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1 Introduction

We present the Generalized Bin Packing Problem (GBPP), a new packing problem where,

given a set of items characterized by volume and profit and a set of bins with given

volumes and costs, one aims to select the subsets of profitable items and appropriate

bins to optimize an objective function which combines the cost of using the bins and the

profit yielded by loading the selected items. The GBPP thus aims to generalize many

other packing problems such as the Bin Packing Problem (BPP), the Variable Size Bin

Packing Problem (VSBPP), the Variable Cost and Size Bin Packing Problem (VCSBPP),

the Knapsack Problem (KP), and the Multiple Knapsack Problem (MKP). It also provides

the means to identify and analyze the trade-off between item and bin selections that are

part of many transportation and logistics planning problems [1].

From a practical point of view, the GBPP models many real-life situations, including

scenarios where orders may be urgent or a dispatching priority is associated to each item

to be shipped. Moreover this paper contributes to enhance the transportation literature

and to cope some issues in the specific literature on packing problems [2, 3].

We present two mixed integer programming formulations of the GBPP, as well as lower

and upper bounds. The efficiency and accuracy of these bounds are proved by means of

an extensive set of computational results.

2 The GBPP and its formulations

The GBPP considers a set of items characterized by volume and profit and sets of bins of

various types characterized by volume and cost. Part of the items, denoted as compulsory,
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must be loaded, while a selection has to be made among the non-compulsory ones. The

objective is to determine which non-compulsory items should be taken and select the bins

to load the compulsory and the taken non-compulsory items to minimize the total net

cost, computed as the difference between the total cost of the used bins and the total

profit of the loaded items.

Let I denote the set of items, with n = |I|, and wi and pi be the volume and the profit

of item i ∈ I, respectively. Define IC ⊆ I the subset of items that are forced to be loaded,

and INC = I \ IC the subset of non-compulsory items. Let J denote the set of available

bins, with m = |J | and T be the set of bin types. For any bin j ∈ J , let σ(j) ∈ T be the

type of bin j. Define for each type t ∈ T , the minimum Lt and the maximum Ut number

of bins of that type that may be selected, as well as the selection cost Ct and volume Wt

of a bin of type t ∈ T . Finally, let us denote U ≤
∑

t∈T Ut the maximum number of bins

of any type one can use. The item-to-bin accommodation rules of the GBPP may then be

stated as follows: all items in IC must be loaded; for all used bins, the sum of the volumes

of the items loaded into a bin must be less than or equal to the volume of bin itself; the

number of bins used for each type t ∈ T must be within the lower and upper bounds Lt

and Ut; the total number of used bins cannot exceed U .

A first model of the GBPP can be formulated as an assignment model, which involves

selection binary variables yj equal to 1 if bin j ∈ J is used, 0 otherwise and item-to-

bin assignment binary variables xij equal to 1 if item i ∈ I is loaded into bin j ∈ J ,

0 otherwise. This model, named AM , involves a polynomial number of variables and

constraints.

The second model is based on a set covering formulation related to the feasible loading

patterns for the bin types. A feasible loading pattern for a bin of type t ∈ T corresponds to

a set of items that may be loaded into the bin while respecting all dimension restrictions

and accommodation rules. We name SC this second formulation. Involving an exponential

number of variables, this model is specially suited for column-generation based methods.

3 Bounds

The two models introduced in Section 2 are the starting point to get two lower bounds,

one for each model, and the best among the two will be taken. Upper bounds can also

be computed via constructive heuristics or by exploiting the SC model. In the following

subsections we present the methods for calculating lower and upper bounds.

3.1 Lower bounds

Following [3], a first lower bound, named LB1, can be obtained by aggregating some

constraints of the AM model. The resulting problem is an aggregate Knapsack Problem
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which, solved to optimality, yields the lower bound LB1. The second lower bound, named

LB2, is computed from the linear relaxation of the SC model through column generation,

which provides the means to implicitly deal with the large number of variables in the

model (and it is widely used in packing problems [4, 5]). The general column generation

approach when applied to the GBPP consists in starting with a relatively small set of

feasible patterns P corresponding to a restricted GBPP, named R-GBPP. The scope is

to implicitly enumerate the exponential number of patterns involved (see [6] for further

details).

3.2 Upper bounds

Upper bounds can be computed following two different approaches: 1) via constructive

heuristics or 2) by exploiting the patterns produced by the column generation procedure.

The constructive heuristics we considered are the well known First Fit Decreasing (FFD)

and Best Fit Decreasing (BFD) heuristics [7]. They are widely used for the BPP and we

adapted them to the GBPP.

The second approach considers the patterns produced by the column generation pro-

cedure. A first upper bound is obtained by exactly solving the SC model by using a

Branch-&-Bound which only considers the columns generated by the column-generation

procedure while computing the lower bound. This may still be quite time consuming, how-

ever. Consequently, we stop with the Branch-&-Bound after a given computation time

and we name ZSC the resulting value of the objective function which is an upper bound

to the GBPP. A second upper bound is based on diving, a well-known method for finding

good quality integer solutions from continuous relaxations. The working principle is to

iteratively round up variables and re-optimize the continuous relaxation.

4 Computational Results

Since there are no instances in literature for the GBPP, we started from the instance set

of Monaci [2] introduced for the VSBPP. We name Class 0 this instance set. It consists

in 300 instances where all the items are compulsory. We then created two more instance

sets, named Class 1 and Class 2, which are like Class 0 but with the addition of the item

profits and where all the items are non-compulsory.

Table 1 shows percentage upper bound gaps computed with respect to our best lower

bound. Note that, since Class 0 is made up by the instances of Monaci, the gaps of this

set can be computed with respect to the Monaci optima, when available. Otherwise they

are computed with respect to our best lower bound. Column 1 shows the instance set,

Column 2 the ZSC gap, Columns 3 and 4 two diving gaps computed by following two

diving strategies, Columns 5 and 6 the best among the previous diving strategies and
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BFD. Finally Column 7 shows BFD results.

CLASS ZSC D1 D2 B-D1 B-D2 BFD

0 0.14 1.30 0.98 0.65 0.62 1.62

1 0.10 0.95 1.37 0.51 0.55 2.30

2 0.07 0.85 1.32 0.42 0.49 1.81

% MEAN 0.11 1.04 1.22 0.53 0.55 1.91

Table 1: Upper bound comparisons

The best results are yielded by ZSC which is, however, the most time consuming

method. Well balanced results, in terms of efficiency and accuracy, are yielded by the

diving methods (D1 and D2) and the diving integrated with BFD methods (B-D1 and

B-D2). The BFD heuristic has a negligible computational time but it yields the worst

gaps. Further results will be provided during the conference.
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