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Chapter 1

Introduction

With the explosion of innovative technologies in recent years, organizational and man-

agerial networks have reached high levels of intricacy. These are one of the many

complex systems consisting of a large number of highly interconnected heterogeneous

agents. The dominant paradigm in the representation of intricate relations between

agents and their evolution (94)(7) is a network (graph). The study of network prop-

erties, and their implications on dynamical processes, up to now mostly focused on

locally defined quantities of nodes and edges. These methods grounded in statistical

mechanics gave deep insight and explanations on real world phenomena; however there

is a strong need for a more versatile approach which would rely on new topological

methods either separately or in combination with the classical techniques.

In this thesis we approach this problem introducing new topological methods for

network analysis relying on persistent homology (29),(32). The results gained by the

new methods apply both to weighted and unweighted networks; showing that classi-

cal connectivity measures on managerial and societal networks can be very imprecise

and extending them to weighted networks with the aim of uncovering regions of weak

connectivity.

In the first two chapters of the thesis we introduce the main instruments that will

be used in the subsequent chapters, namely basic techniques from network theory and

persistent homology from the field of computational algebraic topology. The third

chapter of the thesis approaches social and organizational networks studying their con-

nectivity in relation to the concept of social capital. Many sociological theories such as

the theory of structural holes (21),(23), and of weak ties (68),(69) relate social capital,

in terms of profitable managerial strategies and the chance of rewarding opportunities,

to the topology of the underlying social structure. We review the known connectivity
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measures for social networks, stressing the fact that they are all local measures, calcu-

lated on a node’s Ego network, i.e considering a nodes direct contacts. By analyzing

real cases it, nevertheless, turns out that the above measures can be very imprecise

for strategical individuals in social networks, revealing fake brokerage opportunities.

We, therefore, propose a new set of measures, complementary to the existing ones and

focused on detecting the position of links, rather than their density, therefore extending

the standard approach to a mesoscopic one. Widening the view from considering direct

neighbors to considering also non-direct ones, using the “neighbor filtration”, we give

a measure of height and weight for structural holes (25), obtaining a more accurate

description of a node’s strategical position within its contacts. We also provide a re-

fined version of the network e�ciency measure (83), which collects in a compact form

the height of all structural holes. The methods are implemented and have been tested

on real world organizational and managerial networks. In pursuing the objective of

improving the existing methods we faced some technical di�culties which obliged us to

develop new mathematical tools.

The fourth chapter of the thesis deals with the general problem of detecting struc-

tural holes in weighted networks. We introduce thereby the weight clique rank filtration,

to detect particular non-local structures, akin to weighted structural holes within the

link-weight network fabric, which are invisible to existing methods. Their properties

divide weighted networks in two broad classes: one is characterized by small hierarchi-

cally nested holes, while the second displays larger and longer living inhomogeneities.

These classes cannot be reduced to known local or quasi local network properties, be-

cause of the intrinsic non-locality of homology, and thus yield a new classification built

on high order coordination patterns. Our results show that topology can provide novel

insights relevant for many-body interactions in social and spatial networks, (107),(108).

In the fifth chapter of the thesis, we develop new insights in the mathematical

setting underlying multipersistent homology (35),(104). More specifically we calculate

combinatorial resolutions and e�cient Gröbner bases for multipersistence homology

modules. In this new frontier of persistent homology, filtrations are parametrized by

multiple elements (28),(30). Using multipersistent homology temporal networks can be

studied and the weight filtration and neighbor filtration can be combined.
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Chapter 2

Network Basics

Networks are very simple mathematical objects, defined by a set of vertices connected

by edges that, in their simplicity, have the power to represent a wide variety of systems.

Numerous are the examples of computer networks, as the internet network, biological

networks, as protein interaction networks and social networks, as managerial and intra-

organizational networks.

As network theory involves a wide range of disciplines: computer scientists, physi-

cists, biologists, sociologists and mathematicians have over the years developed a rich

set of tools to model and analyze networks to the aim of capturing their statistical prop-

erties (13),(4),(6),(7), (96),(52). The main approach from all disciplines, until recent

years, was to deduce global properties of large systems and the evolution of dynamical

processes over the system, from local properties, as degree distribution on clustering

coe�cient.

In this chapter we will introduce the basic concepts and definitions from network

theory using the standard methods from statistical mechanics. Random networks intro-

duced in section 2.4.2 are constructed to reproduce real world properties in a controlled

way. For more information on network theory we remind the reader to (94),(95).

Vertices and edges in a network can be labelled with additional information such

as the names for vertices, representing the identity of agents, of weights on links, rep-

resenting the strength of an interaction between agents.

Our approach in this thesis is to give new insight on the connectivity of weighted and

unweighted networks using methods based on geometry and algebraic topology, as will

be explained in chapters 4 and 5.
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2.1 Graph definitions

Graphs appeared for the first time in literature in 1735 in the paper “Solutio problema-

tis ad geometriam situs pertinentis”, written by Leonhard Euler (60). The question

addressed in the paper was a practical question that the inhabitants of the city of Kon-

isberg asked Euler. The city of Konisberg, in figure 2.1 (a) and (b), is divided in four

parts by seven bridges, comprehending an islet surrounded by the river. The question

was: is it possible to trace a path that starting from one of the four areas traverses every

bridge once and returns to the starting point?
2.7. Il linguaggio della teoria dei grafi 25

Figura 2.2: La città di Könisberg al tempo di Eulero

 

Figura 2.3: La città di Könisberg schematizzata

Vediamo come il problema si possa tradurre in un problema inerente la teoria
dei grafi. Schematizziamo il ragionamento da fare. Il fiume ed i suoi rami
dividono la città in quattro zone A, B, C, D, collegate fra loro dai sette
ponti, così disposti:

a e b collegano A con C (ed anche C con A);
c e d collegano C con B (e B con C);
e collega C con D (e D con C);
f collega A con D (e D con A); infine
g collega D con B (e B con D).
Il problema dei ponti di Könisberg si schematizza allora con il grafo di

vertici V = {A, B, C, D}, di lati E = {a, . . . , g}, ed i collegamenti sopra
descritti (figura 2.4).

Si osservi che in tal modo si è ottenuto un grafo con lati ripetuti. Si
può passare ad un grafo senza lati ripetuti aggiungendo un vertice C

1

e
ridefinendo i collegamenti di modo che b colleghi A con C

1

e non più con
C e d colleghi C

1

con B. In questo modo si ottiene un grafo semplice non

(a)
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A

ab
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D

g

C
c

d

e

B

Figura 2.4: Grafo del problema di Könisberg.

orientato, che chiameremo il grafo del problema dei ponti di Könisberg e che
indicheremo con K (figura 2.5).

A

a

f

b

D

g

C c

e

B

C
1

d

Figura 2.5: Il grafo K del problema di Könisberg.

Ora che abbiamo schematizzato il problema, ne forniremo una soluzione,
approfittando per introdurre alcune nozioni generali.
Definizione 2.19. Sia G = (V, E, I) un grafo. Il grado d(v) del vertice v è il
numero dei lati ad esso adiacenti. Un grafo G è detto regolare se d(v) non
dipende da v e se è d(v) = k il grafo si dice k�regolare, od anche regolare di
grado k. Il numero

�(G) := min{d(v) | v 2 V }
è il grado minimo del grafo G; il numero

�(G) = max{d(v) | v 2 V }

è il grado massimo; infine, il numero

d(G) :=
1

|V |
X

v2V

d(v)

è il grado medio del grafo G.
� Esempio 2.20. Per il grafo K si ha

d(A) = 3 , d(B) = 3 , d(C
1

) = 2 , d(C) = 3 , d(D) = 3 .

�

(c)

Figure 2.1: Konisberg city in figure (a), a schematization of the seven bridges in figure

(b), a graph with nodes the four regions in the city of Konisberg and edges the bridges

connecting the regions (c).

The abstraction with which Euler interpreted the problem, lead to a graph, 2.1 (c).

In terms of the graph the problem was if it was possible to construct a closed path

passing for each vertex in the graph once.

Graphs are also traceable in the fist steps of topology, Euler’s formula relating the

number of edges, vertices, and faces of a convex polyhedron was in fact studied and

generalized by Cauchy (34) and L’Huillier (78) and sets the basis for the combinatorics
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underlying simplicial homology, see section 3.3.

In chemistry there has been a large use and development of graph theory, the

origin of a part of the standard terminology of graph theory in fact comes from this

fusion of fields. In particular, the term graph was introduced by Sylvester in (110)

where he draws an analogy between “quantic invariants” and “co-variants” of algebra

and molecular diagrams. Famous problems in graph theory are mostly regard the

combinatorics of graphs, we mention “The Four Color Problem” just to give an example.

The introduction of probabilistic methods in graph theory, especially in the study of

Erdos and Renyi of the asymptotic probability of graph connectivity, gave then rise to

random graph theory, see subsection 2.4.2. Using methods from statistical mechanics

and topology (lately) (119), graph theory has been successfully applied to the study of

natural, economics and societal phenomena in the field of complex networks. We will

now give the basic definitions about direct and indirect graphs.

Definition 2.1.1. An indirect graph G = (V, E) is defined by a set of vertices V and

a set E ✓ (V ⇥ V )/ ⇠, of equivalence classes of pairs of vertices called edges. Where

⇠ is the equivalence relation (a, b) ⇠ (b, a) for a and b in V .

The dimension of a graph is the number of its vertices. A vertex a 2 V is con-

nected or adjacent to vertex b 2 V if there is an edge between them, i.e if (a, b) 2 E.

In this case a and b are called neighbors.

The number of neighbors of node v is the node’s degree, denoted by kv.

Definition 2.1.2. A direct graph G = (V, E) is defined by a set of vertices V and a

set E ✓ (V ⇥ V ), of pairs of vertices called edges.

In this case an edge from a to b is not identified with the edge from b to a. For

directed graphs, we say a is a successor of b and b is a predecessor of a if the edge

e = (a, b) connects a to b. Shifting the attention from vertices to edges, we say that a

is the source of the edge e, a = s(e), and b is the target of the edge e, b = t(e). In this

case, the notion of degree is not well defined and we need to distinguish between the

in-degree yv, that is the number of predecessors of v and the out-degree zv, the number

of successors of v.

If in the definition of a direct 2.1.2 or indirect graph 2.1.1, we consider also the pairs

(a, a) for a 2 V in the edge set, then the graph has self loops. If multiple edges are

admitted between two vertices, the graph is called a multigraph. If we impose instead

that at most one edge can connect two vertices, this is called a simple graph.
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Definition 2.1.3. A graph with a weight function w : E ! R defined on edges is called

a weighted graph.

A common way to represent a graph is through the adjacency matrix. This matrix

shows which vertices are adjacent to which others. For unweighted N -dimensional

graphs this is the N ⇥ N matrix A = {ai,j} with entries

ai,j =

(
1 if (i, j) 2 E

0 if (i, j) /2 E

The sum of elements in the rows (or equivalently in the columns) of the matrix gives

the degrees of nodes in the graph.

Indeed, in weighted graphs, each edge carries a weight wi,j , so that we can define

ai,j = wi,j if i and j are connected by and edge and ai,j = 0 otherwise. For weighted

graphs the adjacency matrix is most commonly called incidence matrix.

Remark 2.1.4. The adjacency matrix of a graph (weighted or unweighted) is symmet-

ric if and only if the graph is indirect.

A quiver is a directed multigraph with self loops. This is a very general object

and often in applications simpler mathematical objects are preferred. In this thesis

we will deal mostly with simple undirected graphs, both weighted and unweighted. In

particular, the topology of weighted graphs will be taken into account in chapter 5.

The following theorem due to Euler relates the number of vertices and edges in a simple

graph.

Theorem 2.1.5. For every simple graph G = (V, E) we have:
X

v2V

kv = 2|E|. (2.1.1)

Proof. Every edge (a, b) contributes two times in the sum on the right, once in ka and

once in kb.

Theorem 2.1.5 implies that the sum of the degrees of the vertices in the graph is

even and that the number of vertices with odd degree is even. The version of this

theorem for directed graphs is:
X

v2V

yv =
X

v2V

zv = |E|. (2.1.2)

We will now introduce the definition of morphism between graphs as function be-

tween the vertices that preserves the edge relations.
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Definition 2.1.6. Given two graphs G
0

= (V
0

, E
0

) and G
1

= (V
1

, E
1

) a graph map is

a function f : V
0

! V
1

such that the incidence relations are preserved. This means that

if (a, b) 2 E
0

then (f(a), f(g)) 2 E
1

.

Remark 2.1.7. The definition of simplicial map 3.2.4 that will be given in the next

chapter, is a generalization of this definition 2.1.6 of graph map.

Two graphs are said isomorphic if there is a bijective function between them. By

the definition nodes in isomorphic graphs have the same degrees.

Example 2.1.8. The two graphs in figure 2.2 are not isomorphic because in the first

graph there are two vertices of degree three, namely 2 and 5, while in the second graph

there are three vertices of degree three that are e, b and d.

24 Capitolo 2: Nozioni preliminari

sono incidenti il lato g(e) 2 E0. Un isomorfismo del grafo G con se stesso è
detto un automorfismo. L’insieme di tutti gli automorfismi di G è un gruppo,
che viene denotato con Aut(G).

Essere isomorfi è una relazione di equivalenza nell’insieme di tutti i grafi.
Un tratto fondamentale della teoria dei grafi, come accade per ogni aspetto
della matematica, è la ricerca di proprietà invarianti per isomorfismo. Tali
proprietà permettono di dimostrare se grafi diversi sono o non sono isomorfi.
� Esempio 2.18. I due grafi

1

5 2

4 3

a

e b

d c

non sono isomorfi: i vertici 2 e 5 sono incidenti tre lati, mentre nel secondo
grafo vi sono tre vertici b, e, d incidenti tre lati. �

Un grafo G = (V, E) è detto bipartito se il suo insieme dei vertici V può
essere ripartito in due s.i. disgiunti A e B di modo che ogni lato abbia un
estremo in A ed uno in B.

Storicamente il primo testo dove si possono trovare grafi è la pubblica-
zione di Leonhard Euler (Eulero) (1707–1783) “Solutio problematis ad geo-
metriam situs pertinentis”, Comment. Acad. Sc. Petrog. 8 (1736), 128–140.
È in effetti un problema di topologia.

La cittadina tedesca di Königsberg (figura 2.2) si trova alla confluenza di
due fiumi, comprende un isolotto ed è divisa in quattro parti, corrispondenti
alle quattro regioni di terra che si venivano a formare (figura 2.3): le due
sponde A e B , l’isolotto C e la parte di terra D che si trova tra i due fiumi
prima della confluenza. In città c’erano i sette ponti indicati in figura. I
cittadini di Königsberg sottoposero ad Eulero un problema che non erano
riusciti a risolvere: tracciare un percorso che, partendo da una qualsiasi delle
quattro zone della città, attraversasse tutti e sette i ponti una ed una sola
volta ritornando alla fine al punto di partenza.

Eulero pensò ad una generalizzazione del problema e ad una sua astrazio-
ne, ciò che è tipico dei matematici. Riportiamo un passo della citata memoria
di Eulero:

“E mi fu detto che alcuni negavano ed altri dubitavano che ciò si
potesse fare, ma nessuno lo dava per certo. Da ciò io ho tratto
questo problema generale: quale che siano la configurazione e la
distribuzione in rami del fiume e qualunque sia il numero dei ponti,
si può scoprire se è possibile passare per ogni ponte una ed una sola
volta?”

Figure 2.2: Two non isomorphic graphs

Being isomorphic is an equivalence relation on the set of all graphs. A fundamental

branch of graph theory is the research of properties of graphs invariant for isomorphism.

Isomorphism classes of graphs are anyway a fine classification; two real world networks

for example are very rarely isomorphic but can share the sam type of degree distribution.

In the following of this chapter we will go through some methods for distinguishing

di↵erent types of networks and studying their structure.

Remark 2.1.9. Note that in network theory vertices are often referred to as nodes and

edges are referred to as links, both terms will be used in the following of this thesis.

2.2 Connectivity

The topological notion of connectedness is translated in graph theory as follows: a graph

is said to be connected if there is a path between any pair of nodes. In general graphs
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are not connected, but they have several connected components, which are maximal

connected subgraphs. All the connected components of G, provide a partition of the

graph’s nodes.

The natural generalization of an edge is a path, as the word suggests this is a way

through the graph, paved by edges, connecting two non necessarily adjacent vertices in

a connected component.

Definition 2.2.1. A sequence of edges 1, . . . , n such that t(i) = s(i + 1) for i 2
{1, . . . , n � 1} is a path from s(1) to t(n) we denote with �

1,n.

The length of a path l(�) is given by the number of edges in the path. A closed

path, meaning that the first and the last vertex coincide, is called loop, for example a

loop of length three is a triangle.

There can be many paths between two nodes but the shortest path measure is unique

and defines a distance between the nodes on a network.

Definition 2.2.2. The shortest path between two nodes s, t 2 V is the minimum length

of a path connecting them.

d(s, t) := min�s,t l(�s,t).

Definition 2.2.3. The diameter of a graph G is the maximum distance between two

nodes in the graph

D(G) := max
(s,t)d(s, t).

The diameter shows how compact the graph is, the smaller the diameter, more

compact is the graph. A related measure is the average shortest path among all pairs

of nodes. The most compact graph is a clique.

Definition 2.2.4. The vertices v
0

. . . vn compose a n + 1 clique if and only if there is

an edge between every pair of them.

The definition is equivalent to saying that the nodes determine a complete subgraph.

In a clique both the diameter and the shortest path between any two nodes in one. The

diameter can also be defined as the maximum over all the eccentricities calculated for

nodes in the network. The small world property is associated to networks with a

small diameter (95).

Definition 2.2.5. The eccentricity is the distance from a given node to the furthest

node from it in the network:

E(v) = maxsd(v, s).
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In the study of the connections in a social network, a very studied property is tran-

sitivity, (94).

Many possible relations can be defined between couples of vertices of a graph, we will

consider the relation “connected by an edge ”. If this relation is transitive, the network

is said to be transitive itself. This means that it is always the case that the friend of

an individual is also his friend. By definition, in transitive networks every connected

component is a clique, i.e a complete subgraph, this makes the topology of transitive

networks trivial. Usually networks are not transitive but it is interesting to understand

the level of transitivity of a network, that is to which extent, open triangles tend to

close. In the evolution of a graph over time, in particular we are interested in the

mechanisms by which nodes arrive and depart and by which edges form and vanish.

For social networks it is very common that if two people have a common acquaintance,

they know each other, (53),(68). This idea is stated in the triadic closure principle:

If two people in a social network have a friend in common, then there is an increased

likelihood that they will become friends themselves at some point in the future.

3.1. TRIADIC CLOSURE 49

B

A

C

G

F

E D

(a) Before new edges form.

B

A

C

G

F

E D

(b) After new edges form.

Figure 3.2: If we watch a network for a longer span of time, we can see multiple edges forming

— some form through triadic closure while others (such as the D-G edge) form even though

the two endpoints have no neighbors in common.

the fact that the B-C edge has the e�ect of “closing” the third side of this triangle. If

we observe snapshots of a social network at two distinct points in time, then in the later

snapshot, we generally find a significant number of new edges that have formed through this

triangle-closing operation, between two people who had a common neighbor in the earlier

snapshot. Figure 3.2, for example, shows the new edges we might see from watching the

network in Figure 3.1 over a longer time span.

The Clustering Coe�cient. The basic role of triadic closure in social networks has

motivated the formulation of simple social network measures to capture its prevalence. One

of these is the clustering coe�cient [320, 411]. The clustering coe�cient of a node A is

defined as the probability that two randomly selected friends of A are friends with each

other. In other words, it is the fraction of pairs of A’s friends that are connected to each

other by edges. For example, the clustering coe�cient of node A in Figure 3.2(a) is 1/6

(because there is only the single C-D edge among the six pairs of friends B-C, B-D, B-E,

C-D, C-E, and D-E), and it has increased to 1/2 in the second snapshot of the network in

Figure 3.2(b) (because there are now the three edges B-C, C-D, and D-E among the same

six pairs). In general, the clustering coe�cient of a node ranges from 0 (when none of the

node’s friends are friends with each other) to 1 (when all of the node’s friends are friends

with each other), and the more strongly triadic closure is operating in the neighborhood of

the node, the higher the clustering coe�cient will tend to be.

Figure 2.3: E↵ects of triadic closure of the connectivity of a network, (53)

The triadic closure principle was deeply investigated by M.Granovetter in the sem-

inal paper “ The Strength of Weak Ties”, (68). In this study, weighted network are

taken into account and the weights correspond to the strength of a relation between

individuals. The triadic closure principle, in this case takes the form a the following

hypothesis:

The stronger the tie between A and B, the larger the proportion of individuals to whom
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they will be both tied, this is connected by a weak or a strong tie. This overlap in their

friendship circles is predicted to be least when their tie is absent, most when it is strong,

and intermediate when it is weak.

This hypothesis is based on the evidence that the stronger is a tie between two individ-

uals, more similar they are in various ways. This evidence also supports the statement

that if strong ties connect A to B and A to C, both B and C being similar to A are

probably similar to one another increasing the likelihood of friendship (a link between

them). Reasonings relating local properties to larger structures like the triadic closure,

are the mile stone, in Granovetter’s article, in the study of how information propagates

between and within groups . Resulting in the evidence that weak ties (not frequent and

superficial contacts) are the ones responsible for the spreading of information within

the network.

The triadic closure can be quantitatively measured using the clustering coe�cient,(94).

We call connected triple , a triple of vertices with at least two edges connecting them;

a closed connected triple is a triangle.

Definition 2.2.6. The global clustering coe�cient of a graph is

C =
3 · #( triangles)

#connected triples
.

This is an numerical invariant varying from 0 to 1. When C = 1, the graph is

transitive on the other side if C = 0 then there are no triangles as for example in a tree

or a square lattice.

In many real networks, especially social ones, the tendency of clustering can be clearly

observed (121) as we will explain in chapter 4 section 4.3. For example the network of

film actor collaborations has been found to have C = 0.20; a network of collaborations

between biologists has been found to have C = 0.09, a network of e-mail communica-

tion has C = 0.16. These are typical values for social networks. Some denser networks

have even higher values as 0.5 or 0.6.

Technological and biological networks by contrast tend to have somewhat lower values.

The internet at the autonomus system level, for instance, has a clustering coe�cient of

only about 0.01.

The value of the clustering coe�cient of a network must not be valued in an absolute

sense but in comparison to the one of a graph in which nodes are not linked according

to a rule but randomly (a null model). For simplicity, let’s assume that the degree

of every node is constant, kv = c for all v 2 V and that neighborhood relations are
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completely random. In this network the clustering coe�cient is approximately c/N ,

being N = |V |.
For the networks considered above, the value of c/N is 0.0003 for the film actor

network, 0.00001 for the biology collaborations and 0.00002 for the e-mail network.

Thus the measured clustering coe�cients are much larger than this estimate based on

the assumption of random network connections. This is the evidence of a behavior in

social networks: there is much a greater chance that two people will be acquainted if

they have another common friend than if they don’t, as predicted by Granovetter in

(68).

The local clustering coe�cient, (94), is the local version of the clustering co-

e�cient, introduced by Duncan J. Watts and Steven Strogatz in 1998 to determine

if a network is a small-world (121). The clustering coe�cient of node v is defined as

the number of triangles which include v normalized dividing by the couple of vertices

connected to v, that are kv ⇥(kv �1)/2. This measure quantifies to which extend nodes

tend to form links to the neighbors of their neighbors. The following is an equivalent

definition:

Definition 2.2.7. Let kv the number of neighbors of v 2 V and ev the number of links

between them. The local clustering coe�cient of v is

Cv =
ev

1/2(kv(kv � 1))

In words this is the probability that a pair of neighbors of v are neighbors them-

selves. It is empirically shown that there is a rough dependence between local clustering

coe�cient and degree. Vertices with higher degree having a lower local clustering co-

e�cient on average. The local clustering coe�cient can also be used as an indicator of

so called “structural holes” in a network, as we will see in chapter 4 section 4.3.

2.3 Centrality measures

Centrality measures address the problem of understanding which are the most impor-

tant or central nodes in a network. Of course there are many possible definitions of

importance and hence ways of defining a centrality measures. In this section we will

go through some of the most used centrality measures on networks.

The most simple centrality measure of a node v, is given by its degree kv. This

measure is called degree centrality and mostly used in the study of social networks
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as for example in (116), how we will see in chapter 4 subsection 4.2.2. In the degree

centrality measure all neighbors are considered equivalent, each contributing with value

one to the centrality measure. In real world networks, anyway some neighbors are more

powerful or more connected and thus should contribute with a major value when mea-

suring centrality. This feature is included in the eigenvector centrality measure.

The eigenvector centrality measure begins with an initial guess xi of the centralities

for each node i 2 V . Then the values are added according to the incidences of vertices

encoded in the adjacency matrix A = {ai,j}, as in the following formula:

x0
i =

X

j

ai,jxj . (2.3.1)

If for example the initial value for all nodes is one, then the initial eigenvector

centrality measure coincides with the degree centrality. The formula 2.3.1 can also be

written in matrix form as x0 = Ax. Iterating the process, we obtain more accurate es-

timates for the centrality and the formula at the t-th iteration is x(t) = Atx(0). In the

limit for t ! 1 the limiting vector of centralities is proportional to the leading eigen-

vector k
1

of the adjacency matrix. Using this reasoning we can define the eigenvector

centrality in the following way:

Definition 2.3.1. Given a graph G = (V, E) with adjacency matrix A = {ai,j} and

dimension d, denoting with x a vector in Nd we define the eigenvector centrality as the

vector that satisfies

Ax = k
1

x.

This is the greatest eigenvector of the adjacency matrix.

The last two centrality measures we are going to introduce depend on the length

of paths connecting nodes in the network. While the eccentricity measures the maxi-

mum distance from a node, the average distance from that node is calculated with the

closeness centrality.

Definition 2.3.2. The closeness centrality is the average distance from a given starting

node to all the other nodes in the network.

The node’s centrality measure that is more significant for applications is anyway

the betweenness centrality.
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Definition 2.3.3. Betweenness centrality of node v measures how often node v appears

on the shortest path between nodes in the network.

g(v) =
X

s 6=v 6=t

�s,t(v)

�s,t

Betweenness centrality is evidently a measure of importance according to the cen-

trality of a node in the flow of information in the context of a social network. Other

centrality measures more specific to the field social networks will be introduced in

section 4.3.

2.4 Relevant constructions

In this section we will report some fundamental graph constructions that will be used

in the thesis. In particular the subgraphs are considered to represent and distinguish

relevant properties of real world networks. Such characteristics are not traceable in the

whole network because of the entanglement of links within the network. The random

graphs are instead constructed to understand the relevance of the traced properties in

comparison to null models.

2.4.1 Subgraph constructions

Definition 2.4.1. Given a subset of vertices S ✓ V , the subgraph induced by S is

the graph with vertex set S and whose edges are all the edges of G which only connect

elements of S.

We will now introduce the subgraph constructions used in the following of the thesis

to construct the neighbor and the weight clique rank filtration in subsection 3.4.1.

Definition 2.4.2. Fixed a vertex v 2 V , the closed neighborhood graph of v is the

subgraph of G induced by v and its neighbors.

We will denote the closed neighborhood graph of v in G with NG[v] or with N [v]

if the graph is obvious from the context. Iterating this construction we define the

neighborhood of radius k.

Definition 2.4.3. The closed neighborhood of radius k of node v in G, denoted by

Nk
G[v], is the subgraph of G induced by v and it’s k-neighbors, i.e the nodes in G

connected with v by a path of length  k.
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In the context of social networks, the closed neighborhood of a node is ofter referred

to as it’s Ego network and the closed neighborhood of radius k as the radius k ego

network.

Remark 2.4.4. It will be useful to consider the graph induced only by v’s neighbors

(not v itself). This is the so called open Ego network and denoted with NG(v). The

radius k open Ego network is defined in analogy to definition 2.4.3.

In weighted complex networks, filterings are commonly used to isolate statistically

relevant structures and give a meaningful, even if reduced, representation of the net-

work. Filtering techniques can be global, defined by a global threshold, or local as for

the disparity filter method, (114).

The global threshold method is very simple, we choose a threshold parameter

! and consider the links in the network with weight  !. This is the graph induced by

couples of nodes linked by edges of weight smaller or equal than the threshold param-

eter. This type of approach will not represent multi-scale patterns, which instead can

be unearthed using the disparity filter method.

The disparity filter method o↵ers a practical procedure to extract the relevant

connectivity backbone in complex multi scale networks, preserving the edges that are

significant with respect to a randomized model for the assignment of weights and con-

nections. The weights in the null model (i.e the randomized model) associated to the

edges incident to a certain node of degree k are produced by a random assignment from

a uniform distribution. The links that are kept in the filtration are the ones with weight

major than in the null hypothesis. This method permits to keep edges with low weight

that anyway have a local relevance. In figure 2.4 we confront the number of nodes kept

in the backbones with the global threshold method and the disparity filter method, as a

function of the fraction of weight (left panels) and edges (right panels) retained by the

filters. Note that he disparity filter reduces the number of edges significantly keeping

a large number of nodes and variety of weights.
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Table 1. Sizes of the disparity backbones in terms of the percent-
age of total weight (%WT ), nodes (%NT ), and edges (%ET ) for
different values of the significance level α

U.S. airport network Florida Bay food web
α %WT %NT %ET α %WT %NT %ET

0.2 94 77 24 0.2 90 98 31
0.1 89 71 20 0.1 78 98 23
0.05(a) 83 66 17 0.05 72 97 16
0.01 65 59 12 0.01 55 87 9
0.005 58 56 10 0.0008(a) 49 64 5
0.003(b) 51 54 9 0.0002(b) 43 57 4

See points a and b in Fig. 3.

Note that this expression depends on the number of connections
k of the node to which the link under consideration is attached.

The multiscale backbone is then obtained by preserving all the
links that satisfy the above criterion for at least one of the two
nodes at the ends of the link while discounting the rest.∗ In this
way, small nodes in terms of strength are not belittled so that the
system remains in the percolated phase. In other words, we single
out the relevant part of the network that carries the statistically
relevant signal provided by the distribution with respect to local
uniform randomness null hypotheses. By choosing a constant sig-
nificance level α we obtain a homogeneous criterion that allows us
to compare inhomogeneities in nodes with different magnitudes
in degree and strength. By decreasing the statistical confidence,
more restrictive subsets are obtained, giving place to a potential
hierarchy of backbones. This strategy will be efficient whenever
the level of heterogeneity is high and weights are locally corre-
lated. Otherwise, the pruning could lose its hierarchical attribute
producing results analogous to the global threshold algorithm (see
section on networks with uncorrelated weights in SI Appendix).

The Multiscale Backbone of Real Networks. To test the performance
of the disparity filter algorithm, we apply it to the extraction of the
multiscale backbone of two real-world networks. We also com-
pare the obtained results with the reduced networks obtained
by applying a simple global threshold strategy that preserves
connections above a given weight ωc. As examples of strongly
disordered networks, we consider the domestic nonstop seg-
ment of the U.S. airport transportation system for the year 2006
(http://www.transtats.bts.gov) and the Florida Bay ecosystem in
the dry season (19). The U.S. airport transportation system for the
year 2006 gathers the data reported by air carriers about flights
between 1,078 U.S. airports connected by 11,890 links. Weights
are given by the number of passengers traveling the corresponding
route in the year symmetrized to produce an undirected represen-
tation. The resulting graph has a high density of connections, 〈k〉 =
22, making difficult both its analysis and visualization. The Florida
Bay food web comes from the ATLSS Project by the University of
Maryland (http://www.cbl.umces.edu/atlss.html). Trophic interac-
tions in food webs are symbolized by directed and weighted links
representing carbon flows (mg C y−1m−2) between species. The
network consists of a total of 122 separate components joined by
1,799 directed links.

In Table 1 and Fig. 1, we show statistics for the relative sizes—
in terms of fractions of total weight WT , nodes NT , and edges
ET —preserved in the backbones when the network is filtered by
the disparity filter and by the application of a global threshold,
respectively. The disparity filter reduces the number of edges sig-
nificantly even when the significance level α is close to 1, keeping at

∗ In the case of a node i of degree ki = 1 connected to a node j of degree kj > 1, we keep
the connection only if it beats the threshold for node j.

Fig. 1. Fraction of nodes kept in the backbones as a function of the fraction
of weight (Left) and edges (Right) retained by the filters.

the same time almost all of the weight and a high fraction of nodes.
Smaller values of α reduce even more the number of edges but,
interestingly, the total weight and number of nodes remain nearly
constant. Only for very low values of α—when the filter becomes
very restrictive—do the total weight and number of nodes start
decreasing significantly. In the case of the airports network, val-
ues around α ≈ 0.05 extract backbones with >80% of the total
weight, 66% of nodes, and only 17% of edges. The global thresh-
old filter, on the other hand, is not able to maintain the majority
of the nodes in the backbone for similar values of retained weight
or edges, as it is clearly seen in the first and second columns of
Fig. 1, respectively.

It is particularly interesting to analyze the behavior of the
topological properties of the filtered network at increasing lev-
els of reduction. Fig. 2 shows the evolution of the cumulative
degree distribution, i.e., Pc(k) = ∑

k′≥k P(k′), for different val-
ues of α (Left Top) and ωc (Right Top), respectively. The orig-
inal airports network is heavy tailed although it cannot be fit-
ted by a pure power-law function. Interestingly, the disparity
filter reveals a clear power-law behavior as α decreases, with
an exponent γ ≈ 2.3. On the other hand, the global thresh-
old filter produces subgraphs with a degree of distribution sim-
ilar to the original one, but with a sharp cutoff that becomes
smaller as the filter gets more restrictive. However, the weight
distribution P(ω) for the disparity filter (Left Middle) shows that
almost all scales are kept during the filtering process and only
the region of very small weights is affected, in contrast to the
global threshold filter that, by definition, cuts P(ω) off below ωc
(Right Middle).

In Fig. 2 (Bottom), we show the clustering coefficient C mea-
sured as the average over nodes of degree >1. It remains nearly
constant in both filters until they become too restrictive, in which
case clustering goes to zero.† In the case of the disparity filter,
clustering remains constant up to values of α ≈ 0.01. This is
precisely the value below which both the number of nodes and
the weight in the backbone start decreasing significantly. There-
fore, we can conclude that values of α in the range [0.01, 0.5]
are optimal, in the sense that backbones in this region have a
large proportion of nodes and weight, the same clustering of the
original network, and a stable stationary degree distribution, all

† The sudden increase of clustering for EB/ET = 0.2 is due to the reduction of the number
of nodes in the network, increasing then the chances of having a random contribution.

Serrano et al. PNAS April 21, 2009 vol. 106 no. 16 6485

Figure 2.4: Comparison of the number of nodes preserved by global thresholding and

disparity filter method in the US airport network and the Florida bay food web, in function

of weights (left) and number of edges (right),(114).

2.4.2 Random graphs

For the disparity filter explained above, the topology of the graph is preserved while

the weights of links are chosen randomly from a normal distribution. In this section we

will explain methods to construct the topology of a network with some random process,

maintaining some properties decided a priori.

Definition 2.4.5. A random graph is a graph generated by a random process.

We will begin this section with the simplest example of random graph.

Fixed a number n of nodes and a number m of edges, this model proposed by Edgar

Gilbert and denoted by G(n,m) is built by placing m edges within the nodes at random.

Generally the graph is required to be simple, so the position of each edge should be

chosen between the couples of nodes that are distinct and not already connected. This

is equivalent to choosing m couples between the
�
n
2

�
possible couples of vertices that can

be considered. Another equivalent definition of the model is to say that the network

is created by choosing uniformly at random among the set of all simple graphs with

exactly n vertices and m edges. some properties of this model are very easy to calculate;

just to give an example the average number of edges is obviously m and the average
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degree is < k >= 2m/n. Other properties are less immediate to calculate and more

work has been done of a slight variation of this model, namely the Erdos Renyi

model, G(n,p).

The Erdos Renyi model is specified by two parameters: the number of vertices in the

graph, n, and the probability of an edge, p. Fixed the two parameters n and p the Erdos

Reny graph is built including an edge between each pair of vertices with probability

p, independently from the chosen pair. Equivalently, G(n, p) is an ensemble of graphs

with n vertices, in which every single graph appears with probability

P (G) = pm(1 � p)(
n
2)�m, (2.4.1)

where m is the number of vertices in the graph and we assume non simple graphs to

have probability zero.

Figure 2.5: Erdos Renyi model construction for di↵erent values of the parameter p.

In this model, the probability of a graph to have m edges is

P (m) =

✓�
n
2

�

m

◆
pm(1 � p)(

n
2)�m. (2.4.2)

The probability of a graph with n vertices and m edges is in fact the probability of

a graph with m edges that is P (G) multiplied by the number of ways that the m edges

can be chosen from the n
2

possible edges. The latter are combinations of class k form a

set with n
2

elements, calculated with the binomial coe�cient. From the formula 2.4.1

we recover the mean value of edges that is

< m >=

✓
n

2

◆
p. (2.4.3)
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Exploiting the formula for the mean degree written above for random graphs, we

deduce that the mean degree of an Erdos Renyi graph is:

< k >= (n � 1)p. (2.4.4)

This expression completely follows intuition as it says that the mean number of

edges linked to a node v is the probability of such node to be adjacent to another

vertex multiplied by the number of vertices in the graph excluding v. With a similar

reasoning it is possible to calculate the degree distribution in this model.

We have said that the probability of a node of being connected to one of the other

n�1 nodes is p, the probability of being connected to k nodes is then pk · (1�p)n�1�k.

There are
�
n�1

k

�
ways of choosing k neighbors from the possible (n � 1) and hence the

total probability for a node to have degree k is given by the formula:

pk =

✓
n � 1

k

◆
pk(1 � p)n�1�k. (2.4.5)

A major interest is for large networks because these random models are constructed

to reproduce properties of real world networks. A few calculations reveal that when n

grows, n �! 1, the degree distribution tends to a be a Poissonian distribution

pk ! e�c ck

k!
. (2.4.6)

Equation 2.4.6 is the reason why this model is sometimes called Poissonian random

graph. How the size of components in the Erdos Renyi model change according to the

parameters n and p has been deeply investigated .

The main results in this direction are:

- if the product np < 1, then a graph in G(n, p) will almost surely have no connected

components of size larger than O(log(n)),

- if np = 1, then a graph in G(n, p) will almost surely have a largest component

whose size is of order n2/3,

- if instead np ! c > 1, where c is a constant, then a graph in G(n, p) will almost

surely have a unique giant component containing a positive fraction of the vertices.

No other component will contain more than O(log(n)) vertices.

In terms of p a sharp threshold for the connectedness of graphs in G(n, p) is p > loge(n)

n .
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Although the Erdos Renyi graph is one of the best studied models of networks,

this model presents however some limitations in representing real world networks. The

first problem that in this model is that for large n the clustering coe�cient tends

to zero whereas, how we have seen in the previous section, this is not the case in

real world networks, especially social ones. This random graph also di↵ers form real

world networks because there is no relations between the degrees of adjacent vertices.

The degrees in real world networks, by contrast, are usually correlated because of

intrinsic coordination patterns. One other problem is that this random graph there is

no community structure while in real world networks vertices group into communities,

there are sets of highly connected vertices. The main problem anyway in modeling

real structures with this random graph is anyway in the degree distribution. Most real

world networks do not have a gaussian distribution but a power law have a power law

distribution

pk = Ck�↵, (2.4.7)

where ↵ is a positive constant and C is a normalization constant.

To the aim of representing real world networks with major precision, the random

graph models described up to now have been generalized so as to give the random

network any degree distribution we please. We will only explain a few famous of such

generalizations: the configuration model.

In a Configuration Model the degree sequence is fixed, hence it is possible to

reproduce a power law distribution. This means that the number of neighbors of each

node is known and in turn also the number of edges in the network, since the number

of edges is given by m = 1

2

P
i ki.

Given a graph G = (V, E), the construction of the configuration model can be summa-

rized in the following steps:

- specify the degree ki of each node i 2 V ,

- give each vertex i a total number of ki stubs of edges. This produces a total of

2m stubs where m is the total number of edges,

- choose two of the stubs uniformly at random and connect them to one another,

creating an edge.

Iterating the last step until all the stubs are used up, we obtain a network in which

every vertex has the desired degree.
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Figure 2.6: Construction of the configuration model.

Remark 2.4.6. Note that for the configuration model the sum of all degrees must be

a pair number otherwise the construction cannot work and that self loops are admitted

in the construction rule.

A further issue in the configuration model is that while all matchings of stabs are

performed with uniform probability, not all networks appear with the same probability

because di↵erent configurations can give rise to the same network.

The choice of a random rule for attachment is not very realistic, in real world networks

higher coordination rules determine preferential attachments.

The Preferential Attachment model by Barabasi and Albert reflects this coor-

dination property that is present in many real world networks (1),(2). The Barabasi

Albert model is one of several proposed models that generates scale free networks.

It incorporates two important general concepts: growth and preferential attachment.

Both growth and preferential attachment exist widely in real networks. Preferential

attachment means that a node in most probably linked to a node with a high degree.

In a social context this can be translated as: the more friends I have, the more is

the probability to make new friends. We will now concisely present the steps in the

construction of this model:

- consider a network with N nodes, for N � 2, and such that the degree of each

node in the initial network is at least one, if not the node will remain isolated,

- new nodes are added to the network one at a time. Each new node is connected

to existing nodes with a probability that is proportional to the number of links

that the existing nodes already have.
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The probability pi that node a node i is connected to a node of degree ki is

pi =
piP
j pj

. (2.4.8)

The degree distribution of a Barabasi Albert model is a power law with exponent

↵ = 3. Note that di↵erently from the previous cases, correlations between the degrees

of connected nodes develop spontaneously. Although there is no direct calculation

of the clustering coe�cient in the Barabasi Albert model, the empirically determined

clustering coe�cients are generally significantly higher for this model than for random

networks. The clustering coe�cient also scales with network size following approxi-

mately a power law.

The last class of random graphs we are going to introduce are Random Geometric

Graphs, G(n, r). These graphs are used in chapter 5, subsection 5.4.1 to understand

the classification of weighted networks in two broad classes according to their homologi-

cal properties. M.Penrose, in (105) introduce this model that gives a way to construct a

graph from a random set of points in a plane according to the mutual distance between

couples of points. The parameter in the model are two, namely the number of points

in the graph, n, and a radius r(n) > 0.

We will summarize this construction in the following steps:

- choose a sequence Vn of independent and uniformly distributed points in [0, 1]d,

- given the radius parameter r(n) > 0, connect two points if their lp distance is at

most r.Random geometric graphs (RGG)

G (n, r): Choose a sequence Vn = {xi}n
i=1 of independent and

uniformly distributed points on [0, 1]d , given a fixed r(n) > 0,
connect two points if their �p-distance is at most r .

(a)

Random geometric graphs (RGG): Uniformly distributed

G (n, r): Choose a sequence Vn = {xi}n
i=1 of independent and

uniformly distributed points on [0, 1]d , given a fixed r(n) > 0,
connect two points if their �p-distance is at most r .

(b)

Random geometric graphs (RGG): Uniformly distributed

G (n, r): Choose a sequence Vn = {xi}n
i=1 of independent and

uniformly distributed points on [0, 1]d , given a fixed r(n) > 0,
connect two points if their �p-distance is at most r .

(c)

Figure 2.7: Construction of the random geometric graph, (49)

Remark 2.4.7. The RGG is a distance graph of n random points in the metric space

[0, 1]d, using lp distance. Distance graphs are at the basis of the Rips-Vietoris complexes,

as we will see is chapter 3 section 3.2.1.
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Chapter 3

Persistent Homology

The theory of persistent homology builds a bridge between computational algebraic

topology and data analysis using homology as an e↵ective tool to associate a com-

putable invariant, the barcode, to a point cloud, (54),(55),(32), (56). The theory has a

wide range of applications: classical ones varying from biological and medical data anal-

ysis (39), (46) to shape recognition or coverage problems in sensor networks, (31),(47).

The main idea of persistent homology is to approximate a point cloud embedded in

a metric space with an increasing sequence of simplicial complexes (filtration), see

(29, 55). By analyzing the persistent, i.e. long living, homological features in the

filtration, the shape of the point cloud can be approximatelly inferred (38). In this

chapter we will introduce the standard construction of persistent homology and two

new filtrations built on networks. In the following of the thesis we will in fact develop

two methods of applying persistent homology to complex networks to the aim of un-

derstanding the topology of weighted and unweighted networks. Di↵erent applications

of persistent homology to networks can be found in (57), (77), (84), (51).

3.1 Homology of a Chain Complex

In this section we will give the very general definition of homology. This will be spe-

cialized to simplicial homology in section 3.3. For background notions on homological

algebra, we refer the reader to (122), (82).

We recall that a ring is a triple (A, +, ·) consisting of a set A, two binary operations:

addition+ : A ⇥ A ! A , (a, b) ! a + b; and multiplication · : A ⇥ A ! A , (a, b) ! ab,
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such that (A, +) is an abelian group, with zero element 0 , and the following conditions

are satisfied:

- (ab)c = a(bc),

- a(b + c) = ab + ac and (b + c)a = ba + ca

for all a, b, c 2 A

The conditions tell us that multiplication is associative and both right and left

distributive over addition. We will consider commutative rings with identity, i.e ab = ba

for all a, b 2 A and 1 2 A.

Fixed a field k, we can define a k-algebra; this is a ring A, such that A has a k-vector

space structure compatible with the multiplication of the ring, that is, such that

�(ab) = (a�)b = a(�b) = (ab)� 8� 2 K, and a, b 2 A (3.1.1)

Definition 3.1.1. Let A be a k-algebra. A right A-module is a pair (M, ·), where M

is a k-vector space and · : M ⇥A ! M, (m, a) ! ma, is a binary operation satisfying

the following conditions:

- (x + y)a = xa + ya;

- x(a + b) = xa + xb;

- x(ab) = (xa)b;

- x1 = x;

- (x�)a = x(a�) = (xa)�

for all x, y 2 M a, b 2 A and � 2 K.

For us an A-module we will mean a right A-module.

If M and N are A-modules, then a map � : M ! N is a homomorphism of A-

modules if, for any m, n 2 M and r, s 2 A, f(rm + sn) = rf(m) + sf(n). This, like

any homomorphism of mathematical objects, is just a mapping which preserves the

structure of the objects. We will denote the category of A-modules and A-module

homomorphisms with mod(A).

Definition 3.1.2. A chain complex {C, @} of A-modules is a family {Cn}n2Z of

A-modules, together with left A-module maps @ = @n : Cn ! Cn�1

such that each

composite @ � @ : Cn ! Cn�2

is zero.
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The maps @n are called the di↵erentials of C. Sometimes we will refer to {C, @}
with C for short.

Remark 3.1.3. Note that by definition Im(@n+1

) ✓ ker(@n).

A morphisms between two chain complexes is defined in the following way:

Definition 3.1.4. A chain map f between two chain complexes {C, �} and {D, '}
is given by a family of module homomorphisms fn : Cn ! Dn that commute with the

di↵erentials fn � �n+1

= 'n+1

� fn+1

for all n.

Chain maps can be composed element-wise, (f � g)n := fn � gn. It is easy to check

that composition is associative and has the identity element 1n = id. This defines the

category ChA of chain complexes of A-modules and chain maps between them.

Given a chain complex, the first question is usually about exactness: one wants to check

if the kernel of the di↵erential at one step coincides with the image of the di↵erential at

the previous step. If this is not the case, the homology of the chain complex measures

the lack of exactness.

Fixed a chain complex C the kernel of @n : Cn �! Cn�1

is the module of n-cycles

of C, denoted Zn = Zn(C); the image of @n+1

: Cn+1

�! Cn is the module of n-

boundaries of C, denoted Bn = Bn(C).

Definition 3.1.5. The n-th homology module of the chain complex C is the quotient

Hn(C) = Zn/Bn.

The quotient is well defined because Bn ✓ Zn by remark 3.1.3.

The homology class of a cycle z 2 Zn will be denoted by z 2 Hn.

Definition 3.1.6. A chain complex C is exact if Hn(C) = 0 for all n.

The image through the chain map f : C ! D of a cycle in C is a cycle in D, the

same is true for boundaries. This property ensures that the following homomorphism

is well defined.

Hn(f) : Hn(C) �! Hn(D)

z 7! [f(z)]

The homomorphism Hn(f), induced in homology by f shares the properties:
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- if f , g : C ! D, then Hn(f � g) = Hn(f) � Hn(g),

- Hn(idC) = idD.

We can then claim that the n-th homology is a covariant functor from the category

of chain complexes of A-modules to the category of A-modules.

Hn : ChA �! mod(A)

C 7! Hn(C)

f : C ! D 7! Hn(f) : Hn(C) ! Hn(D).

3.1.1 Homotopy Invariance

Given two chain maps f, g : (C, �) ! (D, '), a chain homotopy from f to g is a

chain map h : (C, �) ! (D, ') such that :

h(Cn) ⇢ Dn+1

and f � g = 'h + h�. (3.1.2)

If there is a chain homotopy between two chain maps f and g, we will write f ' g.

The relation of chain homotopy on chain maps is an equivalence relation:

- reflexive, 0 : f ' f

- symmetric, if h : f ' g, then �h : f ' g.

- transitive, if h : e ' f and l : f ' b, then h + l : e ' g.

We denote with [f ] the equivalence class of a chain map. The homotopy relation is

compatible with composition.

Proposition 3.1.7. Given three chain complexes C , D, E and chain maps f, g : C !
D and f 0, g0 : D ! E if f ' g and f 0 ' g0 then f 0f ' g0g.

Thanks to this proposition we can define a law of composition for homotopy classes

of chain maps as: [f 0] · [f ] := [f 0 ·f ]. The homotopy classes of chain maps are associative

by definition, and have an identity element [id]. A new category is defined by chain

complexes and homotopy classes of chain maps, denoted by HChA. We will now prove

that the homology functor factors through HChA
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ChA
Hn //

⇡

✏✏

mod(A)

HChA

;;

Proposition 3.1.8. If f ' g : C ! D are two homotopically equivalent chain maps,

then Hn(f) = Hn(g) for all n.

Proof. It is a simple calculation to show that the two functions coincide on every

element, Hn(f)([z]) = Hn(g)([z]) for all z 2 Zn ⇢ Cn. By definition of map induced

in homology Hn(f)[z] � Hn(g)[z] = [f(z)] � [g(z)] = [(f � g)(z)]. Because f and g

are homotopically equivalent through h, then f � g = 'h + h� and [(f � g)(z)] =

['h(z) + h�(z)]. But z is a cycle in C, thus [h�(z)] = 0 and [(f � g)(z)] = ['h(z)] = 0

being 'h(z) a boundary in D.

3.2 Simplicial Complexes

An abstract simplicial complex is a non empty family X of finite subsets, called

simplices, of a vertex set with the two constraints:

- a subset of a face in X is a face in X,

- the intersection of any two simplices in X is a face of both.

We assume that the vertex set V of the simplicial complex is finite and totally ordered.

A simplex of n+1 vertices is called n�face and denoted by [p
0

, . . . , pn]. The dimension

of a simplicial complex is the highest dimension of the simplices in the complex.

Every abstract simplicial complex X has an associated topological space |X| called the

geometric realization.

If X is a finite simplicial complex, to define its geometric realization we have to choose

an embedding of the vertex set V as an a�nely indipendent set of points in some

eucledian space RM of su�ciently high dimension.

Definition 3.2.1. A set of n + 1 points (p
0

. . . pn) in RM is a�nely independent if no

hyperplane of dimension n � 1 contains all the points.

In this definition, we require two points to be distinguishable, three points not to

be aligned, four points not to lie on a plane and so on. Every simplex in X can then be
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identified with the convex hull of the corresponding embedded vertices, called geometric

simplex.

Definition 3.2.2. The convex hull of the a�nely independent set of points (p
0

. . . pn)

in RM is the set of points x 2 RM such that there exist non negative numbers �
0

. . . �n

with the property:

x =
nX

i=0

�ipi and
nX

i=0

�i = 1

Figure 3.1: Low dimensional geometric simplices.

The geometric realization |X| of the simplicial complex X is the union of all the

geometric simplices associated to X. In particular a 0�face is a vertex, a 1�face is

a segment, a 2�face is a full triangle, a 3�face is a full tetrahedron. We identify a

simplicial complex with it’s geometric realization.

Figure 3.2: A three dimensional simplicial complex.

For the computation of simplicial homology, it is necessary to give an orientation

to a simplicial complex. An oriented n�simplex is a simplex with an ordering on its

vertices. Pair permutations of the order give the same orientation, odd permutations
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instead reverse the order. A simplicial complex whose simplices are oriented is called

an oriented simplicial complex.

A common method to orient a simplicial complex is to choose an orientation for all its

vertices and consider the induces orientation on the simplices in the complex.

Remark 3.2.3. Di↵erent orientations of a simplcial complex to not change the sim-

plicial homology modules.

Morphisms between simplicial complexes are called simplicial maps and share the

property that the image of a vertex is a vertex and the image of a n�face is face of

dimension  n.

Definition 3.2.4. A morphism � : K1 ! K2 between simplicial complexes is called

a simplicial map if it sends the vertices of K1 to the vertices of K2, if given the

simplex [p
0

. . . pn] in K1 the elements �(pi) are vertices of a simplex in K2, and on the

corresponding simplices

�(
X

tipi) =
X

ti(�(pi)) ti 2 R.

Simplicial complexes and simplicial maps determine a category that we will denote

by SC.

We conclude with the fundamental definition of triangulable topological space.

Definition 3.2.5. A triangulable topological space M is a simplicial complex X, home-

omorphic to M , together with an explicit homeomorphism h : X ! M .

Examples of triangulable topological spaces are two dimensional surfaces, e.g. torus,

projective plane, 2-sphere etc.. Also three dimensional topological varieties and di↵er-

entiable varieties admit a triangulation. A necessary condition for a topological space

to be triangulable is begin Hausdor↵ and metrizable. There are examples of varieties

of dimension four that are not triangulable. As we will see, a triangulation is useful

in determining the properties of a topological space. In particular we will be able to

compute the homology of a triangulated space using simplicial homology.

We underline from now that the idea of persistent homology is to sample a set of

points, possibly with rumor, from an underlying geometric space with the aim to re-

construct the topology of the space through a simplicial complex built from the points.

The method is then not to triangulate a space but to approximate the space from one
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or a sequence of triangulations.

3.2.1 Constructions from data sets and graphs

There are many ways to construct simpicial complexes from a graph or points in

the Eucledian space RM , we will now go through some of them. The set of points in

applications is a point cloud: a dataset, possibly sampled with error. Approximating

the point cloud with a higher dimensional object, e.g a simplicial complex, it is possible

to understand its shape distinguishing from the two settings in figure 3.4. Graphs are

(a) (b)

Figure 3.3: Point clouds with di↵erent shape.

instead the backbone of complex networks, see chapter 2. Associating a higher geomet-

rical object to a graph, e.g a simplicial complex, proved to be highly informative about

many body interactions within the network and other connectivity properties.

Clique complex

Fixed a graph G,we recall that a clique is a complete subgraph of G, see 2.2.4.

The clique complex is a simplicial complex constructed from a graph. There is a

n�face in the simplicial complex for every (n+1)�clique in the graph, the compatibil-

ity conditions between simplices are satisfied because subsets of cliques and intersection

of cliques are cliques themselves.
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Rips-Vietoris complex

The most popular simplicial complex for data analysis is the Rips-Vietoris complex,

(29). The Rips-Vietoris complex is a simplicial complex associated to a set of points S

in a metric space in the following way:

- every point p 2 S is the center of a radius ✏ ball D(p, ✏)

- n + 1 points {p
0

, . . . , pn} determine a n�face if the corresponding radius ✏ balls

intersect two by two, i.e D(pi, ✏) \ D(pj , ✏) 6= ; for all i 6= j 2 {0 . . . n}.

4 ROBERT GHRIST

R�C�

✏

Figure 2. A fixed set of points [upper left] can be completed to
a a Čech complex C� [lower left] or to a Rips complex R� [lower
right] based on a proximity parameter ✏ [upper right]. This Čech
complex has the homotopy type of the ✏/2 cover (S1 � S1 � S1),
while the Rips complex has a wholly di↵erent homotopy type (S1�
S2).

needed for a Čech complex. This virtue — that coarse proximity data on pairs of
nodes determines the Rips complex — is not without cost. The penalty for this
simplicity is that it is not immediately clear what is encoded in the homotopy type
of R. In general, it is neither a subcomplex of En nor does it necessarily behave
like an n-dimensional space at all (Figure 2).

1.4. Which ✏? Converting a point cloud data set into a global complex (whether
Rips, Čech, or other) requires a choice of parameter ✏. For ✏ su�ciently small,
the complex is a discrete set; for ✏ su�ciently large, the complex is a single high-
dimensional simplex. Is there an optimal choice for ✏ which best captures the
topology of the data set? Consider the point cloud data set and a sequence of Rips
complexes as illustrated in Figure 3. This point cloud is a sampling of points on
a planar annulus. Can this be deduced? From the figure, it certainly appears as
though an ideal choice of ✏, if it exists, is rare: by the time ✏ is increased so as
to remove small holes from within the annulus, the large hole distinguishing the
annulus from the disk is filled in.

2. Algebraic topology for data

Algebraic topology o↵ers a mature set of tools for counting and collating holes
and other topological features in spaces and maps between them. In the context of

(a)

4 ROBERT GHRIST

R�C�

✏

Figure 2. A fixed set of points [upper left] can be completed to
a a Čech complex C� [lower left] or to a Rips complex R� [lower
right] based on a proximity parameter ✏ [upper right]. This Čech
complex has the homotopy type of the ✏/2 cover (S1 � S1 � S1),
while the Rips complex has a wholly di↵erent homotopy type (S1�
S2).

needed for a Čech complex. This virtue — that coarse proximity data on pairs of
nodes determines the Rips complex — is not without cost. The penalty for this
simplicity is that it is not immediately clear what is encoded in the homotopy type
of R. In general, it is neither a subcomplex of En nor does it necessarily behave
like an n-dimensional space at all (Figure 2).

1.4. Which ✏? Converting a point cloud data set into a global complex (whether
Rips, Čech, or other) requires a choice of parameter ✏. For ✏ su�ciently small,
the complex is a discrete set; for ✏ su�ciently large, the complex is a single high-
dimensional simplex. Is there an optimal choice for ✏ which best captures the
topology of the data set? Consider the point cloud data set and a sequence of Rips
complexes as illustrated in Figure 3. This point cloud is a sampling of points on
a planar annulus. Can this be deduced? From the figure, it certainly appears as
though an ideal choice of ✏, if it exists, is rare: by the time ✏ is increased so as
to remove small holes from within the annulus, the large hole distinguishing the
annulus from the disk is filled in.

2. Algebraic topology for data

Algebraic topology o↵ers a mature set of tools for counting and collating holes
and other topological features in spaces and maps between them. In the context of

(b)

4 ROBERT GHRIST

R�C�

✏

Figure 2. A fixed set of points [upper left] can be completed to
a a Čech complex C� [lower left] or to a Rips complex R� [lower
right] based on a proximity parameter ✏ [upper right]. This Čech
complex has the homotopy type of the ✏/2 cover (S1 � S1 � S1),
while the Rips complex has a wholly di↵erent homotopy type (S1�
S2).

needed for a Čech complex. This virtue — that coarse proximity data on pairs of
nodes determines the Rips complex — is not without cost. The penalty for this
simplicity is that it is not immediately clear what is encoded in the homotopy type
of R. In general, it is neither a subcomplex of En nor does it necessarily behave
like an n-dimensional space at all (Figure 2).

1.4. Which ✏? Converting a point cloud data set into a global complex (whether
Rips, Čech, or other) requires a choice of parameter ✏. For ✏ su�ciently small,
the complex is a discrete set; for ✏ su�ciently large, the complex is a single high-
dimensional simplex. Is there an optimal choice for ✏ which best captures the
topology of the data set? Consider the point cloud data set and a sequence of Rips
complexes as illustrated in Figure 3. This point cloud is a sampling of points on
a planar annulus. Can this be deduced? From the figure, it certainly appears as
though an ideal choice of ✏, if it exists, is rare: by the time ✏ is increased so as
to remove small holes from within the annulus, the large hole distinguishing the
annulus from the disk is filled in.

2. Algebraic topology for data

Algebraic topology o↵ers a mature set of tools for counting and collating holes
and other topological features in spaces and maps between them. In the context of

(c)

Figure 3.4: Rips-Vietoris complex construction: point cloud in figure (a), ✏ balls centered

in the points in figure (b), simplicial complex in figure (c).

Remark 3.2.6. The Rips-Vietoris complex is the clique complex of a graph, namely

the ✏-neighborhood graph. Fixed the set of points S and the parameter ✏, the associated

neighborhood graph has S as vertex set; there is an edge between two vertices x and y

if d(x, y)  ✏, being d(x, y) the distance between x and y in RM .

Cech complex

The Cech complex is a nerve complex, we will thus give the definition of nerve

complex before.

Let X be a topological space, and let U = {Uv}v be an open cover of X, this is a

family of subsets Uv of X whose union is the whole X. The nerve of the covering U is

a simplicial complex defined as follows:

- there is one vertex for each element Uv of the cover,

- there is one edge for each pair Uv and Uw in the cover such that Uv \ Uw 6= ;,
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- in general, there is one n-simplex for each n + 1-element subset {U
0

, . . . Un} for

which U
0

\ U
1

. . . Un 6=.

Geometrically, the nerve is essentially a dual complex for the covering.

Going back to our setting of a finite set of points S ⇢ RM let’s consider, as in the

Rips-Vietoris complex, radius ✏ open balls around every point p 2 S. The balls D(✏, p)

for p 2 S are an open covering of S. The Cech complex C✏(S) of the point set S with

parameter ✏, is the nerve of the cover of S given by ✏-balls.

The construction is the following:

- the vertices of C✏(S) are the points in S,

- the n + 1 points p
0

, . . . , pn generate a n-simplex if:

D(p
0

, ✏) \ D(p
1

, ✏) . . . D(pn, ✏) 6= ;.

If the cover of the space is good, that is if the cover sets and all nonempty finite in-

tersections of covers sets are contractible, then the Cech complex captures the topology

of the cover from which it is defined, (47).

Theorem 3.2.7. The Cech complex of a good cover has the homotopy type of the union

of the cover sets.

The Cech complex captures the topology of the cover from which it is defined

because a union of intersection open balls is contractible just as a simplex. The com-

putational complexity in calculating the intersection of open balls in the definition of

Cech complex makes this complex not popular in applications.

The Rips-Vietoris complex is not homtopically equivalent to the Cech complex and

thus to the open cover.

Example 3.2.8. Let us consider the vertices P
0

, P
1

and P
2

an equilateral triangle and

✏ greater than half of the side length but smaller than the circumcircle radius, then the

three points generate a full triangle with the Rips-Vietrois complex and its boundary

with the Cech complex.

The Rips Vietoris complex is anyway easier to calculate. Using the following the-

orem, in (124) that relates the Rips-Vietoris complex to the Cech complex; the latter

one is usually approximated with the Rips-Vietoris complex in computations.

Theorem 3.2.9. Let S be a set of points in RM and C✏(X) the Cech complex of the

cover of X by balls of radius ✏/2. Then there is chain of inclusions

RV✏0(X) ⇢ C✏(X) ⇢ R✏(X) whenever
✏

✏0 � 2d

d + 1
(3.2.1)
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3.3 Simplicial Homology

We will now briefly introduce simplicial homology with coe�cients in an arbitrary ring

A, and the specify to the case A = Z and A = k; a general treatment of the subject

and more algebraic topology can be found in (74), (88), (92), (93).

Important topological information about simplicial complexes such as number of

connected components and holes is given by simplicial homology. Fixed an oriented

simplicial complex X of dimension d, the sets Xn of oriented n-simplices in X are linked

by the set maps:

di : Xn �! Xn�1

0  i  n

[p
0

, . . . , pn] ! [p
0

, . . . , pi�1

, pi+1

, . . . , pn].

The free A-modules Cn on the sets Xn are called n-chain modules. The set maps

di yield module maps Cn ! Cn�1

which we also call di.

The morphism @i :=
Pn

i=0

(�1)idi defined sending an n�face to the alternate sum of

it’s (n � 1)-faces and then extended by linearity, shares the property

@n�1

� @n = 0.

This implies that the modules Cn and the di↵erential operator @n define the simplicial

chain complex.

Definition 3.3.1. The simplicial chain complex of X with coe�cients in A is the chain

complex

CX : 0 ! Cd
@d! Cd�1

@d�1! · · · ! C
1

@1! C
0

! 0

The assignment X ! CX induces a functor from SC to ChA.

The simplicial chain complex CX , in turn, determines the simplicial homology modules

of the simplicial complex X.

Definition 3.3.2. The n-th simplicial homology of X with coe�cients in A, is the n-th

homology module of the chain complex CX .

The rank of the module Hn(X) is called n-th Betti number of the simplicial com-

plex. The first Betti numbers of X have an easy intuitive meaning: the 0-th Betti

number is the number of connected components of X, the first Betti number is the

number of two dimensional (poligonal) holes, the third Betti number is the number of
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three dimensional holes (convex polyhedron).

In terms of categories, simplicial homology is the restriction of the functor Hn to

the category simplicial chain complexes. It is fundamental to note that by composing

the two functors SC
C! ChA and ChA

Hn! mod(A) we can view simplicial homology as

a functor from SC to mod(A) implying the following fundamental proposition.

Proposition 3.3.3. Let X and Y be two simplicial complexes, a simplicial map f :

X ! Y determines a homomorphism map between the homology modules Hn(f) :

Hn(X) ! Hn(Y ) for all n.

Usually homology modules are computed with coe�cients in the ring of integers

Z. A Z-module is a group, and this is the reason for which it is common to refer to

homology modules as homology groups. In applications instead homology is usually

computed with coe�cients in a field k, for computational reasons. It is possible to pass

from one ring of coe�cients to another using tensor products.

Definition 3.3.4. Let A be a ring, M a right A-module, and N a left A-module. The

tensor product of M ⌦A N of the two modules over A can be defined as the A-module,

generated by a ⌦ b with relations:

(a
1

+ a
2

) ⌦ b = a
1

⌦ b + a
2

⌦ b

a ⌦ (b
1

+ b
2

) = a ⌦ b
1

+ a ⌦ b
2

.

ar ⌦ n = m ⌦ rn

for a 2 M , b 2 N and r 2 A

If we are considering the simplicial homology of a simplicial complex, with coe�-

cients A, and there is a homomorphism � : A ! B, it is possible to calculate simplicial

homology of that complex using coe�cients in B using tensor products.

The ring B has in fact a A module structure given by b · a := �(b) · a for all a 2 A

and b 2 B. If (C, @) is a simplicial chain complex with coe�cients in A, the chain

complex (C ⌦A B, @B) gives simplicial homology with coe�cients in B. The modules

in the chain complex C ⌦A B are (C ⌦A B)i := Ci ⌦ B; the di↵erentials are defined as

@B(cn ⌦ b) := @(cn) ⌦ b.
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3.4 Persistent Homology

The starting point in persistent homology is a filtration. A filtration is an increasing

sequence of simplicial complexes that give a multi scale representation of an underlying

space, this can be a point cloud or network. Persistent homology consists in computing

the simplicial homology of the spaces in a filtration and comparing them with the maps

induced in homology by the inclusions. We can claim that persistent homology is the

homology of a filtration. The idea is to identify features (homology generators) that are

in the simplicial complexes for many values of the parameter. Such features are called

persistent features and identified with connectivity properties for the point cloud under

study, (66). For networks, the interpretation of persistent features is di↵erent and in

fact strongly depends on the filtration under study. For example we use a filtration for

weighted networks to distinguish between scale properties of real world networks and

features persisting at all scales.

We will now go through one filtration for a point cloud based on the Rips-Vietoris

complex and three filtrations on networks based on the clique complex that are exploited

in this thesis.

3.4.1 Filtrations

Most of the constructions, explained in subsection 3.2.1, depend on a parameter. As

the parameter grows, simplices are added to the simplicial complex; determining an

increasing sequence of simplicial complexes, a filtration.

Definition 3.4.1. A simplicial complex X is filtered if we are given a family of sub-

spaces {Xv} parametrized by N, such that Xv ✓ Xw whenever v  w. The family {Xv}
is called a filtration.

Rips-Vietoris Filtration

The Rips-Vietoris complex depends on the radius ✏ of the balls associated to points

in the point cloud. If ✏
1

< ✏
2

the complex with ✏
1

radius balls is contained in the

complex with ✏
2

radius balls. To the growth of ✏ we obtain an increasing sequence

of simplicial complexes, a filtration, the Rips-Vietoris filtration. In this context per-

sistent topological features of the filtration are considered as features of the point cloud.
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Figure 3.5: Rips Vietoris filtration.

Clique filtration

For unweighted networks, the clique filtration is used in (77) to analyze the di↵erence

between the connectivity properties of random networks, networks with exponential

connectivity distribution and scale-free networks.

Definition 3.4.2. The k�skeleton Xk of a simplicial complex X is the subcomplex of

X containing all the faces of dimension smaller or equal to k.

Consider a complex network and the corresponding clique complex X, the clique

filtration is obtained by filtering the clique complex according to the dimension of the

skeleton:

X
0

✓ X
1

✓ X
2

✓ . . . ✓ X.

Note that persistent features of the clique filtration are generators of the homology

groups of the clique complex. These generators can be directly calculated from the

clique complex of the graph, thus the filtration gives no extra information. This is not

the case for the following neighbor filtration and weight clique rank filtration that we

have introduced for weighted networks in which persistent features cannot be deter-

mined from a single simplicial complex in the family. In the case of the weight clique

rank filtration we also reveal the intricate multiscale relation between weights and links
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in a weighted indirect network.

Neighbor filtration

The neighbor filtration was introduced by us and used in chapter 4 for the study

of social networks. The Neighbor filtration is a sequences of graphs, specifically open

Ego networks of increasing radius, see chapter 2. Chosen a node v in a network, the first

step N1(v) of the filtration is the graph of v’s direct neighbors and the links between

them. The second step is the graph induced by v’s direct neighbors and nodes at path

distance 2 and so on, to the growth of the path distance we determine the sequence:

N1(v) ✓ N2(v) ✓ . . . ✓ N t(v). (3.4.1)

  

Table 3.1: Network neighbor filtration of v’s Ego network.

Weight Rank clique filtration

The weight Rank Clique filtration defined by us on a weightenetwork ⌦ com-

bines the clique complex construction with a thresholding on weights. The results of

applying persistent homology to this filtration are illustrated in chapter 5.

To construct the weight rank clique filtration we follow these steps :

- rank the weights of links from !max to !min: the discrete parameter ✏t scans the

sequence,

- at each step t of the decreasing edge ranking, consider the thresholded graph

G(!ij , ✏t).This is the subgraph of ⌦ with links of weight larger than ✏t.

- For each graph G(!ij , ✏t), build the clique complex K(G, ✏t).
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The clique complexes are nested to the growth of t and determine the weight rank

clique filtration. Persistent one dimensional cycles represent weighted loops with much

weaker internal links.

W
e
ig

h
t ra

n
k 

(a) (c)

(b)

Figure 3.6: Weight rank clique filtration.

Remark 3.4.3. Note that there is a conceptual di↵erence in interpreting H
1

persis-

tent homology of data with the Rips-Vietoris filtration, see chapter 3 and H
1

persistent

homology of weighted networks with the weight rank clique filtration. While in the first

case persistent generators are relevant and considered features of the data, short cycles

are more interesting for networks. This is because random networks, or randomizations

of real networks, display one dimensional persistent generators at all scales, while short

lived generators testify the presence of local organization properties on di↵erent scales.

3.4.2 Persistence homology modules

Given a filtration, the next step is to compute the homology modules of the simplicial

complexes in the filtration and compare them using the maps induced in homology by

inclusions.

Definition 3.4.4. The persistence homology module of a filtration {Xv}v is given by

the groups Hn(Xv), that are the homologies of the simplicial complexes and the maps

Hn(iv,w) : Hn(Xv) ! Hn(Xw) induced in homology by the inclusions Xv ,! Xw for all

v  w.
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Persistent homology is often computed with coe�cients in a field k, the groups

Hn(Xv) are vector spaces and the maps Hn(iv,w) : Hn(Xv) ! Hn(Xw) are linear maps.

Every ordered set is a category, the objects of the order category associated to N are

natural numbers and there is a morphism between two numbers v and w if and only if

v  w. A sequence of vector spaces indexed by N can be seen as a functor F : N ! SC

associating to every index v the simplicial complex Xv and to every morphism v  w

the linear inclusion Xv ,! Xw.

Using a simple construction, that gives an equivalence of categories between functors

from N to SC and graded modules over the polynomial ring in one variable k[t], a

persistence homology module is mapped to a k[t]-module.

Construction 3.4.5. To a family of vector spaces {Xv}v2N and linear maps 'v,w :

Xv ! Xw for all v � w, such that 'v,w = 'z,w · 'v,z, for all v � z � w, we can

associate the vector space X =
L

v Xv with k[t]-module action

t : Xv �! Xv+1

m �! 'v,v+1

(m)

A persistent homology generator is a generator of Hn := �v2NHn(Xv) accord-

ing to the k[t]- module structure, i.e an element g 2 Hn(Xv) such that there is no

h 2 Hn(Xw) for w < v with the property that tv�wh = g.

The structure theorem of modules over a Principal Ideal Domain completely

classifies modules over the polynomial ring k[t]. This theorem is a generalization of the

fundamental theorem of finitely generated abelian groups and roughly can be stated

saying that finitely generated modules over a PID can be decomposed in prime factors

just as the integer numbers. The decomposition divides the module in a free submodule

and a torsion submodule.

Definition 3.4.6. A principal ideal domain A is a commutative ring that:

- A has no zero divisors, i.e if ab = 0 for a, b 2 A then a = 0 or b = 0

- every ideal is principal, i.e it can be generated by single element.

A primary ideal is an ideal I ⇢ A such that if xy 2 I then x 2 I or yn 2 I for some

integer n.
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Theorem 3.4.7. Let M be a finitely generated module over a principal ideal domain

A, then the following decomposition holds:

M = �m
i=1

A �j A/(qi)

where (qi) are primary ideals in A.

The polynomial ring in one variable k[t], is a principal ideal domain because it is

an Eucledian Domain (there is the Eucledian division algorithm). In this case, all the

primary ideals are of the form tv for v 2 N. The decomposition theorem for modules

over the polynomial ring k[t] is then:

M = �ik[t](�ai) �j k[t](�cj)/tdj .

In this expression we have denoted with k[t](�ai) and k[t](�cj) the shift of the poly-

nomial ring by degree ai and cj respectively, considering kt as a graded ring, with grad-

ing given by the exponents of the monomials. This means that (k[t](�ai))s = k[t]s�i

and the same for cj . This notation highlights the degree of the module generators.

Remark 3.4.8. The degrees of the generators (ai, cj) and the torsion degrees djcompletely

determine a k[t]-module.

The degree of each generator g is called its birth of the generator and denoted with

�g, and the degree in which the generator is annihilated by the module action, called

death of the generator, will be denoted by�g. The persistence (lifetime) of a generator

is measured by pg := �g � �g.

Generators that are in the free part of the module or have a long lifetime are called

persistent generators.

Persistent homology generators can be computed using the libraries javaPlex (Java)

or Dionysus (C++), which are both available from the Stanford’s CompTop group

website (http://comptop.stanford.edu/), and presented using the barcode or the

persistence diagram. We developed a Python module to wrap the javaPlex library,

consisting of a number of scripts able to preprocess complex networks and store the re-

sulting homological information in a manageable form. The module is available online

at https://github.com/lordgrilo/Alchemy.
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3.4.3 Barcode

The complete classification of persistence modules in theorem 3.4.7 is given by the

persistence intervals of the generators in Hn. It is possible to visualize this information

through a handy complete invariant, the barcode, (29) .

PERSISTENT TOPOLOGY OF DATA 7

Theorem 2.3 ([22]). For a finite persistence module C with field F coe�cients,

(2.3) H�(C; F ) ⇠=
M

i

xti · F [x] �

0

@
M

j

xrj · (F [x]/(xsj · F [x]))

1

A .

This classification theorem has a natural interpretation. The free portions of
Equation (2.3) are in bijective correspondence with those homology generators
which come into existence at parameter ti and which persist for all future parame-
ter values. The torsional elements correspond to those homology generators which
appear at parameter rj and disappear at parameter rj + sj . At the chain level,
the Structure Theorem provides a birth-death pairing of generators of C (excepting
those that persist to infinity).

2.3. Barcodes. The parameter intervals arising from the basis for H�(C; F ) in
Equation (2.3) inspire a visual snapshot of Hk(C; F ) in the form of a barcode. A
barcode is a graphical representation of Hk(C; F ) as a collection of horizontal line
segments in a plane whose horizontal axis corresponds to the parameter and whose
vertical axis represents an (arbitrary) ordering of homology generators. Figure 4
gives an example of barcode representations of the homology of the sampling of
points in an annulus from Figure 3 (illustrated in the case of a large number of
parameter values ✏i).

H0

H1

H2

✏

✏

✏

Figure 4. [bottom] An example of the barcodes for H�(R) in the
example of Figure 3. [top] The rank of Hk(R�i) equals the number
of intervals in the barcode for Hk(R) intersecting the (dashed) line
✏ = ✏i.

Figure 3.7: Barcode of a point cloud. The associated filtration is the Rips-Vietoris

filtration.

Definition 3.4.9. The barcode of a filtration is the set of intervals [�g; �g] for all

generators g 2 Hn.

By persistent topological features we intend generators of Hn such that the interval

[�g; �g] is large with respect to the filtration length.

These are considered as the features of a point cloud when using the Rips-Vietoris

filtration.

When using network filtrations instead, homology recognizes motifs and patterns in

the graph. For weighted networks, a persistent homology generator represents a set of

nodes linked by strong interactions two by two but not cohesively connected in general.

In figure 3.8 A) The two 3-clique components shown are equivalent expect for the

right one being closed in a ring-like configuration. The Betti numbers distinguish be-

tween them. Both have one connected component (H
0

), but only the right one creates

a H
1

(1d) cycle, thus �
1

= 0, �0
1

= 1.
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�0 =1 , �1 =0

A)

��0 =1 , ��1 =1

step=1 step=4step=3step=2

Decreasing threshold

H1

H0

B)

1 2 3 40 5

1 2 3 40 5

Figure 3.8: Topology of networks and weight rank clique filtration.

In figure 3.8 B) weighted clique complex of a weighted network. H
1

persistence genera-

tors, in the figure are represented by the light blue and green hulls; the former persists

to the end of the filtration, while the latter has a shorter timespan and is quickly filled.

Note that all triangles are not H
1

cycles because they form a 3-clique, which is mapped

to a 2-simplex and thus invisible to homology.

Remark 3.4.10. Note that a barcode is only possible for the description of modules over

the polynomial ring or over a principal ideal domain in general. Given a module over

the multivariate polynomial ring for example, that represents multiperistent homology

modules as we will see in chapter 6.

An alternative way to represent persistent homology modules is the persistence

diagram (55), (113). A persistence diagram is a set of points in the plane counted with

multiplicity, it can be recovered from the barcode considering the points (�g, �g) 2 R2

with multiplicity given by the number of generators with the same persistence interval.

Figure 3.9: Persistence diagram of three weighted networks. The associated filtration is

the weight clique rank filtration.
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