\CO p
@9?.-- n-n.{..?»o
Sy (O
J

« PO

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Definition, implementation and validation of energy code smells: an exploratory study on an embedded
system

Original

Definition, implementation and validation of energy code smells: an exploratory study on an embedded system / Vetro'
A.; Ardito L.; Procaccianti G.; Morisio M.. - STAMPA. - (2013), pp. 34-39. ((Intervento presentato al convegno ENERGY
2013 : The Third International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies
tenutosi a Lisbon, Portugal nel from March 24, 2013 to March 29, 2013.

Availability:
This version is available at: 11583/2506419 since:

Publisher:

Published
DOI:

Terms of use:
openAccess

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

04 August 2020

Definition, Implementation and Validation of Energy Code Smells: an Exploratory
Study on an Embedded System

Antonio Vetro’, Luca Ardito, Giuseppe Procaccianti, Maurizio Morisio
Dipartimento di Automatica ed Informatica
Politecnico di Torino
Torino, Italy
E-mail: name.surname @polito.it

Abstract—Optimizing software in terms of energy efficiency
is one of the challenges that both research and industry will
have to face in the next few years. We consider energy efficiency
as a software product quality characteristic, to be improved
through the refactoring of appropriate code pattern: the aim
of this work is identifying those code patterns, hereby defined as
Energy Code Smells, that might increase the impact of software
over power consumption. For our purposes, we perform an
experiment consisting in the execution of several code patterns
on an embedded system. These code patterns are executed in
two versions: the first one contains a code issue that could
negatively impact power consumption, the other one is refac-
tored removing the issue. We measure the power consumption
of the embedded device during the execution of each code
pattern. We also track the execution time to investigate whether
Energy Code Smells are also Performance Smells. Our results
show that some Energy Code Smells actually have an impact
over power consumption in the magnitude order of micro
Watts. Moreover, those Smells did not introduce a performance
decrease.

Keywords-Code Smells; Energy Code Smells; Green Software;
Software Metrics

I. INTRODUCTION

The issue of sustainability is starting to be addressed
among the software engineering community. Although, it
is still unclear how to design sustainable software. While
for common quality characteristics (reliability, performance,
security, etc.) processes and metrics have been proposed
and widely investigated by the Software Engineering (SE)
community, as regards sustainability the discussion is still
in its initial phase.

Among the kaleidoscope of aspects related to software
sustainability, one of the most visible is the energy (or,
alternatively, power) consumption of software systems. In-
deed, software does not consume energy directly, however
it has a direct influence on the energy consumption of the
hardware underneath. In fact, applications and operating
systems indicate how the information is processed and,
consequently, drive the hardware behaviour: previous work
[1] suggested that software can increase the total power
consumption of a computer system up to 10%. This and
other initial findings [2] open investigation spaces on the
optimization of energy and power consumption of IT devices

acting on the software instead of the hardware. Moreover,
nowadays the same software runs on multiple devices, thus
it might be more productive and feasible for software houses
to green the single software rather then relying on the
greening of all the hardware implementations underneath
(that could require competences commonly not owned by
software houses). Optimizing a software product in terms
of energy efficiency has also some issues. The absence of a
standard procedure, or a benchmark, to compare systems
is the most prominent one. This is because software is
intangible and it is deployed on devices with their own
specifications and features. This makes really difficult to
standardize a transparent, platform-independent measuring
system for every software system.

Another consideration must be done regarding software
architectures. During the last years, software engineers al-
ways tried to increase the number of software layers - that
is, for improving interoperability, abstraction, decoupling,
etc. However, the steep increase of software layers directed
the optimization efforts only on each layer (‘“horizontal”
optimization) and not across them (“vertical” optimization).
Since energy efficiency directly relates with hardware tech-
nologies, a more intense communication flow between hard-
ware and software is needed to achieve significant optimiza-
tions. In this sense, embedded systems make a perfect case
study, because their architecture is simplified by design, and
also because power consumption issues acquire a peculiar
importance, for operational reasons (most embedded systems
are battery-powered). For this reason our work uses an
embedded system as the testbed to validate a new approach
for the design and implementation of sustainable software.
We investigate, and here we also introduce the goal and main
contribution of this study, how software can be optimized
by identifying code patterns that use in a sub-optimal way
the hardware resources. These code patterns ought to be
refactored in order to improve the energy efficiency of the
software at run time. We define and name the code patterns
Energy Code Smells, inspired by the well-known book of
Fowler and Beck [3].

This study empirically validates the impact of Energy
Code Smells over power consumption. We provide back-

ground in Section II, then in Section III we describe the used
approach for the validation of the concept of Energy Code
Smell. In Section IV we describe the experimental setup of
our analysis: results (V), discussion (VI) and threats to the
validity (VII) follow. Finally we mention the related works
(VIII) and we expose our conclusions and future research
IX).

II. ENERGY CODE SMELLS: BACKGROUND AND
DEFINITION

The term “code smells” was coined by Fowler and Beck
[3] referring to poor implementation choices that make the
software difficult to maintain. These bad implementation
practices can be characterized as patterns in source code.
For instance, the smell “Long Method” refers to a method
that has grown too large: typically, the longer is the method
the more difficult is to maintain it. One or more refactoring
actions are associated to code smells: for example all you
have to do to refactor a Long Method is to extract parts of
the method that seem to go nicely together and make a new
method. As a result the original method is shorter and easier
to maintain. Refactoring code smells might have an effect
not onaly on maintainability but also on other properties of
the software, such as portability, testability or, as in the case
of this work, the energy efficiency. As a consequence, we
take inspiration by the original work of Fowler and Beck
and we introduce the concept of smells into the Green IT
community, introducing the Energy Smells:

A Energy Smell is an implementation choice that makes
the software execution less energy efficient.

Since software has different levels of abstractions and
organizations, Energy Smells can be located at code, design
or architectural level. Therefore, Energy Code Smells are
implementation choices at source code level (code patterns)
that make a sub-optimal usage of the hardware resources
underneath. As a consequence, they provoke a higher energy
(or alternatively, power) consumption.

III. VALIDATION OF ENERGY CODE SMELLS

The aim of our research is to identify Energy Code Smells.
In addition to that, we are also interested in understanding
whether the Energy Code Smells also degrade the perfor-
mances of the application in terms of execution time. We
set up two research questions for our investigation:

RQ1. Which code patterns have an effect on power
consumption (i.e. which code patterns are Energy
Code Smells)?

Code smells that have an effect on execution time
do also have effect on energy consumption (i.e. are
Energy Code Smells also Performance Smells) ?

RQ2.

The epistemological approach adopted for this research is
the empirical one. We set up an experiment observing two

dependent variables: power consumption (W) for RQ1 and
execution time (ms) for RQ2. The two dependent variables
are measured on the execution of C++ functions running on
an embedded device. The choice of the embedded device
has several advantages, the main two being:

« it has no operating system and thus confounding factors
in the experiment are minimized;

« it runs on a battery and it really needs energy efficient
code.

In other terms, refactoring Energy Code Smells in such
an environment might lengthen the life of the battery.

The potential Energy Code Smells selected for the exper-
iment are code patterns used by two popular static analysis
tools. For each code pattern selected for the experiment, we
set up a C++ function with two implementations, one that
violates the code pattern (thus contains a potential Energy
Code Smell) and the refactored one without the violation.
Therefore the treatment is the refactoring of the smell and
it is possible to observe an effect on the two variables by
comparing the measurements on the two versions of the
code.

A. Potential Energy Code Smells selection

As introduced above, the software that runs on the selected
device is C++ code. In order to identify Energy Code Smells
on C++ code we look at already existing code patterns. In
particular, we examined patterns implemented by Automatic
Static Analysis (ASA) tools. ASA tools examine source and
compiled code and check it against good programming prac-
tices and possible bug patterns. The advantage of using ASA
tools is the speed of the verification and the applicability
before testing or production phase.

The two tools selected for this study are Cpp-Check and
Findbugs. CppCheck is a well-known static analysis tool for
C/C++ which contains many patterns regarding a variety of
desired software properties: safety, portability, performance,
etc . An example of C/C++ pattern on portability is “64 bits
portability”, i.e. assign address to int or long. An example
of checked pattern on performance is instead “Address not
taken” of the category “Memory leaks”, which detects when
the address to allocated memory is not taken. In order
to identify which patterns can be considered relevant for
energy efficiency, two of the authors carefully read all
patterns and selected independently which ones could cause
a higher power consumption of the Waspmote. All conflicts
(a pattern selected by only one expert) were resolved in a
reconciliation meeting, where patterns were discussed and a
final decision taken. In addition to the Cpp-Check patterns,
we also reviewed the patterns of another static analysis tool,
Findbugs. It is similar to Cpp-Check, but it analyzes Java
code. The same two authors reviewed all FindBugs patterns
and decided firstly if they can be applied to C++ code,
then whether they might be related to energy efficiency.

The selection process ended up with the patterns shown in

TABLE 1.
TABLE 1
POTENTIAL ENERGY CODE SMELLS SELECTED FOR VALIDATION.

Pattern Name Pattern Description Tool
Parameter By Passing a parameter by value to a CppCheck
Value function
Self Assignment Assignment of a variable to itself. CppCheck
(e.g., Xx=X).
Mutual OR operator between two mutually ~ CppCheck
Exclusion OR exclusive conditions (thus always
evaluating to true).
Switch Redundant assignment in a switch ~ CppCheck
Redundant statement: for example, assigning
Assignment a value to a variable in a case
block without a following break in-
struction, then re-assigning another
value to the same variable in the
subsequent case block.
Dead Local Store A statement assigning a value to a FindBugs
local variable, which is not read or
used in any subsequent instruction.
Dead Local Store A return statement assigning a FindBugs
Return value to a local variable, which is
not read or used in any subsequent
instruction. (i.e. return(x=1);)
Repeated Condi- A condition evaluated twice (e.g., FindBugs
tionals x==0 x==0).
Non Short Cir- Code using non-short-circuit logic ~ FindBugs
cuit boolean operators (e.g., & or
[[) rather than short-circuit logic
ones (&& or ||||). Non-short-circuit
logic causes both sides of the ex-
pression to be evaluated even when
the result can be inferred from
knowing the left-hand side.
Useless Control ~ Control flow constructs which do FindBugs

Flow not modify the flow of the program,
regardless of whether or not the
branch is taken (e.g., an if state-
ment with an empty body).

Subsequently, we wrote for each of the patterns a pair of
C++ functions, one containing a potential smell and another
one refactored without that smell. For example, the “Non-
Short Circuit Logic” pattern, shown in Listing 1 has the
following two functions:

void NonShortCircuit_With(){
int count = 0;
int total = 345;
if (count > 0 & total / count > 80)
count=0;

}

void NonShortCircuit_Without() {
int count = O;
int total = 345;
if (count > 0 && total / count > 80)
count=0;

Listing 1. Non Short Circuit Code Pattern

The function NonShortCircuit With() is the one with the
potential smell “Non-short circuit logic”. The smell is in

the line if(count > 0 & total/count > 80) because the
AND operator is single & and so both predicates in the
expressions will be evaluated at run-time. In the function,
NonShortCircuit Without() the code is refactored replacing
& with &&. All functions are available online [4] for the
sake of replication.

IV. EXPERIMENT
A. Context: the WASP

The device used for the experiment is the Waspmote V1.1
(Libelium Comunicaciones Distribuidas S.L. Esso). The
hardware architecture is based on a ATmega 1281 microcon-
troller with a CPU frequency of 8 MHz and 8KB of SRAM.
It has no operating system: programs are directly loaded on a
FLASH memory of 128 K. This architecture well suites our
experiment because no other threads run in parallel with the
chosen program, thus eliminating any software noise for the
energy measurement. The device is basically a motherboard
with connectors to plug in other elements such as sensors,
wireless modules (ZigBee, XBee, Bluetooth), GSM/GPRS
modules and a GPS (Global Positioning System) module.
For this reason it is used in different fields, such as Smart
Metering, Building Automation, Agriculture etc. It runs
on a lithium battery (3.7V and 1150mAh), so the energy
consumption of software has a key role here. To compile
and load the C++ programs it is sufficient to use the IDE
provided by the manufacturer and connect it to a computer
via USB cable.

B. Experiment setup

The objective of the experiment is to measure power
consumption and execution time on each function pair, in
order to evaluate if the potential smell affects the two
dependent variables. We divide the experiment in two parts:
one for measuring power consumption, and another one for
the execution time.

Measuring power consumption and execution time for
a single function is a challenging task because usually
execution is too fast to get reliable data. We control this
threat repeating each function 1 million of times, that makes
one sample. We collect 50 sample in order to reach statistical
significance. Each function pair is loaded on the Waspmote
and evaluated two times: the first one for the execution time,
the latter one for the power consumption.

No specific instrumentation was needed to obtain the
execution time, because the Waspmote embeds a Real-Time
Clock (RTC) with a millisecond accuracy. We measure the
execution time of every loop (i.e. 50 measurements).

On the other side, analyzing power consumption is more
complicated. The only way to obtain a precise measure of
the power consumption is using a power meter. The RTC is
powered by an auxiliary battery, which makes it completely
independent from the main power supply. Therefore it is
possible to power the Waspmote with a constant voltage

(Ve = 3.7 V) by means of a generator and use a shunt
resistor to measure the current intensity. An analog to
digital converter (ADC) connected to the PC reads the
voltage drop across a resistor R of 1 €. The current flowing
in the circuit can be computed by measuring the voltage
drop on the resistor (I = Vapc/R). The instant power
consumption value can be computed as:

v VeVape — V2
P=V, 1= (Vg - Vanc) Algc = ¢ ADC}% ADC
(1)

Fig. 1 represents the circuit described.

D o| Awase

Figure 1. Circuit built to measure the power consumption.

The device used to measure the power consumption has a
frequency of 49KHz, i.e. it gets 49000 measurements each
second. In order to precisely measure the power consump-
tion relative to the execution of the function pairs, we in-
serted a sleep interval at the beginning of the data acquisition
to exclude the peak of device power on, and we filtered out,
through a threshold, all the measurements corresponding to
the idle consumption between the iterations of the function
execution. As shown in Fig. 2, the threshold filters out the
transient and includes only the peaks corresponding to the
actual execution of the function.

Acquisition Window

16000

14000 -
Iteration

12000

~ e P

8000

Power (LW)

6000

4000
2000

14 7 10 13 16 19 22 25 28[31 38 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100103106109112115

Time (Samples)

Sleep Interval

Figure 2. Sampling current intensity: an example.

C. Analysis methodology

For each research question we derived a pair of null and
alternative hypotheses to test.
RQI:
HlO : Pwith < Pwithout

TABLE II
RESULTS OF POWER CONSUMPTION.

Smell name Mean Mean Diff. P-val Impact %
with w/o Means
smell smell (uW)
(W) (uW)
Dead Local Store 41241 41278 -37 1 -0.09
Return
Dead Local 40249 40205 44 <001 O.11
Store
Mutual 40758 40772 -14 1 -0.03
Exclusion OR
Non Short Cir- 41113 41043 70 <0.01 0.17
cuit
Parameter By 40967 40723 244 0 0.60
Value
Repeated Con- 41155 41126 29 <0.01 0.07
ditionals
Self Assignment 40952 40879 73 <0.01 0.18
Switch 40724 40756 -32 1 -0.08
Redundant
Assignment
Useless Control 41051 41142 91 1 -0.22
Flow

Hla : Pwith > Pwithout

where P is the power consumption of the function, with
and without the potential smell. If the refactored version of
the function consumes less than the function with the smell,
the null hypothesis is rejected in favor of the alternative one.
As a consequence we consider the pattern a Energy Code
Smell. The hypothesis is tested with the Mann-Whitney test,
given o = 0.05.

RQ2:
H2O : Twith < Twithout
H2a : Twith > T’without

where T is the execution time of the two functions. If the
smell has a negative impact on performance, the refactored
function will be faster and the null hypothesis is rejected.
In that case, we consider the pattern a Performance Smell.
In order to answer RQ2, we compare which Energy Code
Smells are also Performance Smells. We also use Mann-
Whitney and o = 0.05 to test the hypotheses.

At the end of the experiment each function has 50
measurements of execution time and about 25 millions of
power measures. Then, after filtering out values below the
idle threshold (8mW), we obtained about 8 millions values
for power measurement, on which we ran the analysis.

V. RESULTS

We report results on the power consumption and execution
time respectively in TABLE II and III. The two tables report
the name of the smell, the means and their difference for
both the dependent variables, the p-value of the Mann Whit-
ney test [5] and the difference in percentage of the power
consumption (or execution time) between the execution of
the code with the smell and the execution with the refactored
code.

TABLE III
RESULTS OF EXECUTION TIME.

Smell name Mean Mean Diff. P- Impact %
with w/o Means val
smell smell (ms)
(ms) (ms)
Dead Local Store 3288.76 3288.74 0.02 0.41 6.08e-04
Return
Dead Local Store 17707.34 17707.38 -0.04 0.66 -2.26e-04
Mutual 3540.76 3540.60 0.16 0.04 4.52e-03
Exclusion OR
Non Short Cir- 3288.74 3288.80 -0.06 0.76 -1.82e-03
cuit
Parameter By 3288.76 3288.74 0.02 0.41 6.08e-04
Value
Repeated Condi- 3288.80 3288.74 0.06 0.24 1.82e-03
tionals
Self Assignment 3288.66 3288.78 -0.12 0.90 -3.64¢-03
Switch 3540.58 3540.62 -0.04 0.65 -1.13e-03
Redundant
Assignment
Useless Control ~ 3288.80 3288.74 0.06 0.24 1.82e-03
Flow

We observe from TABLE II that all power consumptions
ranged from 40mW to about 42mW. Five code patterns over
nine have a p-value | 0.05 (in bold) and therefore the null
hypothesis is rejected for them. The code patterns are:

o DeadLocalStore

o NonShortCircuit

o ParameterByValue

o RepeatedConditionals
o SelfAssignment

Overall the saved power consumption is less than 1%.

The answer to RQ1 is: five code patterns (DeadLocal-
Store, NonShortCircuit, ParameterByValue, RepeatedCondi-
tionals, SelfAssignment) are Energy Code Smells, and their
impact is in the order of uW.

Focusing on performance, from TABLE III becomes evi-
dent that there is no difference in execution time. The null
hypothesis is rejected only for MutualExclusionOr, however
the magnitude order is p seconds. We also notice that
DeadLocalStores are about 5 times slower.

Thus, our answer to RQ2 is: Energy Code Smells are not
Performance Smells.

VI. DISCUSSION

We identified five smells which provoked a higher power
consumption of the Waspmote in the use cases prepared
for the experimentation. However, we observe that the
saved power is less than 1 %. A first motivation resides
in the implementation choices: the function pairs executed
only differ in a single instruction, and the operations are
done with primitive types (e.g., integer). The motivation
of such implementation was the exclusion of any possible
confounding factor in the analysis, but the drawback of such
a choice is a very small achievement in energy efficiency
improvements. Let us take dead stores as example: the
smell DeadLocalStore is implemented with an integer (we

save a value on a variable and immediately overwrites it
with another integer). Using a struct with several members
is totally different and might lead to a higher impact,
because the resulting compiled code requires the CPU to
produce more instructions and interact more intensively
with the memory. If increasing the complexity of the data
structure will result in still negligible power consumption
saving, the next step is to increase the logical complexity
of the function, i.e. comparing complete algorithms that are
functionally equivalent but differ in the implementation. A
further step is to move the focus towards the comparison
of functionally equivalent design choices. Understanding the
impact of Energy Code Smells over real power consumption
could also contribute to build more precise models of the
power consumption of software. As a matter of fact, it may
be possible to categorize software instructions beforehand
in terms of energy efficiency, then subsequently use this
information in order to predict the resulting energy efficiency
of a complete software product.

Yet another research direction that is suggested by this
first leap is: can the impact of Energy Code Smells be higher
in code that drives an hardware resource with higher energy
needs? For instance the impact on the code that handles
the GPS transmitter is expected to be very different from
the one used in this experiment, where the small functions
use only CPU and RAM, besides in a not intensive way.
The same investigation approaches can be applied to the
domain of execution time. As can be noticed from the
results, all the execution times are equal, exception given
for the DeadLocalStore function pairs. We have observed
that Energy Code Smells do not degrade the performances,
but we cannot generalize the findings for more complex
code structures and usage scenarios, with different hardware
resources involved (e.g, sensors).

VII. THREATS TO VALIDITY

In this section, we expose the threats to validity that might
affect our study.

As regards construct validity, our main threat regards
instrumentation. We carefully evaluated the precision of
our measures, comparing them with the specifications from
Waspmote manufacturers. During our experimentation, the
difference between actual and expected values was negligi-
ble and inside the specified ranges. As far as conclusion
threats are concerned, in order to increase the statistical
reliability of the results, we collected a relevant amount of
values (e.g., every function is looped 1 million times for
power consumption measurement resulting in 25 millions
of samples). Internal validity is represented by confounding
factors such as other processes running during execution.
However, the Waspmote does not have an operating system
and the only thread in execution during the tests is the
code loaded. As regards external validity, we do not aim
at generalizing our results to a family of embedded devices.

This study aims at assessing the existence of the Energy
Code Smells in a single context: other empirical validations
are necessary for other environments or devices.

VIII. RELATED WORK

We did not find in the literature similar approaches for
energy efficiency optmization. However, we found tech-
niques that rely on algorithmic and data optimizations.
The algorithmic optimization has a high potential, but it is
also a hard and time-consuming task, with no guaranteed
results. Data optimization is based upon the efficient use of
the system architecture. For example, as regards embedded
systems, often software libraries are used for emulating
floating-point hardware components. Those libraries do not
take into account the architecture of a specific system, thus
their usage often leads to a high power consumption and
low performance. Simuni¢ et al. [6] show that by removing
those libraries and optimizing the source code, it is possible
to significantly reduce power consumption (up to 77%).

In terms of benchmarks, SPECpower [7] is an initiative to
extend existing SPEC benchmarks to power and energy mea-
surement. SPECpower ssj2008 reports the energy efficiency
in terms of overall ssj_ops/watt. This metric represents the
sum of the performance measured at each target load level
(in ssj_ops) divided by the sum of the average power (in
watts) at each target load including active idle.

In battery-powered systems, it is not enough to analyze
algorithms based only on time and space complexity. Several
research proposed energy aware algorithms for specific func-
tionalities, such as supporting randomness [8] or focusing on
cryptographic [9].

Previous work by Bunse et al. [10] addresses the re-
lationship between energy and performance optimizations,
which is one of the research questions of the present work.
Authors analyzed different implementations of several sort-
ing algorithms, showing that implementations optimized for
energy performed differently with respect to those optimized
for performance. This findings holds in our work, since we
found that Energy Code Smells are not Performance Smells.

IX. CONCLUSIONS

This is an exploratory study: we defined for the first time
the concept of Energy Code Smells and we performed a
first validation to understand not only the impact, but also
the boundaries of the concept. We identified some Energy
Code Smells starting from code patterns implemented by
two common Automatic Static Analysis tools - namely,
CppCheck and FindBugs. We performed an experiment,
on an embedded system, in order to assess the energetic
impact of those code patterns and determine whether Energy
Code Smells are also performance smells. Our experimental
results showed that some of the code patterns actually have
an impact over power consumption. This impact, however,
is in the magnitude order of V. Our future research works

will be devoted to analyzing more complex data structures
and using hardware resources which could increase this
impact with respect to the overall power consumption. As
regards time analysis, only one pattern had an actual impact
over execution time (a few p seconds), and it is not identified
as a Energy Code Smell. Thus, we conclude that Energy
Code Smells are not Performance Smells. Results suggest
that the target and applicability of Energy Code Smells
should be refined with further investigations. The lessons
learned in this exploratory study let us identify several
research threads that the research community might address,
such as the identification of Energy Code Smells that are
higher-level constructs with more complex data structures,
the identification of Green Design Smells and the use of
more complex systems as test beds. Finally, the experimental
results that will be collected might be also used to build more
precise models of the power consumption of software.

REFERENCES

[1] G. Procaccianti, A. Vetro’, L. Ardito, and M. Morisio, “Pro-
filing power consumption on desktop computer systems,” in
Information and Communication on Technology for the Fight
against Global Warming, ser. Lecture Notes in Computer
Science, D. Kranzlmiiller and A. Toja, Eds. Springer Berlin
/ Heidelberg, 2011, vol. 6868, pp. 110-123.

[2] A. Vetro’, L. Ardito, M. Morisio, and G. Procaccianti, “Mon-
itoring it power consumption in a research center: Seven
facts,” in Proceedings of The First International Conference
on Smart Grids, Green Communications and IT Energy-aware
Technologies, ser. ENERGY 2011, 2011, pp. 64-69.

[3] M. Fowler and K. Beck, Refactoring: improving the design
of existing code. Addison-Wesley Professional, 1999.

[4] A. Vetro’, L. Ardito, G. Procaccianti, and M. Morisio,
“Energy code smells,” January 2013, retrieved January 2013.
[Online]. Available: http://softeng.polito.it/greensmells/

[5] L. Sachs, Applied Statistics—A Handbook of Techniques, S. S.
in Statistics, Ed. Springer-Verlag, 1984.

[6] T. §imunié, L. Benini, G. De Micheli, and M. Hans, “Source
code optimization and profiling of energy consumption in
embedded systems,” in Proceedings of the 13th international
symposium on System synthesis. IEEE Computer Society,
2000, pp. 193-198.

[7] K.-D. Lange, “Identitfying shades of green: The specpower
benchmarks,” Computer, vol. 42, no. 3, pp. 95-97, Mar. 2009.
[Online]. Available: http://dx.doi.org/10.1109/MC.2009.84

[8] R. Jain, D. Molnar, and Z. Ramzan, “Towards understanding
algorithmic factors affecting energy consumption: switching
complexity, randomness, and preliminary experiments,” in
Proceedings of the 2005 joint workshop on Foundations of
mobile computing. ACM, 2005, pp. 70-79.

[9] N. Potlapally, S. Ravi, A. Raghunathan, and N. Jha, “A study
of the energy consumption characteristics of cryptographic
algorithms and security protocols,” Mobile Computing, IEEE
Transactions on, vol. 5, no. 2, pp. 128-143, 2006.

[10] C. Bunse, H. Hopfner, E. Mansour, and S. Roychoudhury,
“Exploring the energy consumption of data sorting algorithms
in embedded and mobile environments,” in Mobile Data Man-
agement: Systems, Services and Middleware, 2009. MDM’09.
Tenth International Conference on. IEEE, 2009, pp. 600-
607.

