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Motivation: Ambipolarity is often suppressed by processing steps; It can be exploited to enhance logic functionality Natural evolution of FinFE
Novel approach is needed to takle complex structures

Multiple Gates vs Multi-Gates Control Polarity Device section modeling

In this context, Multiple Gates # Multi-Gate Gate Gate Idea: to study such devices with these free
/ parameters:

GAA are Multi-Gate devices, but do not necessarily

L1, L2, L3 (different length of the sections)
VG1, VG2, VG3 (different applied voltages to
the gates)
R (radius of the nanowire) tox (oxide thickness)
lasi independently calculated in sections S
exploiting a charge-based model

Hypothesis: no voltage drop

at Si and S¢+1) contacts

feature MultipleGates

Present work is about Multiple Independent Multi-Gate
devices

Model developed

In collaboration with EPFL-LSI

Nanoarray-based structures can benefit, as well, of this
approach

Fabricated @ EPFL-LSI
The approach: a collective strategy. e

Device is seen as composed by a series of Sections.
How to decompose it:

Current in sections
lsi can be calculated independently in each Section S,

provided we know Vpiand Vs; of all sections Vp; =
VS(i+1) Idsi = |dS(i+1)

A

Define appropriate sections (Si) in the overallstructure. R \

Sections need not feature the same parameter set

Potential >  charge density
The study of the complete device is reduced to the / .
study of simpler parts y Charge density >  current
S
The method [dsl = Iys - Results: single section Results: double section
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requirements
met?

Knowing Qq1 it is possible to calculate the current:

05F
04r

Vp1 and Vp2 potentials [V]

Vp, potential between the two SG [V]
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Ve can now be calculated through the charge control equation: Vds V]
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If requirements are not met it is possible to iterate the process. As a rule of thumb, the
more the gates, the more iterations.

Up to three gates one iteration is enough, as will be shown in the results section.
Else the process ends.

\ Results: triple section, one
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Extensions
Same nature of the problem, same approach. S|I(]ht modifications
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Relative error of Vp1 and Vp2 of approximated solution

0 1 1 1 1 1 1 1 1 1 ]
0.2 0.4 06 08 1 1.2 1.4 1.6 1.8 2

Gateless / L 1 L R
VP1=VP2_RID52 | =pP—= Rz
section | o A qguN, 27R
Q' =0 —a Doped CoNART g NAKT o KT ( an ) Validation o
channel ¥ — dm o " TV T los s pee Theoretical: numerical simu-
. e2/(CoaVD) kT Bea/ (V1€ \ Q- kT kT Q— a+ Qo lations TCAD (Silvaco Atlas)
V= N esT ATV e | TN ) = Sy o s ( ) | | o
Experimental: at this stage of osl /
— — 1 1 Nd lelgcm
| . QVMQ @ Maa developme_nt,.we still dI.Cl not s fde DA e
7 i—2 . n 2CoxL; 250 T 0 2Cox L L, perform this kind of verification g
=1 -
| Vpi obtained through the charge control equation: g
Arbltrary Num. of gates Vis — A — Vi — Elcg( 8 ) _ Q@si0 N le (QS@O) N kT log (Qsm —l—QO) Conclusions
1 2 2
Qsio can be W Con o o Fast (second vs. hours) and —w

deter ined as = _M M i 4V2 1og? [ 1 Vei — Vr + AVr — Vp; accurate (max err 0702 02 05 08 1 12 14 16 18
positive root of: @ =Cox | ——5 ="+ Q, ) tValogm(1+exp 2, - : : s 1
o 0 0 th negligible) simulation



