ck+α =

{u ∈ Ck : Dβu ∈ Cα : Dβu ∈ Cα, |β| = k}. If M is compact manifold

Ssp(M) = {u ∈ Lp(M) : Pu ∈ Lp(M), P ∈ OPDk}.

For 1 < p <∞, u ∈ Skp i� p(x,D)u ∈ Lp(M) for all p(x,D) ∈ OPSk1,0. If p(x,D) ∈ OPSk1,0 and

p(x,D) =
∑
aj(x,D)qj(x,D) with qj(x,D) ∈ OPDk and aj(x,D) ∈ OPS0

1,0, since aj(x,D) :

Lp(M)→ Lp(M), 1 < p <∞. For s ∈ R,

Ssp(M) = {u ∈ D′(M) : p(x,D)u ∈ Lp(M) for all p(x,D) ∈ OPSs1,0}.

Proposition 5.43. Let u ∈ D′(M) and let q(x,D) ∈ OPSs,0 be elliptic. Then u ∈ Ssp(M) i�

q(x,D)u ∈ Lp(M), if 1 < p <∞.

Proof. Let q(x,D)−1 ∈ OPS−s1,0 is parametrix of q(x,D). If p(x,D) ∈ OPSs1,0 is given,

then p(x,D)u = p(x,D)q(x,D)−1q(x,D)u(modC∞) = r(x,D)q(x,D)u ∈ Lp(M) since r(x,D) ∈
OPS0

1,0 leaves Lp invariant.

For s ∈ R, (1−∆)s/2 ∈ OPSs1,0 we have

Ssp(M) = (1−∆)−s/2Lp(M).

Theorem 5.44. Let p(x,D) ∈ OPSm1,0 on M . Then

p(x,D) : Ssp → Ss−mp , 1 < p <∞ (5.13)

and

p(x,D) : Ck+α → Ck+α−m, (5.14)

provided k + α and k + α−m are both positive and nonintegral.

Proof. a(x,D) ∈ OPSs1,0, b(x,D) ∈ OPSs−m1,0 is elliptic with A−1, B−1 parametrices. Then

b(x,D)p(x,D)u = b(x,D)p(x,D)A−1a(x,D) mod C∞ belongs to Lp if u ∈ Ssp yields a(x,D)u ∈
Lp and b(x,D)p(x,D)A−1 ∈ OPS0

1,0, this proved (5.13).

Next we take u ∈ Ck+α(Rn) in BR and p(x, ξ) = 0 for |x| ≥ 2R then p(x,D)u ∈ Ck+α−m is

provided k + α and k + α −m are positive and nonintegral. We have ϕ ∈ C∞0 (B2R), ϕ = 1 on

BR,

ϕ(x)(1−∆)m/2u ∈ Ck+α−m(Rn).

But p(x,D)u = p(x,D)(1−∆)−m/2ϕ(x)(1−∆)m/2u modC∞, since p(x,D)(1−∆)−m/2 ∈ OPS0
1,0

follows from Theorem 5.10.

They are consider the Strichartz argument is given the operator

Tu(x, y) =

∫
p(y, ξ)û(ξ)eixξdξ.
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Therefore

||p(x,D)u||Lp(Rn) ≤ C||Tu||Lp(Rn,Hs) ≤ C ′||u||Lp |||p|||s

where

|||p|||s = sup
0<r<∞

||pr||Hs(Ω,Hs(Rn)).

Here two spaces are respectively C and Hs(Rn), s > n/2 and pr(x, ξ) = p(x, rξ).

Theorem 5.45. Let u ∈ Lp be supported in BR, and let (n/2) + ε = k + σ, k an integer,

0 < σ < 1. Then

||p(x,D)u||Lp(B2R) ≤ C(p) sup
0<r<∞

||pr||1−σk ||pr||σk+1, 1 < p <∞, (5.15)

where

||pr||k = max
|α|,|β|≤k

sup
(x,ξ)∈Rn×Ω

|Dβ
xD

α
ξ pr(x, ξ)|.

Proof. To show

|||p|||n/2+ε ≤ C sup
0<r<∞

||pr||1−σk ||pr||σk+1

in Sobolev space.

Theorem 5.46. Suppose p(x,D) ∈ OPS−mρ,δ . Then

p(x,D) : Lpcomp → Lploc, 1 < p <∞, and p(x,D) : Cαcomp → Cαloc, 0 < α < 1,

provided m > (n/2)(1− ρ+ δ).

Proof. Given

|Dβ
xD

α
ξ p(x, ξ)| ≤ Cαβ(1 + |ξ|)−m−ρ|α|+δ|β|,

By using (5.15), we have Dβ
xD

α
ξ pr(x, ξ) = r|α|Dβ

xD
α
ξ p(x, rξ), so

||pr||1−σk ||pr||σk+1 ≤ C[

k∑
l,j=0

rj(1 + r)−m−ρj+δl]1−σ[

k+1∑
λ,µ=0

rµ(1 + r)−m−ρµ+δλ]σ

≤ C(1 + r)−m[

k∑
l,j=0

(1 + r)δl+(1−ρ)j ]1−σ[

k+1∑
λ,µ=0

(1 + r)δλ+(1−ρ)µ]σ

≤ C(1 + r)−m+(1−ρ+δ)(k+σ),

is bounded on 0 < r <∞ provided

m ≥ (k + σ)(1− ρ+ δ) = (
n

2
+ ε)(1− ρ+ δ).

The Cα has the inclusions

Cα ⊂ ∩p<∞Wα−ε/2
p ⊂ Cα−ε

last inclusion is Sobolev's imbedding theorems.
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Theorem 5.47. Suppose p(x,D) ∈ OPS−mρ,δ with 0 ≤ δ ≤ ρ ≤ 1(δ < 1). Then

p(x,D) : Lpcomp → Lploc, 1 < p <∞, if

m =
n

2
(1− ρ+ δ).

The Wainger [118] result is sharp, if δ = 0, symbols which are independent of x. Hörmander [55]

shows for 0 ≤ δ < ρ < 1, OPS
−(n/2)(1−ρ)
ρ,δ

Lpcomp → Lploc, 1 < p <∞.

By E.Stein [106] shows if p(x,D) ∈ OPSmδ,ρ and either 0 ≤ δ < ρ = 1 or 0 < δ = ρ < 1,

then p(x,D) is weak type (1, 1) if m = −(1− ρ)n/2 and p(x,D) is bounded on Lp (1 < p <∞)

if (1 − ρ)|(1/2) − (1/p)| ≤ −(m/n). Also p(x,D) is bounded on Cα if 0 < ρ, 1 ≥ δ and

m = −(1−ρ)(n/2). Fe�erman [34] take p(x,D) : L∞ → BMO. Stein's results derived by Kagan

[62] and others, is that, if 0 ≤ δ < 1, OPS0
1,δ is bounded on Lp 1 < p <∞.

5.9 Lp behavior of OPS0
1,δ

Theorem 5.48. If p(x,D) ∈ OPS0
1,δ, 0 ≤ δ < 1, then p(x,D) : Lpcomp → Lploc, 1 < p <∞.

This contains the Theorem 5.47 with special case. they give following (1, 1) estimate.

Proposition 5.49. Suppose p(x, ξ) ∈ S0
1,δ, δ < 1 has compact x-support. Then for u ∈

L1(Rn), λ ∈ R+,

meas{x : |p(x,D)u(x)| ≥ λ} ≤ c

λ
||u||L1 .

Since p(x,D) : L2 → L2, by Marcinkiewicz [87] interpolation theorem implies p(x,D) :

Lp → Lp for 1 < p ≤ 2 proving above theorem. The result for 2 ≤ p < ∞ by duality, since

p(x,D) ∈ OPS0
1,δ implies p(x,D)∗ ∈ OPS0

1,δ.

Assume p(x, ξ) = 0 for |ξ| ≤ 1, ψ ∈ C∞0 on {ξ : 1/2 ≤ |ξ| ≤ 2} such that

∞∑
j=0

ψ(2−jξ) = 1

for |ξ| ≥ 1. Set qi(x, ξ) = p(x, ξ)ψ(2−jξ),

pN (x, ξ) =

N∑
j=0

qj(x, ξ).

We take estimates on the kernels kj(x, x− y) of qi(x,D) given

kj(x, z) =

∫
eizξp(x, ξ)ψ(2−jξ)dξ,

the kernel Kn(x, x− y) of pN (x,D)

KN (x, z) =

N∑
j=0

kj(x, z).
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Lemma 5.50. We have∫
|x|≥2t

|KN (x+ x0, x− y)−KN (x+ x0, x)|dx ≤ C0,

if |y| ≤ t.
Proof. For κ = [n/2] + 1, |α| ≤ κ, we have

(2jx)αkj(x+ x0, x) = 2j|α|
∑
β≤α

Cαβ

∫
eixξDβ

ξ p(x+ x0, ξ)|ξ||β|Dα−β
ξ ψ(2−jξ)|ξ|−|β|dξ.

Dβ
ξ p(x+ xo, ξ)|ξ||β| is bounded subset of S0

1,δ with x
0 parameter, so

||(2jx)αkj(x+ x0, x)||2L2 ≤ Cα22j|α|
∑
β≤α

||Dα−β
ξ ψ(2−jξ)|ξ|−|β|||2L2

≤ C ′α2nj , |α| ≤ [
n

2
] + 1, (5.16)

where C ′α is independent of j and x0. And∫
|kj(x+x0, x)|dx ≤ [

∫
(1+22j |x|2)κ|kj(x+x0, x)|2dx]1/2[

∫
(1+22j |x|2)−κdx]1/2 ≤ C1, (5.17)

C1 is independent of j, x0. By (5.16),∫
|x|≥t

|kj(x+ x0, x)|dx ≤ [

∫
|x|≥t

(22j |x|2)κ|kj(x+ x0, x)|2dx]1/2

×[

∫
|x|≥t

(22j |x|2)−κdx]1/2 ≤ C2(2jt)n/2−κ.

For |y| ≤ t,∫
|x|≥2t

|kj(x+ x0, x− y)− kj(x+ x0, x)|dx ≤
∫
|x|≥2t

|kj(x+ x0 + y, x)|dx

+

∫
|x|≥2t

|kj(x+ x0, x)|dx ≤ 2C2(2jt)n/2−κ. (5.18)

When 2jt ≤ 1 and |y| ≤ t, then

|e−iyξ − 1| ≤ |y||ξ| ≤ 2jt, for ξ ∈ supp ψ(2−jξ),

and

|Dδ
ξ(e
−iyξ − 1)| ≤ t|β| ≤ 2jt2−j|β|, |β| 6= 0.

By (5.18), ∫
|kj(x+ x0, x− y)− kj(x+ x0, x)|dx ≤ C3(2jt) (5.19)

for |y| ≤ t and 2jt ≤ 1 and with

KN (x, z) =

N∑
j=0

kj(x, z),

83



it follows from (5.18), (5.19) for |y| ≤ t,∫
|x|≥2t

|KN (x+ x0, x− y)−K(x+ x0, x)|dx ≤ C4

∞∑
j=0

min{(2jt)n/2−κ, 2jt} ≤ C0,

proved the lemma.

Lemma 5.51.(Calderon and Zygmund)[55]. Let u ∈ L1(Rn) and λ > 0. There exist v,

wk in L1(Rn) and disjoint cubes Ik, 1 ≤ k <∞, with centers x(k) such that

i) u = v +

∞∑
k=1

wk, ||v||L1 +

∞∑
k=1

||wk||L1 ≤ 3||u||L1 ;

ii) |v(x)| ≤ 2nλ;

iii)

∫
Ik

wk(x)dx = 0 and supp wk ⊂ Ik;

iv)

∞∑
k=1

meas(Ik) ≤ λ−1||u||L1 .

If u has compact support, the support of v and wk are contained in a �xed compact set.

It follows from this decomposition lemma that

û(ξ) = v̂(ξ) +
∑
k

ŵk(ξ), |v̂(ξ) +
∑
k

|ŵk(ξ)| ≤ 3||u||L1 ,

and

pN (x,D)u = pN (x,D)v +
∑
k

pN (x,D)wk.

Set

I∗k = {x ∈ Rn : x− x(k) = 2
√
n(x′ − x(k)), some x′ ∈ Ik},

where (I∗) = γmeas (Ik), γ = (2
√
n
n
). For tk > 0,

Ik ⊂ {x : |x− x(k)| ≤ tk},

Yk = Rn\I∗k ⊂ {x : |x− x(k)| > 2tk}.

By iii) we �nd

pN (x,D)wk =

∫
KN (x, x− y)wk(y)dy

=

∫
Ik

{KN (x, x− y)−KN (x, x− x(k))}wk(y)dy.

By Lemma∫
Yk

|pN (x,Dwk(x)|dx
∫
|y|≤tk

∫
|x|≥2tk

|KN (x+ x(k), x− y)−KN (x+ x(k), x)|

×|wk(y + x(k))|dxdy ≤ C0||wk||L1 .
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Set

Θ∗ =

∞⋃
k=1

I∗k , w =

∞∑
k=1

wk.

By iv)

meas (Θ∗) ≤ γ

λ
||u||L1 .

Above inequality become ∫
Rn\Θ

|pN (x,D)w(x)|dx ≤ 3C0||u||L1 .

Since pN (x, ξ) is bounded in S0
1,δ we have

||pN (x,D)v||2L2 ≤ C||v||2L2 ≤ Cλ||u||L1 ,

We have
λ

2
meas{x : |pN (x,D)w(x)| > λ

2
} ≤ 3C0||u||L1

and

(
λ

2
)2meas{x : |pN (x,D)v(x)| > λ

2
} ≤ Cλ||u||L1 .

5.10 L2 continuity of operators on the a complex Hilbert

space

We give recently result by Boggiatto, Buzano and Rodino [20] for pseudodi�erential operator in

L2. Let A is

Au(x) =

∫
ei(x−y)ξa(x, y, ξ)u(y)dydξ,

on the a complex Hilbert space H and by domain DA is linear subspace of H. Assume DA = H,

if D̄A = H, we call A is densely.

Theorem 5.52. Consider a pseudo-di�erential operator A ∈ LmP,ρ, on L2(Rn) with domain

DA = S(Rn). Then A is closable in L2(Rn). Ā is the restriction to DĀ = {u ∈ L2(Rn)|Au ∈
L2(Rn)} of the extension A : S′(Rn)→ S′(Rn).

In particularly

(Āu, v) =< Au, v̄ >

for all u ∈ DĀ and v ∈ S(Rn).

Here P ⊂ Rn is a convex Newton polyhedron and a �nite set of points in Rn.

Proof. They consider the restriction A|D of A : S′(Rn)→ S′(Rn). If un ∈ S(Rn) = DA is a

sequence such that

un → u and Aun → v, in L2(Rn),

then Aun tends to Au and also v in S′(Rn). By uniqueness of the limit in S′(Rn) there exist

Au = v and u ∈ D. The restriction to D of the extension A : S′(Rn) → S′(Rn) is closure of A

in L2(Rn).
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Following proposition is the connection between adjoint and formal adjoint.

Proposition 5.53. Let A is a pseudo-di�erential operator. Then the adjoint A∗ in L2(Rn)

has domain DA∗ = {u ∈ L2(Rn)|A+u ∈ L2(Rn)} and coincides with

i) The closure of A+ : S(Rn)→ S(Rn) in L2(Rn);

ii) The restriction of A+ : S′(Rn)→ S′(Rn) to DA∗ ;

iii) The adjoint of Ā in L2(Rn).

Proof. From

(A+u, v)L2 = (u,Av)L2 for u, v ∈ S(Rn)

they obtain

(Ā+u, v)L2 = (u, Āv)L2 , for u ∈ DĀ+ , v ∈ DĀ.

There exist Ā+ = (Ā)∗. On other side

(u,A∗v)L2 = (Au, v)L2 = (u,A+v)L2 , for u ∈ DĀ and v ∈ S(Rn).

A∗ is an extension of A+ so it is an extension of Ā+ because A∗ is closed, since A∗ = (Ā)∗.

De�nition 5.54. An operator A on Hilbert space H is called symmetric if

(Au, v)L2 = (u,Av)L2 , for u, v ∈ DA.

Proposition 5.55. A densely de�ned symmetric operator has symmetric closure.

Proof. Let un ∈ DA, un → 0 and Aun → v. Let w ∈ DA. There exist

(u,w)H = lim
n→∞

(Aun, w)H = lim
n→∞

(un, Aw)H = 0.

v = 0 because DA is dense in H. And Ā is closable. Let u, v ∈ DĀ. Exist sequences un, vn ∈ DA

such that

(Ā, v)H = lim
n→∞

(Aun, vn)H = lim
n→∞

(un, Avn)H = (u, Āv)H

De�nition 5.56. A densely de�ned operator A is self-adjoint if A = A∗.

De�nition 5.57. A densely de�ned symmetric operator A is called essentially self-adjoint if

its closure Ā is self-adjoint.

From Proposition 5.55 they obtain immediately following theorem.

Theorem 5.58. A formally self-adjoint pseudo-di�erential operator A is essentially self-

adjoint in L2(Rn).
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5.11 On some classes of LP -bounded pseudodi�erential op-

erators

Introduction and discussion of the results

The pseudodi�erential operators considered in this work are of the standard quantization:

a(x,D)u :=

(
1

2π

)n ∫
Rn
eixξa(x, ξ)û(ξ)dξ

where x · ξ =
∑n
j=1 xjξj , û(ξ) =

∫
Rn e

−ixξu(x)dx is the Fourier transform of u. The function

a(x, ξ) is called the symbol of the operator a(x,D). A symbol a(x, ξ) of weighted pseudodi�er-

ential operator satis�es the estimates:

|∂αξ ∂βxa(x, ξ)| ≤ cα,βm(ξ)〈ξ〉δ|α|−ρ|β|, x, ξ ∈ Rn,

for all multi-indices α, β ∈ Zn+, m(ξ) is a positive continuous weight function and 〈ξ〉 = (1 +

|ξ|2)1/2.

There is the general framework given by the symbol classes Sλ(φ, ϕ) and S(m, g), introduced

respectively by R.Beals [17] and L.Hörmander [55], [54]. L.Rodino [101] is studied a general-

ization of the Hörmander smooth wave front set and G.Garello [39] get the extension to the

inhomogeneous microlocal analysis for weighted Sobolev singularities of L2 type is performed.

Recently G.Garello and A.Morando [43] introduce a vector weighted pseudodi�erential operator

is characterized by a smooth symbol which is satis�es the estimates:

|∂αξ ∂βxa(x, ξ)| ≤ cα,βm(ξ)Λ(ξ)−|α|, x, ξ ∈ Rn,

where m(ξ) is a suitable positive continuous weight function, which indicates the order of the

symbol, and Λ(ξ) = (λ1(ξ), ..., λn(ξ)) is a weight vector that estimates the decay at in�nitive of

the derivatives and study continuity properties in suitable weighted Sobolev spaces of Lp type

and microlocal properties.

I.L.Hwang and R.B.Lee [57] give a new proof of the Lp- boundedness, 1 < p <∞ on the Sm0,0,

where m = −n|1/p − 1/2| and a ∈ Sm0,0 satis�es |∂αx ∂
β
ξ a(x, ξ)| ≤ Cα,β〈ξ〉m for (x, ξ) ∈ Rn × Rn,

|α| ≤ k and |β| ≤ k′, in the Holder continuous sense, where k > n/2, k′ > n/p (the case

1 < p ≤ 2) and k > n/p, k′ > n/2 (the case 2 < p < ∞). They also study on the class

Smδ,ρ, which were symbols have derivatives with respect to x only up to order k, in the Holder

continuous sense, where k > n/2 (the case 1 < p ≤ 2) and k > n/p (the case 2 < p < ∞). A

symbol a(x, ξ) is said to be of class Smδ,ρ, where m ∈ R, 0 ≤ δ ≤ ρ ≤ 1 and δ < 1, if it satis�es

the inequalities

|∂αx ∂
β
ξ a(x, ξ)| ≤ Cα,β〈ξ〉m+δ|α|−ρ|β|, x, ξ ∈ Rn,

for all multi-indices α and β, where 〈ξ〉 = (1 + |ξ|2)1/2.

As to the boundedness of the pseudo-di�erential operators with symbols belonging to the

class Smρ,δ or Λmδ,k,k′ , the following theorems are known.
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Theorem 5.1.1. Let 1 < p <∞, δ = ρ = 0 and m = −n|1/p− 1/2|. If k,k′ are su�ciently

large real numbers and a : Rn × Rn → C is a continuous function whose derivatives ∂αx ∂
β
ξ a in

the distribution sense satisfy (1.1) with |α| ≤ k and |β| ≤ k′, then a(x,D) is continuous from

Lp(Rn) to Lp(Rn).

The �rst result presented by Calderon-Vaillancourt [24] in the case p = 2 proved if for

α, β ∈ {0, 1, 2, 3}n and Coifman-Meyer [21] proved it the case (1 < p < ∞) for k, k′ ≥ 2n.

Cordes [29] proved it (p = 2) for |α|, |β| ≤ [n/2] + 1.

Theorem 5.1.2. Let 1 < p <∞, 0 ≤ δ = ρ < 1 and m = −n(1− p)|1/p− 1/2|. If k, k′ are
su�ciently large real number and a : Rn × Rn → C is a continuous function whose derivatives

∂αx ∂
β
ξ a in the distribution sense satisfy (1.1) with |α| ≤ k and |β| ≤ k′ then a(x,D) is continuous

from Lp(Rn) to Lp(Rn).

This result is due to Calderon-Vaillancourt [25] (the case p = 2) and Fe�erman [34] (the

case 1 < p < ∞); cf. Wang-Li [57]. Calderon-Vaillancourt proved it for |β| ≤ 2[n/2] + n and

|α| ≤ 2m′ with m′ ∈ N and m′(1− ρ) ≥ 5n/4. Coifman-Meyer [63] proved it (the case p = 2) for

|α|, |β| ≤ m′ with m′ ∈ N and m′ ≥ [n/2] + 1. Kato [68] proved it (p = 2) by using the method

of Cordes [29]. Beal [17] proved it (p = 2 and −∞ < ρ < 1). Nagase [98] proved it (the case

2 ≤ p ≤ ∞) for k, k′ = [n/2] + 1. I.L.Hwang [57] proved it (the case p = 2 and −∞ < ρ < 1) for

α, β ∈ {0, 1}n.
In the work Miyachi [95],[96] we show following the sharpest results.

Theorem 5.1.3. Let 0 ≤ δ < 1 and m = −n(1− δ)|1/p− 1/2|.
1) If 0 < p ≤ 1, δ = 0, k > n/2, k′ > n/p and a ∈ Λδ,k,k′(Rn×Rn), then a(x,D) is continuous

from Hp(D) to Lp(Rn), where Hp are the hardy spaces.

2) If 0 < p < 1, k > n/2, k′ > n/p and a ∈ Λmδ,k,k′(Rn ×Rn), then a(x,D) is continuous from

hp(R) to Lp(R), where hp are the local Hardy spaces.

3) If 1 < p ≤ 2, k > n/2, k′ > n/p and a ∈ Λmδ,k,k′(R× Rn), then a(x,D) is continuous from

Lp(Rn) to Lp(Rn).

4) If 2 < p < ∞, k > n/p, k′ > n/2 and a ∈ Λδ,k,k′(Rn × Rn), then a(x,D) is continuous

from Lp(Rn) to Lp(Rn).

Sugimoto [107,108] proved Lp- boundedness results, 0 < p < ∞, by means of Besov spaces,

which are an improvement of Theorem C with δ = 0. Muramatu [96] also obtained some L2 -

boundedness results by means of Besov spaces, which also are an improvement of Theorem C

with 0 ≤ δ < 1. Bourdaud-Meyer [21] proved Theorem C with p = 2 and δ = 0, and obtained

the sharpest result.

The following theorem is Sugimoto's result ([107, Theorem 2.2]), which is closely related to

our problems.

Theorem 5.1.4. let (1) p = 2, q = (q, q′) ∈ [2,∞)2∪∞×2,∞ or (2) p ∈ [1, 2), q = (q, q′) ∈
(2,∞)× [2,∞) ∪∞× 2,∞. Then for a ∈ B

n/2−n/q′,n/p−n/q
q,(1,1),(0,n/p−n/2) and f ∈ S ∩Hp we have

||a(x,D)f ||Lp ≤ c||a(x, ξ)||B(n/2−n/q′,n/p−n/q)
q,(1,1),(0,n/p−n/2) ||f ||Hp ,
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where c is a constant independent of a and f , S is the collection of rapidly decreasing functions,

Hp is the Hardy space, and Bq is the Hardy space, and B
(n/2−n/q′,n/p−n/q)
q,(1,1),(0,n/p−n/2) is a Besov space

de�ned in [107].

In this work, we prove the Lp- boundedness, 1 < p <∞, of pseudodi�eretial operators with

the support of their symbols being contained in E × Rn, where E is a compact subset of Rn.
The contents of this work are as follows. First, we give some lemmas and corollaries and

formulate the main results, �nally is given the proof of main results.

We require the derivatives ∂αx a and ∂αx ∂
β
ξ a up to �nite order for Lp - boundedness of pseu-

dodi�erential operators.

De�nition 5.1.5. Let m(ξ) is positive continuous weight function, k > 0 and k 6∈ N and we

de�ne Λm,k(R×Rn) to be collection of continuous functions a : Rn × Rn → C whose derivatives

∂αx a satisfy the following conditions:

(1.1) ∀x, ξ, h ∈ Rn, a constant C > 0 such that for α ∈ Nn, |α| ≤ [k], we have

1) If |α| ≤ [k] then |∂αx a(x, ξ)| ≤ Cm(ξ).

2) If |h| ≤ 1 and |α| = [k] then |∂αx a(x+ h, ξ)− ∂αx (x, ξ)| ≤ Cm(ξ)|h|k−[k].

We denote by ||a||m(ξ),k the smallest C such that (1.1) holds. The constant C is depending

on n.

De�nition 5.1.6. Let m(ξ) is positive continuous weight function, 0 ≤ δ < 1, k, k′ > 0, and

k, k′ 6∈ N. The collection of continuous functions a : Rn×Rn de�ne by Λδ,k,k′ and the derivatives

∂αx ∂
β
ξ a satisfy the following conditions:

(1.2) ∀x, ξ, h, η ∈ Rn, a constant C > 0 such that for α, β ∈ Nn, |α| ≤ [k], |β| ≤ [k′] we have

1) If |α| ≤ [k] and |β| ≤ [k′] then

|∂αx ∂
β
ξ a(x, ξ)| ≤ Cm(ξ)〈ξ〉δ(|α|−|β|).

2) If |h| ≤ 1, |α| = [k] and |β| ≤ [k′] then

|∂αx ∂
β
ξ a(x+ h, ξ)− ∂αx ∂

β
ξ a(x, ξ)| ≤ Cm(ξ)〈ξ〉δ(k−|β|)|h|k−[k].

3) If |η| ≤ 1, |α| ≤ [k] and |β| = [k′] then

|∂αx ∂
β
ξ a(x, ξ + η)− ∂αx ∂

β
ξ a(x, ξ)| ≤ Cm(ξ)〈ξ〉δ(|α|−k

′)|η|k
′−[k′].

4) If |h| ≤ 1, |η| ≤ 1, |α| = [k] and |β| = [k′] then

|∂αx ∂
β
ξ a(x+ h, ξ + η)− ∂αx ∂

β
ξ a(x+ h, ξ)− ∂αx ∂

β
ξ a(x, ξ + η) + ∂αx ∂

β
ξ a(x, ξ)|

≤ Cm(ξ)〈ξ〉δ(k−k
′)|h|k−[k]|η|k

′−[k′].

We denote by ||a||m,k,k′ the smallest C such that (1.2) holds.

Now we start to prove the Lp- boundedness , 1 < p <∞ by using the method of Hwang [56].

For u, v ∈ C∞0 (Rn), a ∈ Λmk (Rn ×Rn) and sup a ⊆ E ×Rn, where E is a compact subset of Rn,
we can write (a(x,D)u, v) in the following form:

(a(x,D)u, v) =

r1∑
i=1

∫
Rn

∫
Rn
bi(x, ξ)û(ξ)hi(x, ξ)dξdx,
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where r1 ∈ N. Similarly, for u, v ∈ C∞0 (Rn) and a ∈ Λmk,k′(Rn × Rn), we also can write

(a(x,D)u, v) in the following form:

(a(x,D)u, v) =

r2∑
i=1

∫
Rn

∫
Rn
bi(x, ξ)gi(x, ξ)hi(x, ξ)dξdx,

where r2 ∈ N. Here, bi(x, ξ) are related to a(x, ξ) and its derivatives, gi, hi are Wigner functions

which have following form:

1) gi(x, ξ) =

∫
Rn
e−iyξϕi(x− y)u(y)dy,

2) hi(x, ξ) =

∫
Rn
e−iyλψi(ξ + λ)¯̂v(λ)dλ,

where x, ξ ∈ Rn and ϕi ∈ Lp(Rn), ψi ∈ L2(Rn) (the case 1 < p ≤ 2), ϕi ∈ L2(Rn), ψi ∈ Lp(Rn)

(the case 2 < p <∞).

Then, by Paley's inequality, we can get

|(a(x,D)u, v)| ≤ C||u||Lp ||v||Lq , 1 < p <∞, 1/p+ 1/q = 1,

where C = CE,n,p,k||a||m,k or Cn,p,k,k′ ||a||m,k,k′ .
Lemmas and Corollaries

First, we have the following lemma. Its proof can be found in [17].

Lemma 5.1.7. Let ϕs(λ) = (1 + |λ|2)s/2 with λ ∈ Rn and 0 < s < 1. Then the Fourier

transform of ϕs has the following properties:

ϕ̂s ∈ C∞(Rn \ 0). (5.1.1)

There are constants Cn,s and Cn,s,t such that

|ϕ̂s(x)| ≤ Cn,s,t|x|−t−1 for |x| > 1 and t ∈ N, (5.1.2)

and

|ϕ̂s(x)| ≤ Cn,s|x|−n−s for 0 < |x| ≤ 1. (5.1.3)

Remark 5.1.8. In fact, if we de�ne ϕs,ε(λ) = ϕs(λ)e−ε|λ|
2

, λ ∈ Rn and 0 < s, ε < 1, then ϕ̂s,ε

satis�es (5.1.1)-(5.1.3) with Cn,s and Cn,s,t independent of ε.

For a ∈ Λmk,k′(Rn × Rn), we de�ne â1, â2 as follows:

1) â1(λ, ξ) =

∫
Rn
e−ixλa(x, ξ)dx, λ, ξ ∈ Rn.

2) â2(x, y) =

∫
Rn
e−iξya(x, ξ)dξ, x, y ∈ Rn.

Then we formulate the following lemma.
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Lemma 5.1.9. Let m(ξ) is a positive continuous bounded function, 0 < s < k, k′ < 1, a ∈
C∞0 (Rn×Rn)∩Λmk,k′(Rn×Rn) and ϕs(λ) = (1+ |λ|2)s/2, λ ∈ Rn. Suppose ĝ1

1(·, ξ) = â1(·, ξ)ϕs(·)
and ĝ2

2(·, ξ) = â2(·, ξ)ϕs(·), x, ξ ∈ Rn. Then we have

|gi(x, ξ)| ≤ Cn,m,s|m(ξ)|||a||, x, ξ ∈ Rn, (5.1.4)

where i = 1, 2, ||a|| = ||a||m,k,k′ and Cn,m,s depends only on k or k′.

Proof. We shall prove the case i = 2 only, since the proof of the case i = 1 is similar.

Without loss of generality, we may assume that ϕs(λ) = ϕs,ε(λ) = (1 + |λ|2)s/2e−ε|λ|
2

, λ ∈ Rn

and 0 < ε < 1. Then we have

g2(x, ξ) =

(
1

2π

)n ∫
Rn
eiξyâ2(x, y)ϕs,ε(y)dy

=

(
1

2π

)n ∫
Rn
ϕ̂s,ε(η)a(x, η + ξ)dη

= I1(x, ξ) + I2(x, ξ), x, ξ ∈ Rn,

where

I1(x, ξ) = (
1

2π
)n
∫
|η|≤1

ϕ̂s,εa(x, η + ξ)dη,

and

I2(x, ξ) = (
1

2π
)n
∫
|η|≥1

ϕ̂s,εa(x, η + ξ)dη,

By (1.2) and (5.1.2), we obtain

|I2(x, ξ)| ≤ Cn,s,t||a||
∫
|η|≥1

|η|−1−t|m(ξ)|dη, t ∈ N.

We get

|I2(x, ξ)| ≤ Cn,m,s|m(ξ)|||a||.

We now estimate I1. First, we write I1 in the form

I1(x, ξ) = I1,1(x, ξ) + I1,2(x, ξ), x, ξ ∈ Rn,

where

I1,1(x, ξ) =

(
1

2π

)n ∫
|η|≤1

ϕ̂s,ε(η)(a(x, η + ξ)− a(x, ξ))dη,

and

I1,2(x, ξ) =

(
1

2π

)n ∫
|η|≤1

ϕ̂s,ε(η)dη · a(x, ξ).

By (1.2) and (5.1.3), we get

|I1,1(x, ξ)| ≤ Cn,s|m(ξ)|||a||
∫
|η|≤1

1

|η|n+s−k′ dη ≤ Cn,s|m(ξ)|||a||,

where Cn,s depends on k
′.
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Since ϕs,ε(0) = 1 and
∫
|η|>1

|ϕ̂η,ε(η)|dη ≤ Cn,s, we obtain

|I1,2(x, ξ)| ≤ Cn,s|m(ξ)|||a||,

where Cn,s depends on k
′.

Corollary 5.1.10. Let m(ξ) is bounded continuous function, 0 < s < k < 1, a ∈ C∞0 (Rn ×
Rn) ∩ Λmk (Rn × Rn) and ϕs(λ) = (1 + |λ|2)s/2, λ ∈ Rn. Suppose ĝ1(·, ξ) = â1(·, ξ)ϕs(·), ξ ∈ Rn.
Then

|g(x, ξ)| ≤ Cn,m,s|m(ξ)|||a||, x, ξ ∈ Rn,

where ||a|| = ||a||k,k′ and Cn,m,s depends only on k.

Proof. This is an immediate consequence of Lemma (5.1.9).

Corollary 5.1.11. Let m(ξ) is bounded continuous function, 0 < s < k < 1, 0 < s′ < k′ < 1,

a ∈ C∞0 (Rn × Rn) ∩ Λmk,k′(Rn × Rn) and ϕs̃(λ) = (1 + |λ|2)s̃/2, λ ∈ Rn and s̃ = s, s′. Suppose

ĝ(λ, y) = â(λ, y)ϕs(λ)ϕs′(y), y, λ ∈ Rn. Then we have

|g(x, ξ)| ≤ Cn,m,s|m(ξ)|||a||, x, ξ ∈ Rn,

where ||a|| = ||a||m,k,k′ and Cn,m,s depends only on k, k′.

Proof. Without loss of generality, we may assume that ϕs̃(λ) = ϕs̃,ε(λ) = (1+ |λ|2)s̃/2e−ε|λ|
2

,

λ ∈ Rn, s̃ = s, s′ and 0 < ε < 1. First, we have

g(x, ξ) =

(
1

2π

)2n ∫
Rn

∫
Rn
ϕ̂s,ε(z)ϕ̂s′,ε(η)a(z + x, η + ξ)dzdη

=

(
1

2π

)2n 4∑
j=1

Ij(x, ξ), x, ξ ∈ Rn,

where

I1(x, ξ) =

∫
|z|≤1

∫
|η|≤1

ϕ̂s,ε(z)ϕ̂s′,ε(η)a(z + x, η + ξ)dzdη,

I2(x, ξ) =

∫
|z|≤1

∫
|η|>1

ϕ̂s,ε(z)ϕ̂s′,ε(η)a(z + x, η + ξ)dzdη,

I3(x, ξ) =

∫
|z|>1

∫
|η|≤1

ϕ̂s,ε(z)ϕ̂s′,ε(η)a(z + x, η + ξ)dzdη,

and

I4(x, ξ) =

∫
|z|>1

∫
|η|>1

ϕ̂s,ε(z)ϕ̂s′,ε(η)a(z + x, η + ξ)dzdη,

By (1.2), (5.1.2) and Peetre's inequality, we get

|I4(x, ξ)| ≤ Cn,m,s|m(ξ)|||a||,

where Cn,m,s depends on k, k
′.
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We now estimate I1 only and leave the estimates of I2 and I3 to the reader. We write estimate

I1 in the form

I1(x, ξ) =

4∑
t=1

I1,t(x, ξ), x, ξ ∈ Rn,

where

I1,1(x, ξ) =

∫
|z|≤1

∫
|η|≤1

ϕ̂s,ε(z)ϕ̂s′,ε(η)(a(z + x, η + ξ)− a(z + x, ξ)− a(x, η + ξ) + a(x, ξ))dzdη,

I1,2(x, ξ) =

∫
|z|≤1

∫
|η|≤1

ϕ̂s,ε(z)ϕ̂s′,ε(η)(a(z + x, ξ)− a(x, ξ))dzdη,

I1,3(x, ξ) =

∫
|z|≤1

∫
|η|≤1

ϕ̂s,ε(̂z)ϕs′,ε(η)(a(x, η + ξ)− a(x, ξ))dzdη,

and

I1,4(x, ξ) =

∫
|z|≤1

∫
|η|≤1

ϕ̂s,ε(z)ϕ̂s′,ε(η)dzdη · a(x, ξ).

By (1.2) and (5.1.3), we get

|I1,t(x, ξ)| ≤ Cn,m,s|m(ξ)|||a||,

where t = 1, 2, 3, 4 and Cn,m,s depends on k, k
′.

We give the following lemma of Hwang [56] which is related to the Winger function.

Lemma 5.1.12. For u, ϕ ∈ C∞0 (Rn), we de�ne

g(x, ξ) =

∫
Rn
e−iyξϕ(x− y)u(y)dy,

and

h(x, ξ) =

∫
Rn
eixλϕi(ξ + λ)u(λ)dλ, x, ξ ∈ Rn.

Then we have

||g||L2(Rn×Rn) = ||h||L2(Rn×Rn) = (2π)n/2||ϕ||L2(Rn)||u||L2(Rn).

To prove the Lp- boundedness of pseudodi�erential operators, we also need the following lemma

which is related to the Hausdor�-Young inequality and Paley's inequality [57]. It can be found

in [56] and [55].

Lemma 5.1.13. If 1 < p ≤ 2, 1/p+ 1/q = 1 and p ≤ r ≤ q, then(∫
Rn
|ξ|−n(1−r/q)|f̂(ξ)|rdξ

)1/r

≤ Cp||f ||Lp(Rn).

Remark 5.1.14. In this work, Lemma 5.1.13 is applied in the case of r = 2.

Now we use the following partition of unity.

Let r > 0 and s = 1, ..., n. We de�ne

Γs,r = {ξ ∈ Rn|ξ = (ξ1, ..., ξn), |ξt| ≤ r|ξs| if t 6= s}.
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Then we can �nd W0 ∈ C∞0 (Rn) and Ws ∈ C∞(Rn), s = 1, ..., n, such that the following

conditions hold:

1) 0 ≤Ws ≤ 1, s = 0, 1, ..., n,

2) supp W0 ⊆ {|ξ| ≤ 1}, supp Ws ⊆ Γs,3/2 ∩ {|ξ| ≥ 1/2}, Ws(ξ) = Ws(
ξ
|ξ| ) for ξ ≥ 1, and

Ws(ξ) = 1 for ξ ∈ Γs,1/2 and |ξ| ≥ 1, s = 1, ..., n,

3)
∑n
s=0Ws ≡ 1,

4) for α ∈ Nn, there exists a constant Cα > 0 such that

|∂αξWs(ξ)| ≤ Cα(1 + |ξ|)−|α|, ξ ∈ Rn and s = 1, ..., n.

To prove the Lp- boundedness, 2 < p <∞, of pseudodiferential operators, we need to study the

Fourier transform of the following functions:

ψs(ξ) = Ws(ξ)
1

1 + iξ
[n/p]
s

1

(1 + |ξ|2)
1
2 (n/p−[n/p]+ε/2)

, (5.1.5)

where ξ ∈ Rn, s = 1, ..., n, Ws are de�ned as above and ε, ε > 0, is so small that n/p+ ε/2 6∈ N,
n/p− [n/p] + ε < 1, [n/p+ ε] = [n/p] and n/q − [n/q] 6= ε/2 with 1/p+ 1/q = 1.

It is clear that ψs ∈ Lp(Rn), and to proof that that ψ̂s ∈ Lq(Rn), we give following lemma of

Hwang [57] without proof.

Lemma 5.1.15. Let ψs be de�ned as in (5.1.5). Then we have

|ψ̂s(x)| ≤ Cn,ε|x|−n/q+ε/2 for 0 < |x| ≤ 1, (5.1.6)

|ψ̂s(x)| ≤ Cn,t|x|−t for |x| > 1, and t ∈ N (5.1.7),

where x ∈ R and 1/p+ 1/g = 1 with 2 < p <∞.

Corollary 5.1.16. For ξ ∈ Rn and 2 < p <∞, we de�ne

ψ(ξ) =
1

(1 + |ξ|2)
1
2 (n/p+ε/2)

,

where ε, ε > 0, is so small that n/p + ε/2 6∈ N, n/p − [n/p] + ε < 1, [n/p + ε] = [n/p] and

n/p− [n/q] 6= ε/2 with 1/p+ 1/q = 1.

Then we have

|ψ̂(x)| ≤ Cn,ε|x|−n/q+ε/2 for 0 < |x| ≤ 1,

and

|ψ̂(x)| ≤ Cn,t|x|−t for |x| > 1 and t ∈ N,

where x ∈ Rn.
Proof. By an argument similar to the proof of Lemma 5.1.15, Corollary 6.1.16 is obtained.

Main results

First, set m(ξ) bounded continuous function, ||a|| = ||a||m,k if a ∈ Λmk (Rn × Rn) and ||a|| =
||a||m,k,k′ if a ∈ Λmk,k′(Rn × Rn). Then we have the following theorems.
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Theorem 5.1.17. Let 1 < p ≤ 2, k > n/2, k 6∈ N, E a compact subset of Rn and

Ω1 = {x ∈ Rn|d(x,E) ≤ 1}. If a ∈ Λmk (Rn × Rn) and supp a ⊆ E × Rn, then a(x,D) is

continuous from Lp(Rn) to Lp(E) with its norm bounded by CE,n,p,k|Ω1|1/p|m(ξ)|||a||, where ||
denotes the Lebesgue measure.

Theorem 5.1.18. Let 2 < p < ∞, k > n/p, k 6∈ N and E a compact subset of Rn. If

a ∈ Λmk (Rn × Rn) and supp a ⊆ E × Rn, then a(x,D) is continuous from Lploc(Rn) to Lp(E).

Theorem 5.1.19. let 1 < p ≤ 2, k > n/2, k′ > n/p and k, k′ 6∈ N. If a ∈ Λmk,k′(Rn × Rn),

then a(x,D) is continuous from Lp(Rn) to Lp(Rn) with its norm bounded by Cn,p,k,k′ |m(ξ)|||a||.
Theorem 5.1.20. Let 2 < p <∞, k > n/p, k′ > n/2 and k, k′ 6∈ N. If a ∈ Λnk,k′(R

n × Rn),

then a(x,D) is continuous from Lp(Rn) to Lp(Rn) with its norm bounded by Cn,p,k,k′ |m(ξ)|||a||.
Proofs of the main results

Proof of Theorem 5.1.17. Without loss of generality, we may assume that

a ∈ C∞0 (Rn × Rn) ∩ Λmk (R× Rn).

Let k = n/2 + ε and ϕ2(λ) = (1 + |λ|2)
1
2 (n/2−[n/2]+ε/2), where λ ∈ Rn and ε, ε > 0, is so small

that n/2− [n/2]− ε < 1 and [n/2 + ε] = [n/2]. Then for u, v ∈ C∞0 (Rn), we have

(a(x,D)u, v) =

(
1

2π

)n ∫
Rn

∫
Rn
eixξa(x, ξ)û(ξ)v̄(x)dξdx. (5.1.8)

We write (5.1.8) in the form

(a(x,D)u, v) =

(
1

2π

)n ∫
Rn

∫
Rn
â1(λ, ξ)û(ξ)¯̂v(λ+ ξ)dλdξ

=

(
1

2π

)2n ∫
Rn

∫
Rn
â1(λ, ξ)ϕ2(λ)ϕ−1

2 (λ)û(ξ)¯̂v(λ+ ξ)dλdξ

=

(
1

2π

)2n ∫
Rn

∫
Rn

∫
Rn
e−ixλb(x, ξ)û(ξ)ϕ−1

2 (λ)¯̂v(λ+ ξ)dλdξdx, (5.1.9)

where

b̂1(·, ξ) = â1(·, ξ)ϕ2(·), ξ ∈ Rn.

Making use of the partition of unity Ws, s = 0, 1, ..., n, we write (5.1.9) in the form

(a(x,D)u, v) =

(
1

2π

)2n n∑
s=0

Is,

where

Is =

∫
Rn

∫
Rn

∫
Rn
e−ixλb(x, ξ)û(ξ)Ws(λ)ϕ−1

2 (λ)¯̂v(λ+ ξ)dλdξdx, s = 0, 1, ..., n.

We estimate I1 only. Integrating the above integral with respect to x �rst and making the use

of the identity
1

1 + iλ
[n/2]
1

(1− (−i)1−[n/2]∂[n/2]
x1

)(e−ixλ) = eixλ,
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we write I1 in the form

I1 = I1,1 + (i)1−[n/2]I1,2,

where

I1,1 =

∫
Rn

∫
Rn
b(x, ξ)û(ξ)h(x, ξ)dξdx,

and

I1,2 =

∫
Rn

∫
Rn
b̃(x, ξ)û(ξ)h(x, ξ)dξdx, (5.1.10)

with

b̃(x, ξ) = ∂[n/2]
x1

(b(x, ξ)),

h(x, ξ) =

∫
Rn
e−ixλψ(λ)¯̂v(λ+ ξ)dλ, x, ξ ∈ Rn, (5.1.11)

and

ψ(λ) = W1(λ)ϕ−1
2 (λ)

1

1 + iλ
[n/2]
1

, λ = (λ1, ..., λn) ∈ Rn.

We shall estimate I1,2 only, since the estimate of I1,1 is similar. First, we write (5.1.11) in the

form

h(x, ξ) =

∫
Rn
ei(x−z)ξψ̂(z)v̄(x− z)dz. (5.1.12)

Substituting (5.1.12) into (5.1.10), we write I1,2 in the form

I1,2 = J1 + J2,

where

J1 =

∫
Ω1

∫
Rn
b̃(x, ξ)û(ξ)h(x, ξ)dξdx,

and

J2 =

∫
R\Ω1

∫
Rn
b̃(x, ξ)û(ξ)h(x, ξ)dξdx,

We �rst estimate J1. By Hölder's inequality, Corollary 5.1.10, Lemma 5.1.13 and Parseval's

formula, we obtain

|J1| ≤ C
∫

Ω1

(∫
Rn
|m(ξ)û(ξ)|2dξ

)1/2(∫
Rn
|h(x, ξ)|2dξ

)1/2

dx

≤ C|m(ξ)|||u||Lp(Rn)

∫
Ω1

(∫
Rn
|ψ̂(z)v̄(x− z)|2dz

)1/2

dx,

where C = CE,n,p,k||a|| and 1 < p ≤ 2.

By Hölder's inequality and Minkowski's inequality, we get

|J1| ≤ C|Ω1|1/p|m(ξ)|||u||Lp(Rn)||ψ||L2(Rn)||v||Lq(Rn), 1/p+ 1/q = 1.

Now, we estimate J2. We have

b̃(x, ξ) =

(
1

2π

)n ∫
Rn
∂[n/2]
x1

(a(x+ y, ξ))ϕ̂(y)dy
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=

(
1

2π

n)∫
Rn

(∂[n/2]
x1

a)(y, ξ)ϕ̂(y − x)dy, x, ξ ∈ Rn,

and |x − y| > 1 for x ∈ Rn \ Ω1 and y ∈ E. Hence, by Hölder's inequality, Corollary 5.1.10,

Lemma 5.1.13, and Parseval's formula, we have

|J2| ≤ C||u||Lp(Rn)

∫
Rn\Ω1

A(x)

(∫
Rn
|ψ̂(z)v̄(x− z)|2dz

)1/2

dx,

where C = CE,n,p,k,||a||, 1 < p ≤ 2, and

A(x) =

∫
Rn

χE(y)

|x− y|n+1
dy, x ∈ Rn,

with

χE =

{
1 if y ∈ E
0 if y 6∈ E.

By Hölder's inequality and Minkowski's inequality, we obtain

|J2| ≤ C|E|1/p||u||Lp(Rn)||ψ||L2(Rn)||v||Lq(Rn), 1/p+ 1/q = 1.

Proof of Theorem 5.1.18. Without loss of generality, we may assume that

a ∈ C∞0 (Rn × Rn) ∩ Λmk (Rn × Rn).

Let k = n/p+ε and ϕp(λ) = (1+|λ|2)
1
2 (n/p−[n/p]+ε/2), where λ ∈ Rn and ε, ε > 0, is so small that

n/p+ ε/2 6∈ N, n/p− [n/p] + ε < 1, [n/p+ ε] = [n/p] and n/q− [n/q] 6= ε/2 with 1/p+ 1/q = 1.

It is enough to show that the conclusion holds in every open ball. So �x a ball, say B. Then for

u, v ∈ C∞0 (Rn × Rn) and supp u ⊆ B, we have

(a(x,D)u, v) =

(
1

2π

)n ∫
Rn

∫
Rn
eixξa(x, ξ)û(ξ)v̄(x)dξdx.

Since the arguments are similar to the proof of Theorem 5.1.17, we only study the following

lemma.

Lemma 5.1.20'. For u, v ∈ C∞0 (Rn) and supp u ⊆ B, we de�ne

J =

∫
Rn

∫
Rn
b̃(x, ξ)û(ξ)h(x, ξ)dξdx, (5.1.13)

where

b̃(x, ξ) = ∂[n/p]
x1

(b(x, ξ)), x = (x1, ..., xn), ξ ∈ Rn, 2 < p <∞,

with

b̂1(·, ξ) = â1(·, ξ)ϕp(·),

h(x, ξ) =

∫
Rn
e−ixλψp(λ)¯̂v(λ+ ξ)dλ, x, ξ ∈ Rn, (5.1.14)
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with

ψp(λ) = W1(λ)ϕ−1
p (λ)

1

1 + iλ
[n/p]
1

, λ = (λ1, ..., λn) ∈ Rn,

and W1 is de�ned as in the proof of Theorem 5.1.17. Then we have

|J | ≤ CE,n,p,k||a|||B|
p−2
2p |Ω1|1/p||u||Lp(B)||v||Lq(Rn),

where |B|, Ω1 denote the Lebesque measure of B, Ω1, respectively, with Ω1 = {x ∈ Rn|d(x,E) ≤
1}, and 1/p+ 1/q = 1 with 2 < p <∞.

Proof. First, we write (5.1.14) in the form

h(x, ξ) =

∫
Rn
ei(x−z)ξψ̂(z)v̄(x− z)dz. (5.1.15)

Substituting (5.1.15) into (5.1.13), we write J in the form J = J1 + J2, where

J1 =

∫
Ω1

∫
Rn
b̃(x, ξ)û(ξ)h(x, ξ)dξdx,

and

J2 =

∫
Rn\Ω1

∫
Rn
b̃(x, ξ)û(ξ)h(x, ξ)dξdx,

By an argument similar to the proof of Theorem 5.1.17, we have

|J1| ≤ C
∫

Ω1

(∫
Rn
|û(ξ)|2dξ

)1/2(∫
Rn
|m(ξ)h(x, ξ)|2dξ

)1/2

dx

≤ C|m(ξ)|||u||L2(B)

∫
Ω1

(∫
Rn
|ψ̂(z)v̄(x− z)|qdz

)1/q

dx,

|J1| ≤ C|m(ξ)|||u||L2(B)

∫
Rn\Ω1

A(x)

(∫
Rn
|ψ̂(z)v̄(x− z)|qdz

)1/q

dx,

where Cn,p,k||a||, A is de�ned as in the proof of Theorem 5.1.17 and 2 < p <∞.

By duality and Fubini's theorem, we obtain

|J1| ≤ C|B|
p−2
2p |m(ξ)|||u||Lp(B)|E|1/p||ψ̂(z)||Lq(Rn)||v||Lq(Rn),

|J | ≤ C|B|
p−2
2p |m(ξ)|||u||Lp(B)|E|1/p||ψ̂(z)||Lq(Rn)||v||Lq(Rn).

Then Theorem 5.1.18 follows by applying Lemma 5.1.14

Proof of Theorem 5.1.19. Without loss of generality, we may assume that a ∈ C∞0 (R× R) ∩
Λmk,k′(Rn × Rn). Let k = n/2 + ε, k′ = n/p + ε and ϕp(λ) = (1 + |λ|2)

1
2 (n/p−[n/p]+ε/2), where

λ ∈ Rn and ε, ε > 0, is so small that n/p − [n/p] + ε < 1 and [n/p + ε] = [n/p]. Then for

u, v ∈ C∞0 (Rn), we have

(a(x,D)u, v) =

(
1

2π

)n ∫
Rn

∫
Rn
eixλa(x, ξ)û(ξ)v̄(x)dξdx. (5.1.16)
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We write (5.1.16)in the form

(a(x,D)u, v) =

(
1

2π

)n ∫
Rn

∫
Rn
â(λ, y)f(λ, y)dydλ

=

(
1

2π

)n ∫
Rn

∫
Rn
â(λ, y)ϕp(y)ϕ2(λ)ϕ−1

p (y)ϕ−1
1 (λ)f(λ, y)dydλ

=

(
1

2π

)n ∫
Rn

∫
Rn

∫
Rn

∫
Rn
b(x, ξ)e−iξye−iξye−ixλϕ−1

p ϕ−1
2 (λ)f(λ, y)dydλdξ, (5.1.17)

where

b̂(λ, y) = â(λ, y)ϕp(y)ϕ2(λ), 1 < p ≤ 2, (5.1.18)

and

f(λ, y) =

∫
Rn
eiwλu(w + y)v̄(w)dw, λ, y ∈ Rn. (5.1.19)

Making use of the partition of unity Ws, s = 0, 1, ..., n, we write (5.1.17) in the form

(a(x,D)u, v) =
( 1

2π

)2n n∑
s,t=0

Is,t,

where

Is,t =

∫
Rn

∫
Rn

∫
Rn

∫
Rn
b(x, ξ)e−iξye−ixλWs(y)ϕ−1

p (y)Wt(λ)ϕ−1
2 (λ)f(λ, y)dydλdξdx,

s, t = 0, 1, ..., n.

We shall estimate I1,1 only, since the estimates of the cases are similar. By an argument similar

to the proof of Theorem 5.1.17, we use the following method:

1) We integrate the above integral with respect to ξ �rst and make use of the identity

1

1 + iy1

[n/p]

(1− (−i)1−[n/p]∂
[n/p]
ξ1

)(e−iξy) = e−iξy.

2) We integrate the result of (1) with respect to x �rst and make use of identity

1

1 + iy1

[n/p]

(1− (−i)1−[n/2]∂[n/2]
x1

)(e−ixλ) = e−ixλ.

Then we obtain

I1,1 = J1 + (i)1−[n/2]J2 + (i)1−[n/p]J3 + (i)1−[n/2](i)1−[n/p]J4,

where

Jk =

∫
Rn

∫
Rn
bk(x, ξ)∆(x, ξ)dξdx, k = 1, 2, 3, 4,

with

b1(x, ξ) = b(x, ξ),

b2(x, ξ) = ∂[n/2]
x1

(b(x, ξ)),
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b3(x, ξ) = ∂
[n/p]
ξ1

(b(x, ξ)),

b4(x, ξ) = ∂[n/2]
x1

∂
[n/p]
ξ1

(b(x, ξ)),

∆(x, ξ) =

∫
Rn

∫
Rn
e−iξye−ixλψp(y)ψ2(λ)f(λ, y)dydλ, x, ξ ∈ Rn, (5.1.20)

and

ψp(y) = W1(y)
1

1 + iy
[n/p]
1

ϕ−1
p (y), y = (y1, ..., yn) ∈ Rn, 1 < p ≤ 2.

We shall estimate J4 only, since the other cases are similar. First, we estimate the following

integral: ∫
Rn

∫
Rn
|m(ξ)∆(x, ξ)|dξdx.

By Lemma 5.1.3 and ψp ∈ L2(Rn), we see that the integral in (5.1.19) is in L1(Rn × Rn).

Therefore, without loss of generality, we consider the following integral:∫
Rn

∫
R
|m(ξ)∆δ(x, ξ)|dξdx, (5.1.21)

where

∆δ(x, ξ) =

∫
Rn

∫
Rn
e−iξye−ixλψp,δψ2,δ(λ)f(λ, y)dydλ, x, ξ ∈ Rn, (5.1.22)

with

ψp,δ(y) = ψp(y)e−δ|y|
2

, y ∈ Rn, 1 < p ≤ 2 and 0 < δ < 1. (5.1.23)

We now give a proposition that will help us to study (5.1.20).

Proposition 5.1.21. For u, v ∈ C∞0 , 1 < p ≤ 2 and 0 < δ < 1, let ∆δ be de�ned as in

(5.1.21). Then we have∫
Rn

∫
Rn
|m(ξ)∆δ(x, ξ)|dξdx ≤ Cn,p,k,k′ ||u||Lp(Rn)||v||Lq(Rn), 1/p+ 1/q = 1.

Proof. Substituting (5.1.18) into (5.1.21), writing v̄(w) in the form

v̄(w) =

(
1

2π

)n ∫
Rn
e−iwη ¯̂v(η)dη, w ∈ Rn,

and making the change of variables w + y → w, we write ∆δ in the form

∆δ(x, ξ) =

(
1

2π

)n ∫
Rn

∫
Rn
eix(ξ−η)e−iwξ

×
(∫

Rn
ei(w−x)λψ̂p,δψ2,δ(λ+ η − ξ)dλ

)
u(w)¯̂v(η)dwdη, x, ξ ∈ Rn.

By Taylor's expansion formula, we write ψ2,δ in the form

ψ2,δ(λ+ η − ξ) =
∑
|α|≤4n

λα

α!
ψ

(α)
2,δ (η − ξ)
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+(4n+ 1)
∑

|α|=4n+1

λα

α!

∫ 1

0

(1− θ)4n+1ψα2,δ(η − ξ + θλ)dθ, λ, η, ξ ∈ Rn.

Substituting (5.1.23) into (5.1.22), we have

∆δ(x, ξ) =

(
1

2π

)n ∑
|α|≤4n

1

α!
gα,p,δ(x, ξ)hα,2,δ(x, ξ) +

(
1

2π

)n
(4n+ 1)�δ(x, ξ), s, ξ ∈ Rn,

where

gα,p,δ(x, ξ) = (i)−|α|
∫
Rn
e−iwξψ

(α)
p,δ (w)u(x+ w)dw, (5.1.24)

hα,2,δ(x, ξ) =

∫
Rn
e−ixηψα2,δ(η − ξ)¯̂v(η)dη, (5.1.25)

and

�δ(x, ξ) =
∑

|α|=4n+1

1

α!

∫ 1

0

(1− θ)4n+1

×
∫
Rn

∫
Rn

(∫
Rn
ei(w−x)λψα2,δ(η − ξ + θλ)λαψ̂p,δ(λ)dλ

)
eix(ξ−η)e−iwξu(w)¯̂v(η)dwdηdθ. (5.1.26)

We now give a lemma to help us study the following integral:∫
Rn

∫
Rn
|m(ξ)|mgα,p,δ(x, ξ)hα,2,δ(x, ξ)|dξdx, (5.1.27)

for |α| ≤ 4n, 1 < p ≤ 2 and 0 < δ < 1.

Lemma 5.1.22. For u, v ∈ C∞0 (Rn), |α| ≤ 4n, 1 < p ≤ 2 and 0 < δ < 1, let gα,p,δ and hα,2,δ

be de�ned as in (5.1.24) and (5.1.25), respectively. Then we have∫
Rn

∫
Rn
|m(ξ)gα,p,δ(x, ξ)hα,2,δ(x, ξ)|dξdx ≤ Cn,p,k,k′ |m(ξ)|||u||Lp(R)||v||Lq(Rn), 1/p+ 1/q = 1.

Proof. First, we write (5.1.25) in the form

hα,2,δ(x, ξ) =

∫
Rn
e−iξzψ̂

(α)
2,δ (z)v̄(x− z)dz. (5.1.28)

Substituting (5.1.28) into (5.1.27), by Holder's inequality, Lemma 5.1.13 and Parseval's formula,

we obtain ∫
Rn

∫
Rn
|m(ξ)gα,p,δ(x, ξ)hα,2,δ(x, ξ)|dξdx

≤
∫
Rn

(∫
Rn
|m(ξ)gα,p,δ(x, ξ)|2dξ

)1/2(∫
Rn
|hα,2,δ(x, ξ)|2dξ

)1/2

dx

≤ C
∫
Rn

(∫
Rn
|ψαp,δ(w)u(x+ w)|pdw

)1/p(∫
Rn
|ψ̂α2,δ(z)v̄(x− z)|2dz

)1/2

dx,

where C = Cn,p,k,k′ .

By Hölder's inequality, Fubini's theorem and Minkowski's inequality, we have∫
Rn

∫
Rn
|m(ξ)g(α,p,δ)(x, ξ)hα,2,δ(x, ξ)|dξdx
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≤ Cn,p,k,k′ ||ψ(α)
p,δ ||Lp(R)||u||Lp(Rn)||ψ

(α)
2,δ ||L2(Rn)||v||Lq(Rn), 1/p+ 1/q = 1.

We now give a lemma to help us study �δ.

Lemma 5.1.23. For u, v ∈ C∞0 , 1 < p ≤ 2 and 0 < δ < 1, let �δ be de�ned as in (5.1.26).

Then we have∫
Rn

∫
Rn
|m(ξ)�δ(x, ξ)|dξdx ≤ Cn,p,k,k′ |m(ξ)|||u||Lp(Rn)||v||Lq(Rn), 1/p+ 1/q = 1.

Proof. First, we study the following integral:∫
Rn
ei(w−x)λψ

(α)
2,δ (η − ξ + θλ)(λαψ̂p,δ(λ))dλ, (5.1.29)

where w, x, η, ξ ∈ Rn, 0 ≤ θ ≤ 1 and |α| = 4n+ 1.

Making use of the following identity:

( n∏
s=1

1

1 + i(ws − xs)
)( n∏

s=1

(1 + ∂λs)
)
(ei(w−x)λ) = ei(w−x)λ,

we write (5.1.29) in the form∫
Rn
ei(w−x)λψα2,δ(η − ξ + θλ)(λαψ̂p,δ(λ))dλ

=
( n∏
s=1

1

1 + i(ws − xs)
)∑
β∈T

(−1)|β|
∑
γ≤β

∫
Rn
ei(w−x)λ∂γλ(ψα2,δ(η − ξ + θλ))∂β−γλ (λαψ̂p,δ(λ))dλ,

(5.1.30)

with

T = {(β1, β2, ..., βn) ∈ Nn|βt = 0 or 1, t = 1, ..., n}.

Substituting (5.1.30) into (5.1.26), we get

�δ(x, ξ) =
∑

|α|=4n+1

1

α!

∑
β∈T

(−1)|β|
∑
γ≤β

∫ 1

0

∫
Rn

(1− θ)4n+1∂β−γλ (λαψ̂p,δ(λ))

×e−ix(λ−ξ)g̃(x, ξ, λ)h̃α,γ(x, ξ, θλ)dλdθ, x, ξ ∈ Rn, (5.1.31)

where

g̃(x, ξ, λ) =

∫
Rn
eiw(λ−ξ)( n∏

s=1

1

1 + i(ws − xs)
)
u(w)dw,

and

h̃α,γ(x, ξ, θλ) =

∫
Rn
e−ixη∂γλ(ψα2,δ(η − ξ + θλ))¯̂v(η)dη, λ ∈ Rn. (5.1.32)

By an argument similar to the proof of Lemma 5.1.13, we have∫
Rn

∫
Rn
|m(ξ)g̃(x, ξ, λ)h̃α,γ(x, ξ, θλ)|dξdx

≤ Cn,p||l||Lp(Rn)||u||Lp(Rn)θ
|r|||ψ(α+γ)

2,δ ||L2(Rn)||v||Lq(Rn), (6.1.33)
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where

l(x) =

n∏
s=1

1

1 + ixs
and 1/p+ 1/q = 1.

Also, we have ∫
Rn
|∂βλ (λαψ̂p,δ(λ))|dλ ≤ Cn, (5.1.34)

with |α| = 4n+ 1 and β ∈ T . Therefore, (5.1.29)-(5.1.31) imply∫
Rn

∫
Rn
|m(ξ)�δ(x, ξ)|dξdx ≤

∑
|α|=4n+1

1

α!

∑
β∈T

∑
γ≤β

∫ 1

0

∫
Rn

(1− θ)4n+1|∂β−γλ (λαψ̂p,δ(λ))|

×
(∫

Rn

∫
Rn
|m(ξ)g̃(x, ξ, λ)h̃α,γ(x, ξ, θλ)|dξdx

)
dλdθ

≤ Cn,p,k,k′ |m(ξ)|||u||Lp(Rn)||v||Lq(Rn), 1/p+ 1/q = 1, 1 < p ≤ 2.

Thus, Proposition 5.1.21 gives

|J4| ≤ Cn,p,k,k′ |m(ξ)|||a||||u||Lp(Rn)||v||Lq(Rn), 1/p+ 1/q = 1, 1 < p ≤ 2.

Proof of Theorem 5.1.4. Without loss of generality, we may assume that a ∈ C∞0 (Rn × Rn) ∩
Λmk,k′(Rn × Rn). Let k = n/p + ε, k′ = n/2 + ε and ϕp′(λ) = (1 + |λ|2)

1
2 (n/p′−[n/p′]+ε/2), where

λ ∈ Rn, 2 ≤ p′ < ∞ and ε, ε > 0, is so small that n/p′ + ε/2 6∈ N, n/p′ − [n/p′]ε < 1,

[n/p′ + ε] = [n/p] and n/q − [n/q] 6= ε/2 with 1/p+ 1/q = 1. Then for u, v ∈ C∞0 , we have

(a(x,D)u, v) =

(
1

2π

)n ∫
R

∫
R
eixξa(x, ξ)û(ξ)v̄(x)dξdx.

Sice the following arguments are similar to the proof of Theorem 5.1.19, we shall only study the

following lemma, which is similar to Lemma 5.1.13

Lemma 5.1.24. For u, v ∈ C∞0 , |α| ≤ 4n, 2 < p < ∞ and 0 < δ < 1, we de�ne gα,2,δ and

hα,p,δ as follows:

gα,2,δ(x, ξ) = (i)−|α|
∫
Rn
e−iwξψ

(α)
2,δ (w)u(x+ w)dw,

hα,p,δ(x, ξ) =

∫
Rn
e−ixηψ

(α)
p,δ (η − ξ)¯̂v(η)dη, x, ξ ∈ Rn,

with

ψp′,δ(y) = ψp′(y)e−δ|y|
2

, ψp′(y) = W1(y)
1

1 + iy
[n/p′]
1

ϕ−1
p′ (y),

y = (y1, ..., yn) ∈ Rn, 2 ≤ p′ <∞,

and W1 is de�ned as in the proof of Theorem 5.1.18. Then we have∫
Rn

∫
Rn
|m(ξ)|gα,2,δ(x, ξ)hα,p,δ(x, ξ)|dξdx

≤ Cn,p,k,k′ |m(ξ)|||u||Lp(Rn)||v||Lq(Rn), 1/p+ 1/q = 1.
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Proof. First, we write (5.1.33) in the form

hα,p,δ(x, ξ) =

∫
Rn
e−iξzψ̂

(α)
p,δ (z)v̄(x− z)dz.

By an argument similar to that in the proof of Lemma 5.1.13, we have∫
R

∫
Rn
|m(ξ)gα,2,δ(x, ξ)hα,p,δ(x, ξ)|dξdx

≤
∫
Rn

(∫
Rn
|gα,2,δ(x, ξ)|2dξ

)1/2(∫
Rn
|m(ξ)||hα,p,δ(x, ξ)|2dξ

)1/2

dx

≤ C
∫
Rn

(∫
Rn
|ψ(α)

2,δ (w)u(x+ w)|2dw
)1/2(∫

Rn
|ψ̂(α)
p,δ (z)v̄(x− z)|qdz

)1/q

dx

≤ C||ψα2,δ||Lp(Rn)||u||Lp(Rn)||ψ̂αp,δ||Lq(Rn), 1/p+ 1/q = 1,

where C = Cn,p,k,k′ .

Thus, by an argument similar to the proof of Theorem 5.1.19, Lemma 5.1.12, and Lemma

5.1.13, Theorem 5.1.20 is obtained.
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Part 6

Appendix
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Appendix A

A Few Basic De�nitions and

Theorems of Functional Analysis

The aim of this chapter is to recall some basics de�nitions and theorems, which are useful for

our generally calculus.

6.1 Closed and closable operators

Throughout this section, E denotes a Banach space (over K or C) with norm || · ||. By L(E), we

denote the space of all bounded linear operators on E.

De�nition 1.1. An operator B : D(B) ⊆ E → E is called a closed operators if the graph

G(B) := {(u;Bu), u ∈ D(B)}

is closed in E × E.
This de�nition can be rephrased as follows:

If (xn)n ∈ D(B) is such that xn → x and Bxn → y in E (as n → ∞), then x ∈ D(B) and

y = Bx.

Note also that B is a closed operator if and only if D(B) endowed with the graph norm

|| · ||+ ||B|| is a complete space.

De�nition 1.2. Let B : D(B) ⊆ E → E be an operator on E. A scalar λ ∈ K is the

resolvent set of B if λI − B is invertible (from D(B) into E) and its inverse (λI − B)−1 is a

bounded operator on E. For such λ, the operator (λI −B)−1 is the resolvent of B at λ.

The set

ρ(B) := {λ ∈ K, λI −B is invertible and (λI −B)−1 ∈ L(E)}

is called the resolvent set of B.

The complement of ρ(B) in K

σ(B) := K \ ρ(B)
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is called the spectrum of B.

Proposition 1.3. 1) Assume that B is a closed operator on a Banach space E. Then a

scalar λ is in ρ(B) if and only if λI −B is invertible (from D(B) into E).

2) If the resolvent set ρ(B) is not empty, then B is a closed operator.

De�nition 1.4. An operator B on a Banach space E is closable if there exists a closed

operator C : D(C) ⊆ E → E such that D(B) ⊆ D(C) and Bu = Cu for all u ∈ D(B). In other

words, B has a closed extension C.

Assume that B is a closable operator on a Banach space E. One can de�ne the smallest

closed extension B̄ of B as follows:

D(B̄) = {u ∈ E s.t. ∃un ∈ D(B) : limnun = u, limn,m[Bun −Bum] = 0} (6.1),

and if u and (un)n are as in (6.1) we set

B̄u := limnBun, (6.2)

where the limits are taken with respect to the norm of E.

One shows easily that B̄ is closed operator and every closed extension of B is also an extension

of B̄.

If B is an operator such that B̄, de�ned by (6.1) and (6.2), is well de�ned (i.e., B̄ = limnBun

does not depend on the choice of the sequence (un)), then B̄ is a closed extension of B. Conse-

quently, B is closable if and only if B̄ is a well de�ned operator.

Let now u ∈ D(B̄) and let un ∈ D(B), vn ∈ D(B) be two sequences which converge to u and

such that Bun −Bum → 0 and Bvn −Bvm → 0 as n,m→∞. Thus, Bun and Bvn converge to

some w and w′ in E. Now, barB is well de�ned if and only if w = w′. Thus, we have proved the

following characterization of closable operators.

Proposition 1.5. A linear operator B on E is closable if and only if it satis�es the following

property:

if (un) ∈ D(B) is any sequence such that un → 0 and Bun → v (in E), then v = 0.

De�nition 1.6. Let B be an operator with domain D(B) on a Banach space E. A linear

subspace of D(B) is called a core of B if it is dense in D(B), endowed with the graph norm

|| · ||+ ||B||.
Let B act on a Banach space E and D a linear subspace of D(B). The restriction of B to D

is the operator

B|Du := Bu for u ∈ D = D(B|D).

The next result follows easily from the previous de�nitions.

Proposition 1.7. Let B be a closed operator on a Banach space E and D a linear subspace

of D(B). Then, D is a core of B if and only if the closure of B|D is B, i.e., B̄|D = B.
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6.2 Function spaces and Fourier transform

We �rst de�ne spaces of smooth functions, C∞(Ω) and C∞0 (Ω), and E′(Ω), D′(Ω) are spaces of

distributions. Let Ω is a smooth paracompact manifold and open subset of Rn, when Ω = Rn,

we de�ne the Schwartz space S of rapidly decreasing functions, and its dual S ′.
We de�ne, on functions on Rn, the seminorms qj,k by

qj,k(u) = sup
x∈Rn

(1 + |x|2)j/2|Dαu(x)| : |α| ≤ k.

De�nition 2.1. The space S(Rn) consists of smooth functions u on Rn for which each qj,k(u)

is �nite, with the Frechet space topology determined by these seminorms. It dual is denoted

S ′(Rn).

We have de�ned the di�erential operators Dα on functions on Rn by

Dj = i−1 ∂

∂xj
, Dα = Dα1

1 ...Dαn
n .

If P (ξ) is a polynomial,

P (ξ) =
∑
|α|≤m

aαξ
α,

denote by P (D) the di�erential operator

P (D) =
∑
|α|≤m

aαD
α.

If

p(x, ξ) =
∑
|α|≤m

aα(x)ξα, aα ∈ C∞(Ω),

let

p(x,D) =
∑
|α|≤m

aα(x)Dα.

The di�erential operators are continuously p(x,D) : C∞(Ω) → C∞(Ω) and p(x,D) : C∞0 (Ω) →
C∞0 (Ω) on Ω ⊂ Rn.

If the coe�cients aα ∈ C∞(Rn) satisfy the slow growth condition

|Dβaα(x)| ≤ Cαβ(1 + |x|2)N , N = N(α, β),

then p(x,D) : S(Rn)→ S(Rn) and similarly p(x,D) : S ′(Rn)→ S ′(Rn).

The Fourier transform. If u ∈ L1(Rn), we de�ne by

û(ξ) = (2π)−n/2
∫
u(x)e−ixξdx (6.3)

where x · ξ = x1ξ1 + ... + xnξn. If u ∈ L1 implies û ∈ L∞ and ||û||L∞ ≤ (2π)−n/2||u||L1 . We

denote û(ξ) by Fu(ξ). Changing the sign in the exponent in (6.3), we de�ne

Fu(ξ) = ũ(ξ) = (2π)−n/2
∫
u(x)e−ixξdx.
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Proposition 2.2. If u ∈ S(Rn), then û, ũ ∈ S(Rn).

Proof. If u ∈ S, then we can di�erentiate (6.3) under the integral sign to obtain

Dα
ξ û(ξ) = (2π)−n/2

∫
u(x)(−x)αeixξdx. (6.4)

Now, realizing that ξβe−ixξ = (−1)|β|Dβ
xe
−ixξ and integrating (6.4) by parts we get

ξβDα
ξ û(ξ) = (2π)−n/2(−1)|α|+|β|

∫
Dβ
x(xαu(x))e−ixξdx,

which implies that each ξβDα
ξ û ∈ L∞(Rn), provided u ∈ S(Rn). This yields û ∈ S, and similarly

one has ũ ∈ S.
Theorem 2.3. The Fourier transform F : S(Rn) → S(Rn) is an isomorphism; in fact

FF∗ = F∗F = I, so in particular, for u ∈ S,

u(x) = (2π)−n/2
∫
û(ξ)eixξdξ. (6.5)

Proof. By (6.3) implies F∗F = I and FF∗ = I is similar, so we can prove only (6.5)

(2π)−n/2
∫
û(ξ)eixξdξ = (2π)−n

∫ ∫
u(y)ei(x−y)ξdydξ

= lim
ε→0

(2π)−n
∫ ∫

u(y)ei(x−y)ξ−ε|ξ|2dydξ

= lim
ε→0

(2π)−n
∫
{
∫
ei(x−y)ξ−ε|ξ|2dξ}u(y)dy

= lim
ε→0

∫
p(ε, x− y)u(y)dy (6.6)

where

p(ε, x) = (2π)−n
∫
eixξ − ε|ξ|2dξ. (6.7)

We evaluate (6.7)

p(ε, x) = (4π)−n/2e−|x|
2/4ε = ε−n/2q(x/

√
ε) (6.8)

where q(x) = p(1, x) = (4π)/n/2e−|x|
2/4. If q ∈ S(Rn), by (6.8)we have∫

Rn
q(x)dx = 1.

For any bounded continuous u(x) to verify that,

= lim
ε→0

∫
p(ε, x− y)u(y)dy = u(x). (6.9)

(6.6) and (6.8) yield (6.5).

To establish (6.9), p(ε, x) de�ned by (6.7) is an analytic function of x ∈ Cn to verify that

p(ε, ix) = (4π)−n/2e|x|
2/4ε, x ∈ Rn (6.10)
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Now,

p(ε, ix) = (2π)−n
∫
e−xξ−ε|ξ|

2

dξ

= (2π)−ne|x|
2/4ε

∫
e−|(x/2

√
ε)+
√
εξ|2dξ

= (2π)−ne|x|
2/4ε

∫
e−εξ

2

dξ

= (2π)−nε−n/2e|x|
2/4ε

∫
Rn

e−|ξ|
2

dξ,

so to prove (6.10), we show that ∫
Rn

e−|ξ|
2

dξ = πn/2.

If

A =

∫ ∞
−∞

e−|ξ|
2dξ,

then ∫
Rn

e−|ξ|
2

dξ = An,

but

A2 =

∫
R2

e−|ξ|
2

dξ =

∫ 2π

0

∫ ∞
0

e−r
2

rdrdθ = 2π

∫ ∞
0

e−r
2

rdr = π,

so we are done. The proof of Theorem 2.3 is complete.

We de�ne

F : S ′(Rn)→ S ′(Rn)

by

(u,Fω) = (F∗u, ω). (6.11)

The (6.11) holds for ω ∈ S(Rn) and de�nes the unique continuous extension of F from S to

S ′, similarly F∗ : S ′ → S ′. From Theorem 2.3 it follows FF∗ = F∗F = I on S ′(Rn), F and F∗ are

isomorphism from S ′ to itself.

Integrating by parts that (6.5) implies

Dαu(x) = (2π)−n/2
∫
ξαû(ξ)eixξdξ,

(−x)βu(x) = (2π)−n/2
∫
Dβ
ξ û(ξ)eixξdξ (6.12)

where u ∈ S(Rn).

Thus Dα = F−1ξαF, xβ = F−1(−D)βF on S(Rn), similarly on S ′(Rn). From F−1 = F∗ on

S it follows

||û||2L2 = (Fu,Fu) = (F∗Fu, u) = (u, u) = ||u||2L2 , u ∈ S. (6.14)

By (6.5) follows F has a unique extension as an isometry F : L2(Rn)→ L2(Rn), similarly also F∗

on L2 and F∗F = FF∗ = I on L2 in fact by using Plancherel's theorem both of them are unitary

operators.
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We de�ne the convolution

u ∗ v(x) =

∫
Rn

u(x)v(x− y)dy, u, v ∈ S(Rn),

then u ∗ v ∈ S, we say S ∗ S ⊂ S and have L1 ∗ L1 ⊂ L1, C∞0 ∗ S ⊂ S, C∞0 ∗ C∞ ⊂ C∞.
By Fubini's theorem we have for u, v ∈ S(Rn)

(u ∗ v)∧(ξ) = (2π)n/2û(ξ)v̂(ξ).

The delta function δ ∈ E ′ ⊂ S ′ ⊂ D′ is de�ned by < u, v >= u(0) and also δ̂(ξ) = (2π)−n/2,

δ ∗ ω = ω, P (D)ω = P (D)δ ∗ ω. By (6.12) for a polynomial P (ξ), we have

(P (D)u)∧(ξ) = P (ξ)û(ξ)

or

P (D) = F−1P (ξ)F. (6.15)

For general function p(ξ) has

p(D) = F−1p(ξ)F. (6.16)

If p(ξ) satis�es the slow growth condition, p(D) maps S(Rn) and S ′(Rn) to themselves and by

Plancherel's theorem p(D) : L2 → L2 if p ∈ L∞(Rn).

The Fourier series has de�ned on Tn = Rn/2πZn by

u(x) =
∑
m∈Zn

û(m)eimx, where û(m) = (2π)−n
∫
Tn
u(x)e−imxdx, u ∈ D′(Tn)

or

û(m) = (2π)−n < u, e−imx >

By using Plancherel's theorem we have∑
m

|û(m)|2 = (2π)−n
∫
Tn
|u(x)|2dx.

There is

Dαu(x) =
∑
m∈Zn

mαû(m)eimx.

It follows that u ∈ C∞(Tn) i� û(m) is a rapidly decreasing sequence in Zn,

sup
m∈Zn

(1 + |m|)k|û(m)| <∞,∀k.

By duality, u ∈ D′(Tn) i� û(m) is a polynomially bounded sequence for some `, |û(m)| ≤
C(1 + |m|)`.

As in (6.15) for p on Zn we have

p(D)u =
∑

p(m)û(m)eimx.
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Thus p(D) : C∞ → C∞ and p(D) : D′(Tn) → D′(Tn) provided p(m) is polynomially bounded,

while p(D) : L2(Tn)→ L2(Tn) i� p(m) is bounded.

We de�ne the Sobolev space Hk(Rn) = {u : u ∈ L2(Rn), Dαu ∈ L2(Rn), |α| ≤ k}. By the

Plancherel formula this is equivalent Hk(Rn) = {u : ξαû(ξ) ∈ L2(Rn), (1+|ξ|)kû ∈ L2(Rn), |α| ≤
k}.

De�nition 2.4. For s ∈ R, Hs(Rn) is the set of u ∈ S ′(Rn) such that û is locally square

integrable and (1 + |ξ|)s|û| ∈ L2(Rn).

We de�ned norm by

||u||2Hs =

∫
(1 + |ξ|2)s|û(ξ)|2dξ

which, when s = k is an integer, is equivalent to∑
|α|≤k

||Dαu||2L2 .

Hs(Rn) is a Hilbert space, and the Fourier transform is an isometric isomorphism F : Hs(Rn)→
L2(Rn, (1 + |ξ|2)sdξ).

The Schwartz space S(Rn) is dense in L2(Rn, (1 + |ξ|2)sdξ), and F−1S = S, it follows that
S(Rn) is dense in Hs(Rn).

It is easy to see that, |p(ξ)| ≤ C(1+|ξ|)m, then p(D) = F−1p(ξ)FmapsHs(Rn)→ Hs−m(Rn).

If a(x) ∈ S, then au = (2π)n/2F−1(â ∗ û) ∈ Hs(Rn) provided u ∈ Hs(Rn). If s = k ≥ 0 is a

integer, then u→ au is map from Hk(Rn) to itself provided

|Dβa(x)| ≤ cβ , ∀β ≥ 0. (6.16)

It follows by duality that u → au maps H−k(Rn) to itself, if p(x, ξ) =
∑
|α|≥m aαξ

α and aα(x)

satis�es (6.16), then p(x,D) : Hs(Rn)→ Hs(Rn).

Theorem 2.5. If s > n/2, then each u ∈ Hs(Rn) is bounded and continuous.

Proof. We must prove û(ξ) ∈ L1(Rn). Using Cauchy's inequality, we get∫
|û(ξ)|dξ ≤ (

∫
|û(ξ)|2(1 + |ξ|2)s)dξ)1/2(

∫
(1 + |ξ|2)−sdξ)−1/2

second factor is �nite for s > n/2, we can conclude u(x) vanishes at in�nity.

Corollary. 2.6. If s > (n/2) + k, then Hs(Rn) ⊂ Ck(Rn).

If s = (n/2) + α, 0 < α < 1, we can obtain Holder continuity. If u ∈ Cα(Rn), 0 < α < 1, u

is bounded

|u(x+ y)− u(x)| ≤ c|y|α, |y| ≤ 1.

Proposition 2.7. If s = (n/2) + α, 0 < α < 1, then Hs(Rn) ⊂ Cα.
Proof. We use the Fourier inversion formula for u ∈ Hs(Rn)

|u(x+ y)− u(x)| = (2π)−n/2|
∫
û(ξ)eixξ(eiyξ − 1)dξ|
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≤ c(
∫
|û|2(1 + |ξ|)n+2αdξ)1/2 × (

∫
|eiyξ − 1|2(1 + |ξ|)−n−2αdξ)1/2.

if |y| ≤ 1, ∫
|eiyξ − 1|2(1 + |ξ|)−n−2αdξ ≤ c

∫
|ξ|≤|y|−1

|y|2|ξ|2(1 + |ξ|)−n−2αdξ

+4

∫
|ξ|≥|y|−1

(1 + |ξ|)−n−2αdξ ≤ c|y|2
∫ |y|−1

0

rn+1

(1 + r)n+2α
dr + 4c

∫ ∞
|y|−1

rn−1

(1 + r)n+2α
dr

≤ c|y|2 + c|y|2
{
|y|2α−2−1

2α−2 (0 < α < 1)

log 1
|y| (α = 1)

}
+ c|y|2α

if |y| ≤ 1/2,

|u(x+ y)− u(x)| ≤ c|y|α if 0 < α < 1 or ≤ c|y|(log
1

|y|
)1/2 if α = 1.

Note the di�erent modulus of continuity for α = 1. Elements of Hn/2+1(Rn) needn't be Lipshitz,

and elements of Hn/2(Rn) needn't be bounded. In fact, if û(ξ) = (1 + |ξ|)−n/ log(2 + |ξ|), then
u ∈ Hs(Rn) and u /∈ L∞(Rn).(∀û ≥ 0, if û /∈ L1, then u /∈ L∞.) By duality, Theorem 2.2

implies that all �nite measures on Rn belong to u ∈ Hs(Rn) for s < −(n/2), particularly

δ ∈ H−n/2−ε(Rn), ε > 0 and Dαδ ∈ H−n/2−|α|−ε(Rn).

Sobolev imbedding result is that

Hs(Rn) ⊂ Lq(Rn), q =
2n

n− 2s
, if 0 ≤ s < 1

2
n.

We consider the behavior of the trace map τ : S(Rn) → S(Rn−1) with x = (x1, x
′), τu(x′) =

u(0, x′).

Theorem 2.8. The map τ extends uniquely to a continuous linear operator

τ : Hs(Rn)→ Hs−1/2(Rn−1), if s > 1/2.

Proof. Let f = τu, u ∈ S, we have f̂(ξ′) =
∫
û(ξ)dξ1 and

|f̂(ξ′)|2 ≤ (

∫
|û(ξ)|2(1 + |ξ|)2sdξ1)1/2(

∫
(1 + |ξ|)−2sdξ1)1/2

if s > 1/2, we estimate the last factor∫
(1 + |ξ|)−2sdξ1 ≤ c

∫
(1 + |ξ′|2 + ξ2

1)−sdξ1 = c′(1 + |ξ′|2)−s+1/2. (6.17)

Therefore,

(1 + |ξ′|2)s−1/2|f̂(ξ′)|2 ≤ c
∫
|û(ξ)|2(1 + |ξ|)2sdξ,

and integrating with respect to ξ′ gives

||f ||2Hs−1/2(Rn) ≤ c||u||
2
Hs(Rn).
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Theorem 2.9. The restriction map τ : Hs(Rn)→ Hs−1/2(Rn), s > 1/2, is onto.

Proof. Take g ∈ Hs−1/2(Rn−1), ĝ(ξ′).

Let

ϕ(ξ) = ĝ(ξ′)
(1 + |ξ′|2)s−1/2

(1 + |ξ|2)s

and let u = ϕ̃(x), û = ϕ. We claim u ∈ Hs(Rn), u(0, x′) = cg(x′), c = const > 0 and

(1 + |ξ|2)s|ϕ(ξ)|2 = |ĝ(ξ′)|2(1 + |ξ′|2)s−1/2 (1 + |ξ′|2)s−1/2

(1 + |ξ|2)s
(6.18)

by (6.15)
∫

(1 + |ξ|2)−sdξ1 ≤ c(1 + |ξ′|2)−s+1/2, so left side of (6.16) has �nite integral, giving

u ∈ Hs(Rn). Meanwhile∫
ϕ(ξ)dξ1 = ĝ(ξ′)(1 + |ξ′|2)s−1/2

∫
(1 + |ξ|2)−sdξ1 = cĝ(ξ1), c 6= 0,

so u(0, x′) = cg(x′).

If the operator (1−∆)s/2 is de�ned by p(D) = F−1p(ξ)F with p(ξ) = (1 + |ξ|2)s/2, then

Hs(Rn) = (1−∆)−s/2L2(Rn). (6.19)

For s > 0, Hs(Rn) = D((1 − ∆)s/2), the domain of self-adjoint operator (1 − ∆)s/2 and also

H−s(Rn) is the dual to Hs(Rn).

We can replace L2 by Lp and study such spaces. We consider Sobolev spaces Lp style

W k
p (Rn) = {u : u ∈ Lp(Rn), Dαu ∈ Lp(Rn), |α| ≤ k}. In analogy to (6.19) of Hs(Rn) de�ne

Ssp(Rn) by Ssp(Rn) = (1−∆)−s/2Lp(Rn), s ∈ R.
Theorem 2.10. Let p(ξ) be a smooth function on Rn such that

|ξ||α||pα(ξ)| ≤ Cα, |α| ≤ [
n

2
] + 1.

Then, for 1 < p <∞,

p(D) : Lp(Rn)→ Lp(Rn),

with operator norm bounded by C(p)
∑
α Cα.

Where C(p) = Cp for p ≥ 2, C(p) = C/p− 1 for 1 < p ≤ 2. We establish

W k
p (Rn) = Skp (Rn), 1 < p <∞.

In fact, |α| ≤ k, Dα(1 −∆)−k/2 : Lp → Lp by Theorem 2.5 and Skp ⊂ W k
p . Conversely u ∈ W k

p

Theorem 2.5 implies for |α| ≤ k, Dα(1 − ∆)−k/2Dαu ∈ Lp, so (1 − ∆)−k/2(1 − ∆)ku ∈ Lp, or
(1−∆)k/2u ∈ Lp and u ∈ Skp .

We claim

[Lp(Rn),Ssp(Rn)]θ = Ssθp (Rn), 1 < p <∞.

The Theorem 2.5 implies that

||(1−∆)−iy||S(Lp) ≤ Cp(1 + |y|)n. (6.20)
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If v ∈ Ss,θp , let

u(z) = ez
2

(1−∆)(−z+θ)s/2v.

Then u(θ) = eθ
2

v, u(iy) = e−y
2

(1−∆)−iys/2((1−∆)sθ/2v) is bounded in Lp(Rn) and u(1+iy) =

e(1+iy)2(1−∆)−s/2(1−∆)−is/2y((1−∆)sθ/2v) is bounded in Ssp(Rn), so u ∈ HLp(Rn),Ssp(Rn)(Ω)

which implies Ssθp ⊂ [Lp(Rn),Ssp(Rn)]θ. Generalizing (6.18), we establish for 1 ≤ p ≤ ∞,

[Sσp (Rn),Ssp(Rn)]θ = Sσ(1−θ)+sθ
p (Rn).

Generalizing Rellich's theorem for s ≥ 0, 1 < p <∞,

I : Ss+σp (Ω)→ Ssp(Ω) compact, σ > 0.

By using the Marcinkiewicz multiplier theorem for the torus, we have p(D) : D′(Tn) → D′(Tn)

and p(D) : Lp(Tn) → Lp(Tn), 1 < p < ∞. For multipliers on the torus that Marcinkiewicz

proved his theorem. We take ϕ ∈ C∞o (Rn), ϕ(ξ) = 1 for |ξ| ≤ 1, let pε = (1 + |ξ|2)−σ/2ϕ(εξ).

Then each pε(D) has �nite rank, so is compact. Marcinkiewicz multiplier theorem implies

||(1−∆)−σ/2 − pε(D)||S(Lp) → 0 as ε→ 0, 1 < p <∞,

so (1−∆)−σ/2 is a norm limit of compact operators.

The Sobolev imbedding theorem, Theorem 6.2 has the following generalization:

Ssp(Rn) ⊂ C(Rn) ∩ L∞(Rn) if s >
n

p
.

To prove this it su�ces to show that (1 − ∆)−s/2δ ∈ Lp
′
(Rn) if s > (n/p), since u = (1 −

∆)−s/2δ(1−∆)s/2u, and

ψ(x) = (1−∆)−s/2δ = (2π)/n
∫
eixξ(1 + |ξ|2)−s/2dξ.

We can show ψ(x) = (1 − ∆)−s/2δ is smooth for x 6= 0, rapidly decreasing as |x| → ∞, and
satis�es the estimate

|ψ(x)| ≤ C|x|−n+s, |x| ≤ 1, s < n.

Bergh and Lofstrom take the generalization result is

Ssp(Rn) ⊂ Lq(Rn), q =
np

n− ps
, 0 ≤ s < n/p.

The trace theorems for restrictions to ∂Ω of u ∈ Ssp(Ω) are more subtle for p 6= 2 than for p = 2.

τu loses 1/p derivatives, generally, but doesn't belong to Ss−1/p(∂Ω), necessarily, but rather to

a Besov space:

τ : Ssp(Ω)→ Bs−1/p
p (∂Ω), s >

1

p
.
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Index

Almost analytic extension, 78 coercive, 26,36

Associated kernel, 33,39,51 densely de�ned, 39

Airy function, 24 di�erential operators, 98

distributions, 85 eigenfunction, 97

electromagnetic �eld, 17,19 energy estimate, 96

Fourier integral operator, 112 Fredholm operator, 28.98

Fourier transform, 111 fundamental solution, 24,35,58

Hamilton map, 98 harmonic oscillator, 89

heat equation, 32 Hölder continuity, 96

Hörmander-Melin inequality, 37,49 hypoelliptic, 39,48

Bochner, 78 Dirichlet, 79

Boundary conditions, 23,45,56, non-negative, 65,78

Dirichlet boundary conditions, 12 norm associated with, 46

Neumann , 13 sesguilinear, 67

periodic, 88, symmetric, 49,

Calderon-Zygmund decomposition, 84, Friedrichs extension, 74

Calderon-Vaillancourt theorem, 89, Cauchy problem, 43

Conservation property, 79 Functional calculus, 109

of a operator, 110 Gaussian lower bound, 118

Degerate-elliptic, 67 Generator, 92

Diagonal lower bound, 72

Ellipticity constant, 35 Imaginary powers, 57,89

adjoint, 14,87

bounded from bellow, 29, 48 Lipschitz space

closed, 35 Hilbert-Schmidt, 97

microlocal, 91,95 parabolic,34,95

parametrix, 95 Plancherel's theorem, 80

polyhedron, 108 principal symbol, 104

pseudi�erential operator, 17,63,104,91,92

pseudolocal, 83 regularity, 12,103

symbol, 63,82, 112 uniqueness, 12,39,51

of weak type, 89 self-adjoint, 87,88

Projection, 49 Quadratic form, 69

Resolvent, 24 Sobolev spase 115

Sobolev inequality, 88 Uniform ellipticity, 35,69
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