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Abstract 

Limit Analysis provides a conceptually simple and robust method to estimate the safety of structures 

and has been long applied to the analysis of the ultimate collapse state of two-dimensional masonry 

structures or structural elements. In revolving symmetric domes, the three-dimensional problem can be 

reduced to the two-dimensional case under appropriate hypotheses.  The Vicoforte dome is the largest 

elliptical dome in the world, and its complex geometry makes this kind of analysis not straightforward. 

Starting from some basic assumptions, a method for analyzing the three-dimensional elliptical 

geometry and understand the behavior at collapse of the drum-dome system using limit analysis is 
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proposed. The three dimensional collapse mechanism is found and the system behavior including the 

presence of tension rings at different levels is interpreted. The results are compared against a nonlinear 

finite element model. 

Keywords: Three-dimensional Limit Analysis, elliptical masonry dome, tension ring, kinematic 

theorem, virtual work.  

1 INTRODUCTION	
  
The dome of the Sanctuary of Vicoforte is, with its 38.15 m of major axis and 24.80 m of minor axis, 

the biggest elliptical dome in the world, Figure 1, Figure 2. Erected in 1732, the Sanctuary was 

affected by differential settlements of the foundation since the beginning of its construction, due to the 

poor quality of the soil at the site. This led to several and significant structural problems to the drum-

dome system, exhibited by an extended network of cracks along the meridian directions.  

For this reason, the Italian Ministry of Cultural Heritage financed in 1975 some studies on the 

structure and the foundations (mainly focused in investigating the nature of the supporting soil), a 

topographic survey and investigations on the masonry and crack network. These analyses were 

performed by the company Rodio and the Engineers Bernasconi and Marchini (Bernasconi and 

Marchini, 1979), while Politecnico di Torino determined by experimental tests the physical and 

mechanical properties of the masonry. More recent studies and the problem of modeling and 

monitoring the Vicoforte dome can be found in (Chiorino et al., 2006, 2008).  

The potential of the application of plastic limit analysis to the estimation of the safety of masonry 

structures is well known. Its principles have been established by Kooharian (Kooharian, 1953) and 

Heyman (Heyman, 1966, 1988) in their pioneering works, although first traces and applications of the 

method are far older and are related to the restoration of St. Peter’s dome, as reported in the works by 

Hooke (Hooke, 1675) and Poleni (Poleni, 1748). Recent review papers on the method and on new 

advanced modeling techniques are (Gilbert, 2007; Huerta, 2008; Roca et al., 2010). 
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The application of limit analysis to masonry considers the material as rigid, with unlimited strength in 

compression and without tensile strength. Consequently, the stability is the major relevant criterion to 

analyze the ultimate state of collapse, in the sense of the geometrical factor of safety concept 

introduced in (Heyman, 1988).  

To present the methodology used in this paper, we recall that the application of limit analysis theorems 

to masonry is based on the static or kinematic approaches (like in plasticity). The static approach is 

based on verifying that the geometry of the structure is able, with a certain safety margin, to carry the 

loads to the ground without tensile stresses in the structure, i.e. on finding a thrust line which stays 

everywhere “sufficiently” inside the masonry structural elements, (Heyman, 1988).  For a masonry 

arch, the static (safe) theorem guarantees that, if it is possible to find a thrust line in equilibrium with 

external load and self weight internal to the cross sections of the arch, the arch is safe. In masonry 

domes, the problem can be treated in the same quasi-two-dimension case, if we admit the development 

of cracks in the direction of the meridians and the consequent subdivision in “orange-slice” arches. 

This method was used by Poleni (Poleni, 1748) to assess the safety of St. Peter dome in Rome and 

plan the subsequent restoration works. The other approach is through the kinematic or upper bound 

theorem and is based on finding the collapse mechanism corresponding to the minimum load 

multiplier and associated to a positive work of the loads. Since in many cases self-weight is the most 

important loadcase in masonry structures, once a mechanism is fixed, the weights (in general the 

loads) are subdivided in “pushing” (i.e. producing positive virtual work in the mechanism) and 

“resisting” (i.e. producing negative virtual work in the mechanism) and the absolute value ratio 

between positive and negative work is assumed as a safety coefficient for the structure. Moreover, 

when the kinematic theorem is used, an upper bound of the safety coefficient for the structure is 

obtained. It will coincide with the true safety factor only when the assumed collapse mechanism 

coincides with the real one. Therefore, it is important to assume appropriately the collapse mechanism 

and vary the position of the mechanism hinges so that the minimum safety coefficient is found.   



3D LIMIT ANALYSIS OF VICOFORTE ELLIPTICAL DOME  

 

4 
 

The tensile contribution of circumferential steel ties, often used as reinforcement in masonry domes, 

can be taken into account by adding their plastic dissipation work, caused by circumferential 

deformation of the rings in the development of the mechanism (Como, 1997). This type of approach 

has been used in the limit analysis of the dome of Vicoforte (Reffo, 2002; Chiorino et al., 2006), 

extending the method used for domes of revolution to the elliptical dome of Vicoforte by considering 

the two extreme cases of slices cut in correspondence with the major and minor axes.   

However, the elliptical dome of Vicoforte, can be conceptually divided into infinite “orange-slice” 

arches, each one of different geometry and with its own ideal collapse mechanism and safety 

coefficient. Moreover, all these ideal arches are mutually constrained by the circumferential ties, i.e. 

bound together in a global three dimensional mechanism. Furthermore, the circumferential ties, called 

in the following tension rings, do not necessarily have the same stress levels because, being positioned 

at different heights, they have different radial displacement, strain and stress level in the mechanism. 

Finally, depending on tie-masonry bond strength, the stress state may vary from point to point in the 

ring. 

In this paper, a simple method is introduced for analyzing the three dimensional collapse mechanism 

of the elliptical dome and to estimate the global safety coefficient. The analysis will include the 

influence of the circumferential ties in different hypotheses. The paper is structured as follows: in 

Section 2, the geometry of the dome is analyzed, its discretization is defined and the general form of 

the dissipation work at the tension rings is given. Section 3 presents the stability analyses for the single 

slices and the global 3D mechanism with and without the contribution of the tension rings. Section 4 

extends the analysis to the case of rings with limited maximum elongation to assess the effectiveness 

of the tension rings position and cross section area. Finally, Section 5 compares the results of the 

proposed method to the results of a much more sophisticated finite element model, published in 

(Calderini et al., 2006; Chiorino et al., 2008), and here adapted to evaluate the limit multiplier of the 

self-weight. 
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2 KINEMATIC	
  3D	
  LIMIT	
  ANALYSIS	
  

2.1 The	
  geometric	
  model	
  

The application of limit analysis requires, as pointed out in the previous Section, identifying the proper 

collapse mechanism by dividing the dome slices into rigid blocks whose weight produces virtual work 

in the mechanism. As the hinges of the mechanism are to be varied to determine the minimum safety 

coefficient, an important problem is how to evaluate the weight and center of mass of the rigid blocks 

in which each slice is subdivided up to a reasonable approximation. In general, this evaluation can be 

not straightforward due to the architectonical features of the dome. 

To this end, a simplified solid model of the drum-dome has been defined, as an accurate and detailed 

model is unnecessary for the purpose of the global stability analysis addressed in the present work, 

Figure 3. In fact, the stability assessment of the dome involves the use of loads of large order of 

magnitude given by the self weights of the ideal rigid blocks. A complex geometric reconstruction 

would not improve significantly the approximation of the numeric computation of the minimum safety 

coefficient. Therefore, as the observed state of the structure suggests, the dome was divided into 

sixteen slices and a collapse mechanism was associated to each one, idealized with a cross section 

passing through its centerline. Because of symmetry, there are only four slices to be analyzed, Figure 

4. For each slice, the kinematic arbitrary parameter of the mechanism is the lantern virtual vertical 

displacement 𝜂, that is assumed equal for all slices. 

The typical mechanism of collapse of a drum-dome half arch is characterized by three hinges, placed 

alternatively at the extrados and at the intrados, Figure 5. Such subdivision identifies the rigid blocks 

in relative rotation to each other. The crack network and all the literature on Vicoforte dome suggest 

that the potential failure mechanism involves the entire drum-dome system. We assume that, for 

symmetry reasons, the skylight lantern has only vertical translation, so it can be considered as a weight 

applied at the top of the slices. The hinge at the drum base and the one at the top of the dome can be 

assumed as fixed, whereas the hinge at intrados (C2) is variable, and its position will be determined to 

find the most critical mechanism, i.e. the mechanism for which the safety factor is minimum. In 
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between the hinges, the structure is assumed as one rigid block. Each block is characterized by its 

volume and centroid and let α be the angle of the intrados hinge position. The volume and centroid 

position has been geometrically computed at several discrete values of α, Figure 6. Then, for every 

slice, a volume function of α was defined by polynomial data approximation. These functions 

represent the volume of each slice under the ray with angle α. By computing the difference to the total 

volume of the slice, the volume function for the complementary part (between the uppermost hinge 

and the center C2) is immediately obtained. Likewise, polynomial data approximations for the first 

moments of area of the rigid blocks above and below the center C2 have been defined as well. These 

polynomial functions allow to determine the center of mass of the two rigid blocks above and below 

the variable hinge as a function of its position, given by the angle α. All the relevant polynomial 

functions are reported in Tables 1,2,3. Assuming a unit weight for the masonry equal to 17.0 kN/m3 

(determined by experimental testing at the Politecnico di Torino for the analyses of Bernasconi and 

Marchini in 1976) and evaluating the mechanism virtual displacements at the centroids, the virtual 

works of the rigid blocks can be immediately computed and the ratio  𝑊!/𝑊!, between resisting (𝑊!) 

and pushing (𝑊!) work, is evaluated as function of α for each dome slice. Of course, a distinct angle α 

for each slice has been considered. In fact, the correct position of the intermediate hinge may vary in 

each slice, as the curvature of the slices differs. Then, an iterative procedure has been developed to 

find the minimum ratio between resisting and pushing work and, consequently, the position of the 

intermediate hinge in each slice of the dome. The details of the simulations will be given in Section 3. 

2.2 The	
  work	
  of	
  the	
  tension	
  rings	
  

The stability of a dome is usually ensured by placing tension rings at different heights. In the dome of 

Vicoforte three original iron rings are present. With reference to Figure 7,  rings 1 and 2 have a cross 

section area of 5600 mm2, ring 3 has a cross section area of 2750 mm! and the iron yield strength 𝜎!, 

in a rigid plastic model, can be assumed equal to 167 MPa (Chiorino et al., 2006; Reffo, 2002).  
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The contribution to the stability given by the presence of the original iron rings is then considered. Let 

𝑅 be the radius of curvature and 𝛿! the radial displacement at a point, then the consequent circular 

strain is given by 

   𝜀! = 𝛿! 𝑅   (EQ1)  

where 𝜙 is the polar angle spanning the horizontal plane. Similarly to the case of circular domes 

(Como, 1997), we can evaluate the tension ring resisting plastic work by integration in between the 

two angles 𝜙! and 𝜙! subtending a slice: 

 𝑊! =   𝐴! 𝜎!𝜀!𝑅  d𝜙
!!
!!

= 𝐴!𝜎! 𝛿!   d𝜙
!!
!!

 (EQ2)  

Let Δ𝜙 = 𝜙! − 𝜙!. Assuming a constant radial displacement 𝛿! at each point of the slice it is: 

   𝑊! = 𝜎!𝐴!Δ𝜙  𝛿!    (EQ3)  

From the kinematics of the slice, Figure 5, the radial displacement   𝛿! is immediately determined as 

the horizontal displacement at the height where the tension ring is positioned. Therefore, the resisting 

work of each tension ring can be calculated as the sum of the work at each slice and the total resisting 

work as the sum of the work at each tension ring. 

3 THE	
  STABILITY	
  COMPUTATION	
  OF	
  THE	
  DOME	
  

3.1 Stability	
  of	
  the	
  dome	
  without	
  tension	
  rings	
  

We imagine in this case that each dome slice behaves independently, with its own geometry. For each 

slice the intermediate hinge position is determined by minimizing the ratio between the slice resisting 

and pushing works. Table 4 lists the obtained results both in term of hinge position (angle 𝛼, Figure 6) 

and as resisting/pushing work ratio. The most critical part of the dome is slice A with a safety 

coefficient 𝑊!/𝑊! Slice  A
= 0.79. This slice is at the maximum dome diameter, Figure 4. In Figure 

8(a)  the work ratio in slice A is plotted as function of the hinge position 𝛼. It shows an unique 
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minimum at α	
  = 0.6226 radians, which corresponds to 35°38’. The determined position is therefore a 

global minimum for the work ratio. 

From the results reported in Table 4 it can be observed that the safety coefficient varies significantly 

from slice to slice and in two slices (A and D) the equilibrium of the dome without tension rings is 

impossible. Of course, slices B and C benefit from the presence of the buttresses, so that their safety 

coefficient is much higher. 

In the above computation the minimization of the ratio 𝑊!/𝑊! has been done independently for each 

slice. On the other hand, even if tension rings are assumed not to be present, it can be imagined that 

the more stable slices sustain somehow the adjacent unstable ones or other load paths are created. This 

can be approximated by adding the contribution of each slice to 𝑊! and 𝑊!, obtaining a work ratio 

function of four variables to be minimized. The value of the variables at the solution will give the new 

position of the mechanism hinges in this hypothesis. These are reported in Table 5 and the global 

safety coefficient becomes  

 !!  
!! !"#$

= 1.27   (EQ4)  

Therefore, with this assumption the equilibrium of the dome is possible, although the safety coefficient 

is not very high and the less stable parts, especially slice A, may determine collapse.  

It is interesting to observe how the hinge positions vary when the dome is considered as an unique 

system instead of being analyzed by single slices. In single slice analysis, the more stable slices show  

a higher position of the intermediate hinge (compared to the least stable slices). When the global 

mechanism is considered, the hinge position of the unstable slices is raised, giving a higher overall 

stability. 

3.2 Stability	
  of	
  the	
  dome	
  including	
  tension	
  rings	
  

In this Section, the stability of the dome is analyzed considering the contribution of the tension rings 

both in the case of independent slices and in the case of a global mechanism. Here, the usual 
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hypothesis of complete plasticization of the rings will be adopted, so that each point of the rings will 

be subjected to a tensile stress equal to the yield strength 𝜎! and the relevant resisting work in the 

collapse mechanism is taken into account. No upper limit to ring elongation will be considered. This 

hypothesis will be removed in Section 4.  

In Table 6, each slice mechanism is considered as independent and the intermediate hinge positions 

have been determined by minimizing the ratios between the resisting and pushing work of each slice. 

All the slices of the dome present high 𝑊!/𝑊! ratios and the intermediate hinge positions are now 

higher, their angles being in between 42° and 47°.  

When all the slices are considered part of a global mechanism, so that the global ratio of resisting to 

pushing work is minimized, the safety coefficient is found to be: 

 !!  
!! !"#$

= 3.03 (EQ5)  

In Table 7, the results for the intermediate hinge positions in this case are reported. The global static 

stability of the dome in this hypothesis is high. This hypothesis is the closest to the real situation 

provided that all tension rings can yield simultaneously. This hypothesis will be removed in the next 

Section introducing the steel limit tensile strain. 

Compared to the solution of Table 5 (dome without tension rings), the presence of the rings raises the 

intermediate hinge positions. This can be immediately observed comparing Figure 8(a) and (b), where 

the work ratio is plotted against the hinge position for the slice A without (a) and with (b) tension rings 

contribution, showing a shift of the minimum point toward higher angles. 

4 TENSION	
  RINGS	
  WITH	
  LIMITED	
  ELONGATION	
  

4.1 Limit	
  analysis	
  and	
  the	
  maximum	
  deformation	
  of	
  the	
  tension	
  rings	
  

Limit analysis is based on the hypothesis of perfectly plastic materials, i.e. no upper bound to plastic 

deformation is introduced, and this simplification is acceptable in many engineering problems and 
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applications to metal structures or structural components. The translation of this theory to masonry and 

block structures is nowadays standard practice and limit analysis plays a major role in the assessment 

of existing masonry and monumental buildings. However, especially for tension rings in domes, the 

hypothesis that for the assumed mechanism plasticization can be complete at all points is not 

conservative and may be incorrect. In fact, some observations concerning the plastic dissipation work 

of the tension rings are necessary to avoid overestimation of their resisting work. Note that, as the 

tension rings are positioned at different heights, they will be subjected to different axial strains 

𝜀! = 𝛿! 𝑅 depending on the different radial displacement and curvature radius of each tension ring. 

Let us introduce the hypothesis that the tension rings have an elastic-plastic constitutive law with 

limited tensile elongation. From literature data, the steel yielding stress 𝜎! is 167 MPa (Chiorino et al., 

2006; Reffo, 2002; Bussell, 1997), and the elastic modulus E can be assumed equal to 200 GPa. 

Consequently, the yield strain is 𝜀! =
!!
!
= 8 ∙ 10!! while the elongation at failure 𝜀! of wrought iron 

can be given a conservative value of 7% (Bussell, 1997), i.e. 𝜀! = 7 ∙ 10!!. 

Denote with 𝜀! the strain at the 𝑖!! tension ring 𝑖 = 1… 3  and let 𝜀!"# = max 𝜀!, 𝜀!, 𝜀! ,  

𝜀!"# = min 𝜀!, 𝜀!, 𝜀! . Then, the three tension rings can exhibit simultaneously plastic dissipation 

work if the difference of the maximum to the minimum strain is less than the extension of the plastic 

plateau, i.e. if  𝜀!"# − 𝜀!"#   ≤    𝜀! − 𝜀!. To better explain this concept, assume, without loss of 

generality, that 𝜀! < 𝜀! < 𝜀! and that the kinematic arbitrary parameter of the mechanism is the 

lantern virtual vertical displacement 𝜂. Then, the mechanism’s horizontal displacements will be 

proportional to 𝜂, as well as the tension ring strains. Imagine to increase the arbitrary mechanism 

parameter 𝜂. For low values of 𝜂, all the 𝜀! will be in the elastic range and the rings can be considered 

as elastic constraints. Then, as 𝜂 increases, first the tension ring of maximum strain, then all the others, 

will enter the plastic range. The strain can increase up to the limiting value 𝜀!, at which the ring will 

break and its stress will drop to zero, Figure 9. Therefore, before considering the plastic dissipation 

contribution of all the tension rings, it must be verified that their elongation is compatible with their 

ultimate strain, i.e. that 𝜀!!" − 𝜀!"#   ≤    𝜀! − 𝜀!. If not, the above analysis allows to determine their 
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breaking sequence and their effective contribution to the “resisting” virtual work. Therefore, a simple 

method is described in the following to perform this task. 

Suppose the collapse safety factor at the breaking of the most strained tension ring is to be evaluated. 

Given an arbitrary initial mechanism parameter 𝜂!, the ratio 𝑘! = 𝜀! 𝜀!"# between the ultimate 

(breaking) strain and the maximum strain at the tension rings is defined. Then the mechanism 

parameter is set as 𝜂! = 𝑘!𝜂!, i.e. in such a way that  𝜀!"# = 𝜀!. The strain and stresses in the other 

tension rings are evaluated assuming the elastic-plastic constitutive law previously defined and 

considering in the analysis the relevant forces and resisting work. In this way, a first structural safety 

coefficient 𝑠! is determined. Then, the broken tension ring is discarded and the analysis is repeated in 

the same way with the remaining two, determining a second structural safety coefficient 𝑠!. Finally, 

only the third tension ring is considered and a third structural safety coefficient 𝑠! is obtained. 

Depending on the size and on the arrangement of the tension rings in the dome, it is not necessarily so 

that 𝑠! ≥ 𝑠! ≥ 𝑠!, but the global structural safety coefficient is 𝑠 = max  (𝑠!, 𝑠!, 𝑠!). 

A final issue about the behavior of the tension rings concerns the effective strain distribution along 

their length. We can imagine two limiting situations. In the first, the strain (and therefore the stress) is 

constant along the ring. This physically corresponds to no friction between masonry and the tension 

ring. In the second, the tension ring is imagined “glued” to the masonry, so that no slip is allowed 

between masonry and the tension ring. This means that strain and stresses may vary along the ring. In 

the following, when this hypothesis will be taken into account, a piecewise constant stress for each 

ring and dome slice will be assumed.  

The real situation will be in between these two limiting cases, that will be both analyzed. 

4.2 Limit	
  analysis	
  for	
  limited	
  tension	
  rings	
  elongation	
  	
  

The case of uniform strain in each tension ring will be analyzed first. In this case, as specified in the 

previous section, the strain and stress is assumed as constant in each tension ring. Following the 

method illustrated in Section 4.1, we set the mechanism’s kinematic parameter (lantern vertical 



3D LIMIT ANALYSIS OF VICOFORTE ELLIPTICAL DOME  

 

12 
 

displacement 𝜂) so that the maximum strain in the rings is equal to 𝜀! = 7 ∙ 10!!. The other rings are 

automatically shifted at minor strain. In Table 8, the strains in the rings are shown in this hypothesis 

and it is 

 𝜀!"# − 𝜀!"# = 2.4 ∙ 10!! ≤    𝜀! − 𝜀! =   7 ∙ 10!! − 8 ∙ 10!! = 6.92  10!!   (EQ6)  

Therefore, being the difference 𝜀!"# − 𝜀!"# smaller than the extension of the plastic plateau (given by 

the difference 𝜀! − 𝜀!, Figure 9), Equation (6), we can conclude that the rings are well positioned: the 

range between the maximum and the minimum strain in the rings in this case is about 35% of the 

length of the steel plastic plateau. They will be all able of entering the plastic regime without a 

premature breaking of the most strained. In particular, it can be computed that all the rings will enter 

the plastic regime at a lantern vertical displacement of 31  cm, while the most strained ring will break 

for a lantern vertical displacement of 88.6 cm. On the other hand, a very short steel plastic plateau or 

not efficient ring positions can lead to cases where the rings cannot enter simultaneously the plastic 

regime, so that their resisting work cannot be fully exploited.   

Note that, although the assumed value for the strain at failure is not supported by experimental tests, 

the absolute minimum for wrought iron elongation at failure found in the literature is 4%, so that the 

present hypothesis of uniform strain in the tension rings with simultaneous plasticization is valid 

being, according to Equation (6), 𝜀!"# − 𝜀!"# = 2.4 ∙ 10!! < 4.0  10!!. 

Finally, the influence of a possible uneven distribution of strain-stress in steel rings is considered. This 

situation can arise both because the iron is tied by friction and adherence to the masonry and because, 

in an event of collapse, the relative speed of the phenomenon can forbid a uniform redistribution of the 

stress in the rings, so that their plastic resources cannot be fully available. 

To model this situation, an approach, conceptually equal to the one presented in Section 4.1, has been 

used. However, to account for the uneven strain distribution, the elongation in the rings has been 

computed at the level of the single slice, and considered as independent from slice to slice. In this way, 
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each ring presents piecewise constant strain function of the radial displacement and curvature radius, 

Equation (1). 

In Table 9, the strain states are shown for a mechanism parameter (lantern displacement) such that the 

maximum strain is equal to 𝜀! = 7%. The maximum strain takes place in the tension ring 1, slice A,   

due to lower position of the hinge and consequently the greater radial displacement associated to the 

mechanism, see Table 6, and the predicted lantern vertical displacement for this mechanism is 

77.7 cm. In this case, the steel’s plastic range required by the structure is 𝜀!"# − 𝜀!"# = 0.070 −

0.034 = 3.60  10!!, i.e. about 51% of the assumed limit (𝜀! = 7 ∙ 10!!). If the iron of the dome 

would have particularly low elongation at failure, then breaking of the most strained tension ring may 

be possible before tension ring 3 entering the plastic regime (we recall that the minimum literature 

wrought iron elongation at failure is 4%). For this phenomenon not to occur the elongation at failure 

must be greater than 𝜀!"# − 𝜀!"# + 𝜀! = 3.68%. 

The lantern vertical displacement for the two examined cases may appear very large. However, this is 

due to the fact that the largest part of the displacement is not generated when the tension rings are in 

the elastic range, but in the long horizontal plastic plateau. In fact, we recall that the yield strain is 

8 ∙ 10!! while the ultimate strain is 7 ∙ 10!!, i.e. nearly 100 times larger. If we think not to use the 

steel’s plastic resources and to find the displacement 𝜂!  that brings the most strained ring at yielding, 

we find 𝜂! = 1 cm and the strain-stress state in the rings is shown in Table 10. As the rings are now 

all (except the yielded one) in the elastic range, the stability ratio is now changed and it is 

 !!  
!! !

= 2.08   (EQ7)  

5 NON-­‐LINEAR	
  INCREMENTAL	
  ANALYSIS	
  	
  
In order to assess the results of the proposed method, non-linear static incremental analyses of the 

dome-drum system under gravity loads have been performed. The FEM model of the structure is 

depicted in Figure 10. The dome is modeled by non-linear orthotropic shell elements, the vault being 
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defined by the mean surface and the masonry pattern being described by element reference systems 

rotated according to the actual orientation of mortar joints. The lantern is not included in the model, 

but its weight is applied to the top masonry ring of the dome as a surface load. The iron rings are 

modeled by non-linear link elements for which a Von Mises strength criterion is adopted. For the 

masonry, the non-linear constitutive law defined in (Calderini and Lagomarsino, 2008) and 

implemented in a general-purpose finite element code (ANSYS, 2003) is applied. In particular, 4-node 

non-linear shell elements with five integration points through the thickness (thus describing the out-of-

plane behavior besides the in-plane one) are used. The mechanical parameters adopted are summarized 

in   
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Table 11. Except for the compressive strength of the masonry and Young’s modulus (Barosso, 1979), 

all the parameters have been defined qualitatively by considering the values typically associated with 

historic masonry (Binda, 1996). It has been assessed through a set of non-linear analyses that, in a 

reasonable range of parameter values, the response of the structure is not pathologically influenced by 

the variability of the parameters. This model and the relevant discussion has been published in 

(Calderini et al., 2006) and (Chiorino et al., 2008). Here the model is used for computing the 

multiplier of the self weight at collapse for the sake of comparison to the limit analysis results 

obtained with the proposed methodology. 

Two different constraining configurations are considered. In the first one (named VD), the model is 

constrained by inhibiting the vertical displacements only of all the nodes at the base of the drum 

(global rigid motions are inhibited by constraining all the degrees of freedom of one single node); this 

is a limit configuration in which it is assumed that the retaining stiffness contribution of the structure 

lying under the drum is null. In the second (named VHD), both vertical and horizontal displacements   

of all the nodes at the base of the drum are inhibited; this is an opposite limit configuration in which 

the structure lying under the drum is considered as infinitely stiff. It is well evident that the actual 

behavior of the structure is in between these two limit configurations. 

The incremental analyses in the two cases have been performed by increasing the gravity loads up to 

collapse. In Figure 11 the force-displacement curves are represented. They have been obtained by 

plotting, for each load step, the load multiplier as a function of the displacement of one node at the top 

of the dome; convergence was lost after the last plotted point. The obtained load multiplier is 2.98 for 

VD and 5.39 for VHD. The collapse modes are represented in Figure 12. In Figure 13, the plastic 

strains normal to principal mortar joints are represented (strains are depicted only in those elements in 

which joints were cracked). In one case (VD), the system tends to ovalize, the transversal axis being 

subjected to the highest stresses and damage (the enlargement of the base of the drum in this direction 

is 0.148 m, while in the longitudinal one is 0.013 m). All the three rings are plasticized along the 

minor axis. By observing the deformed shape of the  transversal section, it can be noted that the 
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structure behave as an arch-pier system with complaining horizontal boundaries, whose stiffness is 

defined by stiffness and strength of the dome-drum system along its parallels (and thus by the strength 

of masonry in the direction of principal mortar joints). The three hinges (Figure 12, hinge scheme) are 

placed on the opposite side of the section with respect to limit analysis model. In the case VHD, the 

collapse mechanism is more similar to that considered in the limit analysis and only the two upper 

rings are plasticized (also in this case, along the transversal axis). The computed collapse modes 

confirm the mechanism assumption used in limit analysis. 

The non-linear incremental analysis shows that the collapse multiplier is strongly influenced by the 

boundary conditions of the system. By considering the stiffness of the structure lying under the dome-

drum system, it can be stated that VHD configuration is closer to reality.  

By observing the sequence of limit analysis results obtained in the previous sections it can be observed 

that, quite naturally, the safety coefficient estimate for the dome increases as further resisting 

mechanisms are introduced (slices collaboration, tension rings contribution). We expect therefore that 

the global safety coefficient will increase as new sources of strength are added to the structure. In 

particular, the finite element model accounts for an additional masonry circumferential strength that is 

not present in the limit analysis model. In this light we explain the difference between the limit 

analysis estimate of a safety coefficient of about 3 and a finite element collapse load multiplier in 

between 3 and 5.  

6 CONCLUSIONS	
  
In the present paper a simple method for analyzing 3D dome collapse mechanisms has been presented. 

The method is based on the construction of nonlinear approximation functions of weights and first 

moments of inertia as well as non-symmetric dome collapse mechanisms. Then the analyses have been 

expanded to consider the ductility of the steel tension rings and a method for evaluating their correct 

position and cross section has been proposed. Both the cases of no friction and completely bonded 

tension rings have been examined and an evaluation of the lantern displacement required for the 
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activation of each mechanism has been given. The proposed method has been applied to the elliptical 

dome of the  Vicoforte di Mondovì Sanctuary.  

Comparing the analyses results it may be observed that, as new resisting contributions are introduced, 

the mechanism intermediate hinge tends to shift upwards and the safety coefficients increases as well. 

From the analyses we have in fact: 

• independent slices without tension rings: this is the weakest dome strength hypothesis with the 

lowest safety coefficients (collapse at two slices is predicted); 

• interacting slices without tension rings: a circumferential interaction hypothesis is introduced. 

The safety coefficient increases (1.27) and the intermediate hinges are higher than the 

previous case; 

• independent slices and bonded tension rings: the tension rings substantially contribute to the 

dome stability. The safety coefficients substantially increase (range 2.7÷3.5) and the 

intermediate hinges are higher than the previous case; 

• interacting slices and uniformly stressed tension rings: this is similar to the previous case. The 

intermediate hinge positions tend to approach each other in a substantially high position and 

the global safety coefficient is 3.03, roughly the mean of the coefficients of the previous case. 

The last two hypotheses are of course the closest to the real condition for the dome (they are the two 

considering the existence of the tension rings) and yield very similar stability results. Note, however, 

that the correct tension ring contribution can be considered only after verifying, as done in the present 

work, which rings are able of yielding simultaneously and which (if any) remain in the elastic range. 

Although the proposed method is very simple, it has proved to give conservative results compared to a 

much more complex and computationally expensive nonlinear finite element model. 

Therefore, even if accurate modeling by the more recent techniques appear a valuable tool for limiting 

at most any needed intervention on the architectural heritage, the proposed limit analysis methodology 

seems able of giving a useful first estimate of the global safety coefficient.  
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FIGURE CAPTIONS 

Figure 1: External (left) and internal (right) views of the Sanctuary of Vicoforte. 

Figure 2: A cross-section of Sanctuary (left) and cracks in the dome (right) of a east-west section, 

North side view (Garro 1962). 

Figure 3: The three-dimensional geometric computational model. 

Figure 4: The four fundamental slices. Plan view (left) and 3D view (right). 

Figure 5: The mechanism in a generic slice. 

Figure 6: Subdivision of a slice at discrete positions. 

Figure 7: Tension ring positions. 

Figure 8: The virtual works ratio vs. intermediate hinge position a in slice A without (a) and including 

(b) tension rings contribution. 

Figure 9: Example illustration of the strain distribution in the tension rings and associated stress state 

according to elastic-plastic constitutive law. 

Figure 10: FEM model of the dome-drum system (the model is sliced along the longitudinal axis in 

order to show its internal part). 

Figure 11: Force-displacement curves obtained by non-linear incremental analyses. 

Figure 12: Deformed shape at collapse of the dome-drum system as a results of the non-linear 

incremental analyses VD and VHD and associated hinge scheme (displacement scale 

factor: 50). 

Figure 13: Plastic deformation along the direction normal to cracked mortar joints as a results of the 

non-linear incremental analyses VD and VHD (displacement scale factor: 50). 

  



3D LIMIT ANALYSIS OF VICOFORTE ELLIPTICAL DOME  

 

22 
 

 

             

Figure 1: External (left) and internal (right) views of the Sanctuary of Vicoforte. 
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Figure 2: A cross-section of Sanctuary (left) and cracks in the dome (right) of a east-west section, 
North side view (Garro 1962). 
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Figure 3: The three-dimensional geometric computational model. 
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Figure 4: The four fundamental slices. Plan view (left) and 3D view (right). 
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Figure 5: The mechanism in a generic slice. 
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Figure 6: Subdivision of a slice at discrete positions. 
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Figure 7: Tension ring positions. 
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 (a) (b) 

Figure 8: The virtual works ratio vs. intermediate hinge position α in slice A without (a) and 
including (b) tension rings contribution. 
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Figure 9: Example illustration of the strain distribution in the tension rings and associated stress state 
according to elastic-plastic constitutive law. 
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Figure 10: FEM model of the dome-drum system (the model is sliced along the longitudinal axis in 
order to show its internal part). 
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Figure 11: Force-displacement curves obtained by non-linear incremental analyses.  
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External views 

       

VD                                                                    VHD 
Transversal sections 

              

VD                                                                       VHD 
Hinge schemes 

                                                                      

Figure 12: Deformed shape at collapse of the dome-drum system as a results of the non-linear 
incremental analyses VD and VHD and associated hinge scheme (displacement scale factor: 50).  
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Extrados view 

             

     VD                                                                 VHD 

Intrados view 

                 

     VD                                                                     VHD 

 

Figure 13: Plastic deformation along the direction normal to cracked mortar joints as a results of the 
non-linear incremental analyses VD and VHD (displacement scale factor: 50).  
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Table 1: Approximating polynomials for center of gravity position of slice blocks. 

Center of gravity position X(α  [rad]  ) [m] 

Block Slice 
Polynomial coefficients: 𝒄𝟎 + 𝒄𝟏𝜶 + 𝒄𝟐𝜶𝟐 + 𝒄𝟑𝜶𝟑 + 𝒄𝟒𝜶𝟒 

𝒄𝟎 𝒄𝟏 𝒄𝟐 𝒄𝟑 𝒄𝟒 

C1-C2 A + 19.5110 − 0.7372 − 1.2605 +0.4839 +0.0000 

C1-C2 B + 15.1200 + 0.0191 − 0.5425 − 0.5587 +0.3436 

C1-C2 C + 18.2530 − 1.3237 + 0.6316 −0.5498 +0.0000 

C1-C2 D + 13.4600 − 0.2212 −0.5180 +0.0000 +0.0000 

C2-C3 A + 16.5390 − 2.6952 − 9.5597 − 7.8945 + 9.2842 

C2-C3 B + 13.1150 − 2.5742 − 4.7658 − 2.1279 + 2.3035 

C2-C3 C + 15.4040 − 3.4865 − 6.4175 − 2.9225 + 3.5879 

C2-C3 D + 11.3270 − 0.8947 − 3.8397 − 3.2862 + 2.4562 

Center of gravity position Y(α  [rad]  ) [m] 

Block Slice 
Polynomial coefficients: 𝒄𝟎 + 𝒄𝟏𝜶 + 𝒄𝟐𝜶𝟐 + 𝒄𝟑𝜶𝟑 + 𝒄𝟒𝜶𝟒 

𝒄𝟎 𝒄𝟏 𝒄𝟐 𝒄𝟑 𝒄𝟒 

C1-C2 A − 5.7783 + 14.9840 − 0.7514 − 11.055 + 5.1862 

C1-C2 B − 5.8355 + 10.3950 − 1.1902 − 3.9220 + 1.6005 

C1-C2 C − 5.7953 + 11.6500 − 0.9111 − 4.5693 + 1.6352 

C1-C2 D − 5.7313 + 8.5582 − 0.3528 − 1.1221 + 0.0000 
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C2-C3 A + 6.9589 + 8.7410 + 2.0736 − 2.4157 + 0.0000 

C2-C3 B + 6.7750 + 8.2855 + 0.8678 − 1.2357 + 0.0000 

C2-C3 C + 7.3693 + 6.6684 + 1.0405 + 3.3287 − 3.0239 

C2-C3 D + 7.6597 + 4.1470 + 1.7956 + 4.2010 − 3.1398 
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Table 2: Approximating polynomials for volume of slice blocks. 

Volume V(α  [rad]  ) [m3] 

Block Slice 
Polynomial coefficients: 𝒄𝟎 + 𝒄𝟏𝜶 + 𝒄𝟐𝜶𝟐 + 𝒄𝟑𝜶𝟑 + 𝒄𝟒𝜶𝟒 

𝒄𝟎 𝒄𝟏 𝒄𝟐 𝒄𝟑 𝒄𝟒 

C1-C2 A + 186.6700 + 457.6000 + 116.1300 −187.0500 + 0.0000 

C1-C2 B + 197.5500 + 363.3700 + 2.6555 − 135.3000 + 39.1070 

C1-C2 C + 180.2100 + 375.5600 + 39.4010 − 137.8100 + 22.1320 

C1-C2 D + 122.1600 + 164.6700 + 29.6310 + 7.1356 − 28.6440 

C2-C3 A + 384.8100 − 539.4900 − 121.5400 + 420.1800 − 140.5300 

C2-C3 B + 283.1200 − 353.2200 − 12.1710 + 112.9500 − 18.7850 

C2-C3 C + 305.2400 − 365.8900 − 46.9350 + 110.2800 + 1.7842 

C2-C3 D + 189.0300 − 154.2800 − 40.3500 − 26.3950 + 46.9530 
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Table 3: Approximating polynomials for intrados curve. 

Intrados curve X(α  [rad]  ) [m],  Y(α  [rad]  ) [m]  

Curve Slice 
Polynomial coefficients: 𝒄𝟎 + 𝒄𝟏𝜶 + 𝒄𝟐𝜶𝟐 + 𝒄𝟑𝜶𝟑 + 𝒄𝟒𝜶𝟒 

𝒄𝟎 𝒄𝟏 𝒄𝟐 𝒄𝟑 𝒄𝟒 

X(α) A + 18.2570 − 3.7074 − 5.4751 + 0.0000 + 0.0000 

X(α) B + 14.1980 − 1.7757 − 3.3393 − 0.9162 + 0.0000 

X(α) C + 17.1300 − 3.2338 − 5.4019 + 0.2113 + 0.0000 

X(α) D + 12.4890 − 0.9033 − 2.4093 − 1.3968 + 0.0000 

Y(α) A + 0.0907 + 18.2740 − 4.8608 + 0.0000 + 0.0000 

Y(α) B + 0.0748 + 14.0730 − 2.4196 + 2.0441 − 1.2292 

Y(α) C + 0.0946 + 17.1740 − 4.0810 + 0.3057 − 0.2458 

Y(α) D + 0.0688 + 12.3450 − 1.5203 + 2.5749 − 1.4659 
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Table 4: Stability results for the dome without tension rings and single independent slices. 

Slice	
   α  (Wr	
  /Wp)Slice	
  

A	
   35°	
  38’	
   0.7863	
  

B	
   41°09’	
   1.1996	
  

C	
   44°41’	
   1.8898	
  

D	
   41°03’	
   0.8417	
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Table 5: Position of the intermediate hinges for the dome without tension rings and global 3D 
mechanism. 

Slice	
  	
   α	
  	
  

A	
   37°32'	
  

B	
   41°16'	
  

C	
   46°54'	
  

D	
   44°04'	
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Table 6: Position of the intermediate hinges and stability ratio for the dome with tension rings and 
independent slices. 

Slice	
  	
   α	
  	
   	
  (Wr	
  /Wp)Slice	
  

A	
   42°36'	
   2.7762	
  

B	
   44°35'	
   2.9035	
  

C	
   46°57'	
   3.5346	
  

D	
   47°53'	
   2.6957	
  

 

  



3D LIMIT ANALYSIS OF VICOFORTE ELLIPTICAL DOME  

 

43 
 

 

Table 7: Position of the intermediate hinges for the dome with tension rings and global 3D 
mechanism. 

 

Slice	
  	
   α	
  	
  

A	
   42°30'	
  

B	
   44°35'	
  

C	
   46°54'	
  

D	
   48°04'	
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Table 8: Strain in the tension rings for uniform circumferential elongation and ultimate strain at the 
most strained ring. 

Tension	
  ring	
  no.	
   ε  

1	
   0.070	
  

2	
   0.062	
  

3	
   0.046	
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Table 9: Strain in the tension rings for non-uniform circumferential elongation and ultimate strain at 
the most strained ring segment. 

Tension	
  ring	
  no.	
   Slice	
  A	
   Slice	
  B	
   Slice	
  C	
   Slice	
  D	
  

1	
   0.070	
   0.058	
   0.058	
   0.065	
  

2	
   0.063	
   0.051	
   0.052	
   0.058	
  

3	
   0.047	
   0.034	
   0.040	
   0.052	
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Table 10: Strain and stresses in the tension rings for uniform circumferential elongation and limit 
elastic strain at the most strained ring. 

	
  Tension	
  ring	
  no.	
   ε	
  	
   σ	
  (N/𝐦𝐦𝟐)	
  

1	
   0.00083	
   167	
  

2	
   0.00074	
   149	
  

3	
   0.00055	
   111	
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Table 11: Material parameters adopted in the non-linear incremental analyses. 

Masonry Mass 
parameters 

Density 1700 kg/m3 
Elastic 
parameters 
 

Homogenized normal elastic modulus Ex 2.0 103 MPa 
Homogenized normal elastic modulus Ey 1.5 103 MPa 
Homogenized tangential elastic modulus Gxy 8.0 102 MPa 
Poisson coefficient ν 0.2 

Inelastic 
parameters 

Friction coefficient µ 0.6 
Tensile strength of mortar joints σmr 0.05 MPa 
Cohesion of mortar joints τmr 0.1 MPa 
Compressive strength of the masonry σMr 3 MPa 
Tensile strength of blocks σbr 0.5 MPa 
Shear strength of blocks τbr 2 MPa 
Ratio between the elastic and inelastic shear strain at 
failure in mortar joints xyxy GG ~/  

2 

Ratio between elastic and inelastic strain in the 
masonry in compression at failure yy EE ~/  1.5 

Softening coefficient of mortar joints βm 0.2 

Softening coefficient of blocks βb 0.2 
Interlocking ratio ϕ 4 

Rings Elastic 
parameters 

Elastic modulus E 200000 MPa 
Poisson modulus 0.2 

Inelastic 
parameters Strength  167 MPa 

 


