

POLITECNICO DI TORINO Repository ISTITUZIONALE

Compact Model for Multiple Independent Gates Ambipolar Devices

Original Compact Model for Multiple Independent Gates Ambipolar Devices / Piccinini G.; Graziano M.; Frache S.. -ELETTRONICO. - (2013). ((Intervento presentato al convegno Functionality-Enhanced Devices Workshop tenutosi a Lausanne, Svizerland nel 25 March.

Availability: This version is available at: 11583/2511688 since:

Publisher: EPFL

Published DOI:

Terms of use: openAccess

This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

(Article begins on next page)

Compact Model for Multiple Independent Gates Ambipolar Devices

Stefano Frache, Mariagrazia Graziano, Gianluca Piccinini

Politecnico di Torino, Electronics and Telecommunication Engineering, VLSI Lab

Motivation: Ambipolarity is often suppressed by processing steps; It can be exploited to enhance logic functionality Natural evolution of FinFE Novel approach is needed to takle complex structures

Multiple Gates vs Multi-Gates

In this context, Multiple Gates \neq Multi-Gate

GAA are Multi-Gate devices, but do not necessarily feature MultipleGates

Present work is about Multiple Independent Multi-Gate devices

Nanoarray-based structures can benefit, as well, of this approach

The approach: a collective strategy.

Device is seen as composed by a series of Sections. How to **decompose** it:

Define appropriate sections (S_i) in the overall structure.

Sections need not feature the same parameter set

The study of the complete device is reduced to the study of simpler parts

Device section modeling

Idea: to study such devices with these free parameters:

L1, L2, L3 (different length of the sections) VG1, VG2, VG3 (different applied voltages to the gates)

R (radius of the nanowire) **tox** (oxide thickness) I_{di} independently calculated in sections S_i exploiting a charge-based model

Hypothesis: no voltage drop at S_i and $S_{(i+1)}$ contacts

Current in sections

 I_{di} can be calculated independently in each Section S_i, provided we know V_{Di} and V_{Si} of all sections V_{Di} = $Vs_{(i+1)}$ $Id_{Si} = Ids_{(i+1)}$

Potential	 >	charge density
Charge density	>	current

Results: double section

Results: triple section, one gateless

Charge-based model is used at Single Section level to obtain current information .Drain current calculated as:

V_{Pi} obtained through the charge control equation:

Extensions

Same nature of the problem, same approach. slight modifications

Gateless section

 $\frac{1}{2C_{OX}L_{i}}Q_{si0}^{2} + \frac{2V_{th}}{L_{i}}Q_{si0} - \frac{Q_{s1}^{2}}{2C_{OX}L_{1}} - \frac{2V_{th}Q_{s1}}{L_{1}} = 0$

 Q_{si0} can be determined as $\begin{array}{l} \text{determined as} \\ \text{positive root of:} \\ i = 1, \dots, n-1 \end{array} \left(-\frac{2C_{OX}V_{th}^2}{Q_0} + \sqrt{\left(\frac{2C_{OX}V_{th}^2}{Q_0}\right)^2 + 4V_{th}^2\log^2\left(1 + \exp\left(\frac{V_{Gi} - V_T + \Delta V_T - V_{Pi}}{2V_{th}}\right)\right)} \right) \end{array}$

Validation

Theoretical: numerical simulations TCAD (Silvaco Atlas)

Experimental: at this stage of development, we still did not perform this kind of verification

Conclusions

Fast (second vs. hours) and accurate (max err negligible) simulation

