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Cooperative diagnostics for distributed LSDM systems 
based on triangulation 

Franceschini F. 1, Maisano D. 1, Mastrogiacomo L. 1 
1 Politecnico di Torino (DIGEP), Torino, ITALY, domenico.maisano@polito.it. 

Abstract 

In the field of large-scale dimensional metrology (LSDM), new distributed systems 
based on different technologies have blossomed over the last decade. They generally 
include (i) some targets to be localized and (ii) a network of portable devices, 
distributed around the object to be measured, which is often bulky and difficult to 
handle. 
The objective of this paper is to present some diagnostic tests for those distributed 
LSDM systems that perform the target localization by triangulation. Three are the tests 
presented: two global tests to detect the presence of potential anomalies in the system 
during measurements, and one local test aimed at isolating any faulty network 
device(s). This kind of diagnostics is based on the cooperation of different network 
devices that merge their local observations, not only for target localization, but also for 
detecting potential measurement anomalies. 
Tests can be implemented in real-time, without interrupting or slowing down the 
measurement process.  
After a detailed description of the tests, we present some practical applications on 
MSCMS-II, a distributed LSDM system based on infrared photogrammetric 
technology, recently developed at DIGEP-Politecnico di Torino. 

Keywords: Large-scale dimensional metrology, Distributed measuring system, 
Triangulation, Model-based redundancy, Cooperative diagnostics, On-
line diagnostics, Statistical test. 

1. INTRODUCTION AND LITERATURE REVIEW 

In the last decade there has been an increasing development of distributed 
dimensional metrology systems, i.e., instruments consisting of multiple devices that 
are positioned around the object to be measured and cooperate during the 
measurement activity [1, 2, 3]. The majority of these systems have been developed in 
the field of large-scale dimensional metrology (LSDM), concerning the measurement 
of medium to large-sized objects (i.e., according to the definition by Puttock [4], 
“objects with linear dimensions ranging from tens to hundreds of meters”), in industrial 
environments. Typical industrial applications are (i) reconstruction of curves/surfaces 
for dimensional verification and (ii) assembly of large-sized mechanical components, 
in which levels of accuracy of a few millimetres are generally tolerated. 



The reason behind the development of distributed LSDM systems is simple: arranging 
a portable measuring instrument around the object to be measured is often more 
practical than the vice-versa [5]. 
Existing measuring systems differ in technology (e.g., laser optical, photogrammetric, 
interferometric, ultrasound, etc.); some of these are consolidated and available on the 
market, while others are only prototypes. Table 1 classifies some systems, reporting 
key features and bibliographic references for the reader. 
 

Name Technology Current level  
of development

Localization 
technique 

Bibliographic 
reference 

Nikon iGPS  Laser-optical Commercial Triangulation [6] 
3rd Tech HiBall  Infrared, LED Semi-commercial Triangulation [8] 
Multiple Laser Trackers  Interferometric, ADM Semi-commercial Multilateration [7] 
MScMS-I  Ultrasound Prototype Multilateration [1] 
MScMS-II  Infrared photogrammetric Prototype Triangulation [9] 

Table 1. Classification of some of the existing distributed LSDM systems. 

The common features of these systems are (see Figure 1): 

1. a network of devices distributed around the object to be measured; 
2. a hand-held probe for measuring the spatial Cartesian coordinates (XYZ) of the 

points of interest; 
3. a centralized data processing unit (DPU), which receives local measurement 

data from network devices. 
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Figure 1. Schematic representation of a generic distributed LSDM system. 



The probe is equipped with some targets (at least two) that, after being localized, 
allow to determine the probe position/orientation and – consequently – the position of 
the point of interest, generally in contact with a tip. In certain cases (e.g., for MScMS-
II) probe targets are passive sensors, while in others (e.g., for iGPS) they are active 
and can have a processing capability which makes them able to perform local 
measurements (typically angles or distances) with respect to each network device. 
As shown in Table 1, there are two typical techniques for localizing probe targets 
[10]: 

 Triangulation, using the angles subtended by the targets, from the local 
perspective of (at least two) network devices; 

 Multilateration, using the distances between the targets and (at least three) network 
devices. 

The number of devices involved in the localization of a target depends on their mutual 
positioning/orientation and communication range. 
For distributed LSDM systems, as well as for metrological systems in general, 
reliability of measurements is essential and can be increased by the use of real time 
diagnostic tools able to detect measurement accidents and discard/correct (part of) 
the measurement results.  
The purpose of this article is to present some novel statistical tests for the on-line 
diagnostics of distributed LSDM systems based on triangulation, in the case of 
quasi-static measurements – i.e., targets are stationary or are moved at very low 
speeds during their localization. These tests make it possible to identify  possible 
measurement accidents and, subsequently, to isolate the (potentially) faulty network 
devices. This kind of diagnostics can be classified as cooperative, since it is based on 
the cooperation of different network devices that merge their local angular 
measurements. 
The three statistical tests that will be discussed are divided in two categories: 

 Two global tests aimed at evaluating the reliability of measurements, based on 
their variability. 

 A local test that – when a measurement is not considered reliable by (at least one 
of) the global tests – identifies the potentially faulty device(s) and (temporarily) 
excludes them from the measurement process, without interrupting it. 

After a detailed description of each test, we will show some real application examples 
using MScMS-II, a prototypical distributed LSDM system based on infrared 
photogrammetric technology, recently developed at the Industrial Metrology and 
Quality Engineering Laboratory of DIGEP – Politecnico di Torino. 
The remaining of this paper is structured in four sections. Section 2 provides some 
background information, which is helpful to grasp the subsequent description of 
statistical tests: (i) basic concepts concerning distributed LSDM systems’ diagnostics, 
(ii) a general description of the localization problem for systems based on 
triangulation, and (iii) a brief description of MScMS-II, on which the diagnostic tests will 
be implemented. Section 3 provides a detailed description of the statistical tests 
(global and local respectively) with some experimental examples. Finally, Section 4 



summarizes the original contributions of this research, focusing on its implications, 
limitations and possible future developments. 

2. BACKGROUND INFORMATION 

2.1 Basic concepts concerning diagnostics 

In general, the concept of reliability (or consistency) of a measurement is defined as 
follows. For each measurable quantity x, we can define an acceptance interval [LAL, 
UAL] (where LAL stands for Lower Acceptance Limit and UAL for Upper Acceptance 
Limit) [1]. The measure xM of the quantity x, produced by a measurement system, is 
considered reliable if .   UAL,LALxM 
The type-I and -II probability errors (misclassification rates) respectively correspond to: 

  
  sources error meaurement systematic of presencePr

sources error meaurement systematic of absencePr

|UAL,LALx

|UAL,LALx

M

M







. (1) 

Usually, LAL and UAL are defined considering the natural variability of the measuring 
system (which is linked to its metrological characteristics of accuracy, reproducibility, 
repeatability, etc.), in the absence of systematic error sources1 [11]. 
Note that the above definitions of reliability, acceptance interval, type-I and -II error 
refer to the result of a specific measurement and not to the overall metrological 
performance of a measuring system. 
For distributed systems, local anomalies of one or more network devices can distort or 
even compromise the whole measurement. On the other hand, when these anomalies 
are recognised, the measurement results can be corrected, (temporarily) excluding 
malfunctioning device(s). This is the reason why distributed systems are – to some 
extent – rather “vulnerable”, but can be successfully protected by appropriate 
diagnostic tools. 
For distributed systems, a typical diagnostic approach is based on the so-called 
model-based redundancy, where the replication of a physical instrumentation – which 
is typical of the physical redundancy approach – is substituted by the use of 
appropriate mathematical models [12]. These models may derive from physical laws 
applied to experimental data or from self-learning method (for example, neural 
networks) and allow the detection of system failures by comparing measured and 
model-elaborated process variables. This diagnostic approach is made possible by the 
fact that, for distributed systems, the number of network devices generally involved in 
a measurement is greater than the number strictly necessary for performing the 
localization of target(s). 

                                                 
1 The authors are aware that systematic errors can never be eradicated completely. The 
assumption of random errors only is therefore not valid in general, even though could be 
adequate for the purpose of diagnostics. 



This type of diagnostics is based on the cooperation of network devices, whose local 
observations are used in conjunction, not only for target localization, but also for 
detecting possible measurement anomalies or accidents. 
Diagnostic tools based on this philosophy are implemented for GPS-assisted aircraft 
navigation, where the GPS can be seen as a very-large-scale dimensional metrology 
distributed system, in which localization is performed by multilateration [13]. 
Furthermore, Franceschini et al. [14] give a detailed description of some on-line 
diagnostic tools for MScMS-I, an indoor distributed LSDM system based on 
multilateration. 
As mentioned in Sect. 1, this diagnostics generally includes two types of tests (global 
and local), aimed respectively at (i) evaluating unreliable measurements and (ii) 
identifying and (temporarily) excluding purportedly faulty network devices. The 
flowchart in Figure 2 illustrates a typical sequence of implementation of these tests. 
 
 

Localization of target(s) 

Acquisition of local measurements (angles or 
distances) from network devices and/or target(s) 

End: next acquisition and reiteration of the 
procedure 

(a) localization procedure (b) on-line system diagnostics 

Global test(s) of measurement reliability 

Local test(s) of network device reliability 

Faulty network device(s) identified? 

Exclusion of faulty network device(s) and 
re-localization of target(s) 

Possible presence of faulty devices? 
YES NO 

YES NO 

 

Figure 2. Flowchart showing the logical implementation sequence relating to the on-
line diagnostic tests. 

2.2 The triangulation problem 

Figure 1 depicts a distributed LSDM system consisting of a number of network devices 
(D1…DN) positioned around the object to be measured. OXYZ is a global Cartesian 
coordinate system. Each of the devices has its own spatial position and orientation; for 
each i-th device, it is defined a local coordinate system oixiyizi, roto-translated with 
respect to OXYZ. 
A general transformation between a local and the global coordinate system is given 
by: 
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Ri is a rotation matrix, which elements are functions of three rotation parameters (see 
Figure 3): 
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iR , (3) 

where: 

 i  represents a counterclockwise rotation around the xi axis; 
 i  represents a counterclockwise rotation around the new yi axis (i.e., yi ′), which was 

rotated by  i;  
 i  represents a counterclockwise rotation around the new zi axis (i.e., zi″), which was 

rotated by  i and then i.  


ii

Z,Y,X 00
i0X T

i0

ii
Z,Y 00

 are the coordinates of the origin of oixiyizi, in the global 

coordinate system OXYZ. 

The (six) location/orientation parameters related to each network device (i.e., 
, 

i
,X0 i,  i, i) are treated as known parameters, since they are measured in 

an initial calibration process [15]. 
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Figure 3. Rotation parameters regarding the transformation between a local 
coordinate system (oixiyizi) and the global one (OXYZ). 

The point to be located is P ≡ (X, Y, Z). From the local perspective of each i-th device, 
two angles – i.e.,  (azimuth) and  (elevation) – are subtended by the line 

passing through P and a local observation point, which we assume as coincident with 
the origin o

ic

ic

ic

i ≡ (0, 0, 0) of the local coordinate system (see Figure 4). Precisely,  

describes the inclination of segment oiP with respect to the plane xiyi (with a positive 



sign when zi>0), while 
ic  describes the counterclockwise rotation of the projection 

(oiP’) of oiP on the xiyi plane, with respect to the xi axis. For each i-th local coordinate 
system, the two angles are given respectively by: 
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Figure 4. For a generic network device (Di), two angles – i.e., 
ic  (azimuth) and 

ic  

(elevation) – are subtended by a line joining the point P (to be localized) and the origin 
oi of the local coordinate system oixiyizi. 

Regarding the two angles in Eq. 4, the subscript “ci” means that – for the i-th network 
device – they are calculated as functions of the local coordinates of P ≡ (xi, yi, zi). 

ic  and 
ic  can be expressed as functions of the global coordinates of point P. Eq. 5 

is the reverse formula for switching from a local coordinate system to the global; since 

R is orthonormal, then [15]. T
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The resulting formulae of  and  are obtained combining Eqs. 4 and 5: 
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being: 

oiP’=              2032022012
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Using the two angular local measurements (  and ) performed by each i-th 

network device, one can set up a system of equations for calculating the three 
unknown coordinates of P, as: 

iM iM
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, (8) 

where N is the number of network devices (with a priori known location and 
orientation) involved in the measurement. 
The system in Eq. 8 can be solved when P is “seen” by at least two devices (2 angles 
x 2 devices = 4 total equations). Since the triangulation problem is overdefined (more 
equations than unknown parameters), it can be solved using a minimization approach 
[16]. The position of P can be estimated by the iterative minimization of a suitable 
Error Function EF. A simple option can be given by: 
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where: 

P  is the point to be localized, whose unknown coordinates  (X, Y, Z) are the solution 
of the problem. 

iM and are the angles locally measured by each i-th device (input data of the 

problem). 

iC and are the angles calculated for each i-th device (Eq. 6), using the coordinates 

(X, Y, Z) resulting from the solution of the system. This solution is iterative: each 
iteration leads to determining an attempt solution, gradually converging to the point 
of global minimum of the EF. 



2
i and are the (supposed known) variances related to the difference between 

measured and calculated angles, i.e., defined as residuals 

2
i

 
iCiM   and 

 
iCiM  



M iM

. Since these residuals may have different dispersion, they are weighted 

by the reciprocal of their variance [17].   
N  is the number of network devices involved in the measurement.  

We remark that the determination of the  and  values depends on the specific 

technology of the measuring instrument. For example, in the case of the iGPS, they 
are determined by the target, measuring the period between the detection of two laser 
blades emitted by each i-th network device [6]. Besides, for systems based on 
photogrammetry, such as MScMS-II, they are obtained on the basis of the position of 
the target in a local image related to the i-th network device [9]. 

iM iM

Also, there are many possible choices of the EF to minimize for solving the localization 
problem. We defined that one in Eq. 9 trying to keep it as simple and general as 
possible. A more sophisticated (but also complex) option would be to weigh the 
angular residuals by the reciprocal of the distances between target and network 
devices of interest, according to an iterative procedure. This option would reflect the 
fact that – for a certain angular deviation – the target position error tends to increase 
proportionally with distances from network devices. 
Since the proposed EF is non-linear, its minimization can be computationally 
expensive. The burden of computation can be eased by employing a suitable 
linearization technique. 

2.3 The MScMS-II 

The MScMS-II (i.e., Mobile Spatial coordinate Measuring System-II) is a prototypical 
measuring instrument, based on infrared (IR) photogrammetric technology. Network 
devices are low-cost IR cameras associated with IR illuminators, while the hand-held 
probe has two reflective spheres, whose centres are A and B, and a tip (V), in contact 
with the point(s) of interest (see Figure 5). The reflective spheres are passive targets 
illuminated by the illuminators. Alternatively, one can use active spherical targets that 
emit IR light, not making it necessary to use illuminators. 
The localization of the probe targets allows to uniquely determine the coordinates of 
the probe tip, being A, B and V positioned on the same line, at known distances [9]. 
We now focus the attention on each i-th network device (camera). Given the position 
P’’ ≡ (ui, vi) of the projection of target P on the camera's image plane uivi – which is 
parallel to the plane xiyi of the local coordinate system – and knowing some internal 
parameters of the camera – i.e., the focal length (fi) – it is possible to determine the 
angles  and (see Figure 6): 
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Figure 5. Elementary components of the MScMS-II: (a) IR cameras and illuminators, 

and (b) hand-held probe with two spherical targets (A and B) and a tip (V). 
 
 

iov

ix

iy

iu

iv

i

ii

i

fi 

io

image plane (uivi)

iou

iz
P

'P

)v,u(''P ii

projection centre 
(focus) 

 

Figure 6. For a generic i-th network device, representation of the local coordinate 
system, with origin (oi) in the projection centre (or focus), and the image plane uivi – 

parallel to the plane xiyi, at a distance fi (i.e., the focal length). 
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where: 

ui and vi are the coordinates of the projection (P’’) of P on the image plane; 

i
u0 and v  are the coordinates of the projection of o

i0

iM

i on the plane uivi; 

fi  is the distance between the plane uivi and the camera projection centre (or focus), 
which is coincident with the origin oi of the local coordinate system oixiyizi. 

We note that   and 
iM  are not measured directly: the “primary” quantities, i.e., 

those measured directly by each i-th network device, are the coordinates of 
P’’ ≡ (ui, vi). The angles of interest can be then obtained through the formulae in Eq. 
10. Of course, for systems based on other technologies, primary measured quantities 
may be different. 
Angles 

iM  and 
iM  can be compared with 

iC  and 
iC , i.e., those calculated as 

functions of the (unknowns) coordinates of P (Eq. 6), so as to solve the localization 
problem by the EF minimization (in Eq. 9). 
Being based upon IR optical technology, MScMS-II is sensible to many influencing 
factors. The most common measurement accidents are: 

 Vibration or accidental movement of the cameras; 
 Partial occlusion (e.g., by obstacles interposed between network device(s) and 

target(s)) or target overlapping; 
 False targets due to IR light reflection on polished surfaces or the presence of 

other external uncontrolled IR light sources. 

These and other potential causes of accidental measurement errors must be taken 
under control to assure an acceptable level of accuracy. 

3. ON-LINE DIAGNOSTIC TESTS 

With the aim of protecting the system, MScMS-II implements some statistical tests for 
on-line diagnostics. Three tests are analysed in the following sub-sections: 

1. Test 1: Global test on the EF; 
2. Test 2: Global test on the distance between probe targets; 
3. Test 3: Local test for identifying purportedly faulty device(s). 

3.1 Test 1: Global test on the EF 

By definition (see Eq. 9), EF(P) ≥ 0 for all the points in the measurement volume 

. In particular, EF(P) = 0 when  and , for i = 1…N. 

Because of the measurement natural variability, two situations may occur: 

3
iMii CM  

iC

 EF(P) is strictly positive even in the point of correct localization; 
 EF(P) converges to a point that is not the correct one. As a result, a local minimum 

may be confused with the global minimum. 



The first diagnostic criterion is aimed at identifying all the non-acceptable minima 
solutions for EF(P), in order to prevent system fails. Such criterion enables MScMS-II 
to distinguish between reliable and unreliable measurements.  
Let consider a solution  to the problem . In general, being the 

problem overdetermined (as shown in Eq. 8) and since single measurements are 
affected by noise, a solution that exactly satisfies  all angular constrains is not 
realistically possible. In real conditions, there are two types of residuals: 

 Z,Y,XP   )P(EFmin
P 

 
iCii M     and  

iCii M   . In absence of systematic error causes, it is 

reasonable to hypothesize that they follow two zero-mean normal distributions, i.e. 
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N   . These assumptions will be tested 

empirically. 
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  i  (this is true in absence of spatial/directional effects), Eq. 
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EF(P) can be seen as the sum of the squares of N + N realizations of two series of 
normally distributed random variables (  and ) with mean 0 and variance 1, 

multiplied by the constant term 1/N. 
i

z i
z

Eq. 11 therefore can assume the following form: 

 21
 

N
)P(EF 2



 2


, (12) 

where: 
2
   and  are two chi-square distributed random variables, with N degrees of 

freedom (DOF) each, since they are obtained by the sum of N independent terms; 
N  is the number of network devices involved in the measurement.  

The residual standard deviations, i.e.,  and , can be a priori estimated for the 
whole measurement volume, for example during the phase of installation and 
calibration of the system. 
Eq. 12 can be expressed as: 

21 
N

N)P 

)P(EF , (13) 

Since 2 is obtained by adding two chi-square distributed variables with N DOF each, 
it will follow a chi-square distribution with 2·N DOF [17]. 
Every time the localization of a probe target is performed, MScMS-II diagnostics 
calculates the following quantity: 

(EF2 . (14) 



Assuming a risk  as a type-I error, a one-sided confidence interval for the variable 2 

can be calculated.  is a chi-square distribution with  = 2·N DOF and a (1–) 

confidence coefficient. The confidence interval is assumed as the acceptance interval 
for the reliability test of the measurement. 

2
1 , 

ij

The test drives to the following two alternative conclusions: 

→ measurement is considered reliable; 

→ measurement is considered unreliable, hence it is rejected. N
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3.1.1 Set up of test parameters 

The risk level  is established by the user. A high  prevents from non-acceptable 
solutions of the minimization problem, although it might drive to reject good solutions. 
On the other hand, a low  speeds up the measurement procedure, although it might 
drive to collect wrong data due to the consequent increase of the type-II error . 
The residual standard deviations  and  can be determined empirically, on the 
basis of experimental angle measurements. In this case,  and  are estimated from 
the residuals obtained by measuring a sample of points randomly distributed in the 

whole measurement volume , in the absence of systematic error sources. This 

operation can be implemented during the initial phase of system set-up and 
calibration. 

3

Given a set of M points randomly distributed in the measurement volume and 
measured by a single target (with a random sequence of measurements), two sets of 
Nj residuals (i.e.,   and 

ij ) can be calculated for each j-th point (j = 1…M, 

i = 1…Nj). The number Nj may change due to the number of network devices involved 
in each measurement. 
In absence of systematic error causes and time or spatial/directional effects, it is 
reasonable to hypothesize that 

ij  and 
ij  are zero-mean normally distributed 

random variables, i.e.: 
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The resulting values of ̂  and ̂  are used as reference values for the test. With this 

notation, Eq. 13 becomes: 
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3.1.2 Experimental example 

It was used a network consisting of six cameras (D1…D6) with known position and 
orientation, distributed in the measurement volume as schematized in Figure 7. The 
standard deviations  and  were empirically estimated according to the following 
steps: 

 M = 290 points, randomly distributed in the measurement volume, were measured 
using a single target. 

 The coordinates of each point (Pj, j = 1…M) were evaluated by minimizing the EF 
in Eq. 9. As regards 

ij  and 
ij , two sets of 1740 residuals each were obtained. 

 Measurements were performed in a controlled environment (e.g., temperature, light 
and vibrations were kept under control) and the distributions of residuals were 
thoroughly analyzed, in order to exclude measurement accidents, e.g., time or 
spatial/directional effects, or non-random causes of variation in general. 

 The zero-mean normal distribution of each of the two sets of residuals was verified 
by the Anderson-Darling normality test at p<0.05 [17]. 

 The standard deviations of the two sets of residuals were estimated by Eq. 16. 
Table 2 reports the resulting ̂  and ̂  values and other data concerning them. 

We remark that (i) the mean value of both the sets of residuals is roughly zero and (ii) 
the ̂  value is one order of magnitude higher than the ̂

iM

ij

. The latter behaviour is 

due to geometric reasons concerning the determination of  and , using the 

coordinates (u
iM

i, vi) of the target on one camera’s local image plane (see Eq. 10). 
The hypothesis that   and 

ij  values have the same standard deviations (   and 

 ) j = 1…M, i = 1…N j as well as the   and  estimates may be undermined by 

particularities regarding the layout of network devices. However, we observed that, 



when devices are uniformly distributed around the measurement volume, results are 
not significantly dissimilar, even for different network layouts. 
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Figure 7. Representation of the positioning and orientation of the MScMS-II network 
devices used in the application example: (a) 3D view and (b) XY plane view. OXYZ is 

the global coordinate system (coordinates in millimetres). The measuring volume 
contains six network cameras (D1…D6), whose outgoing vectors (in blue) represent 

their orientation. 
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Standard deviation estimates:  
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  0.87  ̂

̂  0.06 

Maximum:  

}...1,...1{ MjNiMax jijMAX
    and }...1,...1{ MjNiMax jijMAX

  
  8.30  

MAX

MAX  0.28 

Minimum:  

}...1,...1{ MjNiMin jijMIN
    and }...1,...1{ MjNiMin jijMIN

    

 -11.60 
MIN


MIN  0.29 

Table 2.  Detailed data concerning the estimation of   and   (angles in degrees). 

In conditions of maximum visibility (i.e. N=6 network devices), the acceptance limit for 
EF, assuming a type-I risk level  = 0.05 and  = 2·N = 2·6 = 12 DOF, becomes: 

503
6

021
2

950112 .
.

)P(EF
N

)P(EF .,    . (18) 

Let now consider a possible accident that can occur using a MScMS-II or a generic 
system based on IR photogrammetric technology for locating targets: false targets. 
Referring to the configuration in Figure 7, suppose that a generic point P inside the 
measurement volume has to be localized. All the network devices, with the exception 
of one, i.e., D , are able to correctly measure the angles (4 iM iM

P

 and ) subtended by 

P. An obstacle, for example an operator who performs the measurement, is interposed 
between P and D4, blocking it. At the same time, the IR light reflection on a polished 
surface within the measurement volume produces a false target (F). This false target 
is ignored by almost all devices, thanks to a selective technique according to which – 
in the presence of multiple targets – only those with greater light intensity (P in this 
case) are regarded as authentic, while others are excluded.  
On the contrary, being unable to see P since it is blocked, device D4 wrongly 
considers F as a target (see the representation in Figure 8). The consequence is that 
the angular measurements by D4  are wrong. See the example in Table 3(a). 
In this case, the algorithm will produce the following wrong localization solution: 

(104.0, 1062.2, 271.8) [mm], characterized by a high level of error: 



50.30228.)P(EF  . Owing to this result, this diagnostics suggests rejecting the 

measurement. 
 
 

x2 

y2 

z2 

o2 x3 

y3 

z3 

D1 

global coordinate 
system 

x1 

y1 

o1 

o3 

network cameras 

z4 
x4 

y4 

o4 

D2 D3 

D4 

(mirrored)  
false target (F) 

Y 

target (P) 

Z 

X 

O 

obstacle 
blocking D4 

z1 

 

Figure 8. Representation of a possible measurement accident for the MScMS-II: the 
authentic target P (with high light intensity) is not detected by D4, because of the 

interposed obstacle. On the other hand, the false target F – which is ignored by the 
other cameras because of the low light intensity – is erroneously detected by D4. 

 
 (a) Measured angles (b) Network 

device   
iM iM  '

Mi
 '

Mi
  

D1 28.16 77.16 28.25 77.14 
D2 214.39 76.95 214.39 76.95 
D3 142.70 73.34 142.72 73.36 
D4  (wrong) 311.78 (wrong) 72.65 (correct) 304.44 (correct) 72.96 
D5 352.49 79.86 352.49 79.86 
D6 185.16 80.08 185.16 80.08 

Table 3. Example of angles measured by the MScMS-II network devices: (a) before 
and (b) after removing the cause of the measurement accident. Angles are expressed 

in degrees. 



After removing the obstacle, the new angles observed by D4 are = 304.44 and 

= 72.96 [degrees] while those relating to the remaining devices are almost 

identical to the previous ones (see Table 3(b)). The new localization is: (85.5, 
1035.8, 299.6) [mm]. The corresponding EF value is 

'
1M

'
1M

P
3.502.13 EF(P) . Hence, the 

new localization can be considered reliable and the measurement is accepted. 

3.2 Test 2: Global test on the distance between probe targets 

As described in Sect. 2.3, the hand-held probe is equipped with two targets – i.e., 
A ≡ (XA, YA, ZA) and B ≡ (XB, YB, ZB). The distance between the two probe devices 
(dAB) is a priori known (see Figure 5-b). On the other hand, having localized the two 
targets, their Euclidean distance can be estimated as: 

     222
BABABAAB ZZYYXXBAd

~  . (19) 

The residual AB is defined as: 

ABd

AB

ABAB d
~ . (20) 

In the absence of spatial/directional effects, it is reasonable to associate the AB 
values to a zero-mean normal distribution (this hypothesis will also be tested 
empirically): 

AB N  0,~ AB  . (21) 

Assuming  as a type-I error, a further statistical test can be performed in order to 
evaluate measurement reliability. Let QMIN and QMAX be respectively the (/2)-quantile 
and (1–/2)-quantile of a normal distribution with mean AB = 0 and standard deviation 
AB. 
For a given value of , QMIN and QMAX can be expressed as multiples of the standard 
deviation AB: 

AB

AB



MAX

/MAX

/MIN

zQ

zQ 
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2 , (22) 

where z/2 and z(1-/2) are the /2- and (1–/2)-quantiles of the standard normal 
distribution. 
Again, the AB value can be a priori estimated, during the preliminary stage of the 
system installation and calibration. 
Every time a measurement is performed, MScMS-II diagnostics calculates the quantity 
in Eq. 20. [QMIN, QMAX] is assumed as the symmetrical acceptance interval for the 
measurement reliability test; i.e., if the calculated residual AB satisfies the condition:  

 MINAB Q,Q , (23) 

the measurement can be considered reliable, hence it is accepted. 



3.2.1 Set up of test parameters 

As usual, the risk level  is established by the user. 
Similarly to the previous diagnostic test (in Sect. 3.1), the standard deviation AB can 
be evaluated empirically, on the basis of a reasonable number of angular 
measurements. 

A set of M points randomly distributed in the measurement space  are 

measured according to a random sequence. For each j-th measurement (where 
j = 1…M), a residual 

3

j,AB  is calculated. 

In absence of systematic error causes and time or spatial/directional effects, we 
hypothesize the same normal distribution for all the random variables jAB, , i.e., 

 ABABjAB ,~N  , , 

being 0



ˆ
1

, 












 



M
M

j
jABAB   (to be tested). 

The standard deviation may be estimated as: 
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Mˆˆ
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j
ABj,ABAB  . (24) 

The resulting value of AB̂  is considered as the reference value for the test. Test limits 

defined in Eq. 22 become: 
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3.2.2 Experimental example 

In order to estimate AB, the following steps were followed: 

 A sample of M = 601 points, randomly measured by the hand-held probe, was 
considered. 

 The coordinates of each probe target were evaluated by solving the triangulation 
problem seen in Sect. 2.2, and dAB is estimated according to Eq. 19. A sample of  
601 residuals ( jAB, , j = 1…M) was obtained. 

 The zero-mean normal distribution of residuals was verified by the Anderson-
Darling normality test at p<0.05. 

 The standard deviation AB was estimated using Eq. 24. The result is 
820.ˆ AB  mm (see Table 4 for details). 



Having assumed  = 5%, the resulting (1–) = 95% confidence interval for AB  is 

[z/2·AB, z1-/2 ·AB] = [-1.96·0.82, 1.96·0.82] = [-1.61, 1.61] mm. A generic measured 

point can not be considered unreliable if 61.12/1   ABAB z   mm. 

Now, considering a measurement similar to that exemplified in Section 3.1.2, let 
suppose that probe target A is placed on point P. Due to the false-target effect, the 
localization algorithm produces an incorrect localization of target 

.   

 
AB

308.81026.5,90.1,A

Target B’s localization, which is not affected by the false-target error, results in 
. 300.11037.3,283.3,B

The residual concerning the a priori known distance AB is  mm. This 

value is not included in the acceptance interval [-1.61; 1.61] mm, hence the system 
diagnostics automatically suggests to reject the measurement. 

296.

 
Sample size: M 601 
Mean estimate: 

 M
M

j

jABAB













 

1

,ˆ   0.97 mm 

Standard deviation estimate:  

 1ˆ

1

2
, 














 



M
M

j

jABAB   0.82 mm 

Maximum:  
 M...jMax j,ABABMAX

1   2.60 mm 

Minimum:  
 M...jMin j,ABABMIN

1   -2.42 mm 

Table 4.  Detailed data concerning the estimation of AB. 

After the obstacle is removed, the new coordinates of A become 
. The new residual is mm, therefore the new 

localization is accepted. 

 299.61036.3,83.3,A  21092  .AB

3.3 Test 3: Local test for identifying purportedly faulty device(s) 

If at least one of the global tests fails, a local test needs to be performed for failure 
isolation. The philosophy is to correct the results of a dubious measurement, by 
excluding the network device(s) that purportedly caused the fault, without losing the 
observations from the remaining network devices. In this way, the target localization 
process is never interrupted, even in the presence of local anomalies. 



Referring to the measurements carried out by each network device, the two types of 
residuals defined in Sect. 3.1 can be standardized as: 

N...iii 1and 















, (26) 

where: 

  and   denote the standard deviations of the residuals related to the  i and  i 

angles respectively; 
N  denotes the number of network devices involved in the i-th measurement. 

The standardised residuals can be used for outlier detection with uncorrelated and 
normally distributed observations in a sense that, if the i-th observation is not an 
outlier, then  

i
 and  

i
 are normally distributed  10,~ . Each standardised 

residual is compared to a /2-quantile and a (1 – /2)-quantile of the standard normal 
distribution (i.e., z

N



 and z1-), with the significance level . The null-hypothesis, 
which denotes that the i-th observation is not an outlier, is rejected if at least one of 
the two standardised residuals in Eq. 26 is not included in the [z, z1-] symmetrical 
confidence interval, or its absolute value ≤ z1-. An outlier in one standardized 
residual generally causes ones other residuals to be increased in absolute values.  
Local testing is easy under the assumption that there is only one purportedly faulty 
device (or outlier) in the current measurement: the local angular observation with the 
largest (absolute value of the) standardised residuals, provided that it is beyond the 
confidence interval, is regarded as an outlier and the corresponding network device 
(Di) is excluded from the triangulation problem. 
The assumption that there is only one outlier is a severe restriction in the case 
measurements from more than one network device are degraded. However, the 
procedure can be extended to multiple outliers iteratively: after exclusion of a 
potentially faulty device, the statistical test and the rejection of one other device can 
be repeated for that epoch until no more outliers are identified [13]. Of course, 
assessment for such multiple outliers may give rise to extensive computations. 
However, they represent a very rare event. 

3.3.1 Set up of test parameters 

The parameters   and   in Eq. 26 are the same used in the (global) Test 1; 

therefore (see Sect. 3.1.1). 

3.3.2 Application example 

Returning to the example presented in Sect. 3.1.2 (in which device D4 detects a false 
target), the relevant normalized residuals are reported in Table 5(a). 
In this calculation we used the ̂  and ̂  values previously estimated. 

 



Standardized residuals Network 
device (a) (b) 

D1 113and590
11

.ˆ.ˆ     941and510
11

.ˆ.ˆ     

D2 560and690
22

.ˆ.ˆ     010and350
22

.ˆ.ˆ     

D3 551and100
33

.ˆ.ˆ     820and220
33

.ˆ.ˆ     

D4 166and267
44

.ˆ.ˆ     (excluded) 

D5 530and790
55

.ˆ.ˆ    040and270
55

.ˆ.ˆ     

D6 531and960
66

.ˆ.ˆ     450and880
66

.ˆ.ˆ     

Table 5.  Standardized residuals for the measurement exemplified in Sect. 3.1.2: (a) 
before and (b) after the exclusion of the observations from D4. 

Assuming  = 5%, the confidence interval is [z = -1.96, z1- = 1.96]. More than one 
residual is outside this interval – i.e., both the residuals of D4 and one of D1 – but the 
“prime suspect” is D4, being the device with the highest (absolute) values of residuals.  
D4 is then excluded and, repeating the localization, the new output is (83.2, 1036.5, 
299.5) [mm]. All the standardized residuals are now contained within the confidence 
interval (see Table 5(b)). 
Not surprisingly, the Test 1 – performed using only the observations from the five 

remaining devices – is satisfied; precisely, 663
5

202
2

950110 ..)P(EF .,    . 

4. IMPLICATIONS, LIMITATIONS AND FUTURE RESEARCH 

The on-line diagnostics presented in the paper make it possible to monitor 
measurement reliability in real time, on the basis of some statistical tests. Although 
tests were implemented on MScMS-II, they are deliberately general and can be 
applied to any distributed LSDM system based on triangulation (e.g., iGPS, HiBall, 
etc.). 
An important characteristic of these tests is their ability to selectively exclude faulty 
network device(s), without interrupting the measurement process.  
In addition to these tests, we remark that MScMS-II implements other tests, 
specifically related to photogrammetric technology (e.g., tests concerning epipolar 
geometry), which were deliberately ignored in this paper [18]. 
The tests described in the paper require the estimation of some parameters; primarily 
the standard deviations related to the measurement residuals. These parameters can 
be evaluated empirically by performing some preliminary measurements under 
controlled conditions, according to the reasonable assumption of absence of time or 
spatial/directional effects. This operation can be performed during the system set-up 
and calibration, with no additional effort [19]. 



Since the on-line implementation of these tests requires a certain computational 
capacity, it could slow down the measurement process. However, this consequence is 
minimized due to (i) the high capacity of existing processors and (ii) test segmentation 
(i.e., local Test 3 is performed only after at least one of the global Tests 1 and 2 has 
detected the presence of potential anomalies). Also, a reduction of the computational 
workload can be achieved by linearizing the EF. 
Finally, we remark that in (global) Test 2, it was considered a hand-held probe with 
two targets. However, it may be extended to probes with multiple targets (i.e., the so-
called 6-DOF probes): in this case there would be multiple a priori known distances 
[7]. 
Future development of this research will be aimed at developing other diagnostic 
models for dynamic measurements (e.g., mobile object tracking). One possibility may 
be the integration of the models presented in this paper with techniques based on the 
Kalman filtering [20]. 
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