\CO p
@9?.-- n-n.{..?»o
Sy (O
J

« PO

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Hardware Acceleration of Beamforming in a UWB Imaging Unit for Breast Cancer Detection

Original
Hardware Acceleration of Beamforming in a UWB Imaging Unit for Breast Cancer Detection / Colonna F.; Graziano M.;
Casu M.R. ; Guo X.; Zamboni M.. - In: VLSI DESIGN. - ISSN 1065-514X. - ELETTRONICO. - 2013(2013), pp. 1-11.

Availability:
This version is available at: 11583/2507878 since:

Publisher:
HINDAWI PUBLISHING CORPORATION

Published
DOI:10.1155/2013/861691

Terms of use:
openAccess

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

04 August 2020

Hindawi Publishing Corporation

VLSI Design

Volume 2013, Article ID 861691, 11 pages
http://dx.doi.org/10.1155/2013/861691

Hindawi

Research Article

Hardware Acceleration of Beamforming in a UWB Imaging
Unit for Breast Cancer Detection

Francesco Colonna, Mariagrazia Graziano, Mario R. Casu, Xiaolu Guo,
and Maurizio Zamboni

Department of Electronics and Telecommunications (DET), Politecnico di Torino, C.so Duca degli Abruzzi, 24 1-10129 Torino, Italy
Correspondence should be addressed to Mario R. Casu; mario.casu@polito.it

Received 14 September 2012; Accepted 15 May 2013

Academic Editor: Lazhar Khriji

Copyright © 2013 Francesco Colonna et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The Ultrawideband (UWB) imaging technique for breast cancer detection is based on the fact that cancerous cells have different
dielectric characteristics than healthy tissues. When a UWB pulse in the microwave range strikes a cancerous region, the reflected
signal is more intense than the backscatter originating from the surrounding fat tissue. A UWB imaging system consists of
transmitters, receivers, and antennas for the RF part, and of a digital back-end for processing the received signals. In this paper we
focus on the imaging unit, which elaborates the acquired data and produces 2D or 3D maps of reflected energies. We show that one
of the processing tasks, Beamforming, is the most timing critical and cannot be executed in software by a standard microprocessor
in a reasonable time. We thus propose a specialized hardware accelerator for it. We design the accelerator in VHDL and test it in an
FPGA-based prototype. We also evaluate its performance when implemented on a CMOS 45 nm ASIC technology. The speed-up
with respect to a software implementation is on the order of tens to hundreds, depending on the degree of parallelism permitted

by the target technology.

1. Introduction

Prescreening tests aimed at breast cancer diagnosis dra-
matically reduce mortality. Mammography, the technique
currently used for screening, is very effective but has a few
significant shortcomings: its high cost prevents a widespread
diffusion, thus limiting de facto the organization of pervasive
screening campaigns; its rate of false positives in young
patients is very high; its use of ionizing radiations does not
allow a frequent use; the obtained images are not tridimen-
sional. Other techniques, like ultrasound or magnetic reso-
nance, partially solve these problems but raise other issues.
None of these techniques has the characteristics required
to promote a widespread diffusion and to permit frequent
screening campaigns on large ensembles of individuals.

One promising alternative is based on the radar principle
and operates at microwave frequencies with Ultrawideband
(UWB) pulses [1-3]. A set of antennas is placed around the
patient’s breast, and UWB pulses are sent to the breast target.
The breast tumor typically exhibits a large dielectric contrast

with the surrounding fatty tissue and thus reflects more the
incident signal. The detection of the tumor requires, however,
a significant amount of processing of the reflected signals.
Figure 1 is an overview of a full UWB system for breast cancer
detection.

The UWB technique does not use ionizing radiations
and proved capable of detecting tumors as small as 2mm
[4]. So far, the technique has been demonstrated using
bulky RF apparatus (e.g., a network analyzer connected to
antennas placed around the patient’s breast) and standard
general purpose processors for the elaboration of the UWB
signals and the generation of 2D or 3D maps of the reflected
energy.

Our aim is to demonstrate the feasibility of an integrated
and compact system, which we outline in Section 2. Our
previous works were focused on the UWB probe system,
particularly on the transmitter and the receiver [5-8]. Here,
we focus instead on the processing part, which we refer to
as Imaging Unit (see Figure 1). So far, software-only versions
of the complex processing algorithms have been proposed

2
Anatomical sensors:
array of Backscattered
transmitters SIgnal T Tumor
and receivers for scan
of breast volume
nerated
Recon- pulse
structed afe
3D image tissue
/ Imaging Frontend_ Backscattered signal S

/

, unit S~ contrast T:S=1:10

interface

ngh speed

FIGURE 1: The UWB-based breast cancer imaging system. The inset
is a high-level view of the imaging unit, which consists of a processor
for the execution of the less demanding tasks, and a hardware
accelerator for the most computationally-intensive processing
tasks.

[4, 9], which get typically executed offline by general purpose
processors. For the system to be effectively and efficiently
exploited in screening, the imaging unit should be able
to process UWB data almost in real-time, that is, with a
negligible delay compared to the whole examination time
as perceived by the patient. The imaging unit should be
organized as in the inset in Figurel. A microprocessor
executes the control tasks and the part of the processing that
does not require specialized hardware, whereas a hardware
accelerator, connected to the processor through a high-speed
bus, performs all the timing-critical tasks.

In this paper, we report the results of our investigation on
the imaging unit. These are our contributions.

(i) We are the first to profile the various software tasks a
complete UWB imaging algorithm for breast cancer
detection consists of [10]. Based on the profiling, we
are able to decide which part of the imaging software
needs to be accelerated by a specialized hardware. As
we illustrate in Section 3, Beamforming is the most
critical task.

(ii) We propose for the first time a complete implemen-
tation of a hardware accelerator for the beamforming
algorithm in synthesizable VHDL. The architecture is
described in Section 4.

(iii) We prove the functionality of the accelerator with a
FPGA-based prototype, as shown in Section 5.

(iv) We evaluate performance and resource utilization
when the accelerator is implemented both in a Xilinx
Virtex-4 and in a standard-cell ASIC with a 45nm
CMOS technology. These results are reported in
Section 6.

VLSI Design

We end the paper in Section7 with a recapitulation of
the main results alongside a final discussion about our
achievements.

2. The System

The overall UWB imaging system we aim at is sketched in
Figure 1. An array of transceivers generates and receives UWB
signals. Figure 2(b) reports a typical UWB pulse. The litera-
ture suggests that the frequency range between 0.5 GHz and
10 GHz should be covered to achieve both high contrast (low
frequency range) and high resolution (high frequency range).
A variety of signals can be used, like Gaussian derivative or
modulated and modified Hermite polynomials (MMHP).

The contrast between the damaged (possibly a tumor)
and healthy regions is due to an abrupt dielectric constant
variation and can be as high as 10: 1.

The entire breast volume is scanned by sequentially
activating the transceivers. In the monostatic configuration
[11], each antenna transmits and receives a scattered signal.
Transceivers activation and data collection are coordinated
by a control unit through a synchronous serial bus, as shown
in the block diagram in Figure 2(a). All sampled data are
collected and delivered to a memory.

Samples in memory are processed by the imaging unit,
which in turn produces a 2D or 3D map of reflected energy
values, each related to a different breast volume location
(voxel). The maps are finally sent to a personal computer and
displayed.

The total time necessary to execute a scan of the whole
volume is typically much less than one second [12], even
though it may change depending on design choices like
the number of antennas Ny, the sampling frequency, the
number of samples acquired N, the type of UWB signal
selected, and the methods used to compensate noise. We
then assume 1s as a reference value to which we compare
the time required by the imaging unit. In particular, we
assess the need for hardware acceleration when the software
processing largely exceeds this timing reference, resulting in
an unacceptable performance for a realistic clinical scenario.

The imaging unit is then the focus of this work, and its
data-flow diagram is shown in Figure 3. It performs the image
reconstruction in two steps, according to the flow proposed
in [9, 11].

Calibration (Skin Artifact Removal Algorithm (SKAR) Block
in Figure 3). This step removes unwanted scattering contri-
butions determined by the large dielectric contrast between
air and skin. These artifacts are orders of magnitude greater
than useful contribution and need to be removed.

Beamforming (Beamforming (BEAF) Block in Figure 3). This
step reconstructs a map of scattered energy in a 2D or 3D
volume. This is done by the microwave imaging via space-
time (MIST) beamforming method, which coherently shifts
in time the various received signals in order to focus the
energy analysis on a single voxel [4].

The following section details the Imaging Unit organiza-
tion and provides a profiling of the time needed to execute
the various subtasks of calibration and beamforming.

VLSI Design

|
|
|
|
|
|
i
|
Imag}ng !
unit I
l [}
| @ Array of
! | ® trans-
I ceivers
|
|
|
|

Front end
interface

Frontend -

()

) Differentiated Gaussian pulse: f = 6 GHz, 7 = 110 ps

Amplitude (V)
<)

-0.5F Transmitted pulse

Time (ns)

()

FIGURE 2: The system block diagram. (b): an example of a UWB transmitted pulse, central frequency 6 GHz, total duration time 110 ps.

!] Weights for
{ Oveights-BEAE BEAR

1
1
1
1
1
| |
! [Access 1
Samples [+ i | \BEAF weights) |
i i :
: | i~ BEAF | [Eoergy
i Weights for i i (Nvox tlmes) i values
: SKAR ! !
Calibration: | D C?:laﬁraiteesd :
§k1n : N B : Mist
artifact 1 beamforming
removal | ! !

FIGURE 3: Data-flow diagram of the imaging unit computation tasks.

3. The Imaging Unit

The imaging unit performs sequentially the following sub-
tasks (see Figure 3).

Weights-SKAR. The skin artifact removal algorithm (here-
inafter SKAR) needs weight coefficients that are functions of
the received signals and the position of the antennas. These
data are then processed once for each scan of the breast to
generate the weights for SKAR.

SKAR. By removing the artifact of the large skin reflection
from the received signal samples, as well as the contribution
of the direct path between transmitter and receiver, the SKAR
sub-task generates a set of calibrated samples.

Weights-BEAF. Beamforming (hereinafter BEAF) also needs
weights coefficients, but these only depend on the transmitted
signals and not on the received ones. Therefore, the weights
for BEAF are computed once and for all at the beginning,
when the characteristics of the transmitted signal are selected.

Access BEAF Weights. In this phase, BEAF weights are read
from a memory. This operation is repeated for each voxel. We

separate it from the actual BEAF to permit a correct profiling
of performance.

BEAF This phase applies a space-time beamformer to the
signal samples received by each antenna, a step that is done
specifically for each voxel. To focus on a specific voxel, the
signals are shifted in time, filtered with the weights for
BEAF, and finally coherently added (see Section 4 for a more
detailed formulation of the algorithm). The weighting opera-
tion enhances the contribution in each signal of the reflection
determined by the voxel under analysis and deemphasizes
at the same time the scattering contributions of the other
voxels. By iterating on the number of voxels, BEAF produces
an energy map for the whole volume.

We first implemented all the subtasks in software using
Octave [13]. We also built a finite-difference time-domain
(FDTD) electromagnetic solver to simulate the transmission
of the signals, and the reflections that occur in a realistic
numerical breast phantom [14]. The output data of the FDTD
simulation are the received signals that we process with our
Octave routines, according to the tasks outlined above.

3.1 Profiling. SKAR and BEAF have a very different impact
on the overall execution time. This difference depends on the
difference in complexity, but mostly on the different number
of times they get executed. SKAR is performed once, and
so is the computation of the SKAR weights, whereas BEAF
is repeated as many times as there are voxels. In the largest
maps found in the breast phantom repository [14], the voxels
can be as many as N,,, = 4.25 - 10°, which clearly makes
BEAF the bottleneck for the whole computation. The weights
required for the BEAF operation, however, do not depend on
the specific breast but only on some specific design choices
such as the shape of the UWB pulse and the location of
transmitters and receivers. The computation of these values
is thus performed only once at the beginning of the breast
examination.

TABLE 1: Software runtime of SKAR and BEAF subtasks for a case
with N, = 4.25 - 10°.

Task Runtime
Weight-SKAR 1645
SKAR 0.25s
Weights-BEAF 2.17 ms/voxel
2.6h
Access BEAF 732 ps/voxel
weights 31
BEAF 4.88 ms/voxel

5.8h

We performed software simulations of the complete
system with an Intel CPU (Core i5-430M, 3 MB L3, 2.26 GHz
clock frequency), 4 GB DRAM, and Linux Ubuntu 11.10 with
kernel 3.0 and instrumented our code to accurately determine
the CPU runtime. The results are in Table 1. For the BEAF
sub-tasks, results are detailed for one voxel and for the whole
breast volume.

For all sub-tasks, with the exception of SKAR, runtime
exceeds by far the 1's bar. However, all tasks, except weights-
BEAF and BEAEF, are executed in less than one minute, which
can still be judged acceptable especially because a further
optimization of the code can significantly reduce this time.
As for weights-BEAE, 2.6 h is certainly a long time, but the
weights could be computed offline, once and for all, and
accessed from memory when needed. As expected, the BEAF
algorithm has the largest impact on timing performance due
to the large number of iterations. Based on this analysis, we
decided to focus on the hardware acceleration of the BEAF
sub-task, while all the other tasks are executed in software.
The target is an imaging unit like the one sketched in Figure 1:
a processor is coupled with a dedicated hardware unit (ASIC)
that accelerates the timing critical parts of the computation.

4. A Hardware Implementation of BEAF

4.1. The MIST Beamforming (BEAF) Algorithm. We report a
succinct description of the MIST beamforming and refer to
the literature for all the details [4, 10].

Let us consider the backscatter contribution from a single
breast location r,, assuming that the signal received by the
ith receiver contains only information from that source, for
simplicity. We denote the sampled version of that signal as
x;[n] and its Fourier transform as

X; (w)=1(w)S;; (ryw), 1<i< Ny 6]
where I(w) is the Fourier transform of the transmitted signal
i(t). NN is the number of antennas, which is also the num-
ber of transmitters and receivers. S;;(ry,) is an analytical
model of the monostatic frequency response associated with
the propagation from the ith antenna to r, and back. The
distance between each antenna and the point r; is not the
same for all the antennas, and so the round-trip times of the
signals differ. We then need to time align the signals by delay-
ing them by an integer number of samples, n;(x,) = n,—7;(r;).

VLSI Design

In this equation, 7; is the round-trip propagation delay in the
ith channel for location r; and is obtained by dividing the
round-trip path length by the average propagation speed and
rounding to the nearest sample. The term 7, is the reference
time to which every signal is aligned and is chosen to be the
worst-case delay over all channels and locations:

n, > round (max T, (ro)> : (2)

The signal is windowed to remove components before sample
n, that are not important for energy estimation. The following
window function g[n] is used:

g[n]={1’

0, otherwise.

n>n,

3)

The algorithm also allows to equalize path-length depen-
dent dispersion and attenuation, to interpolate any fractional
time delays remaining after coarse time alignment, and to
bandpass-filter the signal. These operations are done in time
domain using a bank of FIR filters, each associated with a
vector of L weights w; = [wjy, w;;, ..., w;_p)]. Increasing
the number of weights improves accuracy but increases
complexity, too, and so must be carefully chosen.

By summing the output of the filters, we obtain

N L
Z[”>r0]=Zzwil'9[”_l]'xi[”_l_”i(ro)]’ (4)
i=11=0
where wy; is the Ith weight of the ith filter and #;(r,) is the
delay value associated with the ith filter.
We need to define another window:

1, n,<n<n, +1
himr, =4 =" =Tk 5
[xo] {0, otherwise. ®)

The interval between #;, and n,+1;, is the window of samples in
which we expect to find the received pulse. Even if we know
the shape of the transmitted signal, the scattering from the
tumor is frequency-dependent. Therefore, the backscattered
pulse is a distorted version of the transmitted pulse, and
defining the exact timing window is not straightforward. The
values of these parameters suggested in [4] are meant to
maximize the contrast for small lesions.

The energy scattered by r,, can be computed as the sum of
the square of the windowed values:

p(ry) = Z |z [n]h [n, 1'0”2- (6)
n
Many parameters in the previous equations have to be
assigned a value before proceeding with the hardware design.
The value of 1, can be computed based on the time shift n,,
which is easily computed as shown in (2), on the delay of the
FIR filter 7, = (L — 1)/2 and on the first significant sample of
the transmitted pulse N, :

1y, = Ngpare + 1, + Tp- (7)

As for I, an optimal value is suggested in [4] and is [, = 5.
As for L, a reasonable value for a Gaussian pulse like the one
in Figure 2, which we use for our experiments, is L > 50, and
we chose L = 55.

VLSI Design

TABLE 2: Maximum difference of energy values with respect to ideal
computation for three approximation cases.

Calibration Tumor Pos. Max error
Approx-1 Approx-II Approx-III
Low 26.78% 23.28% 0.25%
IDEAL Med 14.64% 4.94% 0.07%
Deep 17.97% 6.70% 0.16%
Low 33.60% 25.02% 0.44%
SKAR Med 15.61% 8.67% 0.16%
Deep 30.68% 34.46% 0.48%

4.2. Accuracy and Approximation. One of the crucial design
choices is data representation. We assume that received
signals are sampled and represented as 16-bit 2’s complement
numbers [12]. These data are processed according to (4) and
(6), in which multiplications and additions are the most
frequent operations. The number of bits for the intermediate
and final results is one of the designer’s knobs, who has to
find the best trade-off between precision and complexity. We
explored three possible approximation strategies, which we
discuss in the following.

Approx-1. Here, we keep data parallelism as low as possible. In
the first multiplication in (4), the 16-bit inputs are multiplied
and a 32-bit output is produced. Before the addition in the
same equation, we truncate the multiplication results and
discard the 16 least significant bits. Then, to avoid overflow,
the additions are performed over 32 bits by extending the
remaining 16 most significant bits. This parallelism ensures
no overflow for up to 16 levels of addition. Before the final
multiplication in (6), the 16 least significant bits are discarded,
and the multiplication result is a 32-bit number.

Approx-II. In this case, we do not discard the 16 least
significant bits in the square computation in (6), obtaining a
64-bit result. The 32 least significant bits of the result are then
cut away. This solution requires of course larger multipliers
and so implies a larger complexity.

Approx-II1. In this case, we keep the maximum level of
accuracy and perform all the operations with 64 bits.

We evaluated these three alternatives with a software
implementation of the algorithm in Octave, before moving
to the hardware design. The algorithm performance depends
on the relative position of any high-permittivity tissue and
the position of the antennas. Therefore, we compared the
performance considering an ideal breast model uniformly
filled with fat tissue for three possible tumor positions in the
breast: a small depth (low), an intermediate depth (med), and
a considerable depth (deep).

We also evaluated the effect on the performance of the
SKAR algorithm. In particular, we compared the perfor-
mance of the actual SKAR with an ideal calibration, in which
we remove any artifact by artificially subtracting the response
without tumor from the response with tumor.

The three maps in Figure 4 are obtained with SKAR
calibration and with the three approximation strategies for
the case of deep position. In the first case, in particular, the

low resolution of the internal computations creates a large
artificial clutter response and so a clear loss in accuracy.
Nevertheless, the tumor position is clearly and correctly
found. In the second case, the removal of the least 32-bit of
the energy result eliminates the clutter response but may end
up in inaccuracies should a point of interest have a low energy
and be therefore eliminated. The third approximation is of
course the one with the greatest accuracy. In fact, the results in
the third map in Figure 4 are identical to those obtained from
a simulation with double precision floating-point numbers.
In Table 2, we report the maximum error of the energy
values with respect to an ideal computation (with no approx-
imation). The maximum error is calculated as follows:

). (8)

EM represents the energy map without approximations
(double precision), and EMy, is the energy map with approx-
imation (fixed point). The error is determined by comparing
energy values normalized to the maximum values obtained
with or without approximation, respectively. The maximum
error is consistent with the graphical results of the maps.

To keep the maximum level of accuracy, then, we decide
to maintain a 64-bit data representation. This decision does
not affect the design as much as one may think. To store 64-
bit energy values, we need twice as much memory locations
than we need for the 32-bit case. However, the memory size
is mostly determined by the many weights we have to store,
and both the number and the bit size of the weights do not
depend on the representation of the intermediate data.

EM EMj
max (EM) max(Epr)

MaxError = max<

4.3. Architecture. After having decided the parallelism for
internal data representation, we moved on to the RTL
hardware design. We described our system in synthesizable
VHDL. Design-time parameters were used to keep the design
flexible. The block diagram in Figure 5 represents the BEAF
architecture that we described in RTL. In the following, we
describe the behavior of each component.

Weights ¢ Delays Shift Register. When the image reconstruc-
tion process starts, after the acquisition phase, calibrated
samples, weights for BEAF, and delays values are available
each in their own memories. For each energy value, an entire
window of samples is processed in every FIR filter, together
with the corresponding weights. Before the filter computa-
tion, these weights are sequentially read from memory and
loaded in a serial-in parallel-out shift register included in the
Weights & Delays shift register block. The delay values are also
read from memory at the same time. They are sent to the T
blocks to determine the correct time-shift amount necessary
to align the signals, according to the beamforming algorithm
described in Section 4.1.

Sample Memory. The sample values stored in this memory

are read one at a time for each channel and fed to the filter
blocks.

Filters. A bank of filters receives samples from the sample
memory and delay values from the Weights & Delays shift reg-
ister. In a fully parallel implementation, the number of filters

Beamforming: approximated - SKAR calibration

le - 07
2t]
4r 1 8¢ — 08
or - . i
= ol } 6e — 08
5° -
~
10} .
4e — 08
12+ .
|
141 T 2e - 08
16} .
. 0
2 4 6 8§ 10 12 14
i(cm)

(a) First approximation type (Approx-I)

VLSI Design
Beamforming: approximated - SKAR calibration
T T T T 4e - 08
27 3.5¢ - 08
4 3e - 08
6 F
- 2.5e - 08
E 8
2 - 2e - 08
T~
10
1.5e - 08
12
le - 08
14
5e - 09
16
L L L L L L L O
2 4 6 8 10 12 14
i(cm)

(b) Second approximation type (Approx-II)

Beamforming: approximated - SKAR calibration

5e — 08
2 L 4
4 j E 4e — 08
6 — - i
= 3 3e - 08
8 -
T~
10 E
2e — 08
12+ E
|
14] le — 08
161 -
2 4 6 8 10 12 14
i(cm)

(c) Third approximation type (Approx-III)

FIGURE 4: Energy map of the breast after BEAF data approximation for ideal breast model and SKAR calibration. A tumor is present in a deep

position.

(Npr) corresponds to the number of transceivers/antennas
in the UWB probe. As we discuss momentarily, sequential
implementations that use less filters than there are antennas
are possible. Each filter includes three main components. The
7 blocks are programmable delay lines, which shift the input
samples of the right time shift to ensure that all FIR inputs are
time aligned. The maximum delay is #,. The WindowI blocks
perform the g[n] windowing functions: they feed the FIR
blocks only with samples that come after n,, and replace all
the samples that come before n, with zero values. In the FIR
blocks, the samples are processed according to (4). Every FIR
is a fully-parallel structure with L multipliers. Each multiplier
is fed with one of the weights, which do not change during
the whole voxel computation and with the samples. The latter
are sequentially introduced in the FIR blocks and then are

shifted from one multiplier to the next via an internal shift
register. The outputs of all the multipliers are then summed
via an adder tree, producing one single FIR output. This
whole computation block is pipelined, with registers at the
input of every adder and multiplier.

Sum. The outputs of all the filters are summed together with a

adder tree to obtain a single value, which represents the result
of (4).

Window2. The samples we are interested in are those in
which the signal pulse occurs. Window2 lets input data pass
unaltered if they correspond to the time interval specified by
ny, and [;,. Otherwise, the output value is set to zero.

Energy Computation. This block computes the total voxel
energy according to (6). A multiplier and an accumulator are

VLSI Design

Filter
===7 ~=—====7 Mt
T —>Windowl ?) FIR FSM
) SN D S S—
ettt F——
Samples LY 7 FAwindowl[T3] FIR %) E S
memory| b | [I Sum 3 nergy
[ty FE===r K] computation
5 T [PWindowl T FIR [=
_____ Jiy) S S—
Weights
and delays :
; : Ener:
shift memgz,y
register
Sum shift register

FIGURE 5: RTL block diagram of the BEAF unit.

used for this purpose. Finally, the energy of the current voxel
gets written into the energy memory.

FSM. To coordinate the whole computation process, a finite
state machine (FSM) is used. A set of counters in it also keeps
track of the number of computation steps performed at any
control step.

The filtering functions need not to be necessarily per-
formed in parallel. Two extreme solutions are possible. A
parallel implementation, in which all the data are processed
concurrently, and a serial implementation in which one
filter is iteratively used. In the serial implementation, an
accumulator is inserted at the output of the filter, since the
FIR outputs must be summed to compute the energy value.

Between the two extremes, hybrid solutions are also
possible. We can instantiate a number of filters (and thus a
number of FIR blocks) Ny that matches our timing and
resource requirements. We can use them iteratively to process
the data from N,y antennas. In case of a hybrid solution, at
each iteration, the results of the partial sum of the FIR outputs
are fed back to the sum shift register block in Figure 5 and
added coherently to the current value at a given iteration.
When all the antennas sets have been processed, the final
result is fed to the energy computation block. The finite
state machine is designed in a parameterized way so as to
correctly handle all possible solutions with different degrees
of parallelism.

It is worth mentioning that a choice of degree of par-
allelism determines not just the number of FIR blocks, but
also the number of 7, Windowl and Window2 blocks. In the
following, when we refer to Ny as a parameter for the degree
of parallelism, we mean that all these blocks are instantiated
Npg times.

We verified our parameterized VHDL code by means of
extensive logic-level simulations based on Mentor Graphics’
Modelsim [15] varying the degree of parallelism. We validated
the output obtained with the RTL code against the results
obtained with a software implementation and refined our
design until they perfectly matched.

4.4. Timing Performance of BEAF. In our architecture,
each voxel’s energy is sequentially computed, therefore the

beamforming execution time is
TBEAF = Nyoy - Tvox’ 9)

where N, is the number of voxels and T,
required to compute each voxel.

The number of clock cycles necessary to execute the
beamforming step for each voxel depends on the number of
FIR filters in Figure 5. As we discussed above, the spectrum
of possible solutions spans from a fully sequential implemen-
tation with a single FIR iteratively used for all the antennas
to a fully parallel solution with as many filters as there are
antennas. The number of iterations depends on the ratio
between number of antennas and number of filters:

is the time

Nant
Niter = " NFIR . (10)
T, is the sum of three contributions:
TVOX = TT.U + Tcomp + TT.UT" (]']')
T, is the time necessary to write the FIR weights in the

memory, once they are received from the link that connects
the processor with the accelerator, to read the weights from
the memory and to store them in local registers within the
filters:

T, = (2(L+1) Nyyr + 2Ner) Terk- (12)

The first term within parenthesis in (12) is the time for writing
and reading from the memory L weights. The second term is
an overhead for enabling the memory and for asserting a few
control signals. T ¢ is the clock period.

T comp is the actual computation time and is given by

T comp = (pr + [log, ()] +my, + 1, + 7
(13)
+ [log, (Ngg +1)])NiterTCLK'

In (13), L, is the time distance, evaluated in time samples,
that corresponds to the worst path between two different
antennas, and is necessary for the time alignment of the
various signals. Term [log, (L)]+, +1,, is the number of clock
cycles needed to load the samples in the filters, with 3, and [,
representing the first sample in a window of interest and J, the
size of that window, according to equation (5). Seven clock
cycles are needed for window traversal and various register
writing. The term that depends on the logarithm of Ny is
related to the final addition in Figure 5.
The final term in (11), T,;, is given by

anj = 3I\]iter (14)

and represents the time needed to write the voxel’s energy
value back in the memory.
We rewrite the final expression of T, obtained by
wrapping up all previous equations:
Tyx = (2(L+1)-Nyyr +2-N,

iter

+ (Lyp + [log, (L)] +my, + 1, +7 (15)

+1og, (Ngg +1)) - Niger + 3 - Niger) Terxc-

FIGURE 6: Experimental setup for the FPGA prototype: the personal
computer executes in software (Octave) part of the algorithm and
allows energy maps visualization. A USB link transfers data to and
from the FPGA board where part of the beamforming algorithm is
accelerated.

Equation (15) can be used to determine the overall
execution time of the beamforming algorithm in (9) given
the total number of voxels and applies both to a 2D and
a 3D map. The accuracy of (15) was tested with VHDL
simulations using Mentor Graphics’ Modelsim simulator and
experimentally verified with the FPGA prototype described
in the next section.

5. Emulation with an FPGA-Based Prototype

We built an emulation prototype of the imaging unit. This
prototype relies on a general purpose microprocessor to
perform the portions of processing that we decided to execute
in software, while the hardware part of the BEAF algorithm
was deployed on an Xilinx Virtex-4 XC4VLX160-FF1513
FPGA. In particular, we were able to connect the Intel Core-i5
of a laptop with the FPGA located in an AVNET Virtex-4 LX
development board. The Cypress FX2 USB 2.0 chip integrated
in the development board was used to communicate with the
FPGA. The USB chip behaves simply as a conduit between the
USB and the external data-processing logic. The FX2 clock
was set to 48 MHz, the data parallelism to 8 bits, and the
packet size to 512 bytes.

The prototype has multiple purposes. It serves as an
accelerator of the system-level simulation, because it permits
a much faster execution of the part of the algorithm executed
by the FPGA, compared to a logic-level simulation. The
overall architecture, with the software and the hardware
running concurrently, is clearly a close approximation of
the final system, even though the processor and the digital
hardware will be different in the final target. The RTL VHDL
code that gets synthesized on the FPGA is the same that we
will eventually implement in an ASIC; therefore, we can fully
verify it before fabrication. Finally, we can anticipate what
the exact performance will be in terms of clock cycles. The
only difference in performance will be then determined by
the different clock frequency in FPGA and ASIC.

Both the software and the hardware code are fully
instrumented to permit a cycle accurate evaluation of timing
performance. The USB communication time is also correctly

VLSI Design

estimated and decoupled from the overall performance, as a
much faster link will be used in a realistic setting like the one
depicted in Figure 1.

The software running on the microprocessor is layered,
and so the application part and the communication part
are independent and portable. The communication part is
also further partitioned in a set of low-level, hardware-
specific USB primitives (we use the libusb library available
in Linux) and a set of higher-level, technology-independent
APIs for data organization and communication. When the
hardware target changes, as it happens when moving from
the prototype to the final target, the developers replace only
the low-level communication primitives and reuse both the
application code and the communication APIs.

Figure 6 is a photograph of the prototype and shows
an energy map elaborated in the FPGA, sent to the host
computer and displayed in the host screen.

6. Experimental Results on FPGA and ASIC

We ran several experiments, first with Xilinx’s ISE software
[16] for the FPGA target of our prototype, then with Synopsys
Design Compiler [17] for an ASIC target. We were able to
determine the resource requirements and the actual timing
performance which depends on the actual clock frequency as
found by the FPGA and ASIC design CAD tools. The various
bitstream files generated after FPGA synthesis, mapping,
and place-and-route experiments were each tested in our
prototype. They refer to a specific design case with nine
antennas located around the numerical breast phantom
number 012204 from the repository made available by the
University of Wisconsin [14]. This phantom represents in
the database an average case in terms of type of tissue and
number of voxels. We have run finite-difference time-domain
(FDTD) electromagnetic simulations to determine the signal
received by the nine antennas, and we fed the imaging
unit with the received samples after 16-bit quantization.
We also extrapolated our performance results to a case of
fifty antennas, which we assume it to be more or less than
maximum number of antennas that can be placed around a
patient’s breast.

6.1. FPGA Experiments. The FPGA resources, the main part
of which consists of look-up tables (LUT) and registers, are
grouped in slices. Depending on the complexity of the design,
and particularly on the number of filters Nz, a higher or
lower amount of LUT and registers is used. When mapping
the design, the strategy of ISE does not consist in filling
the slices one by one. Instead, to meet timing requirements,
the logic gates are spread over a high number of slices,
which often results in a poor utilization. Sometimes a slice is
declared as occupied even if only one of its LUTs is used. This
fact limits the number of filters that we were able to put in our
Virtex-4 to a maximum of five FIRs. The results of resource
utilization are reported in Table 3.

We notice that the number of occupied slices increases
rapidly with the number of filters. With six filters, it exceeds
the number of available slices, and we were not able to

VLSI Design

TABLE 3: Area allocation with different number of FIR filters.

Ner Slice registers 4 input LUTs Occupied slices
1 9,081 (6%) 8,038 (5%) 7,188 (10%)

2 17,347 (12%) 20,072 (14%) 16,115 (23%)
3 25,551 (18%) 44,290 (32%) 30,899 (45%)
4 33,851 (25%) 67,247 (49%) 45,139 (66%)
5 42,055 (31%) 91,461 (67%) 59,936 (88%)

TaBLE 4: Hardware execution time over 14485 voxels, with 9
antennas and 16 ns clock period, and speed-up with respect to a
software execution requiring Tg,, = 12.8s.

Ner Nirgr Toxe [ms] Speed-up
1 9 806.39 15.87
2 5 553.36 2313
3 3 425.81 30.06
4 3 426.50 30.01
5 2 362.49 35.31
6 2 362.49 35.31
7 2 362.49 35.31
8 2 362.95 35.27
9 1 298.71 42.85

test that configuration in our prototype, even though we
could estimate the performance in simulation. The allocated
resources follow a trend that is almost linear with the number
of filters, which is in accordance with our expectations.

The timing performance depends proportionally on the
number of voxels in the energy map. This value is derived
from the 012204 phantom breast at 1 mm resolution, which
we also used for the Octave simulations. The 2D map grid
consists of 152 rows and 176 columns. The Octave simulation
code was optimized to consider in the computation only
those voxels which happened to be located in the elliptical
space described by the antennas, that is, the area actually
irradiated by the transmitters. With such optimization the
number of voxels is Nyox = 14495.

With such number of voxels, the time required for the
software execution of the BEAF on the Intel i5 core of our
prototype (with Ubuntu 11.10, kernel 3.0) was approximately
Ty = 12.8s. The clock period for the FPGA implementation
is Teix = 16ns, which we use in our experiments with the
prototype. Table 4 reports the time required to execute the
BEAF routine in hardware and the speed-up with respect to a
software implementation. Timing results with Np in range
6-9 refer to logic simulations only, because only five filters
could be placed in the FPGA. However, since all the results
are consistent with (15), they are all fully accurate. Table 5
refers to a hypothetical case with fifty antennas and reports
only simulated data, which are also fully accurate, compared
to a software execution that requires T,y = 71s.

In both Tables 4 and 5, we observe a similar trend. As
we expected, the effect of changing the number of filters
mainly depends on the actual number of iterations Nyppg =
[N ant/Npr 1- Increasing the number of filters boosts perfor-
mance only when it allows to perform the computation with

TABLE 5: Hardware execution time over 14485 voxels, with 50
antennas and 16 ns clock period, and speed-up with respect to a
software execution requiring Ty, = 71s.

N Nirer Texe [] Speed-up
1 50 4.48 15.86
2 25 2.89 24.53
3 17 2.38 29.79
4 13 213 33.31
5 10 1.94 36.61
6 9 1.88 37.86
7 8 1.81 39.19
8 7 1.75 40.59
9 6 1.68 42.14
10-12 5 1.62 43.81
13-16 4 1.56 45.62
17-24 3 1.49 47.56
25-49 2 1.43 49.71
50 1 1.36 52.05

less iterations. For example, in the case with nine antennas
we would not get a significant advantage from using eight
filters: if we cannot use nine, then we could as well use six
and still obtain basically the same performance we would get
with eight filters.

The speed-up value grows rapidly for low values of Ny,
whereas its marginal increase tends to diminish in the upper
range. The reason is that the part of the algorithm that consists
of accessing the memory for reading samples and weights
remains sequential and cannot be made parallel.

Considering the same phantom, and iterating the per-
formance evaluation in the 3D case with 1374953 voxels, the
resulting trends are similar. To summarize, in the worst case
of fifty antennas and Typgg = 50, the required time is T, =
424.64 s (around 7 minutes), while in the best case of only
one iteration we obtained T, = 129.40 s (around 2 minutes).
With respect to a software implementation requiring Tgy, =
1.9 h; the speedup is a factor 16.11 and 52.86, respectively, in
the worst and best case.

Referring to data discussed in Table 1 obtained for a worst
case breast phantom (in terms of number of voxels), the
execution time in the worst case (Tyrgg = 50) would be
around 21 minutes (compared to the 5.8 h obtained in the
software case).

6.2. ASIC Experiments. For this part of our experiments,
we targeted a standard cell library in a 1.1V 45nm CMOS
technology. We synthesized with Synopsys Design Compiler
various instances of our architecture varying the number
of filters and determined the relationship between speed-up
(with respect to a software execution) and silicon area. The
design, when synthesized with the maximum optimization
effort available, can run at a clock period of 2 ns. Therefore,
compared to the FPGA results reported in the previous
section, all the values of speed-up can be multiplied by a
factor 8 (16 ns/2 ns).

10

Ju—
(=)

Area (mm?)
(8] w [w N ~ oo} O

5 10 15 20 25 30 35 40 45 50
Number of FIR filters

FIGURE 7: Postsynthesis ASIC area versus number of FIR filters for
a 50 antennas system.

450 T T T T T T T T T

F] R R U U ST TONC U |
350
300 |
250 |

200

Speed-up versus software

150

100 1 1 1 1 1 1 1 1 1
Area (mmz)

FIGURE 8: Speed-up versus area in an ASIC implementation of a 50
antennas system.

Figures 7 and 8 report silicon area as a function of the
number of filters and speed-up as a function of the silicon
area, respectively.

The area curve in Figure 7 grows linearly with N, with
a slope of 0.1885 mm?, which is in fact the area of a single FIR
filter. The area depends also on the memory size. The memory
area was obtained by considering the use of 100 memory
blocks (two for each antenna), each consisting of 256 bytes
for the signal samples (25.6 kB over 0.457 mm?), and a dual-
port memory block with 2048 bytes for the weights and delays
values (4 kB over 0.0153 mm?). The memory area weighs on
the total area in a significant way only when a few filters are
used, because it does not depend on Npg.

The speed-up, that is the ratio of software execution time
and hardware execution time, as a function of the silicon area
shows a behavior similar to what we found for the FPGA
case, but the acceleration factor is of course much bigger:
from around 50 to around 400 in the case of fifty antennas
in the ASIC case. This result would be notably improved in
case a more scaled technology would be used [18]. As we

VLSI Design

O P
Zoom: filter range 1:5 -
PE3S s : .

10 | 2.

1.

=1 U W

Area and speed-up increase (relative units)
o]

0 1 1 1 1 1 1 1 1 1
5 10 15 20 25 30 35 40 45 50

Number of FIR filters

—— Speed-up increase
--- Area increase

FIGURE 9: Trade-off between speed-up and area when changing
the number of filters in a 50 antennas ASIC implementation. Cost-
effective solutions are those with Nz < 6.

utilize more and more area to make room for the filters, the
speed-up first increases in a steep way, then it bends because
the sequential part of the algorithm starts dominating the
execution time.

We report in Figure 9 two more curves, the speed-up
increase and the area increase. These two curves are simply
the normalized versions of the curves reported in Figures 7
and 8. In practice, we divided the area and the speed-up of
the solution with Ny, filters by the area and the speed-up of
the solution with one filter, respectively. The rationale behind
this choice is to evaluate the trade-off between performance
and cost. In particular, we judge that a parallel solution
is cost-effective if, for a given percentage cost increase, the
performance increases at least as much as the cost [19, 20].
From the inset in Figure 9, we are able to evaluate for what
value of Npjp the two curves cross each other. The cost-
effective solutions are those that use no more than six filters.

7. Conclusions

Implementing in hardware the Mist-beamforming algorithm
portion of the image reconstruction process determines a
remarkable acceleration in terms of execution time. From a
practical point of view, this acceleration implies a significant
improvement in the applicability of the system: if we consider
the case of a 3D image reconstruction with a fifty-antenna
system, we move from 1.9 hours of computation in the
software-only version to only about 7 minutes for an FPGA
implementation and less than one minute for an ASIC
implementation, even in the serial hardware configuration
(i.e., with Npr = 1). The FPGA clock frequency was set in
our experiments to 62.5 MHz, which is the clock frequency
of the IP that communicates with the UWB external chip.
However, our results show that the FPGA accelerator alone
can run up to 180 MHz, hence providing a further 2.88X
speed-up with respect to the software version. Therefore,

VLSI Design

even the fully serial configuration gives us a noteworthy
acceleration that justifies alone the validity of the hardware
design. When using some degree of parallelism, the timing
performance improves even more, overcoming by far any
possible advantage of a software implementation. We should
consider that Octave is an interpreted language, and so the
code is executed by an interpreter program that interprets it at
runtime. Sometimes, an interpreted code has worse execution
time than an optimized compiled code written, for instance,
in C. We plan then to translate the Octave code in C as
a next step. Even though preliminary results suggest that a
10X reduction of the CPU execution time can be achieved,
this will not help reduce the BEAF part of the computation
down to an acceptable level (an acceleration of more than
400X would be needed if an ASIC implementation with fifty
antennas is the reference point). Therefore, the BEAF task will
still require a hardware accelerator. An optimized C code may
help, instead, to reduce the other tasks below the 1s target.

Thanks to the parameterized implementation, our design
can be easily adapted to various configurations with differ-
ent number of transmitters and receivers and for various
technology targets (FPGA or ASIC) with different available
resources. This gives our design a high degree of flexibility
and scalability.

Acknowledgment

This work was partially supported by the Italian Ministry of
Education and Research under FIRB 2012 Project “MICE-
NEA”

References

[1] S.C.Hagness, A. Taflove, and J. E. Bridges, “Three-dimensional
FDTD analysis of a pulsed microwave confocal system for breast
cancer detection: design of an antenna-array element,” IEEE
Transactions on Antennas and Propagation, vol. 47, no. 5, pp.
783-791, 1999.

[2] X. Li and S. C. Hagness, “A confocal microwave imaging
algorithm for breast cancer detection,” IEEE Microwave and
Wireless Components Letters, vol. 11, no. 3, pp. 130-132, 2001.

[3] X.Li, S. K. Davis, S. C. Hagness, D. W. Van Der Weide, and B. D.
Van Veen, “Microwave imaging via space-time beamforming:
experimental investigation of tumor detection in multilayer
breast phantoms,” IEEE Transactions on Microwave Theory and
Techniques, vol. 52, no. 8, pp. 1856-1865, 2004.

[4] E.J.Bond, X. Li, S. C. Hagness, and B. D. Van Veen, “Microwave
imaging via space-time beamforming for early detection of
breast cancer;” IEEE Transactions on Antennas and Propagation,
vol. 51, no. 8, pp. 1690-1705, 2003.

[5] M.R.Casu, M. Crepaldi, and M. Graziano, ‘A VHDL-AMS sim-
ulation environment for an UWB impulse radio transceiver;,”
IEEE Transactions on Circuits and Systems I, vol. 55, no. 5, pp.
1368-1381, 2008.

[6] M. Cutrupi, M. Crepaldi, M. R. Casu, and M. Graziano, ‘A
flexible UWB transmitter for breast cancer detection imaging
systems,” in Proceedings of the Design, Automation and Test in
Europe Conference and Exhibition (DATE ’10), pp. 1076-1081,
March 2010.

1

[7] M. R. Casu, M. Graziano, and M. Zamboni, “A fully differential
digital CMOS UWB pulse generator;” Circuits, Systems, and
Signal Processing, vol. 28, no. 5, pp. 649-664, 2009.

[8] M. Crepaldi, M. R. Casu, M. Graziano, and M. Zamboni,
“A mixed-signal demodulator for a low-complexity IR-UWB
receiver: methodology, simulation and design,” Integration, the
VLSI Journal, vol. 42, no. 1, pp. 47-60, 2009.

[9] S. C. Hagness, A. Taflove, and J. E. Bridges, “Two-dimensional
FDTD analysis of a pulsed microwave confocal system for breast
cancer detection: fixed-focus and antenna-array sensors,” IEEE
Transactions on Biomedical Engineering, vol. 45, no. 12, pp. 1470-
1474, 1998.

[10] S.K. Davis, E.]. Bond, X. Li, S. C. Hagness, and B. D. Van Veen,
“Microwave imaging via space-time beamforming for early
detection of breast cancer: beamformer design in the frequency
domain,” Journal of Electromagnetic Waves and Applications,
vol. 17, no. 2, pp- 357-381, 2003.

[11] X. Li, E. J. Bond, B. D. Van Veen, and S. C. Hagness, “An
overview of ultra-wideband microwave imaging via space-time
beamforming for early-stage breast-cancer detection,” IEEE
Antennas and Propagation Magazine, vol. 47, no. 1, pp. 19-34,
2005.

[12] P.Rosingana, Design of a UWB Imaging System for Breast Cancer
Detection [M.Sc. thesis], Politecnico di Torino.

[13] J. W. Eaton, Gnu Octave Manual, Network Theory Ltd., 2002.

[14] UWCEM, “Numerical Breast Phantom Repository;” http://
uwcem.ece.wisc.edu/home.htm.

[15] ModelSim Reference Manual, v6.5e, Mentor Graphics, 2010.
[16] ISE Design Suite 13: Release Notes Guide, Xilinx, 2011.

[17] Design Compiler Reference Manual: Optimization and Timing
Analysis Version D-2010.03, Synopsys, 2010.

[18] A. Pulimeno, M. Graziano, and G. Piccinini, “Udsm trends
comparison: from technology roadmap to ultrasparc niagara2,’
IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 20, no. 7, pp- 1341-1346, 2012.

[19] S. V. Tota, M. R. Casu, M. R. Roch, L. Rostagno, and M.
Zamboni, “Medea: a hybrid shared-memory/message-passing
multiprocessor NoC-based architecture,” in Proceedings of the
Design, Automation and Test in Europe Conference and Exhibi-

tion (DATE ’10), pp. 45-50, March 2010.

[20] M. R. Casu, M. R. Roch, S. V. Tota, and M. Zamboni, “A
NoC-based hybrid message-passing/shared-memory approach
to CMP design,” Microprocessors and Microsystems, vol. 35, no.
2, pp. 261-273, 2011.

International Journal of

Distributed
Sensor Networks

e

Journal of
Electrical and Computer
Engineering

Advances in

OptoElectronics

~

VLSI Design

International Journal of

Chemical Engineering

International Journal of

Rotating
Machinery

The Scientific
erId Journal

Advances in)
Mechanical
Engineering

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Journal of
Control Science
and Engineering

ournal @t

Sensors

InternationatJournal of

Antennas and
Propagation
©. - .

J o G

Active and Passive

Modelling &
Simulation
in Engineering

|

Advances in
Acoustics &
Vibration

ISRN
Electronics

Civil Engineering

Robotics

ISRN
Signal Processing

ISRN
Sensor Networks

