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Abstract—This paper introduces a new algorithm for passivity
enforcement of linear lumped macromodels in scattering form.
As typical in most state of the art passivity enforcement methods,
we start with an initial non-passive macromodel obtained by a
Vector Fitting process, and we perturb its parameters to make it
passive. The proposed scheme is based on a convex formulation
of both passivity constraints and objective function for accuracy
preservation, thus allowing a formal proof of convergence to the
unique optimal passive macromodel. This is a distinctive feature
that differentiates the new scheme with respect to most state of
the art methods, which either do not guarantee convergence or
are not able to provide the most accurate solution. The presented
algorithm can thus be safely used for those cases for which
existing techniques fail. We illustrate the advantages of proposed
method on a few benchmarks.

I. INTRODUCTION

Since the introduction of the Vector Fitting (VF) scheme [1],
the generation of linear lumped macromodels for electrical
interconnects has become a standard practice in Signal and
Power Integrity analysis. Starting from tabulated frequency
samples of the scattering matrix coming from measurement
or full-wave analysis, the VF algorithm produces accurate
and guaranteed stable rational approximations of the system
transfer function, which can in turn be synthesized into equiv-
alent circuits or equation-based state-space macromodels for
fast system-level simulation and design optimization. Recent
developments essentially resolved the complexity issues due
to large dynamic order and/or port counts required by mod-
ern designs, through reformulation [2], parallelization [3] or
compression [4].

Despite the reliability and efficiency of recent VF imple-
mentations [2]- [4], the obtained macromodels are generally
not passive. Since passivity is a fundamental requirement that
guarantees numerically stable system-level simulations [5],
any macromodel obtained by VF should be subject to some
postprocessing in order to enforce its passivity.

The passivity of scattering macromodels is implied by the
bounded realness of the transfer matrix, which in general
terms ensures that the energy gain of the system is less than
unity. Various formulations of this constraint are available
and have been used for passivity enforcement. If a state-
space realization is available for the model, the Linear Matrix
Inequality (LMI) provided by the Bounded Real Lemma
(BRL) can be shown to be equivalent to bounded realness [6],

[7], and various passivity enforcement schemes based on BRL
constraints have been proposed, see e.g. [8]. Main advantage
is the convexity of the corresponding formulation, which
ensures convergence to the optimal solution. Unfortunately,
the scalability of these schemes to medium and large-scale
macromodels is quite limited due to excessive CPU and
especially memory requirements.

For the above reasons, heuristic and sub-optimal but more
efficient schemes have been proposed, based on iterative per-
turbation of Hamiltonian spectra [9], [10], of singular values of
the transfer function at finite frequencies [10], [11], of residue
matrices [12], and even of macromodel poles [13], [14]. All
such formulations are not guaranteed to converge to a passive
macromodel with acceptable accuracy, although in many ap-
plications they have been shown to work generally well. Some
cases exist, however, where these methods fail [15].

This paper proposes a new passivity enforcement scheme
that guarantees convergence to the passive macromodel with
optimal accuracy, and that achieves its result by using limited
computing resources. A first attempt in this direction was doc-
umented in [15], where a convex optimization scheme based
on H∞ norm minimization through a projected subgradient
formulation was presented. The results in [15] demonstrated
the excellent potential of this new approach, which however in
the formulation of [15] required a large number of iterations
to converge. In this paper, we continue along this track by
proposing a new method based on a different and simpler
alternate subgradient iteration, which is able to speedup con-
vergence significantly. Several numerical examples illustrate
the advantages of the new scheme.

II. PROBLEM STATEMENT

Let us consider a strictly stable p-port macromodel in state-
space form

ẇ(t) = Aw(t) + Bu(t)
y(t) = Cw(t) + Du(t) ,

(1)

where vector w ∈ Rn collects the internal state variables and
A ∈ Rn,n,B ∈ Rn,p,C ∈ Rp,n,D ∈ Rp,p are obtained as a
result of a fitting process [1]- [4]. The input and output vectors
u and y collect the p scattering incident and reflected waves
at the device ports. Consequently,

H(s) = C(sI −A)−1B + D (2)



corresponds to the scattering matrix of the model evaluated at
the complex frequency s.

We define the following perturbed macromodel through its
transfer matrix as

H(x, s) = (C + X)(sI −A)−1B + D , (3)

where X ∈ Rp,n and its vectorized form x = vec(X) ∈ Rnp,1

parameterize a perturbation of the model, with the “vec”
operator stacking the columns of its matrix argument in a
single column. Clearly, when x = 0 we have no perturbation
and we recover the nominal macromodel (2). For any fixed
value x, we define the following scalar-valued function

h(x) = sup
ω∈R

σ1(H(x, jω)) , (4)

where σ1 denotes the maximum singular value of its matrix
argument. The function h(x) is usually denoted as the H∞
norm of (3). The macromodel defined by (3) is passive if
and only if h(x) ≤ 1. In the following, we will consider
that the nominal macromodel is not passive, h(0) > 1, and
we state our passivity enforcement problem as finding some
perturbation vector x∗ such that h(x∗) ≤ 1.

The solution x∗ is obviously not unique. In fact, each of
the various passivity enforcement schemes available in the
literature will provide a different answer. One can however
measure the “goodness” of such solutions by defining some
accuracy metric that is related to the amount of perturbation
through a suitable norm ‖x‖. Good solutions are characterized
by small perturbation amounts. The best solution is achieved
when this perturbation is minimized.

For practical application, it is usually preferred to adopt the
weighted norm [9]

f(x) = tr{XWXT } , (5)

where “tr” denotes the matrix trace and W = W T > 0 is the
controllability gramian of the nominal macromodel, computed
by solving the Lyapunov equation

AW + WAT + BBT = 0 . (6)

It can be shown that (5) equals the cumulative energy
(squared L2 norm) of the induced perturbation in the model
transfer matrix ∆(x, s) = H(x, s)−H(0, s),

f(x) =
1

2π

∫ ∞
−∞

tr
{
∆(x, jω)∆(x, jω)H

}
dω . (7)

With the above notation defined, we formulate our optimal
passivity enforcement scheme as the following optimization
problem

x∗ = arg min
x
f(x), s.t. h(x) ≤ 1 , (8)

where the minimal perturbation condition is set as an objective
function and the passivity condition appears as an inequality
constraint.
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Fig. 1. Alternate subgradient algorithm. The level sets of h(x) and f(x) are
depicted with solid and dashed gray lines, respectively. The region h(x) ≤ 1
is colored in red. The iteration steps in a direction in ∂h(x) and ∂f(x) are
depicted with solid and dashed arrows, respectively.

III. FORMULATION

Both the objective f(x) and the passivity constraint h(x)
are convex functions of the decision variables x. This follows
as a direct consequence of the fact that f(x) and h(x) are
norms [17]. Therefore, the feasible set

X = {x : h(x) ≤ 1} (9)

collecting all parameter configurations for which the macro-
model is passive is a convex set. Problem (8) can thus be
interpreted as the minimization of a convex function over a
convex domain. It is well known that this problem admits a
unique solution x∗, which can be found numerically up to an
arbitrary precision in a finite number of steps using the proper
algorithm. This fact was not recognized in many works on
passivity enforcement, where the same problem was restated
or approximated in non convex forms for the sake of simplicity
and/or numerical efficiency. It is however shown in [15] that
these state of the art methods may fail in some cases, since
their convergence cannot be assessed.

Our approach to solve (8) is actually very simple. Let us
start by assuming that both f(x) and h(x) are smooth and
differentiable functions of x. We will see shortly that this is
not true for h(x), but we will release this assumption later.
Figure 1 provides a graphical illustration of the main idea for
x ∈ R2. The solid lines represent the contour lines of h(x),
with the feasible set (9) highlighted in light red. The dashed
lines are instead the contour lines of f(x).

Suppose we start with an initial point x0 outside X . We
need to decrease the value of h(x) to move the solution into
the feasible set. To this end, we pick a descent direction −g(0)

and we compute a new point x1 = x0 − α0g
(0), where α0

is a suitable step size. The direction g(0) that guarantees the
steepest descent (if h(x) is differentiable) corresponds to the
gradient ∇h(x).

In the second iteration, we assume to start from x1 ∈ X . We
need to stay in the feasible set, but we need to minimize f(x).
Therefore, pick a descent direction −g(1), possibly coincident



with the gradient g(1) = ∇f(x) to follow the steepest descent
path, and we update the solution as x2 = x1−α1g

(1), where
α1 is again a suitable step size. Then, we iterate the algorithm,
which can be stated at the k-th iteration as

xk+1 = xk − αkg
(k) . (10)

The direction of each step is defined according to

g(k) =

{
g
(k)
f ∈ ∂f(x(k)) if h(x(k)) ≤ 1,

g
(k)
h ∈ ∂h(x(k)) if h(x(k)) > 1,

(11)

where operator ∂ denotes the differential which, in the smooth
case, coincides with the unique gradient.

A. Technical considerations

There are two technical complications in the above for-
mulation, which need to be analyzed with care. The first
problem is related to the differentiability of h(x). It turns
out that h(x) is convex but non-smooth, as shown in [15],
[16]. In particular, any parameter configuration x̌ at which
the supremum in (4) is attained at more than one frequency
point {ω̄i, 1 ≤ i ≤ q} and/or by a maximum singular value
of higher multiplicity `i, corresponds to a point where h(x) is
not differentiable. This makes the definition of the descent
direction g(k) ill-posed, since the local gradient cannot be
defined. Fortunately, there exists a theoretical tool providing
a generalization of the gradient to the (convex) non-smooth
case (see [18], [19] for details). Denoting the singular value
decomposition at frequency ω̄i

H(x, jω̄i) = U (i)Σ(i)[V (i)]H (12)

and collecting the first `i columns of U (i) and V (i) as U
(i)
1

and V
(i)
1 , where `i is the multiplicity of the largest singular

value σ(i)
1 , we have the following characterization of the so-

called subdifferential

∂h(x) =
{

vec
( q∑

i=1

<{Ψ(jω̄i)V
(i)
1 Y iU

(i)H
1 }>

)}
, (13)

where Ψ(jω) = (jωI − A)−1B and where the q matrices
Y i ∈ R`i,`i are such that Y i = Y >i ≥ 0 and

∑q
i=1 TrY i =

1. This subdifferential is a convex set with dimension
∑q

i=1 `i.
A generic element g ∈ ∂h(x) is denoted as subgradient, hence
the denomination of proposed scheme as alternate subgradient
iteration. A remarkable fact of the proposed formulation, is
that we can pick any arbitrary subgradient as g

(k)
h ∈ ∂h(xk)

in (11), and we are still able to prove [16] the convergence of
the iterations to the optimal solution x∗.

A second fundamental issue involves the choice of the step
size αk in (10). We follow here an adaptive step size selection
based on [16]

αk =
−Gkζk−1 +

√
G2

kζ
2
k−1 +R2 + ξk−1

Gk
(14)

TABLE I
NUMBER OF ITERATIONS REQUIRED BY DIFFERENT PASSIVITY

ENFORCEMENT SCHEMES

Case Ports Order Proposed Proj [15] Ham [9]
1 4 272 71 2202 6
2 2 60 132 2435 –
3 4 136 76 1856 5
4 4 88 84 1781 4

TABLE II
RELATIVE PERTURBATION (×10−3) OBTAINED WITH DIFFERENT

PASSIVITY ENFORCEMENT SCHEMES.

Case Ports Order Proposed Proj [15] Ham [9]
1 4 272 0.123 0.131 0.216
2 2 60 2.502 2.703 –
3 4 136 0.028 0.027 0.050
4 4 88 0.401 0.413 0.730

where G2
k = ‖g(k)

f ‖2 + ‖g(k)
h ‖2 and

ξk−1 =

k−1∑
i=1

‖g(i)‖2α2
i , ζk−1 =

k−1∑
i=1

αi , (15)

with ξ0 = ζ0 = 0, and where R is any constant such that
‖x0−x∗‖ ≤ R. This constant R must be known a priori and
provides an estimate of the amount of perturbation that will be
required to reach a passive macromodel. In our particular case,
a conservative choice is R = ‖C‖F , where ‖ · ‖F denotes the
Frobenius norm. With the above strategy, an explicit bound of
the distance between the optimum at iteration k and the global
optimum f(x∗) is available as

min
i=1,...,k

f(xi)− f(x∗) ≤
R2 +

∑k
i=1G

2
iα

2
i

2
∑k

i=1 αi

. (16)

IV. NUMERICAL EXAMPLES AND DISCUSSION

We illustrate the performance of proposed scheme on four
simple test cases corresponding to various type of intercon-
nects (cases 1,3,4) and a SAW filter (case 2). Given an initial
non-passive macromodel obtained by VF, we applied three
different passivity enforcement schemes based on Hamiltonian
eigenvalue perturbation [9], convex optimization via projected
subgradient iterations [15], and proposed alternate subgradient
iterations. The number of required iterations and the corre-
sponding perturbation amount (relative L2 norm) is reported
in Table I and II, respectively.

We see that the proposed scheme outperforms the prelim-
inary convex formulation of [15], which is characterized by
similar theoretical properties. However, the number of required
iterations is always about one order of magnitude larger than
the Hamiltonian perturbation scheme [9]. The latter however
fails to converge for case 2 and provides a worse accuracy than
proposed technique for all cases. The runtime per iteration is
approximately the same for each scheme, ranging from 0.4 to
1.0 seconds, depending on the case.

A few remarks are in order. With the proposed implemen-
tation, we are able to explicitly prove the following facts:
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Fig. 2. Evolution of the objective function f(x(k)) through iterations.

• A unique passive macromodel M∗ characterized by op-
timal accuracy exists.

• The macromodel Mk obtained at the k-th iteration devi-
ates from the best macromodelM∗ by some amount that
is fully under control in the considered norm f(x). More
precisely, the lower bound (16) provides a quantitative
measure of “how far” Mk is still from M∗.

• The accuracy of Mk continuously improves as k in-
creases through iterations, as depicted in Fig.2.

The above facts, which are supported by the presented numer-
ical results, can be leveraged to combine the proposed method
with any existing “standard” suboptimal passivity enforcement
scheme based on Hamiltonian eigenvalue or direct singular
value perturbation, according to the following guidelines.

1) Since the proposed scheme requires generally more
iterations than “standard” techniques, the latter should
be attempted in first place. If passivity enforcement
succeeds and the accuracy is satisfactory, then there is
no need to further proceed with convex optimization or
refinement.

2) In case “standard” passivity enforcement fails, the pro-
posed alternate subgradient scheme should be used to
obtain a passive macromodel, stopping the iterations as
soon as the accuracy is satisfactory.

3) In case “standard” passivity enforcement succeeds but
the resulting passive macromodel is not sufficiently
accurate, one can use the proposed alternate subgradient
iteration to iteratively refine the passive macromodel
until the desired accuracy is met.

We remark that in the above scenarios 2) and 3), the only
actions before the availability of the proposed convex algo-
rithm were either to give up with macromodeling, or to use
the inaccurate macromodel with possibly unreliable results, or
to regenerate the macromodel by tuning any available control
parameter of the adopted algorithm. The key point is that
the latter trial and error process has no guarantee of success
when the underlying passivity enforcement approach is based
on a non-convex formulation. Therefore, the proposed scheme
provides at least some good solution, at the cost of a possibly
larger number of iterations and runtime.
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