
04 August 2020

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Algorithm validation and hardware design interactive approach / Lazarescu, Mihai Teodor; Sartori, M.. - ELETTRONICO.
- 1(1996), pp. 291-294. ((Intervento presentato al convegno International Semiconductor Conference tenutosi a Sinaia,
Romania nel October 1996.

Original

Algorithm validation and hardware design interactive approach

default_article_editorial

Publisher:

Published
DOI:10.1109/SMICND.1996.557380

Terms of use:
openAccess

Publisher copyright

-

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2507491 since: 2020-07-05T15:51:24Z

IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PORTO@iris (Publications Open Repository TOrino - Politecnico di Torino)

https://core.ac.uk/display/234896593?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Algorithm validation and hardware design

intera
tive approa
h

�

ing. Mihai-Teodor L

�

AZ

�

ARESCU

Polyte
hni
 of Turin, Ele
troni
s department

C.so Du
a degli Abruzzi, 24, 10129 Turin, Italy

Fax: + 39 (0)11 564 4134; email: lazares
u�polito.it

ing. Mario SARTORI

COREP { LETEO

C.so Du
a degli Abruzzi, 24, 10129 Turin, Italy

Fax: + 39 (0)11 564 4134; email: sartori�polito.it

Summary

In this paper we will des
ribe a modality to speed up the design of the VLSI digital (mainly DSP)

ir
uits and to redu
e the design errors by in
reasing the intera
tion between the ad-ho
 software program

developed to validate the algorithm and the VHDL des
ription and simulation. A real
ase of a digital

power analyzer will be used for exempli�
ation.

1 Introdu
tion

For the design of the digital VLSI
ir
uits there are now available several high level synthesis tools that

a

ept a more or less high level des
ription of the
ir
uit operation and/or stru
ture and are able to

simulate and synthesize the
ir
uit.

The main drawba
k of the high level des
ription simulators is that they are still very slow. As a

large part of the today digital VLSI
ir
uits are DSPs that implement an iterative algorithm, the design

ow usually in
ludes a �rst phase when a dedi
ated ad-ho
 software program is developed to verify the

algorithm
ore
tness before even to think at the hardware implementation issues. After this phase, begins

the design of the
ir
uit itself and, in this phase, very few results of the previous simulations are used.

We will present in this paper a modality to in
rease the intera
tion between the algorithm validation

ad-ho
 software program development and the high level hardware des
ription that follows. This way,

the designer
an introdu
e many hardware
onstraints dire
tly in the ad-ho
 program. Then, using this

program, the designer may perform extensive fast-running tests simulating the algorithm mu
h
loser to

the future hardware implementation than to the theoreti
al idealization. Moreover, the software program

may be organized to have de�ned a fun
tion for ea
h main blo
k of the
ir
uit, a pra
ti
al way to later

verify the simulation results of ea
h implemented blo
k with the results output by the
orresponding

fun
tion in the software program.

2 The problem

Often, the digital
ir
uit designer is
onfronted with the following problem: having to design a
ir
uit

that implements a more or less known and/or validated algorithm. In su
h
ases, the design task is

usually divided in two distin
t subtasks:

1. Simulation and validation of the algorithm. The designer develops an ad-ho
 program in a given

high level programming language (like C, Pas
al, et
.) and uses it for validating the algorithm.

�

Published with the agreement of DTA s.r.l., Milan, Italy

1

1

rotation

angle/module x(-1) Xu Au

Xi Ai

CORDIC

Σ

Σproduct

CORDIC

product

CORDIC
Bu

16

6
1

6 66 6 6 6

6
1

6

Data Bus for Current Processing

Command Bus

Data Bus for Voltage Processing and for Postprocessing

A/D

10

1
6

A/D

10

1
6

A/D

10

6
1

ControlROM

10 5

10

8

6

i(t)

u(t)

T(t)

Bi
13 7

Serial

I/O

I/O

ctrl

16

6
1

28

28

16 19 28

19 28

28 28 28 28 28 28

282828

Figure 1: Blo
k s
hemati

2. Simulation and validation of the hardware des
ription that will implement the algorithm. The

designer uses a high level des
ription language (as VHDL) to des
ribe, usually using high level

fun
tions, the blo
ks and the data
ow needed to implement the algorithm. At this moment there

had to be spe
i�ed hardware related parameters as: bus dimensions, operands trun
ations, et
.,

aspe
ts that were usually ignored in the previous algorithm validation phase.

From the above typi
al design
ow we
an see that, when passing to the hardware des
ription that

will generate the
ir
uit after synthesis, the designer is on
e more
onfronted with algorithm issues like:

� how does the algorithm rea
t to operands trun
ation? Will it be still
onvergent operating on

integers and not on double pre
ision
oating point numbers?

� how large the busses should be?

� how bad will be a�e
ted the �nal results pre
ision if shrinking that bus by one bit?

� given the results error spe
i�
ations, what does that mean in terms of number of iterations of the

algorithm or registers size?

Taking into a

ount that the behavioral or logi
al simulations of the
ir
uit done to validate the

ir
uit stru
ture in the se
ond phase are very slow
ompared with the dedi
ated algorithm simulation

program of the �rst phase, it results
learly that simulations in the se
ond phase of this typi
al approa
h

is very time
onsuming and, by the limited number of tests that
an be performed in a given design time,

it is error prone.

Using a pra
ti
al example, we will des
ribe a better approa
h, that takes into a

ount the most part

of the hardware limitations from the �rst design phase. This way, the design time is
onsiderably redu
ed.

The designer will have a good feeling of the hardware requirements starting with the earliest phases of

the proje
t. The results of the ad-ho
 software program simulations and program blo
ks (fun
tions) will

onstitute also a good referen
e for the hardware des
ription phase, making
ir
uit development and test

straightforward.

3 Cir
uit stru
ture

Our target is to design a digital
ir
uit that performs power harmoni
 analysis based on the Fourier series

de
omposition.

The
ir
uit blo
k s
hemati
 is presented in �gure 1. For the sake of simpli
ity we de
ided that a

mi
roprogrammed ma
hine stru
ture is the most suited. This way we keep the Control blo
k simple and

small. A part of the ROM is used for storing the mi
ro
ode and is in tight intera
tion with the Control

blo
k.

2

The two input analog lines are syn
hronously sampled and
onverted to digital by the A/D
onverters

and then pro
essed in parallel to keep the
lo
k frequen
y low and to avoid timing problems.

The digital blo
ks involved in the pro
essing phase are: CORDIC produ
t ,

P

, ROM , Control , X

u

,

X

i

, A

u

, B

u

, A

i

, and B

i

.

The blo
ks involved in the postpro
essing phase are those
onne
ted to the upper bus: CORDIC

angle/module/rotation,

P

, �(�1), X

u

, X

i

, A

u

, B

u

, A

i

, and B

i

, CORDIC produ
t , ROM , and Control .

This
ir
uit is the result of a proje
t we do in the framework of SUMIS a
tion for DTA s.r.l., an

SME lo
ated in Milan, Italy. The
ir
uit is designed using SYNOPSYS VHDL synthesis for the AMS

0:8�m digital CMOS te
hnology.

4 The hardware emulation program

Given the
onsiderations detailed in paragraph 2, it would be mu
h more
onvenient to exploit the high

exe
ution speed of the algorithm validation ad-ho
 software program in order to emulate as tight as

possible the real hardware
hara
teristi
s as: real bus size, integer operation, results over
ow, operands

trun
ation, et
.

We developed a C language program that emulates the following hardware parti
ularities:

� to de�ne the size of registers, memories, and busses we set to 1 in dedi
ated integer variables (
alled

masks) a number of LSBs
orresponding to the width to be de�ned;

� the over
ows are simulated by ma
ros that use the previously de�ned mask for ea
h hardware

element (bus, memory, register) and, using bitwise operations, they dis
ard the bits that fall o� the

mask and do the sign prolongation needed by 2
omplement signed numbers representation. These

ma
ros are used ea
h time a new value is assigned to a variable representing a bus or a register;

� global busses are represented by global integer variables. Writing a global bus means setting the

global bus variable to the
ontents of the variable representing the desired output register, and

reading the global bus to a register means setting the variable representing that register to the

global bus variable value;

� the operands size trun
ation is done by a bitwise right shift;

� ea
h blo
k in the blo
k s
hemati
 has a
orresponding fun
tion in the program that performs that

blo
k algorithm. That fun
tion
an be as simple as an integer addition (for the

P

blo
k) or as

ompli
ated as an iterative algorithm as for the various CORDIC blo
ks;

� ROM, RAM memories are implemented as ve
tors of integers;

� the Control blo
k is mainly a large swit
h statement that de
odes the mi
ro
ode fet
hed from

the ROM and
alls the fun
tion
orresponding to the hardware blo
k that is a
tivated by that

mi
ro
ode;

� the analog input patterns are automati
ally generated based on the harmoni
s amplitude and phase

values previously stored in a dedi
ated data stru
ture and using the C library trigonometri
 fun
-

tions.

The amplitude and/or phase information for ea
h harmoni

an be
hanged automati
ally during a

simulation, allowing to run di�erent test patterns to
he
k the operation of the algorithm, keeping

into a

ount the hardware pre
ision limitations simulated by the program;

� the A/D
onverters perform just type
onversions from
oating point to integer for ea
h input

sample;

Using these programming de�nitions we su

eed to emulate the main hardware related limitations

that a�e
t the performan
es of the algorithm.

The program allows
hanging all busses and registers dimension, as well as the number of iterations

for CORDIC blo
ks, simply by
hanging the
orresponding C de�nition. The program is very
exible,

allowing automati
 error
al
ulation and on
y statisti
 determinations, as to memorize the largest error,

the mean error, et
. for ea
h of the output results when running several test patterns.

3

Moreover, we optimized the program for speed and we use it for running an a

urate test with over

500,000 input analog waveforms that takes about 2 weeks to
omplete on a SUN SPARCstation 20. It is

obvious that su
h an extensive test is far from a�ordable when using a behavioral or logi
 simulator for

two basi
 reasons:

� those simulators are very, very slow
ompared to a dedi
ated and optimized
omputer program;

� preparing the input ve
tors in terms of A/D
onversion results would have produ
ed about 2:7 �10

8

ve
tors, mu
h too mu
h to be read by most simulators;

� automati
 error
al
ulation and error statisti
s would not be possible.

On
e the hardware emulation program was debugged and
he
ked by passing all the extensive tests,

there
an be easily set up dedi
ated tests that a
tivate one at a time only the fun
tion that emulate

the operation of a single hardware blo
k, and its output results
an be used as referen
e to validate the

VHDL des
ription simulation results of that blo
k. This way, we
an avoid simulating the
omplete
ir
uit

operation at VHDL des
ription level for a large number of input patterns. We
an keep the
omplete

ir
uit simulations number small, performing only those simulations for testing blo
k inter
onne
tions

and the Control blo
k a
tivity.

5 Con
lusions

There are some limitations of the program emulation possibilities.

If the hardware uses parallel pro
essing and the intera
tions between the parallel pro
esses are su
h

that
annot be done sequentially for simulation purpose, the software simulation may not be possible at

all.

Also due to the parallelism, the most I/O interfa
e proto
ols may not be simulable using a software

emulation.

Obje
t oriented languages (as C++) are more suited to express hardware related
onstraints and

hardware blo
ks fun
tionality.

Referen
es

[1℄ R.D. Harding, Fourier series and transforms , Bristol and Boston, Hilger, 1985

[2℄ R.E. Edwards, Fourier series: a modern introdu
tion, vol. 1, 2, New York, Springer, 1979, 1982

[3℄ Burrus, T.W. Parks, DFT { FFT and
onvolution algorithms: theory and implementation, New

York, Wiley, 1985

[4℄ Ed. by Bede Liu, Digital �lters and the fast Fourier transform, Stroudsburg, Dowden - Hut
hinson

and Ross, 1975

[5℄ Letizia Lo Presti, Valutazione numeri
a della Trasformata di Fourier DFT { FFT ,
ourse notes,

Polite
ni
o di Torino, May 1988

[6℄ Brian W. Kernighan, Dennis M. Rit
hie, The C programming language, 2nd ed., Englewood Cli�s,

Prenti
e-Hall, 1988

[7℄ Jean-Mi
hel Berge et al., VHDL '92 (the new features of the VHDL hardware des
ription language),

Boston, Kluwer, 1993

[8℄ Bjarne Stroustrup, The C++ programming language, 2nd ed., Reading (Mass.), Addison-Wesley,

1991

[9℄ Douglas L. Perry, VHDL, New York, M
Graw-Hill, 1994

[10℄ IEEE standard VHDL language referen
e manual , New York, IEEE, 1988

[11℄ Randolph E. Harr, Ale
 G. Stan
ules
u, Appli
ations of VHDL to
ir
uit design, Boston, Kluwer

A
ademi
 Publ., 1991

4

[12℄ Douglas E. Ott, Thomas J. Wilderotter, A designer's guide to VHDL synthesis , Boston, Kluwer

A
ademi
, 1994

5

