
04 August 2020

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Combined finite-discrete element modelling of key instabilities which characterise deep-seated landslides from massive
rock slope failure / Piovano, Giovanna. - (2012).

Original

Combined finite-discrete element modelling of key instabilities which
characterise deep-seated landslides from massive rock slope failure

Publisher:

Published
DOI:10.6092/polito/porto/2502740

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2502740 since:

Politecnico di Torino



Dottorato di Ricerca in Ingegneria per la Gestione delle
Acque e del Territorio (XXIV◦ ciclo)

Politecnico di Torino

Marzo 2012

Combined finite-discrete element modelling of key instabilities which
characterise deep-seated landslides from massive rock slope failure

..............................................
Giovanna Piovano
Author

..............................................
Prof. Giovanni Barla
Advisor

..............................................
Dott. Ing. Marco Barla
Advisor

..............................................
Prof. Claudio Scavia
Head of the Ph.D. Programme in Geotechnical Engineering





Arriving at one point is the starting point to another.
JOHN DEWEY





Abstract

The expression “landslide from massive rock slope failure” (MRSF) is used to indicate
large-scale landslides characterised by a variety of complex initial failure processes and
unpredictable postfailure behaviour. In this context, deep-seated landslides are clas-
sified as “landslides from massive rock slope failure”. Typically, deep-seated landslides
are slow mountain deformations which may involve movement along discrete shear sur-
faces and deep seated mass creep.

The long-term development of deep-seated slope deformations creates suitable con-
ditions for the subsequent occurrence of other slope deformations. Deep-seated land-
slides in mountain areas can be spatially interconnected with other types of slope de-
formations such as debris flows, debris slides, rock avalanches, topple, translational,
rotational and compound sliding and complex type of mass movements.

It is to be recognized that many aspects of large-scale landslides need be investig-
ated in order to gain the necessary confidence in the understanding and prediction of
their behaviour and in the associated risk assessment. The present thesis is to contribute
to such understanding with specific reference to a number of mass movements which
characterize large-scale landslides.

An advanced numerical technique (FDEM) which combines finite elements with dis-
crete elements has been applied in this thesis for improving such understanding. The
open source research code, called Y2D, developed at the Queen Mary, University of Lon-
don by Prof. Munjiza has been used. Considering that this code has not yet been applied
to slope stability problems, a series of numerical tests have been carried out to assess its
suitability to properly and efficiently simulate geomechanical problems.

To this purpose standard rock failure mechanisms as well as laboratory tests have
been modelled first and the results obtained have been compared with available ana-
lytical and numerical solutions. The advantages of the application of FDEM has been
outlined by showing that both the simulation of failure initiation and progressive devel-
opment to fragmentation of the rock mass is possible as this is deposited at the slope
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toe. The case study of interest for this thesis is the Beauregard massive landslide loc-
ated in the Aosta Valley (Northwestern Italy). At this site the presence of an extensive
deep-landslide insisting on the left abutment of an arch-gravity dam is well recognised.

Based on detailed studies, the investigated area has been subdivided into zones which
are characterised by different geomorphologic and geostructural features. Different land-
slide mechanics as well as different landslide activities upstream of the dam site have
been identified and studied in detail.

Such an area is thought to be at an intermediate stage of development of the deep
seated landslide compared with the sector which insists on the dam. The observed fail-
ure mechanism has been ascribed to a large sliding on a compound surface. Some other
failure mechanisms have been recognized, such as large flexural toppling and local block
toppling instability.

The final part of the thesis has been devoted to the FDEM numerical modelling of
a large scale failure mechanism based on brittle behaviour of the rock mass. The aim
is to apply the “total slope failure” approach through the application of FDEM. Such a
technique has demonstrated the significant potential in predicting the development of
possible slope instability phenomena.

Keywords: rock mechanics; slope stability; numerical modelling; FEM and FDEM.
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Chapter 1

Introduction

1.1 Framework

The expression “landslide from massive rock slope failure” (MRSF) is used by several au-
thors to indicate large-scale landslides characterized by a variety of complex initial fail-
ure processes and unpredictable post-failure behaviour. A MRSF is frequently a multiple
phase landslide characterized by primary and secondary processes: primary processes
include transformation of movements mechanism, substantial changes in volume and
changes in the characteristics of the moving mass; secondary processes are important as-
pects of the phenomena and may be instantaneous or delayed and extend the impact of
a landslide beyond the boundaries of the primary landslide and may themselves result
in catastrophic consequences.

The deep-seated landslides are classified as a type of “landslide from massive rock
slope failure”. The importance the deep-seated landslides is that they occur in many
parts of the world and impact very significantly on infrastructures and on society. Many
aspects of deep-seated landslides are poorly understood and need be investigated in or-
der to gain the necessary confidence in predicting their behaviour. This is due to the
many complexities of the phenomena which encompass the understanding of the un-
derlying mechanisms, the initial and post-failure behaviour, and the different secondary
processes resulting from instability.

1



2 Introduction

1.2 Problem Statement

The areas affected by deep-seated landslides (DSGSD) are characterised by a high degree
of rock mass subdivision. DSGSD disrupt bedrock, generates discontinuities and change
slope morphology resulting in superficial reactivations of morphologically unstable seg-
ments of slopes, such as old steep landslide scarps and forefront parts of rotated and
gravitationally subsided blocks. Generally, this activation concerns a relatively small
part of the volume of a DSGSD, but it tends to have highly destructive consequences.
Deep-seated landslides are associated with rocks which exhibit marked strength aniso-
tropy such as shale, schist, gneiss, micaschist, slate etc.

A long-term development of deep-seated lanslides (in the order of thousands of
years) creates suitable conditions for the subsequent occurrence of a wide range of other
slope deformations. Rockfalls, rock avalanches, debris flows, rockslides and shallow
translational and rotational landslides, flexural and block toppling are often the results
of older deep-seated gravitational slope deformations.

1.3 Scope and objective

The scope of the present thesis is to contribute to the study of the landslides from massive
rock slope failure by using the combined finite-discrete element method. The considered
case study is the deep-seated gravitational slope deformation on the left slope of the Val-
grisenche valley where the Beauregard dam was located. The occurrence of several in-
stability mechanisms including sliding of large slope sectors on rotational or compound
surfaces, rockfalls and topples (block and flexural) have been recognised on the land-
slide.

Attention has been focused firstly on the numerical technique used. The numer-
ical code Y2D adopted for simulation, is based on the combined finite-discrete element
method and have been developed by Munjiza (2004). It is a two-dimensional research
code capable of modelling continuum and discontinuum behaviour. Considering that
such a code has not yet been applied to slope stability problems, a series of numerical
tests have been carried out to assess its suitability to properly and efficiently simulate
geomechanical problems. This work has contributed to the development of Y2D and the
implementation of new algorithms which allow to apply the code for rock slope stability
analysis.

The following tasks have been undertaken:

• a preliminary study on massive landslides, with indication of major morphological
features and modes of instability;
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• detailed bibliographic study of conventional and advanced numerical techniques
used in rock slope stability analysis; attention has been focused on the general
formulation of continuum and discontinuum methods and on the description of
principal algorithms of the combined finite-discrete element method;

• a validation of the Y2D code, with emphasis on the principal modes of failure char-
acteristic of slope stability; numerical analysis of some laboratory tests performed
on jointed rock samples to evaluate the effect of anisotropy on rock strength;

• numerical analysis of the instability modes which characterise the Beauregard Land-
slide.

1.4 Organization of thesis

This thesis is divided into 8 chapters. The present chapter is intended to provide a gen-
eral introduction to the subject. Chapter 2 presents a general review of landslides as-
sociated with massive rock slope failure in order to introduce the main topic, such as
deep-seated landslides from massive rock slope failure. Chapter 3 focuses on the nu-
merical approach proposed by several authors to investigate failure mechanisms of rock
slopes. A review of numerical techniques used in rock slope stability analysis is done,
with emphasis on the use of the combined continuum-discontinuum numerical model-
ling technique. Chapter 4 is devoted to the description of the combined finite-discrete
element method and its general formulation in terms of principal algorithmic solutions.
Chapter 5 illustrates a series of numerical tests carried out to to provide a validation of
the Y2D code, a numerical code based on the combined finite-discrete element method,
which has been used in the present thesis. Chapter 6 is devoted to the description of the
Beauregard Landslide and some of the characteristic instability modes. These selected
types of instability are taken as case study. Chapter 7 illustrates the numerical simu-
lations carried out and finally Chapter 8 draws some conclusions and suggestions for
further work.



4 Introduction



Chapter 2

Landslides from massive rock
slope failure

2.1 Introduction

Landslides resulting from large-scale massive rock slope failure are an important geolo-
gical hazard in many parts of the world, especially in mountainous regions, and have
been responsible for some of the most destructive natural disasters in the world his-
tory. In the 20th century, disasters caused by massive rock slope failure have killed more
than 50000 people. Massive rock slope failures occur with measurable frequency in the
mountains of the world; based on twentieth century data, massive rock slope failures
involving volumes equal or greater than 20 Mm³ occur every 2.7 years (Evans, 2006).

A comprehensive review has been carried out in this chapter, in order to attempt a
critical analysis of the state-of-the-art on catastrophic massive landslides. In the present
literature a wide range of research papers have been published to describe the morpho-
logical features of this type of landslides, but also a great number of case histories have
been studied and the literature contains many examples of catastrophic massive land-
slides from all around the world.

A general review of the range of landslides associated with massive rock slope failure
is first described in order to introduce the main topic of the chapter, such as deep-seated
landslides from massive rock slope failure.

5
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2.2 Massive Rock Slope Failure

In the specialised literature, the expression “landslide from massive rock slope failure”
(MRSF) is used by several authors to indicate large-scale landslides characterized by
a variety of complex initial failure processes and unpredictable post-failure behaviour
(Evans et al., 2006).

Several classification schemes for sub-aerial failures have been proposed over the
past few decades; those most frequently mentioned are the slope movement types and
processes according to the classifications proposed by Hoek and Bray (1977), Varnes
(1958, 1978), Hutchinson (1988), Cruden and Varnes (1996), Hungr et al. (2001). In
these classifications, complete unanimity does not exist, but there is wide agreement
for massive, non-volcanic, rock slope failures (Hutchinson, 2006).

In the introduction to the NATO Advanced Research Workshop on “Massive Rock
Slope Failure: New Models for Hazard Assessment” (Celano, Italy 16-21 June 2002), Evans
et al. (2006) proposed a reviewed classification of landslides resulting from massive rock
slope failure. The MRSF includes:

• Catastrophic Rockslides (see section 2.2.1);

• Catastrophic Spreads (see section 2.2.2);

• Rock Avalanches (see section 2.2.3);

• Rockfalls (see section 2.2.4);

• Catastrophic Debris Flows (see section 2.2.5);

• Landslide from Volcanoes (see section 2.2.6) ;

• Slow Mountain Slope Deformations (see section 2.2.7).

Hutchinson (2006) suggests that failures affecting volcanoes should be most conveni-
ently treated as a separate category.

In this context, Evans et al. (2006) proposed the term “massive” to describe exception-
ally large massive rock slope failure. In fact, the range of volume mobilized in massive
landslides cover at least five orders of magnitude between 105 and 1010 m³.

A MRSF is frequently a multiple phase landslide characterized by primary and sec-
ondary processes. A wide range of primary processes are involved in massive rock slope
failure which include transformation of movements mechanism, substantial changes in
volume and changes in the characteristics of the moving mass. For example, a disinteg-
rating rock mass involved in an initial rockslide becomes transformed into a massive,
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rapid debris flow which travels well beyond expected limits. Besides, secondary pro-
cesses associated with massive rock slope failure are important aspects of the phenom-
ena. Catastrophic secondary effects may be instantaneous or delayed and extend the im-
pact of a landslide beyond the boundaries of the primary landslide and may themselves
result in catastrophic consequences. The landslide-generated waves and displaced water
effects are examples of secondary processes.

The following description of several types of massive rock slope failure is mainly
based on the review work made by Evans et al. (2006) for the introduction of the Celano
Workshop.

2.2.1 Catastrophic Rockslides

Evans et al. (2006) define a rockslide like a landslide originated from an initial bedrock
slope failure. In a rockslide a significant amount of debris remains on the initial slid-
ing surface; usually the slide mass is subjected to an incomplete disintegration and the
distance of travel is limited.

A rockslide characterized by high velocity is defined as a “catastrophic rockslide”.
In a catastrophic rockslide, the initial failure is usually characterized by a drastic initial
strength loss through such processes as brittleness of internal shears, or passive failure
of intact rock in the toe region of the landslide. Catastrophic failure could occur on a
sharply curved pre-existing sliding surface and the debris peak velocity can reach even
20-30 m/s. Although emplaced rapidly, rockslide debris frequently contains massive
transported blocks of relatively undisturbed bedrock. The vertical displacement of the
centre of gravity of the slide mass may be relatively small despite the high velocity re-
quired.

2.2.2 Catastrophic Spreads

Spreads are another kind of catastrophic bedrock slope instability; the typical geological
setting suitable for spreads instability is where a thickness of hard resistant caprock over-
lies weaker softer ductile rocks, such as tuffs, shales, marine clays or flysch sediments.
Failure occurs as deformation in the subjacent weak rock layer which often results in
tensile failure of caprock. This kind of instability may involve toppling and spreading
of the subjacent weak layer and has catastrophic potential, because once the first signs
of instability of the caprock occurred, the collapse can suddenly take place. Catastrophic
spreads are common in layered volcanic rocks where the caprock is lava, and in the
thrust and nappe belts of the European Alps and the Rocky Mountains of North Amer-
ica, where the cap rock is frequently overthrust Proterozoic or Paleozoic limestone and



8 Landslides from massive rock slope failure

the subjacent material is Cretaceous shale (Evans et al., 2006).

2.2.3 Rock Avalanches

In 1904, the term “rock avalanche” was first used by several authors to describe the 1903
Frank Slide in the Alberta Rocky Mountains (Evans et al., 2006). A rock avalanche is
a bedrock failure characterized by the complete fragmentation of the rock mass which
leaves this original topographic surface completely, and travels a downslope distance far
from its origin.

Rock avalanches are extremely rapid movements. Several authors estimated the
mean velocity of a rock avalanche; in the 1970 Huascaran event, a mean velocity of
about 75 m/s with peak velocities perhaps as high as 280 m/s, was estimated based
on the analysis of the ballistic trajectory of huge granodiorite blocks. Some rock ava-
lanches generate destructive winds and travel so rapidly that generate winds that not
only felled mature trees but drove spear-shaped wood fragments into solid tree trunks
along its margins (1984 Mount Cayley rock avalanche). Authors demonstrate that wind
velocities in excess of 30 m/s are required to inflict this type of damage on mature pine
trees.

During a rock avalanche the debris may exhibit high mobility effects in different ways
such as abrupt changes in the direction of travel; they may run at right angles or even
turn a full 180° to the original movement direction. The debris may run over significant
obstacles in its path or run-up a considerable distance on opposing valley sides.

2.2.4 Rockfalls

Rockfalls involve the fall of a rock mass following initial detachment from a very steep
rock slope, its disintegration and subsequent movement which may involve bouncing,
rolling, or sliding generally down the steep source rock slope (Evans et al., 2006). Massive
rockfalls frequently transform into highly mobile debris flows or rock avalanches.

The so called “fragmental rockfalls” are characterised by independent movement of
individual rock fragments; usually these type of rockfalls are characterised by a threshold
volume which varies with the source material. In hard non-porous rocks it is about 1
Mm³ and in soft porous rocks it is about 500000 Mm³.

Although rockfalls, thus defined, are much smaller than rock avalanches and rock
slides they are more frequent and may be highly destructive over a limited area. Rock-
falls may attain high velocities and the impact of large blocks detached from a cliff may
be very catastrophic and in some cases they may generate a wind blast. Rockfalls are the
most frequent landslide type triggered by earthquakes.
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2.2.5 Debris Flows induced by rockslope failure

When a debris from a rockslope failure impacts on channel or valley floor sediments, a
destructive debris flow may be mobilized that travels well beyond the margins of the ini-
tial landslide debris. This style of debris flow travels rapidly downslope (over 40 m/s).
Further, the volume of entrained material from the landslide path may significantly en-
hance the volume involved in the initial rock slope failure. Splash zones are sometimes
formed around the debris by fluidized material displaced from beneath the debris and
compressional deformation structures may be formed in sediments beneath or adjacent
to the debris sheet (Evans et al., 2006).

Similar effects may result from impacts of rockfall debris on saturated colluvium or
talus forming the lower part of a valley side slope. Such responses of valley sediments
and valley side deposits suggest that the impact loading of saturated materials can gen-
erate pore pressures which reduce the frictional resistance at the base of the moving
debris; undrained loading generated by rapidly moving debris may thus be an import-
ant mechanism in explaining the anomalous mobility of certain rock avalanches and
rockfall events.

2.2.6 Landslides from Volcanoes

Volcanoes are highly unstable piles of eruptive products and often are subjected to land-
slide activity, either in association with volcanic eruptions or during periods of quies-
cence. Landslides from volcanoes include large-scale flank collapses and smaller scale
landslides (volcanic debris avalanches) involving part of the edifice. Sometimes these
massive rock slope failures are transformed into lahars (volcanic debris flows).

Flank collapses are massive catastrophic failures of the volcanic edifice itself. Flank
collapses may be triggered by magma emplacement, local tectonic displacements, over-
steepening and overloading by the deposition of eruptive products, oversteepening and
incision of the edifice by stream erosion, the generation of pore pressures generated as a
result of magma intrusion or seismic shaking.

Smaller scale landslides also occur on the slopes of volcanoes without involving the
failure of a large part of the volcano’s superstructure. Initial failure volumes are typic-
ally less than 100 Mm³ and commonly involve mechanically weak pyroclastic debris or
hydrothermally altered rocks. Because of this, the “rock” mass involved in initial fail-
ure is easily fragmented and quickly becomes transformed into a rapidly moving rock
or debris avalanche. Volcanic landslides of this type may be triggered by an eruption,
small steam explosions, earthquake shaking, heavy rains, or glacier unloading.

Lahars are commonly associated with eruptions and may be triggered by a variety of
processes including the snow or glacier ice melting by hot ejecta, the ejection, or breach-
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ing of the waters of a crater or caldera lake, the transformation of glowing ash ava-
lanches, pyroclastic surges, or the transformation of an eruption-triggered flank collapse
- debris avalanche.

2.2.7 Slow Mountain Slope Deformations

Mountain slope deformation consists of slow, deep-seated movement of a large rock
mass which commonly exhibits loosening and fracturing in the sub-surface and signs of
displacement on the surface of the slope itself (Evans et al., 2006). The process is termed
“gravitational spreading” by Varnes et al. (1989) and "sagging” by Hutchinson (1988)
who regards it as an early phase in the development of deep-seated landslides.

This style of slope movement may involve movement along discrete shear surfaces
and deep seated mass creep. It is commonly manifested in topographic features such as
cracks, fissures, trenches, antislope (counter) scarps at mid or upper slope locations, and,
in some cases, slope bulging at lower slope locations. These linear geomorphic features
may be collectively termed “sackungen”, after the German word for “sagging” (Mc-
Calpin and Irvine, 1995). Frequently, these surface features occur without well defined
headscarps, lateral scarps, or lateral shear zones suggesting that slope movement is oc-
curring without the formation of well defined shear surfaces in contrast to rockslides
described earlier.
Mountain slope deformation features (or sackungen) present difficulties in landslide
hazard assessment for several reasons:

• the precise movement mechanism is difficult to establish and thus to analyse;

• the potential for the development of catastrophic detachment is difficult to evalu-
ate;

• the relationship to tectonic processes may be complex;

• the origin of the linears themselves may be problematic (i.e. whether they represent
a tectonic fault formed by an earthquake or a response to mountain slope deform-
ation, is not always clear; this issue is complicated by the fact that many examples
of deep seated slope deformation occur in close association with pre-existing faults
which may themselves be active).

Large-scale non-catastrophic rockslides are common in many mountainous areas of the
world, particularly in metamorphic rocks. Rates of movement may be in the range of 1-2
mm/year. The precise mechanism of mountain slope deformation is difficult to establish
even at sites that have been extensively studied.
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Where the geological structure is favourable, mountain slope deformation involves some
degree of toppling or sliding movement of a slope that has been previously disturbed
by toppling. A major problem in the interpretation of massive rock slope movements
is the prediction of the future behaviour of the slope and the establishment of condi-
tions that determine the transition to possible catastrophic failure once ongoing moun-
tain slope deformation has been detected. For example, it happens that a rock avalanche
can take place in a slope that had undergone significant non-catastrophic deformation in
the post-glacial period (1987 Valtellina rock avalanche). In the literature, the boundary
between non-catastrophic ductile flexural toppling and catastrophic brittle block top-
pling has been examined by Nichol et al. (2002).

2.3 Initial rock slope failure

The initial rock slope failure of massive landslide depends on predisposing geological
factors including lithology, particularly the presence of argillaceous strata, the presence
of faults, slope angle and structural controls. In addition, periglacial disturbance and
the melting of permafrost, glacial or fluvial erosion, hydrogeological and meteorological
factors, neotectonics and seismicity, and both surface and hydrothermal weathering are
factors causing slope instability (Hutchinson, 2006).

In bedrock slope, the mode of initial failure is strongly controlled by the slope geometry
and geologic structure (Evans et al., 2006).

In sedimentary rocks, sliding frequently takes place along persistent planar discontinu-
ities such as bedding planes, faults, joint surfaces, or lithological contacts.

In dip-slopes, sliding takes place on bedding planes and it is frequently facilitated by
the presence of bedding plane shears resulting from tectonic processes. Dip-slope sliding
may be facilitated by buckling or by shear across bedding.

Initial failure in steep underdip slopes and reverse slopes in bedded rock sequences is
complex and my involve buckling, toppling or break-out across bedding. The dip of
key discontinuities may vary in a given dip slope and the sliding surface may thus be
concave or convex. Planar or gently curved discontinuities are also important in determ-
ining a failure mode in strongly foliated metamorphic rocks.

In rocks with a complex structure, failure is controlled by impersistent but closely spaced
discontinuities and may be complex, consisting of multiple wedges combined with local
toppling.

Evans et al. (2006) emphasize the importance of massive rock slope failure character-
istics like morphology, internal structure and sedimentology. First of all, they are essen-
tial in the initial identification of massive rock slope failure deposits. The literature is rich
of examples of MRSF deposits that were initially interpreted as glacial deposits. Second,
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they are useful to understand the processes of fragmentation, transport and final con-
solidation as well as the mechanism of the interaction with the substrata that the debris
travels over. Sedimentological studies of prehistoric MRSF deposits have also given im-
portant information about the precise sequence of initial failure and possible secondary
processes. Furthermore, the knowledge of MRSF deposits and their internal structure is
a key requirement in assessing the present stability of deposits that form landslide dams,
either with respect to slope stability, piping, and resistance to overtopping.

2.3.1 Pre-failure Features and Triggers

The successful assessment of the hazards of MRSF depends on the recognition of pre-
failure features: initial failure may be preceded by observable slope deformations (widen-
ing tension cracks, increased rockfall activity) and the time-to-failure calculations may
be made on the rate of movement of specific targets placed on the moving slope. Mon-
itoring is a common approach to hazard management. However, initial rock slope fail-
ure may occur without warning as a result of a sudden earthquake trigger. Seismically
induced landslides can be divided into direct failures, which occur essentially synchron-
ously with the shock, and indirect failures which occur subsequently, often by up to
hours or days, as a result of induced groundwater or other changes. Other common trig-
gers of landslides are heavy or prolonged rainfall or snow melt, toe erosion, impounding
of lakes or reservoirs and rapid draw-down following emptying. Recently, melting of
mountain permafrost, in the Alps for example, has led to the stimulation of debris flow
activity and may influence deep-seated failures (Hutchinson, 2006).

Failures in brittle compound slides can present particular danger. Even if their bound-
ing slip surfaces are pre-existing and non-brittle, failures on their internal shears are gen-
erally first-time and brittle and can impart a sudden acceleration to the overall failure.
The most dramatic example of such a process is provided by the Vaiont slide of 1963.
The morphology of landslides in downslope section determines whether their incipient
movements are kinematically admissible or kinematically inadmissible; in the former
case the slide can move without internal deformation of the sliding block, whereas in
the latter case the potential slide block is virtually locked in position until transformed
into a mechanism, and thus released, by the formation of internal shears. Three common
examples, the kinematically admissible planar and circular slides and the kinematically
inadmissible compound slides, are shown in Figure 2.1. Particularly important in a com-
pound slide, is the internal shear (A) towards the rear of the slide, which results in the
formation of a graben.
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examples, the kinematically admissible planar and circular slides and the kinematically 
inadmissible compound variety, are shown in Figure 15.

Figure 15.  Kinematically admissible and inadmissible landslides. 

Compound slides can present particular dangers, for even if their bounding slip 
surfaces are pre-existing and non-brittle, failures on their internal shears are generally 
first-time and brittle and can impart a sudden acceleration to the overall failure.  In this 
connection, the internal shear, A, towards the rear of the slide (Figure 15) is particularly 
important and commonly results in the formation of a graben.

652

Figure 2.1: Kinematically admissible and inadmissible landslides (Hutchinson, 2006).
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2.4 Deep-seated landslide from Massive Rock Slope Fail-
ure

The so called “slow mountain slope deformation”, classified by Evans et al. (2006) as a type
of “landslide from massive rock slope failure”, has been extensively studied by several
scientists in the past decades.

The importance of slow mountain slope deformations, also called deep-seated land-
slides, is that they occur in many parts of the world, are considered to be a major geolo-
gical hazard, and impact very significantly on infrastructures and on society. It is to be
recognized that many aspects of deep-seated landslides are poorly understood and need
be investigated in order to gain the necessary confidence for anticipating and predicting
their behaviour, assess the risk, and find possible preventive/remedial measures. This
is indeed due to the many complexities of the phenomena involved which encompass
the understanding of the underlying mechanisms, the initial and post-failure behaviour,
and the different secondary processes resulting from instability (Barla, 2010).

In the literature, large-scale slope deformations have been defined by authors in
many different ways based on the study approach or the failure mechanism. Although
this style of landslide has long been identified, the study of these deformations has been
restricted to the identification of morphological aspects and description of movement
rates. More problematic is to study the geomechanical behaviour, particularly because of
the difficulty to investigate the rock at considerable depth. Independent of this, several
authors carried out laboratory work to better understand the behaviour of rock along
shear surfaces of deep-seated landslides.

In the next subsection an historical review as well as the main features of this type of
landslide are presented.

2.4.1 Historical background

Many high mountain ridges are affected by large-scale deep-reaching gravitational de-
formations. They may attain lengths of several kilometres and heights even over 1000
m. This expressive geomorphological manifestations were observed long ago, but they
were attributed to other factors, mainly to the action of snow, wind, regelation, etc. The
opinion that they may be the manifestation of deep-reaching deformations of mountain
slopes was supported mainly by the works of Ampferer (1939) and Stini (1941), who
described merely phenomenological structures of such mass movements as “Bergzer-
reißung” (ridge top spreading) and “Talzuschub” (bulging toe).

The first definition of deep-reaching gravitational deformations has been given by
Heim (1932), who referred to “sackung” as the slow, steep to vertical deformation of
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mountain slopes, wherein the internal structure is not changed considerably and dis-
placement is concentrated on a distinct shear surface. In general “sacken” (to sag) means
“a vertical movement”.

The first hypotheses on the deformation mechanisms based on deep creep and tent-
ative of explanations of the possible causes, appeared in the literature in the sixties. Terz-
aghi (1962) pointed to the danger of deep-seated rock slides for the construction of dams
in deep mountain valleys. He stated that «practically nothing is known concerning the
mechanics of deep seated, large-scale rock slides. It is not known whether the slides
took place rapidly or slow by, and it is doubtful whether they are preceded by important
creep deformation of the rocks located within the shear zone».

Ter-Stepanian (1966) also proposed the theory of deep creep of slopes and identified
three main groups of creep deformations in rock masses: planar, rotational and general
(Figure 2.2): mechanisms from a) to e) are examples of planar creep, f) and g) are examples
of circular creep, h) and i) are examples of general creep. Experience accumulated shows
that rotational creep deformations of rock slopes as defined by Ter-Stepanian (1966) take
places in many cases. Such conditions were described by Zischinsky (1966) in the Alps.

On the basis of systematic investigations, Zischinsky (1966) pointed out that the ex-
istence of a basal sliding plane is not absolutely necessary for a mass movement in some
type of rocks such as phyllite, micaschist, paragneiss and similar rock masses. Thus,
large mass movements do not have to be slides and continuous creep of rock plays a
particular role in such mass movements. Zischinsky (1966) suggested a Bingham body
when modelling rock creep and in his work he showed only “low angle dipping dis-
placement vectors” in the profile of the mass movements investigated. For unexplained
reasons Zischinsky called such mass movement “sackung”, though “low angle dipping
displacement vectors” contradict the meaning of “sag” (vertical movement) introduced
in literature by Heim (1932).

The term “sackung” was used by Zischinsky for a large-scale gravitational move-
ment that takes place by gradual displacements along a series of disconnected planes or
by plastic deformation of a rock mass without formation of a through-going slide plane.
It may pass into or be combined with movement along a slide surface (Figure 2.3). He re-
commended that the term be applied to movements in which the amount of pervasively
distributed deformation is large in relation to the displacement along a discrete surface
of sliding.

Almost all profiles drawn by Zischinsky show normal faults in the upper slope area
(Figure 2.3). Zischinsky argued that these movements are continuous in space, because
these normal faults are small in relation to the deformed area on the whole. However,
normal faults are not consequence of creep. Creep of a rock mass produces tensile stress
above slope surface bends. This corresponds to the “Bergzerreißung” described by
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Figure 2.2: Rock creep typologies after Ter-Stepanian (1966); a) creeping of slabs; b) con-
sequent creeping; c) creeping away of blocks; d) outcrop creeping; e) terminal creeping;
f) asequent creeping; g) S-like creeping; h) insequent creeping; i) compensating creeping.
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Figure 2.3: Typical profiles of “sackung” from Zischinsky (1966). Cross section of the
Matrai-Glunzenberg slope: 1-phyllite and paragneiss in original position; 2-carbonates;
3-indication of foliation planes; 4-shear planes; 5-probable depth of deformation.

Ampferer (1939). Thus a “Bergzerreißung” results from tensile stresses parallel to the
surface above a slope surface bend, and is therefore a more or less vertical tensile crack.
Normal faults like those drawn e.g. by Zischinsky in his profiles, do not result directly
from creeping of rock masses in slopes and therefore are not a “Bergzerreißungen”.

In a recent review lecture, Poisel and Kieffer (2010) try to demystify the ambiguity
of the term “sackung”, concluding that the mechanism called “sackung” by Zischinsky
(1966) cannot be explained and modelled only by creep of rock masses and is an ex-
tremely complex process depending on a lot of parameters of rock.

In the classification of slope movements presented by Varnes (1958, 1978), the large-
scale gravitational movement can be considered as a flow type of movement in rock, in
which motion takes place by relative movement of particles within the moving mass, as
contrasted with a slide-type movement, in which an entire mass moves relative to the
stable underlying slope along a through-going surface of shear. This definition is similar
to Zischinsky’s definition of sackung.

Other authors refer to this style of deep reaching gravitational deformations in their
research work. According to the Nemcok et al. (1972) classification, these deformations
belong to the creep group; the proposed classification of mass movements divides them
into four type of processes: creep, sliding, flow, and fall.
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In this classification, creep is defined as a geologically long-term movement of non-
increasing velocity without well-defined sliding surfaces. In most cases it can refer to
deep-seated (or viscous) flow. Thus, the movements are designated as creeping move-
ments, whereas the resulting phenomenon is rock creep, talus creep or soil creep. When
an expressive acceleration is involved, the deformation passes from creep into one of the
catastrophic forms (sliding, flow or fall). In solid rocks they are predominantly rockslides,
but rockfalls are also frequent.

Nemcok et al. (1972) give a number of examples of creep (Figure 2.4): examples 1-8
are examples of deep-reaching creep, whereas example 9 is an example of superficial
creep. Example 1 and 2 are loosening of the rocks in the valley slope by cracks parallel
to the surface and initial disturbing of the stability of the slope by opening of tension
cracks, typical of brittle materials. Example 3 and 4 are deep-seated creep, phenomenon
previously described under the term of “Bergzerreißung” (crack in a mountain ridge)
and “Talzuschub” (deformation at the toe of a slope), typical of brittle rocks. The type
of deep-reaching creep is controlled in the first place by the geological structure of the
slope.

In 1977 the Congress of the International Association of Engineering Geology held in
Prague, devoted a session to “Deep-seated gravitational slope deformation” (DSGSD).
Nemcok and Baliak (1977) briefly describe gravitational deformations in Mesozoic rocks
of the West Carpathian mountain ranges. These areas are affected by slope movements
of all the four principal groups according to the Nemcok et al. (1972) classification. Most
frequently the creep slope deformations are accompanied by disintegration of mountain
ridges. An example of such deformations is the deformation on Sivy mountain. The
marked difference in behaviour was found between the southern steep slope of the Sivy
mountain ridge which does not display any movement, and the northern gentler slope
which is dissected by cracks, furrows and down throws into a system of blocks moving
toward the valley (Figure 2.5).
In Italy, a study group on deep-seated gravitational slope deformations was set up in the
eighties and included more than 80 researchers.
Hutchinson (1988) classified mass movements according to their morphology, mechan-
ism, type of rock and movement velocity. He introduced in the class creep, the type deep-
seated continuous creep or mass creep, as considered by Zischinsky (1966); then he used the
term “sagging” of mountain slope in a considerably wider sense than the Zischinsky’s
original “sackungen”.

Hutchinson (1988) therefore instigated many misunderstandings and imprecisions
by allocating one type of mass movement to two classes (Poisel and Kieffer, 2010).

Sorriso-Valvo and Dramis (1994) contributed to investigate large-scale gravitational
movements. They described the DSGSDs as a group of mass movement phenomena
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Figure 2.4: Examples of creep types from Nemcok et al. (1972).
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Figure 2.5: Cross section through the ridge of Sivy mountain (Nemcok and Baliak,
1977). 1-biotitic quartz diorites and granodiorites (Paleozoic); 2-limestones, dolomites,
coloured shales, dolomite intercalations and quartzites of the Carpathian Keuperian (Tri-
assic); 3-shales and sandstones, marly limestones and shales (Jurassic - Neocomian); 4-
dolomites and limestones (Triassic Choc nappe); 5-block in the Triassic limestones and
dolomites; 6-trenches, step-like scarps; 7-thrust faults; 8-shear zone.

characterised by the following elements:

(a) The deforming mass may or may not be bounded by a continuous yielding surface;
however, the continuity of such surface is not indispensable to explain the superfi-
cial deformations.

(b) The volume of masses involved is of the order of several hundred thousands of cubic
meters or more, the thickness is several tens of meters or more.

(c) Scale factors may influence the mechanical properties of the rock and, consequently,
the deformation mechanism.

(d) The total displacement is small in comparison to the magnitude of the mass in-
volved.

With the above conditions some phenomena cannot be classified precisely, as often hap-
pens with classifications of most natural phenomena. Three basic types of DSGSD were
defined as follows:

(1) Sackung (Zischinsky, 1966), or the rock-flow type in Varnes (1958, 1978).
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(2) Lateral spread of ridges (Varnes, 1978 and Hutchinson, 1988).

(3) Lateral spread of thrust fronts (may correspond to the complex types in Varnes (1978)).

According to the above points (a) to (d), the types 1 and 3 of the DSGSD basic type corres-
pond to deep-seated, pre-failure creep and to the different types of sagging in Hutchin-
son (1988).

In 2002, declared by the United Nations, the “Year of the Mountains”, a NATO Ad-
vanced Research Workshop, known as “Celano Workshop”, was purposely organized to
bring together scientists involved in a range of research topics related to massive rock
slope failure. The idea was to attempt a critical assessment of the state-of-the-art con-
cerning catastrophic massive rock slope failure. In that workshop, Evans et al. (2006)
identify the large-scale deep-reaching gravitational deformations as a type of landslide
from massive rock slope failure, called by the authors “slow mountain slope deformation”,
as already described in Section 2.2.

2.4.2 Morphological, geomechanical and structural features of deep-
seated landslides

Deep-seated landslides from massive rock slope failure are slow to extremely slow mov-
ing massive natural slopes characterized by a failure deformation which occurs at great
depth in excess of 100 m and up to 250-300 m (Barla, 2010). They occur on high relief en-
ergy hill-slopes, with size comparable to the whole slope, and with displacements relat-
ively small in comparison to the slope itself. In cases such deformation takes place along
a basal sliding surface which is described as a zone of sheared and cataclastic rock, loc-
ally reduced to a soil-like material with silt and clay. They are most often associated with
rocks which exhibit marked strength anisotropy such as shale, schist, gneiss, micaschist,
slate etc., but the phenomenon is also associated with igneous (plutonic) rocks such as
granite and diorite, volcanic rocks (Tabor, 1971). They are less usual in sedimentary
rocks, also if some authors have been observed such phenomenon in massive sediment-
ary rocks (Beck, 1968; Radbruch-Hall (1978)).

The typical morphological and structural features of deep-seated landslides are im-
pressive mainly in the crest part. The exposures of shear planes on the surface are mani-
fest as rock steps and furrows running parallel to the crest. Small lakes and double crests
form on the ridges and linear fissures often occur behind the shear plane scars (Mahr
and Nemcok, 1977).

In the upper and middle parts of the slope, mainly in rocks of higher mechanical strength
(i.e. granitoids, orthogneiss), there are uphill-facing (antislope) scarps. Rock steps and
uphill-facing scarps on the crests sometimes create forms similar to graben, 50-100 m
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wide, 6-50 m deep and several hundred meters long (Radbruch-Hall et al., 1976). The
authors are of the opinion that the existence of a graben implies that the top of the ridge
dropped down as the south-west-facing sloped bulged out (Figure 2.6). As the move-
ment proceeded, reverse slippage took place along the major joint system. The rock
below the plane of slippage moved upward relative to the one above it, forming uphill-
facing scarps on the mountain side.

If the rock is weaker, such as low-grade metamorphic rock or crushed gneiss, deform-
ation is ductile and the geomorphological manifestations like trenches may not develop.
In more plastically deforming rocks the deformation in the central part of the slope ap-
pears as rippling of the slope, and the strikes and dips of foliation or bedding planes
scatter enormously. In some cases arching up has been observed in the central and lower
parts of the slope (Mahr, 1977).

Figure 2.6: Cross section of Contact Mountain, Montana, according to Radbruch-Hall
et al. (1976).

The morphological manifestations are less marked at the foot of the slope. Rocks
extending into the valley quickly disintegrate and are transported by strongly eroding
water courses flowing in mountain valleys. At other places they are overlapped by accu-
mulation forms or by fluvial and glaciofluvial deposits. An example of such an overlap is
cited by Desio (1973). During the construction of the Beauregard arch dam it was found
that the bottom of the valley is overlapped by sediments more than 40 m thick (Figure
2.7).

Two opposing hypotheses have been proposed for the subsurface geometry of a sack-
ung in massive competent rocks (McCalpin and Irvine, 1995). The first hypothesis is
due to Zischinsky (1969) and Mahr (1977) who state that in such cases «a well defined
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M, compact mica schists; M1, fractured and mylonitic mica schists; M2, mica schists as M1 but very 
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Figure 3. Geological cross section (view from upstream) at the Beauregard dam site showing the 

“pocket” - dotted zone on the left abutment [1] 
 

The presence of these glaciofluvial sediments found during the excavation of the left abutment 
posed very serious problems and great concern with reference to both water flow control and dam 
stability. The decision taken during the dam construction was to deal with this pocket in stages by 
excavating a series of parallel galleries, later to be filled with concrete, by complex underpinning 
works, and subsequent grouting. In brief, the pocket of glaciofluvial sediments was completely re-
placed by concrete to a depth of 200 m into the left slope. In order to ensure water tightness a main 
grout curtain was constructed all around the dam to about 100 m below the Dora river bed. 

3 Recent investigations and monitoring data 

Starting with the year 2002, CVA initiated a series of geological and geotechnical investigations, in 
order to gain in the understanding of the left slope conditions, in particular with reference to the 
DSGSD, its interaction with the dam, and the presence of important cracks on the downstream face 
of the same dam. These investigations comprised the following: geological, geomorphological, 
hydrogeological, and geotechnical studies; in situ and laboratory testing; geophysical investigations 
by seismic methods on the left slope and on the dam; additional monitoring instrumentation 
installed along the left slope and in the dam; systematic interpretation of performance monitoring 
data; numerical modelling of both the slope and dam response [2]. 

3.1 The left slope: updated geological model and monitoring data 

The geological, geomorphological, hydrogeological, and geotechnical investigations covered a total 
area of 10 km2 approximately (Figures 4 and 5) and allowed one to obtain a detailed geological map 
of the project area which underlines the presence of the DSGSD on the left slope of the 
Valgrisenche valley. As shown in Figures 4 and 5, the deformation zone involves a significant 
portion of the left slope and extends approximately 1500 m in height from the toe (at 1700 m asl 
elevation) to the mountain ridge (at 3200 m asl elevation). It is underlined downslope by a series of 
minor scarps, which are present mostly in an area extending 1.5 km upstream of the dam (the Zone 

Left Abutment Right Abutment 

Maximum Reservoir Level

Dora River

WNW 

Figure 2.7: Geological cross section at the Beauregard dam site showing the accumula-
tion of fluvial and glaciofluvial deposits (Desio, 1973). M, compact mica schists; M1, frac-
tured and mylonitic mica schists; M2, mica schists as M1 but very disjointed; a, fine and
coarse alluvial deposits; d, debris; glacial deposits. Foundations excavations in dashed
line.

slide plane near the headscarp passes downward into a broader zone of rock creep. Con-
sequently the lower portion of this type of failure simply bulges out into the valley».
Such slow failure mechanism results into well developed tensional features near the
head, but often without evidence of typical landslide features in the central part of the
slope and at the toe. The second hypothesis is that sackung is a shallow surface manifest-
ation of toppling and flexural slip along discontinuities that dip steeply into a mountain
mass (Jahn, 1964; Beck, 1968; and Bovis, 1982). This was termed by Bovis as “flexural
toppling”, in which outward rotation blocks and dilation of sackung cracks lead to at-
tenuation of movement with time, which Bovis (1982) compared to strain-hardening in
granular material.

Agliardi et al. (2001) used the term “morpho-structure” to describe the morphological
expression of a deformational structure of tectonic or gravitative origin. The morpho-
structures have been described and mapped in the past prevalently with a morphological
approach. Terms as “scarp”, “up-hill facing scarp” or “antislope scarps” introduced by
Radbruch-Hall et al. (1976), have been used to point out an upward or downward facing
break in the slope profile with different origins.

Hutchinson (1988) distinguished three main types of feature:
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• DD (normal down-slope down-movement facing scarps);

• UD (up-slope down-movement facing counterscarp);

• UU (up-slope up-movement facing counterscarp);

but again no complete information is given about the kinematics. In fact, Hutchinson
(1988) in his work on classifications, state that «movement is used in the sense of the
overall, eventual slide movement, not a local movement associated with scarp forma-
tion». All these different approaches caused some misunderstanding in the kinematic
interpretation of the DSGSD structures, so that Agliardi et al. (2001) gave kinematically
consistent nomenclature in order to minimize ambiguities. According to them, the fol-
lowing terms have been adopted (Figure 2.8):

• Scarp: morphological expression of a down-hill dipping collapse or main failure
surface with a down-slope movement;

• Counterscarp: surface evidence of an upward dipping surface, standing alone or
antithetically associated to a major scarp with an up-slope movement;

• Trench: linear and deeply cut form, expression of extensional opening of a vertical
or downward dipping surface.

2.4.3 Failure mechanisms and structural evolution

McCalpin and Irvine (1995) state that the stress field that produces a sackung may have
five possible origins:

a) Ice wedging (Zischinsky, 1969).

b) Gravity forces that produce slow deformation in a rock mass.

c) Stored forces resulting from prior loading conditions (e.g. glaciation).

d) Seismic shacking.

e) Displacement connected to deep-seated seismogenic faults.

Almost all researchers agree that tectonics is one of the relevant factors for the devel-
opment of mass-movement, especially when large-scale landslides, sackung and lateral
spreads are concerned. In most of the cases studied in the literature, it is evident that
the subsequent development of these type of movements may be determined in large
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Figure 2.8: Morpho-structural features typical of a DSGSD (Agliardi et al., 2001).

part by geomorphologic evolution. Sorriso-Valvo and Dramis (1994) observe a possible
relationship that exists between some type of mass movement and tectonics. They state
that it is possible to recognize the following conditions:

(A) Sackung evolving progressively towards rock slide and debris avalanche, for nearly
homogeneous, low to high grade metamorphic, igneous, densely jointed rocks, on
high fault scarps and on steep slopes of recently deglaciated areas.

(B) Lateral spread with sliding components, for crystalline and sedimentary rocks, hard
and jointed, and decompressed by the relief of tectonic stress because erosion, or
by the relief of glacial pressure;

(C) Opening of tension crack due to gravitation-driven movement, for layered rocks
most frequently sedimentary, with alternating layers of different competence, fol-
ded and thrusted; or in case of thrusting and anticlinal folding, lateral spreading,
evolving progressively towards rock sliding or debris avalanche.

As far as the sackung deformation is concerned, some researchers propose different
models to explain the mechanism of failure. As previously described, sackung consists of
creeping-flow type deformation in hard, jointed rock forming high steep slopes, whereas
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if the rock is hard and little jointed (as in a granite or massive sandstone), it probably de-
forms through micro-fracturing (Sorriso-Valvo and Dramis, 1994).

Some researchers accept the model by Mencl (1968). They say that morphological
forms found on the creep deformation in the slope correspond well to the theoretical
considerations based on the assumption of contractant dilatation behaviour of the rock
in deformation (Mahr, 1977). The problem of dilatancy and contractancy was analysed
by Mencl. He proposed a simple model of contractant and dilatant rock mass and he
proved that dilatant masses which in shear disturbance increase their volume deform
along a “thin” shear plane and, contractant rocks which in shear disturbance decrease
their volume deform in a “thick” zone. In slope movement it happens that the rock
behaves differently under different loading; by compressing the contractant zone, con-
siderable deformations take place in the central part of the slope. In the upper and lower
parts when the stresses are smaller, the rock behaves dilatantly and sharp shear planes
develop. An example based on Mencl’s work is given in Figure 2.9.

Figure 2.9: Cross section of the Chabenec Southern slope: 1-orthogneiss; 2-biotite quartz
diorite to granodiorites with joints; 3-slope debris; 4-accumulation of rock slide; 5-
dilatant shear planes (from Mahr, 1977).

Inside a sufficiently high slopes, where the limit of pressures between the contractant
and dilatant behaviour of the rock is exceeded, a thick crushed and compressed con-
tractant zone forms. At the slope foot and on the crest of the slope shear planes form as
a result of the dilatant behaviour of little loaded rock or of a deformation of considerable
extent of the contractant zone.
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A scheme of progressive slope deformation on the example of Chabenec in the Low
Tatras mountain range was proposed by Feda (1973) (Figure 2.10). Since the slope failed
locally, but the total stability was not surpassed, it implies a progressive failure. He
states that decisive for the failure progression will be the mechanical behaviour of the
rock mass; this can be either brittle (dilatant) or ductile (contractant). Feda’s hypothesis
of the development of slope deformation is based on theoretical considerations and on
the field observation. First tension cracks originate at the slope crests, then sliding sur-
faces at the slope toe, later sliding surface near the slope crests originate and the failure
spreads toward the slope centre. After contractant failure has occurred, the volume of the
middle part of the slope decreases. Secondary shear planes develop, because the rock be-
haviour at the surface is again brittle (Mahr, 1977). On the basis of the above mentioned
mechanism of failure, deep-reaching gravitational slope deformations of mountains, can
be classified into the group of rotational depth creep, according to Ter-Stepanian’s classific-
ation.

Figure 2.10: Development of slope failure according to Feda (1973): a) tension cracks; b)
shear planes; c) shear zone with ductile behaviour (from Mahr, 1977).
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Savage and Varnes (1987) introduced a model for sackung that implies a plastic flow
solution with a continuous basal shearing surface. This could be referred to the final
stage of evolution of a deep-seated landslide, when all the rock mass is on the verge of
a catastrophic failure. In addiction, the assumption that the slope material has the same
characteristics at every point within the interior of the slope cannot be accepted because
of the large volumes involved. Even though the material is uniform, the high confining
pressure at depth, combined with dense jointing, is supposed to be able to induce brittle-
ductile transition in the material, so that the model of Mencl could be justified (Sorriso-
Valvo and Dramis (1994)).

Both models explain the presence of scarps in the highest and lowest parts of the
slope, but the movement along mid-slope shearing surfaces is reversed (Figure 2.11).

Figure 2.11: Deformation occurring in a sackung according to the distributed shear
model (a) and the plastic failure model (b), (from Sorriso-Valvo and Dramis, 1994). 1-
zone of viscous deformation, with contractant material; 2-shearing on discrete surface;
3-shearing in the brittle (shallow) zone to accommodate the volume decrease in ductile
(deep) zone.

As the creeping deformation continues, it can change into an accelerated phase that
leads to the catastrophic collapse of large-scale rock avalanches. In this manner, some
authors consider sackung as the initial stage of a rock avalanche, whereas others prefer
to keep sackung as a separate type, because it is peculiar in terms of affected rock and
slope morphology (Sorriso-Valvo and Dramis, 1994). With respect to the evolution of a
deep-seated landslide it is important to determine if the relief of the slope is increasing
by for example observing the activity of the fault that originate the scarp.
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Petley and Allison (1997) investigate the mechanical behaviour of deep-seated land-
slides. In their laboratory study they try to simulate the stress-strain environment at the
bottom of these type of particularly large mass movements. They state that deep-seated
landslides mechanism of failure is a consequence of three deformation modes. At the
lowest stresses the material have a brittle behaviour, leading to catastrophic movement
as a result of the development of a shear surface. At depth, some materials have a purely
ductile behaviour, leading to continuous, creep-like movement. The experimental study
carried out on mudrocks sample, suggests that some materials also show a combination
of ductile and brittle deformation, inducing long periods of creep followed by abrupt
brittle failure.

2.4.4 Types of movements characterising deep-seated massive land-
slides

In young orogenic areas, the most hazardous and destructive types of slope deformation,
such as rockfalls, rock avalanches, debris flows, rockslides and shallow translational and
rotational landslides, are often predisposed by older deep-seated gravitational slope de-
formations (Dikau et al., 1996).

The study presented by Hradecky and Panek (2008) demonstrates the link between
DSGSDs and the occurrence of landslide hazards in the highest part of the Flysch Carpath-
ians within the territory of the Czech Republic. The working hypothesis of the study as-
sumes that a long-term development of deep-seated slope deformations (in the order of
thousands of years) creates suitable conditions for the subsequent occurrence of a wide
range of other slope deformations. The hypothesis verification has been demonstrated
on case studies with a varied link between DSGSDs and consequent mass movements.

DSGSDs disrupt bedrock, generate discontinuities and change slope morphology res-
ulting in superficial reactivations. Generally, this activation concerns a relatively small
part of the volume of a DSGSD, but it tends to have highly destructive consequences
(Deng et al., 2000). Areas affected by DSGSDs are characterized by the existence of mor-
phologically unstable segments of slopes, such as old steep landslide scarps and fore-
front parts of rotated and gravitationally subsided blocks.

Gravitational disequilibrium of mountain ridges in the uppermost part of the Flysch
Carpathians, in the territory of the Czech Republic, is related to the vertical contact of
nappe structures of contrasting mechanic characteristics. Mountain ridges are formed by
rigid sandstone complexes (the Godula Nappe) thrust over mainly plastic incompetent
claystones and thinly bedded sandstones (the Tesin Nappe). In such a way the density of
slope failure is thus most often associated with two types of geological structures (Figure
2.12).
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Fig. 3 Scheme of gravitational disequilibrium in the culmination part of the flysch Carpathians. (A)
Genesis of a DSGSD in the forefront part of the Godula Nappe connected with denuded contact of overlying
rigid layers with underlying plastic formations, typical development of translational landslides on bedding
planes features the back part of the nappe. (B) Large scale rotational landslides on the contact of Godula and
Těšı́n Nappes initiate the development of presently active shallow translational and rotational landslides in
their forefront parts. (C) Development of shallow translational landslides and debris flows is located on the
contact of pervious sandstone debris generated from higher situated outcrops and underlying impervious
claystones. (D) Toppling initiate tilting of bedding planes comformingly with the slope inclination, which
causes the development of rockslides and rock avalanches. (E) Development of translational rockslides on
bedding planes of flysch formations is aligned by transversal tectonic lines which predispose scarps of
landslides and the direction of debris flows
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Figure 2.12: Scheme of gravitational disequilibrium in the culmination part of the flysch
Carpathians (Hradecky and Panek, 2008). (A) Genesis of a DSGSD in the forefront part
of the Godula Nappe connected with denuded contact of overlying rigid layers with un-
derlying plastic formations, typical development of translational landslides on bedding
planes features the back part of the nappe. (B) Large scale rotational landslides on the
contact of Godula and Tesin Nappes initiate the development of presently active shal-
low translational and rotational landslides in their forefront parts. (C) Development of
shallow translational landslides and debris flows is located on the contact of pervious
sandstone debris generated from higher situated outcrops and underlying impervious
claystones. (D) Toppling initiate tilting of bedding planes comformingly with the slope
inclination, which causes the development of rockslides and rock avalanches. (E) De-
velopment of translational rockslides on bedding planes of flysch formations is aligned
by transversal tectonic lines which predispose scarps of landslides and the direction of
debris flows.
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The study of active landslide areas within the studied territory of the Flysch Carpath-
ians proved that the key causative factor for the development of young (particularly
shallow) landslides is the presence of DSGSDs (Baron et al., 2004). With some exceptions,
young active landslides developed and are still formed in zones of DSGSDs, which has
been described even in other young orogenic parts of the Earth (e.g. Bisci et al. (1996)).

A geomorphic analysis of key localities and a preliminary study of other slope de-
formations in the area of the highest mountain groups of the Czech part of the Carpath-
ians proved that the causes of landslide hazards are conditioned by the functioning of
three factors:

• structural causes;

• the intensity of incision of the valley bottom;

• Quaternary landscape development, including climatic oscillations and increasing
human activities during the course of the given historic periods.

The structure is a determinative factor of the widespread extension and volume of slope
deformations (Margielewski and Urban, 2003). The first level of preparatory factors con-
sists in the tectonic break-up of the autochton of flysch nappes. Moreover, the reactiv-
ated tectonic failures of the Paleozoic fundament of nappes had a crucial influence. At
present, many extensional structures and evidence of gravitational disintegration on the
highest ridges of the area are related to the development of the inherited Paleozoic fail-
ures. The second level of preparatory factors is caused by the compression movement
of nappes and pressure on clastic Miocene sediments. The third level of preparatory
factors is caused by the actual lithological and tectonic structure of flysch nappes. In
terms of slope instabilities, they have a suitable monoclinal structure and gravitation-
ally unstable distribution of complexes of layers, as soft and incompetent layers occur
in stratigraphically lower levels while higher structural levels are formed by rigid com-
petent formations. These preparatory factors have led to a state in which practically all
parts of the range have an exposed position with respect to the occurrence of deep-seated
slope deformations and their subsequent shallow accelerations.

The primary preparatory factors mentioned above would not lead to the creation of
slope instabilities without vertical dissection and denudation. The preliminary analysis
of several hundred slope deformations within the studied area, showed that an incised
valley is essential for the development of large-scale landslides, but what appears to be
much more important, is the valley incision below the boundary between rigid overlying
and underlying plastic layers. In this context, during recent decades, most streams in the
area underwent anthropogenic accelerated change from an accumulation into an erosion
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regime. This effect leads to active vertical erosion which further deepens mountain val-
leys and shifts the position of valley bottoms below the boundary between rigid and
plastic layers. This change can lead to the development or acceleration of the collapse in
areas where slope deformations are still in the initial succession stage.

2.5 Summary

This chapter attempts to describe the complexities related to landslides resulting from
massive rock slope failure. Hazard assessment of massive rock slope failure is made
difficult by a variety of complex initial failure processes and unpredictable post-failure
behaviour, which includes transformation of movement mechanism, substantial changes
in volume by deposition and/or entrainment, and changes in the characteristics of the
moving mass. Initial failure mechanisms are strongly influenced by geology and topo-
graphy, and, because of this, the development of geological models is essential for the
analysis of these mechanisms.

In the second part of the chapter, deep-seated landslides from massive rock slope
failure are illustrated. Generally, in the scientific literature the understanding of such a
phenomena is not uniform. Large-scale slope deformations have been defined by au-
thors in many different ways based on the study approach or the failure mechanism.
Although these landslides have long been identified, their study has been restricted to
the identification of morphological aspects and description of movement rates. A suffi-
cient understanding of massive landslides and the hazards connected with them require
a multidisciplinary approach using geological, geomorphological, geophysical technolo-
gies. Also monitoring of deep-seated landslides is a common approach to hazard man-
agement. The study presented in the last section of the chapter is an example of compre-
hensive study in order to acquire a thorough knowledge of the causes, mechanism and
history of large-scale slope deformations. The emphasis is on the types of slope deform-
ations which are often linked with older deep-seated gravitational slope deformations.
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Chapter 3

Numerical modelling of
landslides from massive rock
slope failure

3.1 Introduction

Rock slope stability analyses are routinely performed in order to assess the safe and func-
tional design of excavated slopes and the equilibrium conditions of natural slopes. The
method chosen depends on both site conditions and the potential mode of failure, with
careful consideration being given to the varying strengths, weaknesses and limitations
inherent in each technique. This chapter presents the approach proposed by several au-
thors to investigate failure mechanisms of rock slopes.

In accordance with this approach, analyses may be undertaken using different levels
of sophistications. In this context, a review of numerical techniques used in rock slope
stability analysis is done, with emphasis on the use of combined continuum-discontinuum
numerical modelling codes as a powerful tool to model landslides from massive rock
slope failure.

It should be emphasized that the use of such codes which involve fracture mechan-
ics theory in rock slope analysis is still very much at the research stage. It is essential
that these codes be constrained through analyses in which they are used in conjunction
with conventional continuum and discontinuum approaches in order to establish an ex-
perience database for varied failure mechanisms. The application of these techniques to
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study the total slope failure of a massive rock slope will be a step forward.

3.2 The study of rock slope instability

In rock engineering design there are no simple universal rules for acceptability nor are
there standard factors of safety which can be used to guarantee that a rock structure will
be safe and it will perform adequately (Hoek, 1991). To demonstrate this, Hoek (1991)
summarizes some of the typical problems, critical parameters, analysis methods and
acceptability criteria which apply to a number of different rock engineering structures.
The table relating to slope stability analysis is shown in Figure 3.1.
In general, the primary objectives of rock slope stability analyses are (Eberhardt, 2003):

• to determine the rock slope stability conditions;

• to investigate the potential failure mechanisms;

• to determine the slopes susceptibility to different triggering mechanisms;

• to test and compare different support and stabilization options;

• to design optimal excavated slopes in terms of safety, reliability and economics.

A site investigation study should precede any stability study and includes elements of
geological and discontinuity mapping to provide the necessary input data for the sta-
bility analysis. The collection of data ideally involves rock mass characterization and
the sampling of rock materials and discontinuities for laboratory analysis (i.e. strength
and constitutive behaviour determination), field observations and in situ measurements.
In situ monitoring of spatial and temporal variations in pore pressures, slope displace-
ments, stresses and subsurface rock mass deformations, provide valuable data for con-
straining and validating the stability analysis undertaken.

In order to properly conduct such investigations, and to analyse and evaluate the
potential hazard relating to an unstable rock slope, it is essential to understand the pro-
cesses and mechanisms driving the instability. Landslide movements, as described in the
previous chapter, may be considered as falls, topples, slides, spreads or flows (Cruden
and Varnes, 1996a), and in some cases involve different combinations of several failure
modes (referred to as composite slides). These mechanisms are often complex and act
at depth, making the investigation and characterization of contributing factors difficult.
This poses a problem in the analysis stage of the investigation as uncertainties arise con-
cerning the analysis technique to be employed and what input data is required (Figure
3.1).
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Figure 3.1: Typical problems, critical parameters, methods of analysis and acceptability
criteria for slope (Hoek, 1991).
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Today, complex numerical analyses of rock slopes are ordinarily performed in rock
slope engineering. Actually, a vast range of slope stability analysis tools exist for both
rock and mixed rock-soil slopes; these range from simple infinite slope and planar fail-
ure limit equilibrium techniques, to sophisticated coupled finite-discrete element codes.
Given the wide scope of numerical applications available today, it has become essential
to fully understand the varying strengths and limitations of each different methodology.

3.3 Rock slope instability analysis techniques

In rock engineering, a wide range of tools for the analysis of rock slopes are available
to the engineer and geoscientist. Stead et al. (2006) propose a flow chart illustrating
how rock slope analyses may be undertaken using three levels of landslide sophistica-
tions (see Figure 3.2). The key aspect of the approach is the failure mechanism and the
concept of progressive failure. Such a concept was originally introduced in the literature
to explain discrepancies between average shear stresses calculated from back analysis
along failure surfaces in overconsolidated clay slopes and shear strengths of the same
clay material in laboratory testing (Bjerrum, 1967).

Level I includes preliminary kinematic and limit equilibrium analysis. These meth-
ods are particularly suited to translational failures where basal shear, lateral and rear
release all take place on persistent joints, particularly at the residual angle of friction.
Such conditions are rare in practice.

Modification to Level I techniques has been attempted by many authors to accom-
modate deformation mechanisms involving step-paths and intact rock fracture (Jen-
nings, 1970; Baczynski, 2000). Other authors have viewed the problem of cohesive stren-
gth along a potential failure surface in the context of progressive failure (Bjerrum, 1967).
In order to account for a non-persistent failure plane, Terzaghi (1962) included an effect-
ive cohesion along the shear surface to allow for the increased resistance to shear failure
provided by intact rock bridges. Similarly, consideration has also been given to the de-
velopment of tensile fractures orthogonal to the non-persistent sliding surface where
some stepping is required to allow kinematic release.

Limit equilibrium techniques have found little application toward simulation of pro-
gressive failure. This is generally due to the complexity involved in the time-dependent
geometrical development, of even the most simple shear surfaces. This highlights a ma-
jor limitation to the Level I techniques, as only processes active along the developing
translational shear plane are considered.

Where geometrical constraints on the slide mass are present, this may necessitate
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matic and limit equilibrium analysis. These methods are

particularly suited to translational failures where basal

shear, lateral and rear release all take place on persistent

joints, particularly at the residual angle of friction. The

authors suggest such conditions are rare in practice.

To account for a non-persistent failure plane, Terza-

ghi (1962) included an effective cohesion along the

shear surface to allow for the increased resistance to

shear failure provided by intact rock bridges. Similarly,

consideration has also been given to the development of

tensile fractures orthogonal to the non-persistent sliding

surface where some stepping is required to allow kine-

matic release. Modification to Level 1 techniques have

been attempted by numerous authors to accommodate

deformation mechanisms involving step-paths and in-

tact rock fracture (Jennings, 1970; Baczynski, 2000;

Kemeny, 2003).

Other authors have viewed the problem of cohesive

strength along a potential failure surface in the context

of progressive failure (Bjerrum, 1967; Chowdhury and

Grivas, 1982). In the case of the latter, the authors

considered progressive failure in terms of a probabilis-

tic model of gradual shear strength reduction along the

failure surface. To date, limit equilibrium techniques

have found little application toward simulation of pro-

gressive failure. This is generally due to the complexity

involved in the time-dependent geometrical develop-

ment of even the most simple shear surfaces.

This highlights a major limitation to the Level I

techniques, as only processes active along the develop-

ing translational shear plane are considered. Where

geometrical constraints on the slide mass are present

this may necessitate internal deformation, yielding and/

or shearing of the rock mass. Mencl (1966) proposed

the development of a Prandtl wedge (i.e., damage zone)

to explain failure along bi-planar slide surfaces with

regard to the 1963 Vaiont slide. Kvapil and Clews

(1979) further developed this concept to simulate the

transmission of stresses within a rock slope from an

active to passive block along a primary system of plane

Fig. 2. Flowchart illustrating three levels of landslide analysis and the modes of translational/rotational failure they apply to.

D. Stead et al. / Engineering Geology 83 (2006) 217–235220

Figure 3.2: Flowchart illustrating three levels of landslide analysis and the mode of trans-
lational/rotational failure they apply to (from Stead et al., 2006).
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internal deformation, yielding and shearing of the rock mass. Mencl proposed the de-
velopment of a Prandtl wedge (i.e., damage zone) to explain failure along bi-planar slide
surfaces with regard to the 1963 Vaiont slide. This concept was developed further by
other authors to simulate the transmission of stresses within a rock slope from an active
to passive block along a primary system of plane traversal shear surfaces (Figure 3.3).

The active portion of the slide is bounded by a surface, for example bedding, that is
coincident with the slope face. The active block moves downslope creating a “bearing
load” on the more stable passive block, leading to rock mass damage, yield and failure
between the active and passive blocks. The bearing failure portion of the slide is termed
the Prandtl zone and is the transition zone between the active and passive sliding blocks.
The Prandtl zone allows the force generated by the active block to be transmitted to the
passive block below.

Figure 3.3: Prandtl’s prism transition zone and the corresponding locations of zones with
different degrees of fracturing (from Stead et al., 2006).

In summary, the primary kinematic controls on massive rock slope failure can be
viewed as both strength degradation in the form of shear plane development (i.e., pro-
gressive failure) and strength degradation manifested through internal slide mass de-
formation (i.e., brittle–ductile yielding or shearing). The latter component is most dom-
inant in situations where the failure surface is non-planar (i.e., transition from Level I to
Level II analyses).

Level II analysis techniques include numerical modelling methods that provide ap-
proximate solutions to problems incorporating intact rock deformation (strain) during
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rock slope failure. Many of these techniques address complexities relating to geometry,
material anisotropy, non-linear behaviour, in situ stresses and the presence of several
coupled processes (e.g., pore pressures, seismic loading, etc.).

The availability of several numerical modelling codes means that the simulation of
potential rock slope failure mechanisms could, and in many cases should, form a stand-
ard component of a rock slope investigation.

Level III analyses involve the use of combined continuum-discontinuum codes (also
called hybrid codes) with fractures simulation capabilities. These codes are applicable
to a wide range of rock slope failure, but are particularly well suited to complex trans-
lation/rotational instabilities where failure requires internal yielding, brittle fracturing
and shearing and strength degradation along a release surface.

3.4 Conventional methods of rock slope analysis

Conventional methods of rock slope analysis can be generally divided into kinematic
and limit equilibrium techniques. These methods are suitable for Level I landslide ana-
lysis. Table 3.1 provides a summary of the techniques that are routinely applied together
with their inherent advantages and limitations (Stead et al., 2006). In addition, analyt-
ical computer-based methods have been developed to analyse discrete rock block falls
(commonly referred to as rockfall simulators).

Kinematic techniques

Kinematic methods concentrate on the feasibility of translational failures due to the
formation of manifested wedges or planes. As such, these methods need a detailed
evaluation of rock mass structure and the geometry of existing discontinuity sets that
may contribute to block instability (Eberhardt, 2003). This assessment may be carried
out by means of stereo-net plots or specialized computer codes which focus on planar
and wedge formation.

Limit equilibrium analysis

Limit equilibrium techniques are routinely used in the analysis of landslides where trans-
lational or rotational movements occur on distinct failure surfaces. Analyses are un-
dertaken to provide either a factor of safety or, through back-analysis, a range of shear
strength parameters at failure.
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tions adopted in most limit equilibrium back-analyses.

Initiation or trigger mechanisms may involve sliding

movements that can, in the most idealized of cases, be

analyzed as a limit equilibrium problem. The processes

leading up to this initial slip are however invariably far

more complex than a simple balance of disturbing and

resisting forces.

In recognition of the controlling influence jointing

has on complex rock slope deformation, numerical dis-

continuum techniques are being increasingly used in

practice. It must be recognized however that convention-

al discontinuum models also have inherent limitations.

Failure is frequently followed or preceded by creep,

progressive deformation (fatigue damage processes),

and extensive internal disruption of the slope mass (brit-

tle/plastic damage). The factors controlling initiation and

eventual sliding may be complex and are not easily

allowed for in a simple static analysis. Addressing

these challenges, the authors suggest that a new phase

of slope stability analysis is warranted that utilizes recent

advances in computing software and hardware develop-

ment. In many cases, this may involve the combined use

of limit equilibrium and numerical modelling techniques

to maximize the advantages of both. As engineers are

increasingly required to undertake landslide hazard

appraisals and risk assessments, they must address both

the consequence of slope failure and the hazard or prob-

ability of failure; a critical component of both is an

understanding of the underlying processes/mechanisms

driving the instability so that spatial and temporal prob-

abilities of failure can be addressed. Limit equilibrium

concepts alone cannot answer these questions. This

paper will discuss and provide examples of the slope

analysis tools that are available to the engineer, empha-

sising recent developments in numerical methods in the

analysis of complex rock slope deformations.

2. Kinematic and limit equilibrium analysis of rock

slopes

2.1. Conventional applications

Conventional rock slope analyses in current practice

invariably begin with engineering geological investiga-

tions of the discontinuities, leading to kinematic and

limit equilibrium stability assessments. Table 1, modi-

fied after Coggan et al. (1998), provides a summary of

conventional methods, together with their advantages

and limitations. Several commercial programs are avail-

able which may be used to assess rock slope stability

using either daylight envelopes (e.g., Dips —

Rocscience, 2004) or keyblock theory (e.g., SAFEX

— Windsor and Thompson, 1993; Kblock — Pantech-

nica, 2001). These stereographic techniques can be

used as input for deterministic or probabilistic limit

equilibrium calculations to determine a factor of safety

Table 1

Conventional methods of analysis (modified after Coggan et al., 1998)

Analysis

method

Critical input

parameters

Advantages Limitations

Stereographic

and kinematic

Critical slope and

discontinuity geometry;

representative shear

strength characteristics.

Simple to use and show failure

potential. Some methods allow

analysis of critical key-blocks. Can

be used with statistical techniques to

indicate probability of failure and

associated volumes.

Suitable for preliminary design or for

non-critical slopes, using mainly

joint orientations. Identification of

critical joints requires engineering

judgement. Must be used with

representative joint/discontinuity

strength data.

Limit

equilibrium

Representative geometry,

material/joint shear

strength, material unit

weights, groundwater and

external loading/support

conditions.

Much software available for different

failure modes (planar, circular,

wedge, toppling, etc.). Mostly

deterministic but some probabilistic

analyses in 2-D and 3-D with

multiple materials, reinforcement

and groundwater profiles. Suitable

for sensitivity analysis of FofS to

most inputs.

FofS calculations must assume

instability mechanisms and

associated determinacy

requirements. In situ stress, strains

and intact material failure not

considered. Simple probabilistic

analyses may not allow for

sample/data covariance.

Rockfall

simulation

Representative slope

geometry and surface

condition. Rock block

sizes, shapes, unit weights

and coefficients of

restitution.

Practical tool for siting structures

and catch fences. Can utilize

probabilistic analysis. 2-D and 3-D

codes available.

Limited experience in use relative to

empirical design charts.

D. Stead et al. / Engineering Geology 83 (2006) 217–235218

Table 3.1: Conventional methods of analysis (Stead et al., 2006).

All limit equilibrium techniques share a common approach based on a comparison of
resisting forces/moments mobilized and the disturbing forces/moments. Methods may
vary, however, with respect to the slope failure mechanism in question (e.g. translational
or rotational sliding), and the assumptions adopted in order to achieve a given solution.

In general, these methods are the most commonly adopted solution methods in rock
slope engineering, even though many failures involve complex internal deformation and
fracturing which bears little resemblance to the 2D rigid block assumptions required by
limit equilibrium analyses. However, limit equilibrium analyses may be highly relevant
to simple block failure along discontinuities or rock slopes that are heavily fractured or
weathered (i.e. behaving like a continuum equivalent rock mass).

Considerable developments in limit equilibrium approaches have taken place in re-
cent years. 3D limit equilibrium techniques have been developed and 2D limit equi-
librium codes now include, for example, probabilistic techniques (e.g. geostatistics),
capabilities for including support, improved routines for critical surface searching, in-
tegrate groundwater-stress limit equilibrium analysis and incorporation of unsaturated
soil mechanics.
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Rock fall simulation

In the case of rockfalls, consideration must be given to the design of protective measures
near structures endangered by the falling blocks (Eberhardt, 2003). The problem of rock-
fall protection work, therefore, largely involves the determination of travel paths and
trajectories of unstable blocks that have detached from a rock slope face.

Analytical solutions proposed by Hungr and Evans (1988) treat the rock block as
a point with a mass and velocity that moves on a ballistic trajectory while in the air,
and bounces, rolls or slides when in contact with the slope surface. This is done by re-
versing and reducing the normal and tangential components of velocity upon contact,
through coefficients of normal and tangential restitution. The two restitution coefficients
are taken as bulk measures of all impact characteristics, incorporating deformational
work, contact sliding and transfers of rotational to translational momentum and vice
versa. As a result, the coefficient must depend on fragment shape, slope surface rough-
ness, momentum and deformational properties and, to a large extent, on the chance of
certain conditions prevailing in a given impact (Eberhardt, 2003).

3.5 Numerical analysis of rock slope instability

Conventional methods of slope analysis are limited to simplified problems, including
simple slope geometries and basic loading conditions, and as such provide little insights
into slope failure mechanisms. Many rock slope stability problems involve complexities
relating to geometry, material anisotropy, non-linear behaviour, in situ stresses and the
presence of several coupled processes (e.g. pore pressures, seismic loading, etc.). To ad-
dress these limitations, numerical modelling techniques have been proposed to provide
approximate solutions to problems, which otherwise would not have been possible to
solve using conventional techniques. Numerical methods of analysis used for rock slope
stability investigations may be divided into conventional applications and advanced
applications (Stead et al., 2006).

3.5.1 Conventional applications

Conventional numerical modelling approaches may be conveniently subdivided into:

• Continuum methods (e.g., finite element, finite difference, etc.);

• Discontinuum methods (e.g., distinct element; discontinuous deformation ana-
lysis, etc.).
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Table 3.2 briefly summarizes the characteristics, the advantages and limitations inherent
in these different numerical modelling approaches (Stead et al., 2006).

Chile. Coggan et al. (2000) successfully demonstrated

the use of both two- and three-dimensional finite-dif-

ference analyses in the back analysis of highly kaoli-

nised china clay slopes. Guadagno et al. (2003) adopted

a finite difference approach to analyse the influence of

cut-and-fill works on slopes in Campania, southern

Italy; their models considering both dry and steady

state flow seepage conditions. Kinakin and Stead

(2005) recently extended the finite-element analyses

of Radbruch-Hall et al. (1976) to investigate sackung

formation using an elasto-plastic finite-difference

model of varied rock slope ridge geometries associated

with bsackungQ features in British Columbia, Canada.

Both finite-element and finite-difference models remain

in routine use in engineering landslide investigations

and are most appropriate in the analysis of slopes

involving weak rock/soils or rock masses where failure

is controlled by the deformation of the intact material

(i.e., continuum) or through a restricted number of

discrete discontinuities such as a bedding plane or fault.

Where the stability of the rock slope is controlled

by movement of joint-bounded blocks and/or intact

rock deformation then the use of discontinuum dis-

crete-element codes should be considered. Discrete-

element codes have found increasing use in the anal-

ysis of rock slopes in recent years and are now in

routine use in civil and mining engineering. Two prin-

cipal methods are in use, distinct element (Hart, 1993)

and discontinuous deformation analysis (DDA; Shi and

Goodman, 1989), the former becoming more common

in engineering practice. Example applications of DDA

include the analysis of the Vaiont rockslide (Sitar and

Maclaughlin, 1997), and of a major rockfall in Japan

by Chen and Ohnishi (1999). The predominant discon-

tinuum method in use however, is the distinct-element

code dUDECT (Itasca, 2004). This code has been used

to investigate a wide variety of rock slope failure

mechanisms including those ranging from simple pla-

nar mechanisms (Costa et al., 1999), to complex deep-

seated toppling instability (Board et al., 1996; Benko

and Stead, 1999; Hutchison et al., 2000; Nichol et al.,

2002) and buckling (Stead and Eberhardt, 1997).

These authors illustrate the need to consider both intact

rock and joint-controlled displacements in the analysis

of complex rock slope instabilities. The use of 3-D

distinct element techniques has been more limited to

date. Adachi et al. (1991) in an early application of the

3DEC code (Itasca, 2004) analysed toppling slopes

along a highway in Japan. Zhu et al. (1996) and

Valdivia and Lorig (2000) both present applications

Table 2

Numerical methods of analysis (modified after Coggan et al., 1998)

Analysis

method

Critical input

parameters

Advantages Limitations

Continuum

modelling

(e.g., finite

element, finite

difference)

Representative slope

geometry; constitutive

criteria (e.g., elastic,

elasto-plastic, creep,

etc.); groundwater

characteristics; shear

strength of surfaces; in

situ stress state.

Allows for material deformation and

failure, including complex

behaviour and mechanisms, in 2-D

and 3-D with coupled modelling of

groundwater. Can assess effects of

critical parameter variations on

instability mechanisms. Can

incorporate creep deformation and

dynamic analysis. Some programs

use imbedded language (e.g., FISH)

to allow user to define own

functions and subroutines.

Users should be well trained,

experienced, observe good

modelling practice and be aware of

model/software limitations. Input

data generally limited and some

required inputs are not routinely

measured. Sensitivity analyses

limited due to run time constraints,

but this is rapidly improving.

Discontinuum

modelling

(e.g., distinct

element, DDA)

Slope and discontinuity

geometry; intact

constitutive criteria

(elastic, elasto-plastic,

etc.); discontinuity

stiffness and shear

strength; groundwater

and in situ stress

conditions.

Allows for block deformation and

movement of blocks relative to each

other. Can model complex

behaviour and mechanisms

(combined material and

discontinuity behaviour, coupled

with hydro-mechanical and dynamic

analysis). Able to assess effects of

parameter variations on instability.

Some programs use imbedded

language (e.g., FISH) to allow user to

define own functions and

subroutines.

As above, experienced users needed.

General limitations similar to those

listed above. Need to simulate

representative discontinuity

geometry (spacing, persistence, etc.).

Limited data on joint properties

available (e.g., joint stiffness, jkn and

jks).

D. Stead et al. / Engineering Geology 83 (2006) 217–235222

Table 3.2: Numerical methods of rock slope analysis (Stead et al. (2006)).

Continuum modelling is best suited for the analysis of slopes that consist of massive,
intact rock, weak rocks and soil-like or heavily jointed rock masses. Discontinuum mod-
elling is appropriate for slopes controlled by discontinuity behaviour.

Early numerical analyses of rock slopes were predominantly undertaken using con-
tinuum finite element codes. Kalkani and Piteau (1976), for example, used this method
to analyse toppling of rock slopes at Hells Gate in British Columbia, Canada; prelimin-
ary finite element modelling of the Frank Slide in Alberta, Canada, was undertaken by
Krahn and Morgenstern (1976). Radbruch-Hall et al. (1976) similarly used a finite ele-
ment analysis to simulate the stress distributions in rock slopes in order to investigate
mechanisms of high mountain deformation and “sackung” formation.

Continuum approaches used in slope stability analysis include the finite difference and
finite element methods. In both these methods the problem domain is discretized into a set
of sub-domains or elements. A solution procedure may then be based on numerical ap-
proximations of the governing equations, i.e. the differential equations of equilibrium,
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the strain-displacement relations and the stress-strain equations, as in the case of the Fi-
nite Difference Method (FDM). Alternatively, the procedure may exploit approximations
to the connectivity of elements, and continuity of displacements and stresses between
elements, as in the Finite Element Method (FEM). The use of finite difference codes has
predominantly involved the use of the FLAC 2D and 3D codes (Itasca, 2005). Both finite
element and finite difference models are ordinarily used in engineering landslide invest-
igations and are most appropriate in the analysis of slopes involving weak rock, soils
or rock masses where failure is controlled by the deformation of the intact material (i.e.,
continuum) or through a restricted number of discrete discontinuities such as a bedding
plane or fault.

Where the stability of the rock slope is controlled by movement of joint-bounded
blocks and intact rock deformation then the use of discontinuum discrete element codes
should be considered. Discrete element codes have found increasing use in the analysis of
rock slopes in recent years. Two principal methods are in use, Distinct Element Method
(DEM; Hart, 1993) and Discontinuous Deformation Analysis (DDA; Shi and Goodman,
1985), the former becoming more common in engineering practice. The predominant
discontinuum method in use however, is the distinct element code UDEC (Itasca, 2005).
This code has been used to investigate a wide variety of rock slope failure mechanisms
including those ranging from simple planar mechanisms, to complex deep-seated top-
pling instability (Barla and Chiriotti, 1995; Chiriotti, 1997; Benko and Stead, 1998; Nichol
et al., 2002) and buckling (Stead and Eberhardt, 1997). These authors illustrate the need
to consider both intact rock and joint-controlled displacements in the analysis of complex
rock slope instabilities.

The use of 3D Distinct Element techniques has been more limited to date. Adachi
et al. (1991) in an early application of the 3DEC code (Itasca, 2005) analysed toppling
slopes along a highway in Japan. Kalenchuk et al. (2010) provide a recent application of
the 3DEC code to investigate the Beauregard massive landslide located in the Aosta Val-
ley in northwestern Italy. Numerical simulations of the Beauregard Landslide use three-
dimensional mixed continuum-discontinuum methods to explore the role and import-
ance of sophisticated geometric interpretations in analysing landslide mechanics and to
test model sensitivity to shear zone strength parameters.
Recent developments in continuum and discontinuum numerical methods allow simu-
lation of complex rock slope failure processes, including:

• hydro-mechanical coupling;

• dynamic analysis;

• advanced and user-defined constitutive criteria (strain softening, creep, damage,
etc.);
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• support interaction;

• improved integration with empirical rock mass classification schemes.

An example of application of the conventional numerical techniques has been provided
by Barla and Chiriotti (1995) who studied the slope stability problems which character-
ize the Rosone slope deformation, located in northwestern Alps in Italy. Based on the
evaluation of the site conditions in terms of geology, structure, and rock mass properties,
two sectors of the slope have been analyzed by using the distinct element method and
the finite difference method respectively. A number of factors which could adversely af-
fect the stability conditions of the slope in both sectors were evidenced by these models
Chiriotti (1997). In the first case, the predominant geological structure with the plane
of schistosity dipping down-slope and transient water pressures are shown to be critical
factors in slope stability. In the second case, the stability of the slope is controlled mainly
by the strong toe buttress and by the groundwater conditions.

Another example of application is given by Eberhardt et al. (2002); the authors use a
strain-softening criterion to simulate internal strength degradation and damage contrib-
uting to massive rock slope failure and the development of a Prandtl yield zone within
a deforming crystalline rock slope. Figure 3.4 shows that a zone of yield due to shear
damage develops near the base of the eventual slide surface and transforms into a tensile
failure zone as straining occurs. This zone of tensile damage continues upwards through
the intact slide mass dividing the rockslide into two distinct blocks, approximating the
contact between the first and second failure events of a massive rock slide in southern
Switzerland.

3.5.2 Advanced applications

Conventional, Level II continuum and discontinuum models although able to simulate
certain aspects of progressive shear plane development, often fail to realistically simulate
the progressive failure of rock slopes, particularly the dynamics of kinematic release ac-
companying complex internal distortion, dilation and fracture. Thus, they are not suited
to the modelling of progressive failure though brittle fracture initiation and propagation.
The importance of developing kinematic release through fracturing in selected mechan-
isms is a key issue in rock slope analysis that is not addressed by conventional numerical
models. Stead et al. (2004) emphasize the need to consider rock slope failures using the
principles of fracture mechanics with appropriate consideration of damage, energy, fa-
tigue and time dependency.

Early work to address the influence of fracturing in rock engineering was under-
taken by Williams et al. (1985) and Mustoe (1989) who developed a discrete element code
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Figure 8. Distinct-element strain-softening model showing development of Prandtl yield zone at base of 
slide surface and propagation of tensile damage upwards through intact slide mass, dividing the slide mass 

along the contact between first and second Randa rockslide events 

 

These models assist in explaining the episodic nature of the two main events that constituted the 
1991 Randa rockslide. Figure 8 shows that a zone of yield due to shear damage develops near 

the base of the eventual slide surface and transforms into a tensile failure zone as straining 

occurs. This zone of tensile damage continues through the intact slide mass dividing the 

rockslide into two distinct blocks, approximating the contact between the first and second 

Randa events. This would suggest that the episodic nature of the slide could be explained by 

brittle tensile fracturing that developed over time due to stress concentrations and strength 

degradation. The tensile nature of failure in this area also supports the strain-dependent 

frictional strength development concept introduced by Hajiabdolmajid & Kaiser (2002a). 

 
 

4. CONCLUSIONS AND FUTURE DEVELOPMENTS 

To better understand the temporal nature of massive rockslides, stability analyses must 
incorporate elements of progressive failure and rock mass strength degradation. Various 

numerical models have been used here to demonstrate the evolution of failure in massive 

natural rock slopes as a function of shear plane development and internal slope deformation. 

Numerical modelling results incorporating these concepts show, that in the case of the 

1991 Randa rockslide, pre-existing fully persistent geological structures are not necessary to 

explain the failure. Instead, finite-element results show that the failure process could have 

initiated through the development of rock mass damage at the slope’s toe following deglaciation 

of the valley and slope rebound. Stress concentrations resulting from oversteepening of the 
slopes would cause the damage zone to propagate and develop throughout the rock mass 

leading to a progressive failure starting from two or more damage initiation centres. 

Specifically, the distinct-element models show that deformation of the slope mass due to 

strength degradation would result in a brittle-ductile transition zone developing at the base of 

the slide mass, and development of a major sub-vertical tensile fracture zone dividing the slide 

mass into two blocks. This agrees with the observed episodic nature of the 1991 failure. 
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Figure 3.4: Distinct-element strain-softening model showing development of Prandtl
yield zone at base of slide surface and propagation of tensile damage upwards through
intact slide mass, dividing the slide mass along the contact between first and second
rockslide events (from Eberhardt et al., 2002).

that incorporated fracturing through a Mohr–Coulomb criterion with a tension cut-off.
Through their algorithms, an element could fracture through its centroid or along an ele-
ment edge. Cundall and Strack (1979) adopted a variation of the discrete element method
to simulate particular material behaviour. This led to the development of the Particle
Flow Code, PFC Itasca (2005), in which clusters of particles can be bonded together to
form joint-bounded blocks. This code is capable of simulating fracture of the intact rock
blocks through the stress-induced breaking of bonds between the particles. This is a
significant development as it allows the influence of internal slope deformation to be
investigated both due to yield and intact rock fracture of jointed rock.

It is evident from both rock slope observations and intensive fragmentation occurring
during the failure process that intact brittle fracture mechanisms are an important com-
ponent of many failures. A major weakness of the previously described methodologies
is that they only imitate intact rock fracture; they do not follow basic principles related
to brittle fracture mechanics.

A new numerical approach was proposed by Munjiza (Munjiza, 2004) in the early
1990s. The new method combines the advantage of both FEM and DEM into a combined
finite-discrete modelling methodology (Table 3.3), called FEM/DEM (reported as FDEM).
In FDEM each discrete element is discretised into finite elements meaning that there is
a finite element mesh associated with each discrete element. The method is suitable
to model intact behaviour, interactions along existing discontinuities and, when incor-
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using a fracture energy approach (Fig. 7). The fracture

energy release rate in tension is assumed to control only

the post-peak process after the tensile strength limit has

been reached (Munjiza et al., 1995). Various constitu-

tive models are available within ELFEN although those

used in conjunction with fracture generation are the

elasto-plastic Rankine (with an option for a rotating

crack model) and Mohr–Coulomb models (Yu, 1999;

Klerck, 2000).

Step-path failure has been undertaken in the past

using a combination of limit equilibrium and fracture

mechanics theory. The use of a hybrid finite-/discrete-

element code with fracture propagation, however, is

particularly well suited to the simulation of step-path

geometries. Fig. 8 illustrates an ELFEN model of a

translational failure requiring intact fracture between

two joint sets to allow kinematic release. Excess shear-

ing stresses along a discontinuity result in the propa-

Fig. 6. Simulation of a rock slope failure through an assemblage of bonded particles using a particle flow code (after Wang et al., 2003).

Table 3

Advanced/hybrid numerical methods of analysis

Analysis

method

Critical input

parameters

Advantages Limitations

Particle flow

code (e.g., PFC,

ELFEN)

Problem geometry,

particle shape, size and

size distribution; particle

density, bond stiffness

and strength (normal and

shear); bonding type and

tightness of packing

configuration.

Ideal for simulating particle flow,

but can also simulate behaviour of

solid material (e.g., intact or jointed

rock) through bonded assemblage of

particles, most notably the fracturing

and disintegration of the bonded

assemblage. Dynamic analysis

possible, as well as 2-D and 3-D

simulations. Some programs use

imbedded language (e.g., FISH) to

allow user to define own functions

and subroutines.

Input parameters are based on

micromechanical properties,

requiring calibration through

simulation of laboratory testing

configurations (i.e., to correlate

particle bonding properties to

Young’s modulus, compressive

strength, etc.). Particles are rigid and

often cylindrical (2-D) or spherical

(3-D). Simulation of brittle fracture

not based on physical

laws/principles of fracture

mechanics.

Hybrid finite-

/discrete-

element codes

(e.g., ELFEN)

Combination of input

parameters listed in Table

2 for both continuum and

discontinuum stand alone

models (e.g., elastic,

elasto-plastic, etc., for

continuum; stiffness,

shear strength, etc., for

discontinuities); damping

factors; tensile strength

and fracture energy

release rate for fracture

simulation.

Combines advantages of both

continuum and discontinuum

methods. Coupled finite-/discrete-

element models able to simulate

intact fracture propagation and

fragmentation of jointed and bedded

media. Incorporates efficient

automatic adaptive re-meshing

routines. Dynamic, 2-D and 3-D

analyses possible using wide variety

of constitutive models (plastic,

visco-plastic, etc.).

Complex problems require high

memory capacity. Comparatively

little practical experience in use.

Requires ongoing calibration and

constraints. Yet to be coupled with

groundwater.

D. Stead et al. / Engineering Geology 83 (2006) 217–235 225

Table 3.3: Advanced hybrid numerical methods of analysis (Stead et al., 2006).
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porating fracture mechanics principles, the initiation and development of new fractures
(i.e., the transition from a continuum to a discontinuum). Eberhardt (2006) identifies the
combined finite-discrete element method suitable for Level III of landslide analysis.

The combined finite-discrete element method was implemented in the Munjiza’s Y code
(Y2D, Munjiza, 2004). ELFEN (Rockfield, 2004) is another example of combined finite-
discrete element code, which enables the modelling of brittle fracture initiation and propaga-
tion through adaptive remeshing techniques coupled with contact search algorithms.
The program uses a finite element mesh to represent the intact joint bounded blocks and
discrete elements to model joint behaviour. The simulation of fracturing, damage and as-
sociated softening within a rock slope prior to and during failure is accomplished using
a fracture energy approach.

Stead et al. (2006) illustrate several examples of rock slope analyses performed us-
ing the combined finite-discrete element code ELFEN. The first example is the simulation
of step-path geometries. Figure 3.5 illustrates an ELFEN model of a translational fail-
ure requiring intact fracture between two joint sets to allow kinematic release. Excess
shearing stresses along a discontinuity result in the propagation of orthogonal tensile
fractures until eventually cross over fractures provide a continuous, but stepped, failure
surface and overall failure occurs. Step-path feature is not restricted to basal shear sur-
face development but are also important in the development of lateral and rear release
surfaces. Although a 3D global step path failure has yet to be considered, the process
is undoubtedly extremely important in localized failure throughout massive deforming
rock slope masses. Time dependent degradation of the cohesive and tensional strength
of both discontinuities and the intact rock mass are of significant importance (Stead et al.,
2006).

gation of orthogonal tensile fractures until eventually

cross-over fractures provide a continuous, but stepped,

failure surface and overall failure occurs. Preliminary

results indicate that the critical factors controlling the

step-path generation include a combination of joint

persistence, spacing, and frictional strength in addition

to the rock mass tensile strength. The location of the

potential translational joints within the slope with re-

spect to geometrically induced compressive and tensile

stress concentrations may play a key role in failure

initiation. Stead et al. (2004) suggest that step-path

processes may be active from the micro to macro

level depending on time-dependent aspects of defor-

mation. Furthermore, step-path or cross-over features

are not restricted to basal shear surface development

but are also important in the development of lateral and

rear release surfaces. Although a 3-D global step-path

failure has yet to be considered by practitioners, the

process is undoubtedly extremely important in local-

ized failure throughout massive deforming rock slope

masses. Time-dependent degradation of the cohesive

and tensional strength of both discontinuities and the

intact rock mass are of significant importance.

Bi-planar rock slope failures are common in a va-

riety of tectonic and engineering environments. Early

Level I analyses of this failure mechanism were pro-

Fig. 8. ELFEN simulation of a stepped-path failure through a 100 m high rock slope.

Fig. 7. Stress–strain response to damage within a finite element, and crack insertion procedure used in ELFEN showing crack development either

through an element or along an element boundary (modified after Yu, 1999).

D. Stead et al. / Engineering Geology 83 (2006) 217–235226

Figure 3.5: Simulation of a stepped-path failure through a 100 m high rock slope (from
Stead et al., 2006).

Bi-planar rock slope failure is the second example studied by Stead et al. (2006). As
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posed using an active-passive wedge approach (Mencl,

1966; Kvapil and Clews, 1979). An interface was

assumed between an upper active driving block and

a lower passive or resisting block in order to allow a

solution that satisfied the kinematics of the failure

geometry. This form of analysis was initially applied

to embankment dams with the upper wedge failure

surface being the sloping core of a dam and the

lower passive failure surface being the foundation of

the dam (Seed and Sultan, 1967). The active–passive

wedge approach or non-circular methods of slices have

been applied to rock slope geometries where the upper

failure surface may for example be a high angle fault

and the lower failure surface along weak bedding

planes or intra-formational shears. Stead and Eberhardt

(1997) illustrated the application of discontinuum mod-

elling techniques to the analysis of active–passive fail-

ures in surface coal mine footwalls. Major rockslides,

such as the Vaiont slide (Mencl, 1966), have exhibited

a similar active–passive wedge or chair-shaped failure

surface geometry in which internal yielding and frac-

turing within the rock slope must occur for kinematic

release. Evidence of this internal distortion and frac-

turing can be observed as surface faults and graben

features within the post failure topography. Fig. 9

illustrates a hybrid finite-/discrete-element model of a

bi-planar failure geometry showing the stages in the

development of brittle internal fracturing that accom-

panies rock slope failure and kinematic release. The

development of tensile factures above and below the

intersection of the upper and lower failure surfaces is

evident. These are followed at a later stage by the

development of a wedge interface fracture. Soe Moe

et al. (2003) have proposed a modification to the

active–passive wedge analysis in which the interface

is inserted in the upper wedge rather than at the upper/

lower bi-planar surface intersection; this appears to be

in closer agreement with the hybrid models than the

conventional approach. The authors suggest that only

hybrid models containing elements of a discontinuum

and intact fracture can realistically simulate the com-

plex processes that occur in such massive bi-planar

rock slopes failures or indeed wherever the failure

surface has rapid changes in curvature.

Conventional, Level II continuum and discontinuum

models although able to simulate certain aspects of

progressive shear plane development are not suited to

the modelling of progressive failure though brittle frac-

ture initiation and propagation. Fig. 10 shows the use of

the ELFEN code in modelling the 1991 Randa rock-

slide, Switzerland (Eberhardt et al., 2004b). Adoption

of a Mohr–Coulomb constitutive criterion with a Ran-

kine crack tensile cutoff closely reproduces the

recorded dimensions of the 1991 Randa slide. The

Fig. 9. ELFEN simulation of a 50 m high rock slope with a bi-planar (active–passive) failure surface, showing: (a) the initial problem geometry; and

(b–d) three stages of fracture development leading to kinematic release and failure.

D. Stead et al. / Engineering Geology 83 (2006) 217–235 227

Figure 3.6: Simulation of a 50 m high rock slope with a bi-planar (active-passive) fail-
ure surface, showing the initial problem geometry and three stages of fracture release,
leading to the kinematic release and failure (from Stead et al., 2006).
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previous described, early Level I analyses of this failure mechanism were proposed using
an active-passive wedge approach by Mencl (1966). An interface was assumed between
an upper active driving block and a lower passive or resisting block in order to allow a
solution that satisfied the kinematics of the failure geometry. The active–passive wedge
approach or non-circular methods of slices have been applied to rock slope geometries
where the upper failure surface may for example be a high angle fault and the lower fail-
ure surface along weak bedding planes or intra formational shears. Stead and Eberhardt
(1997) illustrate the application of discontinuum modelling techniques to the analysis of
active–passive failures in surface coal mine footwalls. Major rockslides, such as the Va-
jont slide, have exhibited a similar active–passive wedge or chair-shaped failure surface
geometry in which internal yielding and fracturing within the rock slope must occur for
kinematic release. Evidence of this internal distortion and fracturing can be observed as
surface faults and graben features within the post failure topography.

Figure 3.6 illustrates a combined finite-discrete element model of a bi-planar failure geo-
metry showing the stages in the development of brittle internal fracturing that accom-
panies rock slope failure and kinematic release. The development of tensile fractures
above and below the intersection of the upper and lower failure surfaces is evident.
These are followed at a later stage by the development of a wedge interface fracture.
Stead et al. (2006) suggest that intact fracture can realistically simulate the complex pro-
cesses that occur in such massive bi-planar rock slopes failures or indeed wherever the
failure surface has rapid changes in curvature.

3.5.3 Total Slope Failure approach

By using combined finite-discrete element techniques with brittle fracture propagation, Stead
et al. (2006) state that a first step may be taken in what they term a “total slope failure”
analysis. This is in marked contrast to traditional rock engineering approaches where
the analysis of rock slopes has emphasized either the initiation mechanism or the trans-
port/deposition stage. Figure 3.7, modified after Stead et al. (2006), shows the varied
stages of the “total slope failure” analysis with the appropriate Level I, II and III analysis
codes.

Conventional Level I approaches have been used to characterize the hazard presen-
ted by the failure initiation using 2D and 3D deterministic limit equilibrium techniques.
If the true risk is to be ascertained, then the characteristics of the deformation as a pre-
cursor to failure and the post failure movement must be linked to the initiation analysis
(Stead et al., 2006). This requires a detailed rock mass characterization in order to allow
a combination of continuum, discontinuum and hybrid approaches. Specifically, addi-
tional data is required to constrain the degree of intact fracturing either associated with
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Figure 3.7: Stages of a “total slope failure” analysis with the appropriate Level I, II and III
analysis codes (from Stead et al. 2006, modified).

failure, in a back-analysis scenario, or the probability for release, in a hazard assessment
investigation. Field data should be gathered throughout the initiation, transportation
and deposition zones in order to constrain the degree of comminution associated with
failure, and similar controls on debris characteristics (e.g., block size, jointing, tensile
strength). The transportation and comminution stage follows the initiation of failure.
Comminution may be visualized as occurring both during initial rock failure and during
the gravity driven rock debris transport. Both particle flow codes and combined finite-
discrete element codes with fracture propagation have been shown to be suitable for the
modelling of rock debris transport.

Stead et al. (2006) suggest that Level III codes offer immense potential in furthering
the knowledge of the mechanisms and processes at work during the breakdown of the
slope mass continuum through failure initiation, transportation and deposition, that is,
the “total slope failure”. This is essential in order to develop robust recommendations
with regard to rockslide run-outs and the associated temporal and spatial risks due to
massive rock slope failure.



3.6 The study of massive rock slope instability 55

3.6 The study of massive rock slope instability

The study of massive rock slope instability problems, in general, has largely been de-
scriptive and qualitative. Studies that focus on some quantitative aspect of large-scale
mass movements are often limited to individual processes or triggering mechanisms (e.g.
correlating landslide activity with heavy precipitation events). As such, traditional treat-
ments have primarily been directed towards phenomenological methodologies, both in
terms of monitoring, prediction and stability analysis (Eberhardt, 2006).

Phenomenological-based approaches represent the interpretation of large-scale ob-
servations/measurements with the purpose of translating them into a usable form for
engineering design (e.g. an empirical relationship, a failure criterion, etc.). One of the
more common phenomenological techniques, employed in rock slope stability investiga-
tions, involves the use of surface displacement measurements recorded over time, which
are then extrapolated or analysed for accelerations in order to predict catastrophic fail-
ure. Such measurements are commonly used as a form of early warning system and may
cover a variety of scales, from that of a crack meter spanning an open tension crack to a
system of geodetic measuring points covering an entire slope (Eberhardt, 2006).

Significant advancements have been made through these techniques, yet success is
variable. In the literature there are many studies which have extrapolated displacement
versus time plots, to predict the correct date of catastrophic collapse. The collapse cri-
terion is usually a displacement value based on engineering judgement, displacement
data, rock mass quality and lessons learned from previous failure. In this sense, the
adopted methodology was purely phenomenological and relied heavily on experience
gained over time.

Extrapolation of displacement versus time records to predict catastrophic failure had
a successfully application at the Chuquicamata mine in the Chilean Andes. In contrast,
such an approach have led to incorrect forecasts, for example at Kilchenstock in the Swiss
Alps (Eberhardt, 2006). The case of Kilchenstock may have occurred 70 years ago, but
today, the same phenomenological-based “displacement versus time” analyses are still
being employed and often with the same variability in terms of success.

Such examples demonstrate the inherent difficulty in relying on phenomenological-
based analyses in which the mechanisms of the problem are largely ignored. The preval-
ent use of surface displacement measurements obviously addresses certain economic re-
straints in terms of what may be feasible for on-site monitoring of a given rock slope. Yet
it must also be asserted that only so much can be inferred at surface when the problem
itself transpires at depth. Thus lies the problem in relying solely on phenomenological
methodologies (Eberhardt, 2006).
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3.6.1 Progressive failure in massive rock slopes

In massive natural rock slopes, potential failure surfaces are often considered as being
extensive, continuous planes. The justification for this is partly due to post-failure obser-
vations where fully persistent discontinuities are fitted to the failure surface to explain
its origin in a geological context, and partly due to the constraints of the analysis tech-
nique employed (many of which require the input of fully persistent discontinuities, e.g.
limit equilibrium wedge or planar analysis, DEM, etc.). Such assumptions are often only
valid in cases where the volume of the failed block is relatively small (e.g. 1000 m³) or
where major persistent faults or bedding planes are present (Eberhardt et al., 2003).

In contrast, Terzaghi (1962) argues that the persistence of key discontinuity sets is in
reality more limited and that a complex interaction between existing natural discontinu-
ities and brittle fracture propagation through intact rock bridges is required to bring the
slope to failure. Eberhardt et al. (2003) state that such processes must be considered to
explain the temporal nature of massive natural rock slope failures. For example, prior to
failure a particular rock slope may have existed in a relatively stable state over periods of
thousands of years (e.g. since deglaciation), having experienced major precipitation and
snow melt events, and seismic activity over time. Thus, unless failure is driven by ex-
ternal changes to the geometry of the problem (e.g. undercutting, erosion at the toe, etc.)
or addition of external loads through human activity, a component of strength degrada-
tion with time must occur within the rock mass. In effect, such processes are similar to
those proposed by Bjerrum (1967) and others, indicated as progressive failure.

The key aspect of progressive failure in rock slopes is that the process is predomin-
antly driven by the propagation of fractures (e.g. through intact rock bridges between
existing discontinuities), and strength degradation, strain softening, internal deforma-
tion and dilation through increasing brittle fracture, damage and shearing (Eberhardt
et al., 2003).

Figure 3.8 illustrates the primary conceptual controls contributing to massive rock
slope failure viewed as a function of strength degradation in the form of shear plane de-
velopment and strength degradation manifested through internal deformation, dilation
and damage mechanisms. For example, Martin and Kaiser (1984) showed that these in-
ternal shears, and the internal distortions that occur along them, are necessary in certain
modes of rock slope instability to accommodate motion along a basal sliding surface. De-
pending on the complexity of the geology, topography and subsurface structure, these
controls will vary in their influence on the overall instability state.

To treat these problems, new developed combined finite-discrete element codes have
been proposed because they allow for the modelling of both intact behaviour and the
development of fractures.
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of massive natural rock slope failures. For example, prior to 
failure a particular rock slope may have existed in a 
relatively stable state over periods of thousands of years 
(e.g. since deglaciation), having experienced major 
precipitation and snowmelt events, and/or seismic activity 
over time. Thus unless failure is driven by external changes 
to the geometry of the problem (e.g. undercutting/erosion at 
the toe, etc.) or addition of external loads/surcharges 
through human activity, a component of strength 
degradation with time must occur within the rock mass. In 
effect, such processes are similar to those proposed by 
Bjerrum5 and others as progressive failure.  

The key to progressive failure in rock slopes is that the 
process is predominantly driven by the propagation of 
fractures (e.g. through intact rock bridges between existing 
discontinuities), and strength degradation, strain softening, 
internal deformation and dilation through increasing brittle 
fracture damage and shearing 6. Figure 1 illustrates the 
primary conceptual controls contributing to massive rock 
slope failure viewed as a function of strength degradation in 
the form of shear plane development and strength 
degradation manifested through internal deformation, 
dilation and damage mechanisms. For example, Martin and 
Kaiser7 showed that these internal shears, and the internal 
distortions that occur along them, are necessary in certain 
modes of rock slope instability to accommodate motion 
along a basal slip surface.  Depending on the complexity of 
the geology, topography and subsurface structure, these 
controls will vary in their influence on the overall 
instability state.  

 
 
 

 
 
Figure 1. Massive rock slope sliding mechanisms as 
controlled by progressive shear plane development and 
internal rock mass deformation/damage (after 6). 

The analysis of these processes and their incorporation 
into traditional rock slope analysis techniques is limited. 
Limit equilibrium solutions based on Coulomb shear 
strength criterion have been derived to include an apparent 
cohesion dependent on the continuity of jointing8. 
However, such treatments only address the question of joint 
persistence and not the progressive development of the 
failure plane. Still, the analysis of rock slope stability has 
changed significantly during recent years with a transition 
from limit equilibrium analyses to the application of 
numerical modelling. These techniques have evolved to 
allow routine analysis treating the slope mass as either a 
continuum (e.g. finite-element method) or a discontinuum 
(e.g. discrete-element method). In practice, the complexity 
involved in most massive rock slope failures involves 
elements of both deformation of the continuum, interactions 
along existing discontinuities and the creation of new 
fractures. To treat these problems, new developments in 
hybrid finite-/discrete-element codes have been forwarded 
which allow for the modelling of both intact behaviour and 
the development of fractures 9, 10.  

This paper presents the preliminary results from a study 
focussing on progressive failure and numerical modelling 
of brittle fracture processes in massive rock slopes, using 
the 1991 Randa rockslide in southern Switzerland as a 
working example.  
 

 
The 1991 Randa Rockslide 

The 1991 Randa rockslide involved the failure of 30 million 
m3 of massive crystalline rock in two separate episodes 
approximately three weeks apart (Figure 2). The slide is 
located in the Matter Valley in the southern Swiss Alps. 
Damage resulting from the two events included the 
destruction of the main road and rail line along the valley 
(which provides access to the resort village of Zermatt), the 
damming of the Vispa River and the subsequent flooding of 
the town of Randa. The failed rock mass was comprised of 
massive gneisses alternating with mica-rich paragneisses. 
As foliation dips favourably into the slope, Schindler et 
al.11 suggested that failure occurred along extensive shallow 
dipping joints parallel to the surface. These persistent joints 
can be observed along the sliding surface but are more 
limited in persistence when encountered in surface outcrops 
12. Schindler et al.11 also proposed a series of steep sub-
vertical faults as dividing the slide mass into smaller units, 
presumably to explain the episodic nature of the slide.  

 Analysis of climatic and seismic data, however, 
showed no clear indications of a triggering event 4,11. 
Eberhardt et al.4 instead suggested that time-dependent 
mechanisms relating to brittle strength degradation and 
progressive failure may more likely be the significant 
contributing factors that brought the slope to failure. Heavy 
snowmelt and precipitation prior to failure, although less 
than recorded in previous years, would have provided the 
final impetus resulting in failure, the slope having reached a 
state of strength degradation approaching its limit 
equilibrium state (i.e. cumulative deformation and fracture 
due to cyclic fatigue). 

Figure 3.8: Massive rock slope sliding mechanisms as controlled by progressive shear
plane development and internal rock mass damage (Eberhardt et al., 2003).
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3.6.2 The Total Slope Failure approach applied to massive rock slope
instability

In the literature applications of the “total slope failure” approach (i.e. Level III analyses)
to the study of massive rock slope instability have been recently proposed by several
authors. The first published use of the combined finite-discrete element method in rock
slide simulation using the total slope failure approach was proposed by Eberhardt et al.
(2003). They have undertaken a preliminary ELFEN modelling of the April-May 1991
Randa rockslide, Switzerland. The ELFEN model complements continuum and discon-
tinuum models (i.e. Level II analyses) previously undertaken by Eberhardt et al. (2004).
As described in their study, the geology of the Randa rock slope comprises predomin-
antly gneiss with several well developed joint sets (Figure 3.9). Modelling analyses have
emphasized the importance of progressive rock mass degradation and damage within
the rock slope prior to eventual slope failure. This damage appears to be rooted as far
back as the initial unloading of the rock slope during deglaciation, which has been shown
to result in tensile damage at the slope toe. Figure 3.10 shows the failure process at dif-
ferent stages.

These analyses used as input the observed rock slide failure surfaces and were under-
taken to illustrate the potential of the combined finite-discrete element method in simulating
the progressive fragmentation of the rock slope mass both during initiation, transport-
ation and deposition, that is “during the total slope failure process”. Modelling also
showed that internal deformation and damage within the slope mass due to strength de-
gradation would result in brittle-ductile transition processes subdividing the slide mass
into two key units through sub vertical tensile brittle fracturing. These model results
closely agree with the observed boundaries delineating the two slide phases constituting
the 1991 Randa rockslide. Furthermore, the inclusion of tensile brittle fracture processes
using the combined modelling techniques provided important insights as to the under-
lying mechanisms corresponding to the episodic nature of the rockslide and its relatively
short run out distance when compared to other major rockslides of comparable volumes
(Stead and Coggan, 2006).

Another example of total slope failure analysis proposed by the same authors was the
simulation of the Elm rockslide, occurred on 1881 and resulted in the loss of 115 lives.
It is described in Heim’s classic work “Landslides and Human Lives” (Heim, 1932), as
a clear example of what he termed “rubble stream” phenomenon in rock avalanche run
out. The rockslide occurred within fine cleavage slates quarried at the slope toe and
dipping into the mountain at 30°. The rock slope mass also comprises flysch sandstone,
greensands and glauconitic limestones.

Stead and Coggan (2006) presented a preliminary analysis of the Elm rockslide based
on the Heim’s section (Figure 3.11). In this analysis the development of fracturing due



3.6 The study of massive rock slope instability 59

Figure 3.9: Geological section and geometry of the 1991 Randa rockslides (Stead and
Coggan, 2006).

Figure 4.  The use of the combined finite-discrete element code, ELFEN, to simulate the Randa Rockslide, 
Switzerland, 1991 [14]. 

Further ELFEN analyses have been undertaken at Simon Fraser University in order 
to simulate the Randa rock slope failure and in particular the actual development of    
the failure surface. Both Rankine rotating crack and Mohr constitutive criteria, 
incorporating crack propagation have been used and the influence of glacier unloading 
investigated. Preliminary interpretation of these models clearly indicates the importance 
of progressive rock mass damage in the development of major rock slides such as 
Randa, and will be the subject of a future paper.

3.2.     THE ELM ROCKSLIDE 

The Elm rockslide occurred on September 11, 1881 and resulted in the loss of 115 lives. 
It is described in Heim’s classic work “Landslides and Human Lives” [13] as a clear 
example of what he termed “rubble stream” phenomenon in rock avalanche run out. The 
rockslide occurred within fine cleavage slates quarried at the slope toe and dipping into 
the mountain at 30o. The rock slope mass also comprised flysch sandstone, greensands 
and glauconitic limestones.  A preliminary analysis of the Elm rockslide was 
undertaken based on the Heim’s section, Figure 5. In this analysis the development of 
fracturing due to the quarry at the toe is simulated along with the run out of a dry 
fragmented  rock mass. Figure 6  illustrates  stages  in the rock slope  failure and runout. 
Initial results were promising in terms of the comparative runout magnitude simulated 
assuming frictional transport. Further work is required to examine the development      
of failure with progression of the quarrying at the toe.  Preliminary ELFEN analyses  
assumed properties for a weak highly anisotropic rock mass. 
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Figure 3.10: Combined finite-discrete element analysis of the Randa rockslide showing
several stages of progressive brittle fracture (Stead and Coggan, 2006).
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Figure 5. The Elm rockslide,1881 after Heim.[13], 1: 12500 scale. 
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Figure 6. Stages in the ELFEN simulation of the Elm slide. 

Further sensitivity analyses are intended to examine the influence of varying rock 
mass strength on both the failure mechanism and transport process.  

3.3.     BIPLANAR FAILURE IN COAL MEASURE ROCKS 

Biplanar rock slope failures are a common feature in many UK opencast coal mines. 
These failures frequently comprise a rear failure surface along a fault and a lower basal 
failure along a plane of weakness, such as a seatearth. For such failure to occur a 
kinematic space constraint is assumed to require the formation of an inter wedge 
interface. A graben feature often develops in the post failure topography. Figure 7 
illustrates a preliminary model of such a biplanar failure geometry and clearly shows 
the brittle internal fracturing that accompanies rock slope failure.
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Figure 3.11: The Elm rockslide, 1881 after Heim (1932).

to the quarry at the toe was simulated along with the run out of a dry fragmented rock
mass. Figure 3.12 illustrates stages in the rock slope failure and run-out. Initial results
had been promising in terms of the comparative run-out magnitude simulated assuming
frictional transport. Preliminary ELFEN analyses assumed properties for a weak highly
anisotropic rock mass (Stead and Coggan, 2006).

Stead and Coggan (2006) used the total slope failure approach to study the rock slope
failure at Delabole Slate quarry in Devon, U.K. The Delabole rockslide had been previ-
ously studied by Coggan and Pine (1996) who undertook UDEC discontinuum model-
ling (i.e. Level II analyses). Figure 3.13 shows the pre and post failure geometry. The
mechanism of the failure has been described as due to the two blocks in the upper part
of the slope promoting toppling and sliding of the lower blocks. Toppling mechanisms
are indicated by both UDEC modelling and a long period of surface slope monitoring
using tension crack gauges and electronic distance meters (EDM). Selected stages of the
combined finite-discrete element simulation of the Delabole failure are illustrated in Figure
3.13.

Through the adoption of new combined numerical modelling techniques, the results
presented demonstrate the value of explicitly modelling brittle fracture processes in un-
derstanding complex rock slope failure mechanisms.

Rock slope simulations incorporating concepts relating to progressive strength de-
gradation and failure show that pre-existing fully persistent geological structures are
not necessary to explain failure. Instead, models using the combined finite-discrete element
method suggest a failure process largely driven by the initial formation of brittle tensile
fractures, eventually leading to shear failure and mobilization once the rock mass cohe-
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Figure 3.12: Stages in the combined finite-discrete element simulation of the Elm slide
(Stead and Coggan, 2006).
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tinuity data analysis capabilities for the interpretation of

joint properties.

Level II field mapping intensity should involve suf-

ficient data to allow for the use of numerical methods.

If continuum codes are to be used to perform a rock

slope analysis, then not only should field observations

justify their use but data should be collected in order to

allow characterization of the rock mass, for example

according to the Geological Strength Index, GSI (Hoek

et al., 1995; Cai et al., 2004). Such systems can com-

bine field and laboratory data to assess scaled rock mass

properties for numerical model input (e.g., using for

codes such as RocLab; Rocscience, 2004). If disconti-

nuum codes are being utilized, then it is essential that a

rigorous characterization of the rock mass is undertak-

en, particularly emphasising the discontinuity geometry

with respect to the rock slope. Block size variation,

joint persistence and joint spacing should be ascertained

in order to constrain the discontinuum model input.

This requires a further level of sophistication rarely

carried out in most field mapping campaigns.

Hybrid codes with fracture propagation require the

highest field mapping intensity (Level III), if they are to

be used to characterize the btotal rock slope failureQ.
Specifically, additional data is required to constrain the

degree of intact fracturing either associated with failure

in a back-analysis scenario or the probability for release

in a hazard assessment investigation. Field data should

be gathered throughout the initiation, transportation and

deposition zones in order to constrain the degree of

comminution associated with failure, and similar con-

trols on debris characteristics (e.g., block size, jointing,

tensile strength). It should be stressed that the use of

codes involving either fracture mechanics or particle

Fig. 14. ELFEN btotal slope failure analysisQ simulation of the 1967 Delabole slate quarry failure in the U.K., showing: (a–b) cross-section and

photo of the rockslide scarp; (c) the initial problem geometry and three stages of failure, passing from failure development through to runout.

D. Stead et al. / Engineering Geology 83 (2006) 217–235 231

Figure 3.13: Combined finite-discrete element “total slope failure” analysis of the
Delabole slate quarry failure in the U.K., showing: (a-b) cross-section and photo of the
rockslide scarp; (c) stages from initial failure to run out obtained by ELFEN numerical
simulation (Stead and Coggan, 2006).
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sion is significantly degraded. In other words, shear failure only becomes a factor after
enough tensile fracture damage is incurred to allow mobilization.

Barla et al. (2011) proposed an early application of the Munjiza’s Y2D code, based on
the combined finite-discrete element method, to the rockslides observed at the Alpetto open
pit mine in Italy. On the 28-29th June 1997 a severe instability occurred at the Alpetto
open pit mine where majolica is mined to manufacture cement. The instability occurred
along a section in the eastern zone, during a persistent and intensive rainfall event and
extended from the toe to the crest of the main exploitation front, for a total height of 130
m, involving an estimated volume of 50000 m³ (Figure 3.14). A back analysis of the rock
slide and the assessment of the stability conditions of the high-cuts in the western sector
were part of a comprehensive study of the mine slopes performed after the failure (Barla
et al., 2003). The Y2D model complements continuum and discontinuum models pre-
viously undertaken; the focus was posed on the capability of the combined finite-discrete
element method to simulate the evolution and run out of the instabilities. Figure 3.14
shows different consecutive screenshots of the numerical simulation of the Alpetto mine
rockslide performed with the Y2D code. The results obtained shown in terms of run
out profiles are in good agreement with site observation and numerical modelling pre-
viously conducted with the distinct element method (Figure 3.15).



64 Numerical modelling of landslides from massive rock slope failure

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)

 

 

(b)

Figure 3.14: The Alpetto mine rockslide, 1997. a) cross section and photo of the rockslide,
b) progressive failure simulated with Y2D code (Barla et al., 2011).
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TOPOGRAPHIC PROFILE FROM NUMERICAL
SIMULATION OF THE ROCK SLIDE (FDEM)

TOPOGRAPHIC PROFILE FROM NUMERICAL
SIMULATION OF THE ROCK SLIDE (PFC)
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Figure 3.15: Final topographic profile obtained with numerical simulations (PFC and
FDEM) compared with the 1997 landslide profile (Barla et al., 2011).

3.7 Summary

This chapter illustrates the wide range of tools available for the analysis of rock slopes
with particular emphasis on advanced numerical modelling methods that allow realistic
simulations of rock slope failure. The analysis of rock slope stability has changed sig-
nificantly during recent years with a transition from limit equilibrium analyses to the
application of numerical modelling. These techniques have evolved to allow routine
analysis treating the slope mass as either a continuum (e.g. finite-element method) or a
discontinuum (e.g. discrete-element method). Furthermore, the complexity which char-
acterizes most landslides from massive rock slope failure involves elements of both de-
formation of the continuum, interactions along existing discontinuities and the creation
of new fractures.

To treat these problems, new developments in combined finite-discrete element codes
have been proposed. These codes have demonstrated the significant potential in the ana-
lysis of “total slope failure processes”, from initiation through transportation commin-
ution to deposition. It must be emphasized that advanced numerical methods offer the
chance to simulate the complex mechanisms of failure, like those described in the pre-
vious chapter, which characterize the landslide from massive rock slope failure. Even
though the advanced numerical techniques are useful to study the rock mass failure
from a “total slope failure processes” perspective, it is recognized that numerical model-
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ling is only a tool and not a substitute for critical thinking and judgement. Still, through
the proper use of numerical modelling, key steps can be taken to transcend the phe-
nomenological methodologies that dominate massive rock slope stability investigations
today, thereby improving the visualization and understanding of the coupled processes
and complex mechanisms driving such instabilities.
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Chapter 4

The Combined Finite-Discrete
Element Method

4.1 Introduction

As described in the previous chapter, numerical modelling is an unavoidable tool for
better understanding the behaviour of rock masses. Although both continuum and dis-
continuum numerical analyses provide useful means to study rock slope stability prob-
lems, advanced numerical techniques such as hybrid methods can better represent the
complexity of landslides from massive rock slope failure. For this purpose, the combined
finite-discrete element method is the most suitable numerical technique in order to apply
the total slope failure approach to complex mechanisms of failure.

After introducing the numerical methods commonly applied in rock engineering and
based on previous work made by Jing (2003), the general formulation of the combined
finite-discrete element method is described. The description of principal algorithms is
based on the textbook “The Combined Finite-Discrete Element Method” authored by
Munjiza (Munjiza, 2004).

4.2 Numerical modelling of rock masses

The reason for the general difficulty in modelling rock masses, by whatever numerical
method, is that rock is a natural geological material, and so the physical or engineering
properties have to be established, rather than defined through a manufacturing process.
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The rock mass is largely Discontinuous, Anisotropic, Inhomogeneous and Not-Elastic
(DIANE) (Harrison and Hudson, 2000). A rock mass is also a fractured porous medium
containing fluids, under complex in situ conditions of stresses, temperature and fluid
pressures. The complex nature makes rock mass a difficult material for mathematical
representation via numerical modelling.

The nature of the rock masses is generally discontinuous. Usually rock masses con-
tain through-going pre-existing fractures, as well as fractures introduced by the excava-
tion process. In rock mechanics the term “fracture” is used to indicate natural breaks in
the rock continuum, e.g. faults, joints, bedding planes, fissures. Thus, the term “fracture”
is used here as a synonym for “discontinuity”.

One of the main tasks of numerical modelling in rock mechanics is to be able to char-
acterize such mechanical discontinuities in a computer model (either explicitly or impli-
citly). To adequately represent the rock mass in computational models, capturing such
fracturing and the complete DIANE nature of the rock mass, it is necessary to be able to
include the following features during model conceptualization:

• the relevant physical processes and their mathematical representations by Partial
Differential Equations (PDEs);

• the relevant mechanisms and constitutive laws with the associated variables and
parameters;

• the pre-existing state of rock stress (the rock mass being already under stress);

• the pre-existing state of temperature and water pressure (the rock mass is porous,
fractured, and heated by a natural geothermal heat gradient or man made heat
sources);

• the presence of natural fractures (the rock mass is discontinuous);

• variations in properties at different locations (the rock mass is inhomogeneous);

• variations of properties in different directions (the rock mass is anisotropic);

• time/rate-dependent behaviour (the rock mass is not elastic and may undergo
creep or plastic deformation);

• variations of properties at different scales (the rock mass is scale-dependent);

• the effects resulting from the engineering perturbations (the geometry is altered).

The extent to which these features can actually be incorporated into a computer model
will depend on the physical processes involved and the modelling technique used.
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4.2.1 Numerical methods in rock engineering

The most commonly applied numerical methods for rock mechanics problems are:

continuum methods

• the Finite Difference Method (FDM);

• the Finite Element Method (FEM);

• the Boundary Element Method (BEM).

discontinuum methods

• Discrete Element Method (DEM);

• Discrete Fracture Network (DFN) methods.

hybrid continuum/discontinuum models

• Hybrid FEM/BEM;

• Hybrid DEM/DEM;

• Hybrid FEM/DEM, and

• Other hybrid models.

In Appendix A the general formulation of the main methods, typically used in rock
mechanics, is described. The possibility to perform a fracture analysis is then outlined
for each method.

The choice of continuum or discrete methods depends mainly on the problem scale
and fracture system geometry. Figure 4.1 illustrates the alternative choices for different
fracture circumstances in rock mechanics problems.

Continuum approaches should be used for rock masses with no fractures or with
many fractures, the behaviour of the latter being established through equivalent proper-
ties (Figure 4.1a and 4.1d). The continuum approach can be used if only a few fractures
are present and no fracture opening is possible (Fig. 4.1b).

The discrete approach is most suitable for moderately fractured rock masses where
large-scale displacements of individual blocks are possible (Fig. 4.1c).

Modelling fractured rocks demands high performance numerical methods and com-
puter codes, especially regarding fracture representations, material heterogeneity and
non-linearity, coupling with fluid flow and heat transfer and scale effects. To provide ad-
equate representations for the most significant processes hybrid models are often used. In
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inside the blocks, but it does produce displacements of
blocks, often of large scale. In the continuum approach,
the rigid body motion mode of deformation is generally
not included because it does not produce strains in the
elements. Therefore, a continuous system reflects mainly
the ‘‘material deformation’’ of the system and the
discrete system reflects mainly the ‘‘member (unit, or
component) movement’’ of the system.
The choice of continuum or discrete methods depends

on many problem-specific factors, but mainly on the
problem scale and fracture system geometry. Fig. 4 illus-
trates the alternative choices for different fracture
circumstances in rock mechanics problems. Continuum
approaches should be used for rock masses with no frac-
tures or with many fractures, the behaviour of the latter
being established through equivalent properties established
by a homogenization process (Fig. 4a and d). The
continuum approach can be used if only a few fractures
are present and no fracture opening and no complete block
detachment is possible (Fig. 4b). The discrete approach is
most suitable for moderately fractured rock masses where
the number of fractures too large for continuum-with-
fracture-elements approach, or where large-scale displace-
ments of individual blocks are possible (Fig. 4c).
Modelling fractured rocks demands high performance

numerical methods and computer codes, especially
regarding fracture representations, material heterogeneity
and non-linearity, coupling with fluid flow and heat
transfer and scale effects. It is often unnecessarily
restrictive to use only one method, even less one code,
to provide adequate representations for the most sig-
nificant features and processes: hybrid models or multiple
process codes are often used in combination in practice.
There are no absolute advantages of one method over

another, as is explained further in the later part of this

review. However, some of the disadvantages inherent in
one type can be avoided by combined continuum-
discrete models, termed hybrid models. In 1984, Lorig
and Brady [3] presented an early computational scheme
in which the far-field rock is modelled as a transversely
isotropic continuum using the BEM and the near-field
rock as a set of discrete element blocks defined by rock
fractures. This type of hybrid BEM-DEM is shown in
Fig. 5. The complex rock mass behaviour caused by
fractures and matrix non-linearity in the near-field of the
excavation can be efficiently handled by the DEM or
FEM, surrounded by a BEM representation of the far-
field region with linear material behaviour without
fractures. The basis for such simple representation of
the far-field is the fact that the gradients of variation
of the physical variables, such as stress, displacement or
flow, decrease rapidly with distance from the excavation.
Therefore, if the interface between the near-field

(a) (b)

(c) (d)

Persistent
discontinuities

Sets of discontinuities

continuum continuum

Fig. 4. Suitability of different numerical methods for an excavation in a rock mass: (a) continuum method; (b) either continuum with fracture

elements or discrete method; (c) discrete method; and (d) continuum method with equivalent properties.

Continuum for the far-field 

Discontinuum 
for the near field

Boundary elements

excavation

on the interface
Boundary elements
on the outer boundary

Fig. 5. Hybrid model for a rock mass containing an excavation—using

the DEM for the near-field region close to the excavation and the BEM

for the far-field region.

L. Jing / International Journal of Rock Mechanics & Mining Sciences 40 (2003) 283–353290

Figure 4.1: Suitability of different numerical methods for an excavation in a rock mass:
(a) continuum method; (b) either continuum with fracture elements or discrete method;
(c) discrete method; and (d) continuum method with equivalent properties (from Jing,
2003).
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the last decade of the 20th century, the discrete element method has been coupled with the
finite element method. The new hybrid method was termed the “combined finite-discrete
element method” and was proposed by Munjiza (Munjiza et al., 1995). In the review
paper of Jing (2003)such a new hybrid method has been classified as a DEM.

4.3 The combined finite-discrete element method. History

The combined finite-discrete element method was designed with the objective of bridging the
gap between methods based on the assumption of continuum and methods based on the
assumption of discontinuum.

The method was first proposed by Munjiza in 1989 and in 1990 the first combined
finite-discrete element method code was developed. Since early 1990s some other codes
have been developed (Munjiza, 2010) including Elfen, the first commercial code. Elfen
was originally a stand alone finite element package. In 1993, Munjiza implemented the
combined finite-discrete element routines into Elfen including elaborate contact and frac-
ture solutions. In 1996, Munjiza developed a completely new combined finite-discrete
element method code named “Y code”, which is open source. The field of applications
of the combined finite-discrete element method is ever growing and research groups all
over the world have continued the development of the Y code so that these days there are
at least six versions of the code with different emphasis (Munjiza (2004), Mahabadi et al.
(2010)).

4.4 The combined finite-discrete element method

The combined finite-discrete element method (FDEM) merges finite element tools and tech-
niques with discrete element algorithms. Finite element-based analysis of continuum is
combined with discrete element-based transient dynamics, contact detection and contact
interaction solutions.

A typical FDEM problem may contain thousands, even millions of discrete elements
which represent each single particle (body) of the domain. Each discrete element has a
separate (triangular) finite element mesh. Individual particles can also fracture in addi-
tion to being deformable and interacting with each other.

The nature of the deformation of individual discrete elements involves at least finite
rotations, whereas finite strains may be involved depending on the material that discrete
elements are made of. In addition, material non-linearity including fracture and frag-
mentation are considered. These processes are in essence processes of transition from
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continuum to discontinuum, which results in ever-changing geometry of individual dis-
crete elements and/or changing the total number of discrete elements comprising the
model.

Transient dynamics of each discrete element, together with the possible state of rest,
has to be considered. For instance, in a explosive induced fragmentation, where a det-
onation gas pushes against the walls of discrete elements causing fracture, the kinetic
energy of the system and the velocity of individual discrete element increase. On the
contrary, energy dissipation mechanisms such as elastic hysteresis, plastic straining of
the material, fracture of the material and friction between discrete elements, eventually
lead to the state of rest being reached when all discrete elements have zero kinetic energy.

All these features combined together result in a need for robust CPU and RAM
efficient algorithmic solutions. The combined finite-discrete element method includes al-
gorithms such as:

• contact interaction algorithms;

• contact detection algorithms;

• finite strain elasticity-plasticity;

• temporal discretization and integration;

• transition from continua to discontinua algorithms;

• coupled problems such as gas-solid interaction;

• application-specific algorithms, visualization, key diagnostics, etc.

4.5 Contact Interaction Algorithm

The combined finite-discrete element method is aimed at problems involving transient
dynamics of systems comprising a large number of deformable bodies that interact with
each other, and that may in general fracture and fragment, thus increasing the total num-
ber of discrete elements. Each individual discrete element has a general shape and size,
and is modelled by a single discrete element. Each discrete element is discretised into
finite elements to analyse deformability, fracture and fragmentation. A typical combined
finite-discrete element system comprises a few thousand to a few million separate inter-
acting solids, each associated with separate finite element meshes. In this context, one
of the key issues in the development of the combined finite-discrete element method is
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the treatment of contact, i.e. the enforcement of the constraint that no point in space is
occupied by more than one body at the same time.

From an algorithmic point of view, there are two aspects of contact in the combined
finite-discrete element method:

• contact detection;

• contact interaction.

Contact detection is aimed at detecting couples of discrete elements close to each other,
i.e. eliminating couples of discrete elements that are far from each other and cannot
possibly be in contact. In that sense, contact detection is aimed at reducing CPU require-
ments, i.e. reducing processing (run) times. Once couples of discrete elements in con-
tact have been detected, a contact interaction algorithm is employed to evaluate contact
forces between discrete elements in contact. Contact interaction between neighbouring
discrete elements occurs through solid surfaces which are in general irregular and, as a
consequence, the contact pressure between two solids is actually transferred through a
set of points at which surfaces touch.

In the computational literature, theoretical assumptions about contact are simplified
by employing variational formulation of contact combined with the most simple contact
law that defines contact pressure as a function of approach, with tangential resistance to
motion being a function of normal pressure or slip condition.

The variational formulation of a boundary value problem with contact is equivalent
to the problem of making a functional stationary subject to the contact constraints over
boundaries of the domain:

C(u) = 0 (4.1)

Variational formulation of contact problems involves an additional functional due to
contact, through which no penetration conditions are enforced.

The penalty function method, used in the FDEM, is one of the classic approaches em-
ployed in the computational literature, introduced with the aim of eliminationg the
drawbacks of the Lagrange multipliers method. To enforce contact constraints on the
boundary Γ, the additional functional

p
ˆ

Γ
CT(u)C(u)dΓ (4.2)

is added to the original functional

Π̃(u, λ) = Π(u) + p
ˆ

Γ
CT(u)C(u)dΓ (4.3)
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where p is the penalty parameter. As
ˆ

Γ
CT(u)C(u)dΓ ≥ 0 (4.4)

if Π is a minimum of the solution, then p must be a positive number. The solution
obtained by minimizing the modified functional satisfies the contact constraint only ap-
proximately. The larger the value of penalty, the better the contact constraints achieved.
Only with an infinite penalty are the contact constraints satisfied exactly.
The penalty function method is either used to impose an impenetrability condition in an
iterative manner, or to violate this condition in such a way that the correct response of the
physical system is still recovered. This is achieved by using a sufficiently large penalty
term.

In the finite element method, kinematics of contact is considered by employing slideline
algorithms, where one surface is designated as the master (target) surface, while the
other is designated as the slave (contactor) surface. Inconsistent contact kinematics pro-
duces energy imbalance. An example of this is shown in Figure 4.2. As the potential
energy is proportional to δ2 where δ is penetration, the total amount of kinetic energy
transferred into potential energy is proportional to δ2

B, while the total amount of re-
covered kinetic energy after contact release is proportional to δ2

C. As δ2
C > δ2

B the final
total energy is greater than the initial total energy.
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Figure 2.1 Node to edge (left) and edge to edge (right) contact.

More general situations are handled by allowing node-to-line contact and, equivalently,
edge-to-edge, node-to-edge, node-to-node and node-to-surface contact (Figure 2.1). The
common feature of all algorithms that handle contact kinematics in this way are con-
centrated contact forces, as opposed to distributed contact force approaches, which are
usually based on the consideration of overlapping volumes.

Both the distributed and concentrated approaches involve relatively complicated kine-
matics of contact with many branches of code, in which case processing of kinematics of
contact can be on the critical path of the otherwise efficient solution.

In 3D applications contact kinematics becomes so difficult that it is almost impossible
to resolve contact due to the non-existence of surface normals at some corner points. The
result is inconsistent contact kinematics that produces energy imbalance. An example of
this is shown in Figure 2.2. As the potential energy is proportional to

δ2 (2.11)

where δ is penetration, the total amount of kinetic energy transferred into potential energy
is proportional to

δB
2 (2.12)

A

B

C

Trajectory of 
point A 

dB

dC >> dB

Figure 2.2 Node A penetrates through point B and exits through point C, thus numerically cre-
ating energy.

Figure 4.2: Node A penetrates through point B and exits through point C, thus numeric-
ally creating energy (from Munjiza, 2004).

Problems of contact interaction in the context of the FDEM are even more important,
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due to the fact that the problem of contact interaction also defines the “constitutive”
behaviour of the system, because of the presence of large numbers of separate bodies.
Thus, algorithms employed must pay special attention to contact kinematics in terms of
the realistic distribution of contact forces, energy balance and robustness.

The latest generation of contact interaction algorithms makes use of finite element
discretizations of discrete elements, and combines this with the so-called potential con-
tact force concept. They also yield realistic distribution of contact forces over finite con-
tact areas resulting from the overlap of discrete elements that are in contact. Thus, nu-
merical distortion of local strain fields close to the boundary due to contact is much
reduced - an important aspect when the fracture of brittle material is analysed.

4.5.1 The penalty function method

The penalty function method in its classical form assumes that two bodies in contact pen-
etrate each other, and this penetration results in a contact force. The standard contact
functional for the penalty function method takes the form

Uc =

ˆ
Γc

1
2

p(rt − rc)
T(rt − rc)dΓ (4.5)

where p is the penalty term, while rt and rc are position vectors of the points on the
overlapping boundaries of the target and contactor bodies, respectively. In the limit for
infinite penalty terms, no penetration would occur, i.e.

lim
p→∞

Uc = 0 (4.6)
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Figure 2.3a Distributed and concentrated contact force approach.

However, in practice large penalty terms are coupled with integration problems in the
temporal domain, and in practical applications the penalty function method is therefore
coupled with overlaps between bodies in contact.

When implemented into actual codes dealing with contact, the penalty function method
in general deals with either concentrated or distributed contact force (Figure 2.3a). The
concentrated contact force approach usually assumes nodal contact forces being a function
of penetration of individual contactor nodes into the target, while the distributed contact
force is in general evaluated from the shape and size of overlap between the contactor
and target.

2.3 POTENTIAL CONTACT FORCE IN 2D

The distributed contact force is adopted for two discrete elements in contact, one of which
is denoted as the contactor and the other as the target. When in contact, the contactor
and target discrete elements overlap each other over area S, bounded by boundary �.
(Figure 2.4).

It is assumed that penetration of any elemental area dA of the contactor into the target
results in an infinitesimal contact force, given by

df = [gradϕc(Pc) − gradϕt(Pt )]dA (2.17)

Pt, Pc

d f

Γbt
∩bc

bt ∩ bcΓt
Γc

dA

Figure 2.4 Contact force due to an infinitesimal overlap around points Pc an Pt .

Figure 4.3: Distributed and concentrated contact force approach (from Munjiza, 2004).
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However, in practice large penalty terms are coupled with integration problems in the
temporal domain, and in practical applications the penalty function method is therefore
coupled with overlaps between bodies in contact.

When implemented into actual codes, the penalty function method in general deals
with either concentrated or distributed contact force (Figure 4.3). The concentrated con-
tact force approach usually assumes nodal contact forces being a function of penetration
of individual contactor nodes into the target, while the distributed contact force is in
general evaluated from the shape and size of overlap between the contactor and target.

4.5.2 Potential contact force

The distributed contact force is adopted for two discrete elements in contact, one of
which is denoted as the contactor and the other as the target. When in contact, the con-
tactor and target discrete elements overlap each other over area S, bounded by boundary
Γ (Figure 4.4).

It is assumed that penetration of any elemental area dA of the contactor into the target
results in an infinitesimal contact force, given by

df = [gradϕc (Pc)− gradϕt (Pt)] dA (4.7)

where df is the infinitesimal contact force due to infinitesimal overlap dA, defined by
overlapping points Pc belonging to the contactor and Pt belonging to the target. Equation
A.7 can also be written as

df = −dft + dfc (4.8)

where

dfc = −gradϕt(Pt)dAc dAc = dA
dft = −gradϕc(Pc)dAt dAt = dA (4.9)

In other words, the contact as described by A.7 can be viewed as first the elemental
area of the contactor penetrating the target, and then the elemental area of the target
penetrating the contactor.
Thus, for each of the discrete elements in contact, the contact force is calculated as a
gradient of the corresponding potential function. The field of contact forces is therefore a
conservative field for both the target penetrating contactor and the contactor penetrating
target.
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Preservation of the energy balance requires that the total energy of the system before
and after the contact is the same, i.e. that no work is done by the contact force. Thus,
provided that the potentials on the boundary of both the contactor and target discrete
elements are constant, the contact force as given by A.7 preserves the energy balance
regardless of the geometry or shape of contactor and target discrete elements, the size of
the penalty term or the size of penetration (overlap) when in contact. The total contact
force is obtained by integration of A.7 over the overlapping area S

fc =

ˆ
S=βt∩βb

[gradϕc − gradϕt] dA (4.10)

which can also be written as an integral over the boundary of the overlapping area Γ

fc =

˛

Γβt∩βc

nΓ (ϕc − ϕt) dΓ (4.11)

where n is the outward unit normal to the boundary of the overlapping area.
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Figure 2.3a Distributed and concentrated contact force approach.

However, in practice large penalty terms are coupled with integration problems in the
temporal domain, and in practical applications the penalty function method is therefore
coupled with overlaps between bodies in contact.

When implemented into actual codes dealing with contact, the penalty function method
in general deals with either concentrated or distributed contact force (Figure 2.3a). The
concentrated contact force approach usually assumes nodal contact forces being a function
of penetration of individual contactor nodes into the target, while the distributed contact
force is in general evaluated from the shape and size of overlap between the contactor
and target.

2.3 POTENTIAL CONTACT FORCE IN 2D

The distributed contact force is adopted for two discrete elements in contact, one of which
is denoted as the contactor and the other as the target. When in contact, the contactor
and target discrete elements overlap each other over area S, bounded by boundary �.
(Figure 2.4).

It is assumed that penetration of any elemental area dA of the contactor into the target
results in an infinitesimal contact force, given by

df = [gradϕc(Pc) − gradϕt(Pt )]dA (2.17)
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Figure 2.4 Contact force due to an infinitesimal overlap around points Pc an Pt .

Figure 4.4: Contact force due to an infinitesimal overlap around points Pc and Pt (from
Munjiza, 2004).

4.5.3 Discretization of contact force

In the combined finite-discrete element method, individual discrete elements are dis-
cretised into finite elements, and each discrete element can be represented as union of its
finite elements:

βc = βc1 ∪ βc2 . . . ∪ βci . . . ∪ βcn

βt = βt1 ∪ βt2 . . . ∪ βti . . . ∪ βtn (4.12)
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where βc and βt are the contactor and target discrete elements, respectively, while m and
n are the total number of finite elements into which the contactor and target discrete
elements are discretised. In this context, the potentials ϕc and ϕt can be written as a sum
of potentials associated with individual finite elements:

ϕc = ϕc1 ∪ ϕc2 . . . ∪ ϕci . . . ∪ ϕcn

ϕt = ϕt1 ∪ ϕt2 . . . ∪ ϕti . . . ∪ ϕtn (4.13)

Integration over overlapping area may therefore be represented by summation over fi-
nite elements:

fc =
n

∑
i=1

m

∑
j=1

ˆ
βci∩βtj

[
gradϕci − gradϕtj

]
dA (4.14)

By replacing integration over finite elements by equivalent integration over finite ele-
ment boundaries (Equation4.11), the following equation for contact force is obtained:

fc =
n

∑
i=1

m

∑
j=1

ˆ
Γβci∩βtj

nΓβci∩βtj

(
ϕci − ϕtj

)
dΓ (4.15)

where integration over finite element boundaries may be written as summation of in-
tegration over the edges of finite elements. In other words, the contact force between
overlapping discrete elements is calculated by summation over the edges of correspond-
ing finite elements that overlap.

4.5.4 Contact interaction between two triangular finite elements

As pointed out earlier, combined finite-discrete element problems involve a large num-
ber of separate bodies that are free to move and interact with each other. Thus, the
evaluation of contact forces at each time step may involve a large number of contacting
couples of discrete elements.

In this context, the summation as given by Equation 4.15 usually involves a large
number of contacting couples of finite elements, and the total CPU time and overall
efficiency of the contact algorithm critically depend upon implementation of part of the
interaction that processes finite element to finite element contact.

It is therefore important to employ the simplest possible finite element and make
that element work well for both contact and deformability. The simplest possible finite
element in 2D is a tri-noded triangle.
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Figure 2.6 Contact of contactor and target triangles and contact of an edge of a contactor triangle
with a target triangle.
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Figure 2.7 Distribution of contact force between the target triangle and an edge of contac-
tor triangle.

with interactions between the target triangle and the edges of the contactor triangle, as
shown in Figure 2.6.

Thus, in Figure 2.7 contact of edge AB of contactor triangle with target triangle is
shown. To minimise the number of necessary operations and therefore CPU time to
process this contact, a local coordinate system given by local axes u and v is introduced,
and transformation of nodal coordinates of target triangle into local coordinate system
is performed:

pi = ((ri − rA) · u, (ri − rA) · v) (2.31)

Using the local nodal coordinates for the target triangle, characteristic intersection points
between the edge AB and the target triangle are obtained together with the corresponding
values of the potential function. The potential ϕ for each intersection point is calculated

Figure 4.5: Distribution of contact force between the target triangle and an edge of con-
tactor triangle (from Munjiza, 2004).

According to Equation 4.15, the problem of interaction between two triangles can
be reduced to interactions between the contactor triangle and the edges of the target
triangle, coupled with interactions between the target triangle and the edges of the con-
tactor triangle.

Thus, in Figure 4.5 contact of edge AB of contactor triangle with target triangle is
shown. To minimize the number of necessary operations and therefore CPU time to
process this contact, a local coordinate system given by local axes u and v is introduced,
and transformation of nodal coordinates of target triangle into local coordinate system is
performed:

pi = ((ri−rA)·u, (ri−rA)·v) (4.16)

The total contact force exerted by the target triangle onto the edge AB is given by the
area of the diagram of potential over the edge AB, i.e.

fc,AB =
1

u2 u
ˆ L

0
pϕ (v) dv (4.17)

where p is the penalty term, while the term u2 comes from the fact that vectors u and v
are not unit vectors. This is computationally convenient as, that evaluation of the integral
4.17 does not involve a square root. In addition, in between the intersection points the
potential ϕ is given by straight lines, which reduces integration to area calculation, as
shown in Figure 4.5, where shaded areas represent the potential ϕ.
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by interpolation between the central node (node 3, where the potential is equal to 1) and
the corresponding edge node (nodes 0,1 or 2, where potential is equal to zero) for each
intersection point.

The total contact force exerted by the target triangle onto the edge AB is given by the
area of the diagram of potential over the edge AB, i.e.

fc,AB = 1

u2
u

∫ L

0
pϕ(v)dv (2.32)

where p is the penalty term, while the term u2 comes from the fact that vectors u and v
are not unit vectors. This is computationally convenient as, that evaluation of the integral
(2.32) does not involve a square root. In addition, in between the intersection points the
potential ϕ is given by straight lines, which reduces integration to area calculation, as
shown in Figure 2.7, where shaded areas represent the potential ϕ. The contact forces
obtained are represented by equivalent nodal forces at points A and B, together with
corresponding nodal forces at nodes of target triangle, as shown in Figure 2.8.

The whole process is repeated for the remaining edges of the contactor triangle, and in
this way, contact forces due to penetration of the contactor triangle into the target triangle
are obtained from the potential ϕt as defined for the target triangle. To take into account the
contact force due to the potential ϕc associated with the contactor triangle, contact of each
edge of the target triangle to the contactor triangle is analysed, and corresponding nodal
forces for both the contactor and target triangle are updated. The potential associated with
the contactor triangle is defined in exactly the same way as the potential associated with
the target triangle, and evaluation of the nodal forces proceeds using the same procedure.

In Figure 2.9 the combined finite-discrete element simulation aimed at demonstrating
the distributed potential contact force algorithm in 2D is shown. This example involves a
heap of identical rigid fragments of triangular shape. The fragments are placed close
to each other in such a way that they touch with no overlap and no contact force
being generated.

The initial shape of the heap looks like a simply supported beam with two smaller frag-
ments being fixed to the ground (Figure 2.9). The heap is impacted by a rigid projectile
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Figure 2.8 Equivalent nodal forces.
Figure 4.6: Equivalent nodal forces (from Munjiza, 2004).

The contact forces obtained are represented by equivalent nodal forces at points A
and B, together with corresponding nodal forces at nodes of target triangle, as shown in
Figure 4.6.

The whole process is repeated for the remaining edges of the contactor triangle, and
in this way, contact forces due to penetration of the contactor triangle into the target
triangle are obtained from the potential ϕt as defined for the target triangle. To take
into account the contact force due to the potential ϕc associated with the contactor tri-
angle, contact of each edge of the target triangle to the contactor triangle is analysed, and
corresponding nodal forces for both the contactor and target triangle are updated. The
potential associated with the contactor triangle is defined in exactly the same way as the
potential associated with the target triangle, and evaluation of the nodal forces proceeds
using the same procedure. The advantages of discretised distributed potential contact
force include:

• distributed contact force - no artificial stress concentration due to contact is present;
this has important implications when processing the deformability of brittle mater-
ials, stress concentrations would result in fracture and non-physical behaviour of
the model;

• contact surface - this allows accurate representation of the physical contact condi-
tions onto which friction, sliding, plasticity, surface roughness, wet-dry conditions,
etc. can be incorporated following relatively simple rules of potential distribution
over the finite element;

• energy preservation - without energy preservation, no proper physical behaviour
can be modelled;



4.5 Contact Interaction Algorithm 85

• the contact force is discretised with the same algorithm and the same piece of code,
regardless of the shape (concave, convex, hollow, etc.) of discrete elements, thus
algorithmic complexities are greatly reduced;

• the contact processing is in general faster than alternative solutions; this is due to
the contact detection which finds the couples of finite elements that are in contact.

4.5.4.1 Physical interpretation of the penalty parameter

As explained earlier, the maximum allowed penetration is a function of the size of finite
elements at the place of contact and penalty parameter p, which can be different for
different finite elements.

The role of the penalty parameter is best illustrated by an example of contact between
two solid finite elements, shown in Figure 4.7. Two elements are pushed against each
other by the pressure σ. Relative displacement between points A and B in the case of a
small strain elasticity and a zero Poisson’s ratio is proportional to the pressure supplied:

u =
σh
E

(4.18)

In the same way, the penetration between the two solids is given by

d =
σh
p

(4.19)

Thus, to limit penetration, it is enough to select a penalty term to be proportional to the
modulus of elasticity, i.e.

p = αE (4.20)

In this way, contribution of the allowed penetration to the displacement field is limited
to

d =
1
α

u (4.21)

For α = 100, for example,

d =
1

100
u (4.22)

i.e. the total local error in displacements will be less than 1%. This is another advant-
age of the potential contact force approach. The error in the displacements is easily
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once the force on the centre of the target tetrahedron has been obtained, it is replaced
by the equivalent forces at the nodes of the target tetrahedron. The same is done with
the contact force assigned to the centre of the contactor tetrahedron.
It is also worth mentioning that each tetrahedron is considered twice, once as a con-
tactor and once as a target.

There are a number of ways to numerically execute the tasks listed above. The most
critical path of the algorithm is the intersection of the target sub-tetrahedron and the base
of the contactor sub-tetrahedron. It is best performed in two steps. First, the intersection
points of the edges of the target sub-tetrahedron with the plane containing the base of
the contactor sub-tetrahedron are found. The result is a convex polygon. The intersection
of this polygon with the triangular base of the contactor sub-tetrahedron is therefore a
2D problem.

2.6.3 Physical interpretation of the penalty parameter

As explained earlier, the maximum allowed penetration is a function of the size of finite
elements at the place of contact and penalty parameter p, which can be different for
different finite elements. The role of the penalty parameter is best illustrated by an example
of contact between two solid finite elements, shown in Figure 2.28.

Two elements are pushed against each other by the pressure σ . Relative displacement
between points A and B in the case of a small strain elasticity and a zero Poisson ratio
is proportional to the pressure supplied:

u = σh

E
(2.56)

In the same way, the penetration between the two solids is given by

d = σh

p
(2.57)
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Figure 2.28 Contact between two finite elements.

Figure 4.7: Contact between two finite elements (from Munjiza, 2004).

controlled through setting penalty p as a function of E. In addition, the error in displace-
ments is reduced by reducing the size of finite element h. Thus, any mesh refinements
automatically reduce error introduced by contact approximation.

4.5.4.2 Contact damping

Any energy dissipation in contact is due to friction or plastic straining of surface asper-
ities. Plastic straining of surface asperities can be approximated by a viscous damping
model. Damping parameters for contact are defined in a similar way to the definition
of penalty parameters. For the situation in Figure 4.7, the frequency of the subsystem
shown can be approximated by

ω =
2
h

√
p
ρ

(4.23)

where ρ is the density and h is the size of the finite element, as shown in the figure. The
normal contact stress due to critical viscous damping is given by

σc = 2ωḋ (4.24)

while in the general case of an under-damped system,

σc = 2ωξḋ (4.25)
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where ξ is the damping ratio. If ξ = 0, there is no energy dissipation. If ξ = 1, critical
damping is obtained.
After substituting the frequency from equation 4.24,

σc = 4ξ

√
p/ρ

h
ḋ (4.26)

This damping is due to contact only. Physical interpretation of such damping is, for
instance, plastic deformation or breaking of surface asperities.
This damping is not to be confused with damping such as energy dissipation due to deformation of
the discrete elements. Material damping due to elastic or plastic deformation of discrete elements
is naturally covered by discrete elements being discretised into finite elements.

Energy balance is especially important when discrete elements are confined so that
repeated contact-contact release occurs. When discrete elements are closely packed to-
gether, these contact-contact release situations cannot be avoided. If numerical proced-
ures employed were not to preserve the energy balance, the energy of the system would
increase artificially. This energy increase is exponential, and results in the combined
finite-discrete element system being “blown up”, which is another way of saying that
the algorithms employed are not stable.

It should be emphasized that the potential contact force contact algorithm has some
other features apart from preservation of energy and momentum balance. For instance,
due to the discretised nature of the evaluation of contacts, the algorithm is suitable for
parallel or distributed computing. There is also an additional advantage from the fact
that the geometry is treated in a discretised manner, which greatly reduces the complex-
ity of the algebraic expressions used to evaluate the contact forces.

4.6 Formulation of friction

In the FDEM the friction between two interacting triangles is function of the normal
stress σn on the triangles edges, i.e.

σt = µσn (4.27)

where µ is the friction coefficient. This formulation of friction is called “dynamic friction”
and is unsuitable for quasi-static problems. The alternative method which is suitable for
quasi-static problems is the Coulomb friction law, implemented in the contact interaction
algorithm, described in the previous section. The formulation of “quasi static friction” is
based on the sliding distance of element edges.
Let’s consider the interactions between two triangle, such as the target triangle and the
edges of the contactor triangle. The finite increment of the sliding distance is expressed
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as
4δs = vrel4t (4.28)

where vrel is the relative velocity of the two interacting edges and4t the time step size.
Then the tangential stress σt is calculated using the penalty parameter p and the sliding
distance:

σt = 4δs p (4.29)

If the tangential stress calculated in such a way is greater than the tangential stress cal-
culated with the dynamic formulation (Equation 4.27), i.e. σt > µσn then the tangential
stress and the sliding distance calculated along the edge of the two interacting triangle
are adjusted:  σt = σt

∣∣∣ µσn
σt

∣∣∣
∆δs =

σt
p

(4.30)

The updated tangential stress is then transformed in equivalent tangential forces and
distributed at nodes of the interacting elements in the same way as the normal forces
(see Section4.5.3).

4.7 Contact Detection

Large-scale combined finite-discrete element simulations involve contact of a large num-
ber of separate bodies, each body being represented by a single discrete element. It is
evident that processing of contact interaction involves the summation of contact forces
over contacting couples comprising target and contactor elements as explained in Sec-
tion 4.5.

Thus, processing contact interaction for all possible contacts would involve a total
number of operations proportional to N2, where N is the total number of discrete ele-
ments comprising the problem.

This would be very CPU intensive, and would limit application of the combined
finite-discrete element method to simulations comprising a very small number (a few
thousand) discrete elements. To reduce CPU requirements of processing contact interac-
tion, it is necessary to eliminate couples of discrete elements that are far from each other
and are not in contact.

A set of combined finite-discrete element procedures designed to detect discrete or
finite elements that are close to each other is usually called a contact detection algorithm, or
sometimes a contact search algorithm. Examples of linear contact detection algorithms
are:
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• Munjiza-NBS (No binary search) contact detection algorithm;

• Williams C-grid contact detection algorithm;

• Screening contact detection algorithm.

These algorithms have appeared relatively recently, starting with Munjiza-NBS (1995),
which was the first linear contact detection algorithm employed in the combined finite-
discrete element method.

4.7.1 Munjiza NBS contact detection algorithm

The algorithm was developed in 1995 by Munjiza, and is called the Munjiza No Binary
Search (i.e. Munjiza-NBS) contact detection algorithm. The Munjiza-NBS contact de-
tection algorithm assumes a simplified contact detection problem in 2D, i.e. a system
comprising N identical discrete elements occupying a finite space of rectangular shape
(Figure 4.8), although extensions to non-identical discrete elements are possible.

The task is to find all the discrete element couples that are close to each other in a
sense that the distance between their closest points is less than or equal to zero, in other
words, that they overlap or touch.

Discrete elements are mapped onto cells. In addition to the mapping of discrete ele-
ments onto cells, mapping of discrete elements onto columns and rows of cells is also
introduced. A discrete element is said to be mapped to a particular row of cells if it is
mapped to any cell from that row. For instance, discrete element 1 is mapped to row
7 of cells, discrete element 2 is mapped to row 8, and discrete element 3 is mapped to
row 6 of cells (Figure 4.8). In a similar way, a discrete element is said to be mapped to
a particular column of cells if it is mapped to any cell from that column. For instance,
discrete element 1 is mapped to the column 4 of cells, discrete element 2 is mapped to
column 5 and discrete element 3 is mapped to column 4 of cells (Figure 4.8).

Detection of contact is performed only for cells that have one or more discrete ele-
ments mapped to them, i.e. for cells with a non-empty list of discrete elements. This is
accomplished by employing a loop over discrete elements. Discrete elements mapped
to each such cell are checked for contact against all discrete elements mapped to neigh-
bouring cells, as shown in Figure 4.9.
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The aim of this section is to present an algorithm that is as efficient as the screening
algorithm in terms of CPU, and as efficient as the sorting algorithm in terms of RAM
requirements. The algorithm was developed in 1995 by Munjiza, and is called the Munjiza
No Binary Search (i.e. Munjiza-NBS) contact detection algorithm.

The Munjiza-NBS contact detection algorithm assumes a simplified contact detection
problem in 2D, i.e. a system comprising N identical discrete elements occupying a finite
space of rectangular shape (Figure 3.40), although extensions to non-identical discrete
elements are possible. The task is to find all the discrete element couples that are close to
each other in a sense that the distance between their closest points is less than or equal
to zero, in other words, that they overlap or touch.

3.8.1 Space decomposition

The NBS contact detection algorithm is based on space decomposition. The space is
subdivided into identical square cells of size d (Figure 3.40).

For the sake of clarity, each discrete element is assigned an integer identification number
1, 2, 3, . . . , N − 1, N . In a similar way, each cell is assigned an identification couple of
integer numbers (ix, iy), where ix = 1, 2, 3 . . . nx and iy = 1, 2, 3 . . . ny , where nx and ny

are the total number of cells in the x and y directions, respectively:

nx = xmax − xmin

d
(3.55)

and
ny = ymax − ymin

d
(3.56)
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Figure 3.40 Space divided into identical cells large enough to contain the largest discrete element
comprising the system. Centres of discrete elements are marked with dots. Thicker line marks the
bounding box of physical space.

Figure 4.8: Space subdivided into identical square cell of size d for the NBS contact de-
tection algorithm (from Munjiza, 2004).
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• Secondly, a loop over all discrete elements from a particular yiy list is performed, and
inside this loop a particular discrete element is added to the corresponding xix,iy list,
depending on its integerised coordinate ix .

To assemble new lists, discrete elements are removed from the old lists in a similar
fashion–a loop over all discrete elements is performed, and for each discrete element,
B[iy] = −1 is set, and in a similar way, a loop over all discrete elements from a particular
yiy list is performed, and for each discrete element, A[ix] = −1 is set.

Thus, no loop over cells is involved in assembling the lists, which leads to the con-
clusion that the total CPU time needed to perform all the operations described so far in
this section is proportional to the total number of discrete elements N , and is neither a
function of the total number of cells in the x-direction nx , nor a function of the total
number of cells in the y-direction ny . In other words, it is not a function of packing
density ρ.

Detection of contact. Detection of contact is accomplished by checking all the discrete
elements mapped to a particular cell against all discrete elements in neighbouring cells. For
instance, discrete elements mapped to the cell (ix, iy), shown in Figure 3.45, are checked
for contact against all discrete elements mapped to cells (ix, iy), (ix − 1, iy), (ix − 1, iy −
1), (ix, iy − 1) and (ix + 1, iy − 1). This is equivalent to checking all discrete elements
from list xix,iy against all discrete elements from lists xix,iy, xix−1,iy, xix−1,iy−1, xix,iy−1

and xix+1,iy−1.
In this way, discrete elements mapped to any non-empty cell are checked against all

discrete elements mapped to neighbouring cells (only discrete elements from neighbouring
cells can touch each other).

Thus, it is necessary at any given time to have singly connected lists xix,iy only for
two neighbouring rows of cells iy and iy − 1, i.e. for discrete elements from lists yiy and
yiy−1. Thus, two parallel arrays A are needed, and this is accomplished through a 2D
array A[2][nx] of size 2nx integer numbers. The array A[0] points to all singly connected
lists xix,iy (where iy is fixed and ix = 0, 1, 2, . . . , nx). The 1D array A[1] points to all
singly connected lists comprising discrete elements mapped onto row iy − 1 of cells, i.e.
all lists xix,iy−1 (where iy − 1 is fixed and ix = 0, 1, 2, . . . , nx).

Detection of contact is performed only for cells that have one or more discrete elements
mapped to them, i.e. for cells with a non-empty xix,iy list of discrete elements. This is
accomplished by employing a loop over discrete elements from list yiy to find a cell

Central cell

Neighbouring
cells

Figure 3.45 Contact checking mask.

Figure 4.9: Contact checking mask (from Munjiza, 2004).
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4.8 Deformability of Discrete Elements

4.8.1 Deformation

Discrete elements were originally introduced to model problems that continuum mod-
els cannot model correctly. A large class of problems of discontinua involves individual
bodies (discrete elements) that can deform, fail, fracture and even fragment. Such dis-
crete elements are termed “deformable discrete elements”. Each discrete element repres-
ents a single deformable body, which at any instance of time occupies a region of space.

Special meaning is given to some of these regions; for instance, one such region B is
termed the initial or reference configuration, while p ∈ B are called material points, and
bounded sub-regions of the body are called parts. Body deforms via mapping x = f(p),
where f is one to one smooth mapping which maps B onto a closed region E , and which
satisfies det∇f(p) > 0 for any material point p. This condition simply states that no part
with non-zero volume can map into zero volume space, i.e. parts of the body occupy
space before and after deformation. The volume of such space may defer, but is always
greater than zero.

4.8.2 Deformation gradient

Deformation can also be written as x = f(p) = p + u(p), where u(p) is called displace-
ment. Mapping F(p) = ∇f(p) = I +∇u describes change in deformation in the vicinity
of each material point, and is referred to as the deformation gradient.

4.8.2.1 Frames of reference

To describe the deformation of a particular discrete element in the vicinity of the material
point p, four reference frames are used (Figure 4.10):

• Global frame (i, j, k).

• Local frame (ī, j̄, k̄). It is associated with the initial position of a particular discrete
element.

• Deformed local frame (ĩ, j̃, k̃). This frame is fixed to the material point p of the
discrete element and moves with that point.

• Initial frame (î, ĵ, k̂). It is linked to the material point p and is associated with the
initial position of a particular discrete element.
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• Deformed initial frame: (ĭ, j̆, k̆). This frame is fixed to the material point p of the
discrete element, and moves with that point.

The global, local and initial frames are inertial frames, while the deformed local frame and de-
formed initial frame are non-inertial frames. The relationship between a local and deformed
local frame can be obtained using the deformation gradient.

The physical meaning of the deformation gradient can be explained by taking an
infinitesimal material element in the vicinity of point p, as shown in Figure 4.11. It is
assumed that this material element coincides with a cube of edge of unit length. By
choosing a very small unit for the length, the edge of the cube is made infinitesimally
small.

Because the unit for length is conveniently chosen to be infinitesimally small, the base
vectors of the local triad coincide with the edges of the material element. As the material
in the vicinity of point p deforms, these base vectors are mapped through deformation
into corresponding base vectors of the deformed local triad:

ĩ =
(

1 +
∂ū
∂x̄

)
ī+

∂v̄
∂x̄

j̄+
∂w̄
∂x̄

k̄ (4.31)

j̃ =
∂ū
∂x̄

ī+
(

1 +
∂v̄
∂x̄

)
j̄+

∂w̄
∂x̄

k̄ (4.32)

k̃ =
∂ū
∂x̄

ī+
∂v̄
∂x̄

j̄+
(

1 + ∂w̄
∂x̄

)
k̄ (4.33)

As can be seen from Figure 4.11, these vectors are in general non-orthogonal to each
other. In addition, these vectors are not unit vectors. Thus, a cube shaped material
element of unit volume changes both its volume and it original cubic shape.

Special types of deformation include the deformation with constant displacement
u(p) = const and deformation with constant deformation gradient F(p) = const. The
deformation with constant displacement is referred to as translation. In this type of de-
formation, the initial material element is identical in shape, size and orientation to the
deformed initial volume, except that it is translated. Translation therefore does not pro-
duce any straining of the material. The deformation with constant deformation gradient
is referred to as homogeneous.
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Figure 4.2 Frames of reference.

changes with deformation of the discrete element. The orientation of the initial frame
is defined by a triad of generally non-unit vectors that are, in general, not parallel to
the respective axes of the Cartesian coordinate system. In addition, these vectors are in
general not orthogonal to each other. Initially, this frame coincides with the local frame.
As the body deforms, this frame begins to differ from the local frame. As this frame
is obtained through deformation of the local frame, it is in further text referred to as a
deformed local frame. A deformed local frame is defined by a triad of non-orthogonal
non-unit vectors:

(ĩ, j̃, k̃) (4.8)

• Initial frame: in the same way as the local frame, this reference frame is linked to the
material point and is associated with the initial position of a particular discrete element.
It is therefore fixed in space, and does not move with the discrete element. Very often
this frame is made to coincide with, say, the edges of a finite element on a particular
discrete element. Thus, base vectors of this frame are in general not orthogonal to each
other. The magnitude of the base vectors is, for instance, equal to the length of the
corresponding edges of finite elements, i.e. the base vectors are not unit vectors. The
initial frame is defined by a triad of non-orthogonal non-unit vectors:

(i,j,k) (4.9)

• Deformed initial frame: this frame is fixed to the material point p of the discrete
element, and moves with that point. The base vectors of this frame also follow the
deformation in the vicinity of the point p. The origin of this frame thus coincides at
all times with the point x = f(p), while the direction of triad vectors and magnitude

Figure 4.10: Frames of reference (from Munjiza, 2004).

136 DEFORMABILITY OF DISCRETE ELEMENTS

with

ĩ =




1 + ∂u

∂x
∂v

∂x
∂w

∂x


 ; j̃ =




∂u

∂y

1 + ∂v

∂y

∂w

∂y




; k̃ =




∂u

∂z

∂v

∂z

1 + ∂w

∂z




(4.21)

The physical meaning of the deformation gradient can be explained by taking an infinites-
imal material element in the vicinity of point p, as shown in Figure 4.3. It is assumed
that this material element coincides with a cube of edge of unit length. By choosing a
very small unit for the length, the edge of the cube is made infinitesimally small.

With such an assumption, the local triad at point p is given by:

i =

 1

0
0


 ; j =


 0

1
0


 ; k =


 0

0
1


 (4.22)

Because the unit for length is conveniently chosen to be infinitesimally small, the base
vectors of the local triad coincide with the edges of the material element. As the material
in the vicinity of point p deforms, these base vectors are mapped through deformation
into corresponding base vectors of the deformed local triad:

ĩ =
(

1 + ∂u

∂x

)
i + ∂v

∂x
j + ∂w

∂x
k (4.23)
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Figure 4.3 Physical meaning of deformation gradient.

Figure 4.11: Physical meaning of deformation gradient (from Munjiza, 2004).
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4.8.3 Homogeneous deformation

Homogeneous deformation can be expressed as a composition of rotation g and stretch s:

f(p) = g ◦ s1 = s2 ◦ g (4.34)

The deformation gradient for homogeneous deformation is therefore given by
F = RU = VR (4.35)

where R = ∇g, U = ∇s1and V = ∇s2.
It is worth mentioning that by definition of homogeneous deformation tensors F, R and
U are constant tensors, i.e. they do not change from point to point (over the spatial
domain). Tensor U is called the right stretch tensor. Tensor V is called the left stretch
tensor. Tensors U and V are symmetric and positive definite tensors with

det U = det V = |det F| > 0 (4.36)

representing the ratio between the volume of the deformed material element and the
initial material element. Both right and left stretch tensors can be decomposed into a
succession of three extensions in three mutually orthogonal directions:

Right stretch tensor

U =
3

∑
i=1

λi ēi ⊗ ēi = I + (si − 1)ēi ⊗ ēi (4.37)

Left stretch tensor

V =
3

∑
i=1

λi ēi ⊗ ēi = I + (si − 1)ēi ⊗ ēi (4.38)

where scalars s1, s2 and s3 represent principal stretches. Principal stretches are in essence
elongation in the principal directions, i.e. the ratio between the deformed length and ini-
tial length. Principal stretches are the same for both right and left stretch tensor. The
right stretch tensor U therefore represents successive stretching of the material element
in three mutually orthogonal directions. This stretching is applied before any rotation.
In contrast, left stretch tensor V represents successive stretching of the material element
in three mutually orthogonal directions applied after rotation. Thus, the principal dir-
ections of left stretch tensor V are obtained by simply rotating the principal directions
associated with the right stretch tensor U.



4.8 Deformability of Discrete Elements 95

4.8.4 Strain

Using stretch tensors U and V, different strain tensors can be defined. For instance,

C = FTF = (RU)T(RU) = UTRTRU = UTU
B = FFT = (VR)(VR)T = VRRTVT = VVT = V2 (4.39)

are the right and left Cauchy-Green strain tensor, respectively. In the case of the right
Cauchy-Green strain tensor C, rotation occurs after stretch. Thus, the left Cauchy-Green
strain tensor is best represented using a local frame, i.e. using configuration before any
rotation has taken place. In the case of the left Cauchy-Green strain tensor B, stretch
occurs after rotation. Thus, the left Cauchy-Green strain tensor is best represented using
a deformed local frame, i.e. using configuration after the rotation has taken place.

4.8.5 Stress - Cauchy stress tensor

Cauchy’s theorem makes it possible for integral relations of momentum balance to be
replaced by partial differential equations.

The necessary and sufficient condition for the momentum balance law to be satisfied
is the existence of a spatial tensor field T (also called Cauchy stress) such that:

• for a vector m, the surface traction force is given by s(m) = Tm;

• T is symmetric and positive, i.e. for any vector a, a · Ta > 0 unless a = 0;

• T satisfies the equation of motion divT + b = ρv̇;

where s is the traction force corresponding to the surface of deformed configuration, b is
the body force per unit volume of the deformed configuration, ρ is the density measured
per unit volume of the deformed configuration, and m is the normal to the boundary of
deformed configuration.

The Cauchy stress tensor in essence represents a linear mapping where a given out-
ward surface normal m is mapped onto a total surface traction force s. The surface nor-
mal m is of magnitude equal to the surface area it represents. Thus, for instance, if the
magnitude of m is doubled, the total surface traction is doubled. This is easily under-
stood, for doubling the normal m is equivalent to doubling the surface area.

The matrix of Cauchy stress tensor in the global frame (i, j, k) is given by

T =

 txx txy txz
tyx tyy tyz
tzx tzy tzz

 (4.40)
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Figure 4.7 Cauchy stress tensor components in deformed configuration. Note that the material
element is taken in the directions of the global base vectors.
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defined as the linear mapping from one vector space into another vector space. In simple
terms, for a given normal it returns traction force.

4.5.2 First Piola-Kirchhoff stress tensor

Cauchy stress is defined for the deformed body, i.e. stress is defined as traction force per
unit area of the deformed body. Sometimes it is easier to deal with the initial configura-
tion than with the deformed configuration. Thus, stress called ‘Piola-Kirchhoff stress’ is
introduced. The first Piola-Kirchhoff stress is defined by the expression

S1 = (det F)TF−T (4.70)

To understand the above definition, it is necessary to investigate each element in the
above formula. First, the term (det F) represents the ratio of volume of deformed material
element and volume of undeformed material element (initial configuration). Thus, if a

Figure 4.12: Cauchy stress tensor components in deformed configuration. Note that
the material element is taken in the directions of the global base vectors (from Munjiza,
2004).

where the first index indicates the direction of the stress component (direction of traction
force) and the second index denotes the corresponding surface normal. Thus, txy is the
traction force in the x-direction on the surface “in the y-direction”, i.e. force txyi on the
surface 1j.

Cauchy stress refers to the force per unit area of the deformed configuration. Com-
ponents of Cauchy stress tensor are shown in Figure 4.12.

4.8.6 Constitutive Law

For an elastic body a constitutive law (physical equations) can be written as

T(x) = T̂(F(p), p) (4.41)

where T is Cauchy stress tensor, x represents deformed configuration and p represents
initial configuration. A necessary and sufficient condition that the response is independ-
ent of the observer is that

RT̂(F(p), p)RT = T̂(RF(p), p) (4.42)

i.e. if rotation R is applied to the elastic body, the stress should not change. Actually, this
rotation could also be viewed as rotation of the global triad. Rotation of an elastic body
is equivalent to the rotation of the global coordinate system in the opposite direction by

R−1 = RT
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The body is called isotropic if
T̂(F(p), p) = T̂(F(p)R, p) (4.43)

Many materials cannot undergo large (finite) strains, and often it is the case that only
small strains are possible before fracture or failure occurs. In addition, in many problems
of practical engineering importance the deformation gradients are also small, resulting
in the deformed configuration being almost identical to the initial configuration.

The first case is the case of small strains, and the second case is the case of small
displacements. In the case of small strains and small displacements, a suitable strain
tensor is the so-called infinitesimal strain:

E =
1
2

(
∇u +∇uT

)
(4.44)

In the combined finite-discrete element method, the strain may be small in most prob-
lems of practical importance. However, the displacements are almost never small, thus
Equation 4.44 does not apply. Small strains only imply small stretches, while rotations
and displacements are large. In such a case of small strains and large rotations, the de-
formation gradient can be decomposed into a stretch followed by rotation

F = RU (4.45)

Stretch U is a result of displacements u, i.e.

U = I +∇u (4.46)

Also,
C = FTF = U2 (4.47)

where

U2 =

 1 + 2 ∂u
∂x

∂u
∂y + ∂v

∂x
∂u
∂z + ∂w

∂x
∂u
∂y

+∂v
∂x 1 + 2 ∂v

∂y
∂v
∂z +

∂w
∂y

∂u
∂z + ∂w

∂x
∂v
∂z +

∂w
∂y 1 + 2 ∂w

∂z

 (4.48)

after neglecting higher order terms yields. This means that the small strain tensor can be
approximated by

E =
1
2
(U2−I) (4.49)

In other words, if the strains are small, a small strain tensor (engineering strain) is ob-
tained using the formula

Ē =
1
2
(FTF−I) =

1
2
[(RU)T(RU)−I] =

1
2
(UTU−I) (4.50)



98 The Combined Finite-Discrete Element Method

This strain tensor is called a right Green-St.Venant strain tensor. It is worth mentioning
that although strains are small, rotations in the combined finite-discrete element method
are always finite.
With the right stretch tensor U a material is first stretched in the principal directions.
This is followed by rotation. Thus, the right small strain tensor corresponds to the initial
configuration in a sense that strain components expressed using a global triad are correct
when applied to the initial configuration.

An equivalent small strain tensor is obtained using the left stretch tensor V:

Ẽ =
1
2
(FFT−I) =

1
2
[(VR)(VR)T−I] =

1
2
(VVT−I) (4.51)

This strain tensor is called the left Green-St.Venant strain tensor. The left stretch tensor
is defined in such a way that rotation occurs before stretching, i.e. stretching in three
principal directions occurs on the rotated configuration. As rotation in the combined
finite-discrete element method is always finite regardless of the strains, the strain tensor
defined by Equation 4.51 is generally different from the strain tensor obtained using
Equation 4.50. The right Green-St.Venant strain tensor refers to the initial configuration.
The left Green-St.Venant strain tensor refers to the deformed (current) configuration.

Since strains are small, to obtain stresses from strains a small strain elasticity con-
stitutive law can be employed. For homogeneous isotropic material the stress-strain
relationship is given by Hooke’s law.

4.9 Temporal discretization

4.9.1 The central difference time integration scheme

Contact between discrete elements together with the deformability of discrete elements
is described in terms of nodal forces and nodal displacements. Since each discrete ele-
ment is discretised into finite elements, the shape of each discrete element and its posi-
tion in space at any time instance is given by the current coordinates of the finite element
nodes, i.e. nodal coordinates.

In a similar way, the velocity field over the discrete element is defined by nodal ve-
locities v; the acceleration field a over the discrete element is given by a = v̇ = ẍ with
x =

[
x1, x2 , x3, ..., xi, ..., xn

]
where n is the total number of degrees of free-

dom for a particular discrete element. The inertia of the discrete element is defined by
the mass of the discrete element, which is obtained by integration of density over the
volume of the discrete element, i.e.

dm = ρdV (4.52)
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Discretization of the discrete element into finite elements also results in discretization of
the mass. The most convenient way of discretization of the mass used in the FDEM is
a so-called lumped mass approach. In essence, instead of considering the mass being
distributed over the discrete element, it is assumed that the mass is lumped into the
nodes of the finite element mesh. It is worth noting that in the finite element literature,
discretization of mass is done through the mass matrix, which is in general non-diagonal.
However, elimination of non-diagonal terms leads to a diagonal lumped mass matrix
where all non-diagonal terms are zero. This approach, in conjunction with the stiffness
matrix for dynamic problems, is suitable for both implicit and explicit direct integration
in the time domain.

In the context of the combined finite-discrete element method, deformability together
with rigid rotation and translation is considered, and contact interaction is resolved
together with fracture and fragmentation. Assembling a stiffness matrix and a non-
diagonal mass matrix would lead nowhere, for any available implicit time integration
scheme could not be used without significant modifications. Thus, no stiffness matrices
are calculated. A time integration scheme is applied on element-by-element, node-by-
node and degree of freedom by degree of freedom bases in an explicit form. Nodal forces
from contact interaction, deformation of a discrete element, external loads, and damping
forces (due to either “external” damping or “internal” damping) are all added together,
and a vector f of nodal forces is obtained. The dynamic equilibrium of the discrete ele-
ment is therefore given by f = ma. The mass matrix m may be constant when no fracture
occurs.

For integration of the above equations, the central difference time integration scheme
has been traditionally employed. It is an explicit scheme resulting in no need for stiffness
matrices to be assembled or stored. In addition, it is conditionally stable, meaning that
the stability of the scheme is achieved through reducing the size of the time step. The
accuracy of the scheme is also controlled by the size of the time step.

The essence of the central difference time integration scheme is the explicit integra-
tion of the governing equation for each degree of freedom separately. In the case of the
constant time step, formulation of the central difference time integration scheme is given
as follows:

vnext = vcurrent + acurrenth
xnext = xcurrent + vnexth (4.53)

where

acurrent =
fcurrent

m
(4.54)
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Figure 5.1 The central difference time integration scheme.

A graphical interpretation of the central difference time integration scheme is given in
Figure 5.1.

In the case of the constant time step, formulation of the central difference time inte-
gration scheme is given as follows:

vnext = vcurrent + acurrenth (5.12)

xnext = xcurrent + vnexth (5.13)

5.1.1 Stability of the central difference time integration scheme

For the zero external load and internal and contact forces being proportional to the dis-
placement with no damping present, the force can be written as a linear function of
displacement:

fcurrent = −kxcurrent (5.14)

In such a case, the central difference time integration scheme is reduced to

vnext = vcurrent + acurrenth = vcurrent − kxcurrent

m
h (5.15)

xnext = xcurrent + vnexth (5.16)

= vcurrenth +
(

xcurrent − kxcurrent

m
h2

)

= vcurrenth +
(

1 − k

m
h2

)
xcurrent

After multiplication with h

hvnext = hvcurrent − k

m
h2xcurrent (5.17)

xnext = vcurrenth +
(

1 − k

m
h2

)
xcurrent (5.18)

Figure 4.13: The central difference time integration scheme (from Munjiza, 2004).

is the sum of body forces, contact forces and external loads, together with any damping
forces (friction, viscous drag, material viscous damping), and m is the mass associated
with the particular degree of freedom. A graphical interpretation of the central difference
time integration scheme is given in Figure 4.13.

4.9.1.1 The combined finite-discrete element simulation of the state of rest

Many combined finite-discrete element problems include transient motion that leads to
the state of rest. Through energy dissipation mechanisms such as fracture, friction and
permanent deformations, the energy of the combined finite-discrete element system is
steadily reduced until all the discrete elements are virtually at a state of rest.

In the FDEM, the state of rest and static cases in general are treated as special cases
of transient dynamics problems, where energy dissipation mechanisms are such that in
a relatively short time a state of rest is achieved or the load is applied at a such a slow
rate that no dynamic effects are induced. The method is called dynamic relaxation.

In dynamic relaxation the static system is replaced by an equivalent transient dynamic
system

Kx + Mẍ + Cẋ = p (4.55)

where K is the stiffness matrix, M is the mass matrix and C is the damping matrix. The
dynamic relaxation is said to converge if the steady state solution of the equivalent dy-
namic system is identical to the static solution. The most important advantage of dynamic
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relaxation in comparison to iterative methods in general is probably the physical mean-
ing, which can be attached to the convergence process itself through gradual motion of
the system toward the steady state, which can be expressed in terms of inertia forces.
This is very useful in problems with slow monotonic loading and non-linear problems,
in which non-unique solutions may exist. However, the path through which a steady
state is reached and the speed at which it is reached are heavily dependent on both the
C and M matrices.

4.10 Transition from Continua to Discontinua algorithm

Transition from continua to discontinua occurs through fracture and fragmentation pro-
cesses. Generally, fracture occurs through alteration, damage, yielding or failure of
micro-structural elements of the material.

To describe this complex, material dependent phenomenon, the alteration of stress
and strain fields due to the presence of micro structural defects and stress concentrations
must be taken into account. Several approaches are available: global approaches, local
approaches, smeared crack models and single crack models.

Global approaches to fracture are based on the representation of the singularity of the
stress field at the crack tip. It was shown by Griffith that the failure of a brittle elastic
medium due to such singularity can be characterised by the energy release rate G. The
critical value of G = 2γ (where γ represents the surface energy) is a material charac-
teristic. The alternative formulation of the Griffith method is achieved through stress
intensity factors, which characterize the stress singularity on a semi-local basis in terms
of force, while the same singularity is characterised in terms of energy by contour integ-
rals.

Local approaches to crack analysis usually employ a smeared crack approach, with
a single crack being replaced by a blunt crack band. This approach has been justified
by the fact that engineering materials show a reduction in the load-carrying capacity
accompanied by strain localization after the maximum load-carrying capacity is reached.

Beyond the peak load (when the material gradually disintegrates), two types of fail-
ure mechanism are observed, namely decohesion and frictional slip. In the first type of
failure fracture, zones are observed (cracks), while in the latter failure zones propagate
along shear bands (faults).

Smeared crack models attempt to describe these processes through constitutive laws,
such as a strain softening constitutive law or damage mechanics based formulation.
However, standard continuum mechanics formulations incorporating softening fail, as
the underlying mathematical problem becomes ill-posed. As a result, the numerical solu-
tion predicts a vanishing energy dissipation upon spatial discretization refinement. A
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mathematically well-posed problem is obtained by using an enriched continuum for-
mulation (such as a Micro-polar Cosserat) or higher-order constitutive law (such as a
non-local constitutive law, where the higher order gradients of the deformation field are
included in the formulation). A relatively straightforward alternative utilizing a fracture
energy based softening plasticity framework has also been successfully adopted in the
past, where a mesh size dependent softening modulus ensures objective energy dissipa-
tion.

The local approaches to crack analysis based on a single crack concept are usually
based on the Dugdale model or Barenblatt model. The Dugdale model is a relatively
simple non-linear model for a crack with a plastic zone at its tip, where the zone of
plastically strained material is replaced by a zone of weakened bonds between the crack
walls. As the crack walls separate the bond stress reaches maximum. At the point when
the separation reaches a critical value, the bonding stress drops to zero.

The main tasks in describing fracture in the combined finite-discrete element method
are to predict crack initiation, predict crack propagation, perform the necessary remesh-
ing, transfer variables from the old to the new mesh and replace the released internal
forces with equivalent contact forces. Robustness, accuracy, simplicity and CPU require-
ments of the fracture algorithms implemented are of major importance, and both single
and smeared crack models have been employed in the past.

4.10.1 Strain softening based smeared fracture model

In experimental tests of rock and rock-like materials, a gradual load decrease with an
increase in displacements is observed. The phenomenon occurs under uniaxial tension
as well as under uniaxial compression and triaxial stress states.

Figure 4.14 shows a typical stress-displacement diagram for a rock specimen under
uniaxial tension. Due to stress decreasing with increasing strain, pre-failure strains are
highly localized in a narrow band, which eventually results in a discontinuity in the
form of a crack. The phenomenon of decreasing stress in a localization band area with
increasing strains is called “strain-softening”.

Localization is the intense straining of a material within thin bands. The strains for
real engineering softening materials such as rock, are localized over a relatively small
(far smaller than the size of the actual physical or engineering problem) yet finite lengths
(characteristic lengths) that reflect the micro-structure of the rock, and energy dissipation
is therefore well defined.

Actual implementation of strain softening material models into finite element codes
has been associated with great difficulties regarding both sensitivity to mesh size and
mesh orientation. The localization zone width corresponds to the element size, and with
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predicts a vanishing energy dissipation upon spatial discretisation refinement. A mathe-
matically well-posed problem is obtained by using an enriched continuum formulation
(such as a Micro-polar Cosserat) or higher-order constitutive law (such as a non-local
constitutive law, where the higher order gradients of the deformation field are included in
the formulation). A relatively straightforward alternative utilising a fracture energy based
softening plasticity framework has also been successfully adopted in the past, where a
mesh size dependent softening modulus ensures objective energy dissipation.

The local approaches to crack analysis based on a single crack concept are usually
based on the Dugdale model or Barenblatt model. The Dugdale model is a relatively
simple nonlinear model for a crack with a plastic zone at its tip, where the zone of
plastically strained material is replaced by a zone of weakened bonds between the crack
walls. As the crack walls separate the bond stress reaches maximum. At the point when
the separation reaches a critical value, the bonding stress drops to zero.

The main tasks in describing fracture in the combined finite-discrete element method
are to predict crack initiation, predict crack propagation, perform the necessary remesh-
ing, transfer variables from the old to the new mesh and replace the released internal
forces with equivalent contact forces. Robustness, accuracy, simplicity and CPU require-
ments of the fracture algorithms implemented are of major importance, and both single
and smeared crack models have been employed in the past. In the rest of this chapter,
two most widely employed fracture models are described together with numerical exper-
iments demonstrating the complexity of the combined finite-discrete element simulations
involving complex fracture and fragmentation patterns. Fracture and fragmentation is still
intensively researched field in the combined finite-discrete element method and Computa-
tional Mechanics of Discontinua in general, and currently available simulation techniques
are far from optimum.

7.2 STRAIN SOFTENING BASED SMEARED FRACTURE MODEL

In experimental tests of rock and rock-like materials, a gradual load decrease with an
increase in displacements is observed. The phenomenon occurs under uniaxial tension as
well as under uniaxial pressure and triaxial stress states. Figure 7.1 shows a typical stress-
displacement diagram for a rock specimen under uniaxial tension. Due to stress decreasing
with increasing strain, pre-failure strains are highly localised in a narrow band, which
eventually results in a discontinuity in the form of a crack. The phenomenon of decreasing
stress in a localisation band area with increasing strains is called ‘strain-softening’.
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Figure 7.1 A typical stress-displacement diagram for rock under uniaxial tension and idealised
stress-strain diagram in the localisation zone.Figure 4.14: A typical stress-displacement diagram for rock under uniaxial tension and

idealized stress-strain diagram in the localization zone (from Munjiza, 2004).

a finer mesh the localization zone width is smaller and, in addition, localization zones
tend to follow preferred directions (along the finite element edges or diagonals) dictated
by the mesh.

Localization is closely related to smeared crack models, where the localization zone
(crack band) is usually assumed to propagate into the next finite element when the stress
in that element reaches a strength limit. In this way, the propagation of the zone is
influenced and largely determined by the zone width, because the narrower the zone
the larger the stresses ahead.

The smeared fracture model implemented in the FDEM also uses the concept of localiz-
ation band propagation. The underlying assumptions of the model are:

• the localization (tensile fracture) occurs on the finite element integration point
level;

• the size of the overall model is significantly larger than the size of the finite ele-
ments employed (h);

• the strain energy accumulated before the peak stress is reached within an area as-
sociated with the integration point undergoing softening can be neglected;

• the plasticity model is assumed to be isotropic, i.e. the accumulated effective plastic
strain is monitored in the principal directions only. If, after the strength limit is
reached, a full breakage does not occur (stress state on the softening branch), the
effective plastic strain is treated as a scalar state variable for the next state of de-
formation, which will be valid for any new rotated principal direction.

To deal with mesh size sensitivity, the local softening material law is formulated in terms
of the fracture energy release rate in tension, Gf, and the local control length h:
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h =

√
4A
π

(4.56)

where A is the area associated with the Gauss integration point considered. To avoid
limitations to the upper limit of the element size to be used, which arises from the diffi-
culties in numerically capturing the so-called snap back in the constitutive law (softening
slope return), the fracture energy is assumed to control only the post-peak behaviour, i.e.
after the peak stress ft is reached. The local softening slope for each Gauss-point is then
obtained from the energy balance

f 2
t

2E′
A = 2γh = G f h (4.57)

This modification of the constitutive law resolves the problem of sensitivity of the
fracture energy release rate to the mesh size. However, the sensitivity of crack initiation
to element size remains. This is because the crack is replaced by a localization band
which is equal to the element size. A further consequence of this is also the sensitivity to
mesh orientation. With a deformable discrete element, discretised into finite elements,
a critical state of stress (or strain) is reached when an element separates into two or
more discrete elements, or a discrete element changes its boundary (if the failure is only
partial). At the stage when the strength of material in some Gauss-points is reduced to
zero, a crack is assumed to open. The direction of the crack coincides with the direction
of the greater principal plastic stretch. A re-meshing of finite elements within every
discrete element is therefore performed, and when breakage occurs new boundaries are
created.

4.10.2 Discrete crack model

As explained above, the smeared crack model for fracture and fragmentation is coupled
with numerical difficulties and algorithmic complexities. Recent research efforts regard-
ing fracture modelling in the context of the combined finite-discrete element method
have therefore also included the single crack model.

The model presented in this section is actually a combination of the smeared and single
crack approaches. It was designed with the aim of modelling multiple-crack situations,
progressive fracture and failure, including fragmentation and the creation of a large
number of rock fragments of general shape and size. It is aimed at mode I loaded cracks
only and based on the approximation of stress-strain curves for rock in direct tension
(Figure 4.15).
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The problem of sensitivity to mesh orientation remains, and it is not easy to provide an
answer to the question of the extent to which the obtained fracture pattern is a function
of the initial mesh. This is because the final fracture pattern does not depend only on
the initial mesh, but also on all subsequent remeshings, which are in turn governed by
the creation of new boundaries. In other words, the mesh pattern is influenced by mesh
orientation, and in turn the transient meshes are a result of boundaries created by the frac-
ture pattern. The problem of sensitivity of the fracture pattern to mesh orientation in the
context of the smeared fracture and fragmentation model is also coupled with algorithmic
complexities involving permanent remeshing due to the creation of new boundaries and
the problems associated with it (transfer of variables, tracing of new contacts, perma-
nently changing size, topology and CPU and RAM requirements during execution of the
computer problem). Thus, in recent developments of the combined finite-discrete element
method, the emphasis is being placed on discrete crack based approaches.

7.3 DISCRETE CRACK MODEL

As explained above, the smeared crack model for fracture and fragmentation is cou-
pled with numerical difficulties and algorithmic complexities. Bearing in mind the other
complexities involved in combined finite-discrete element simulations, such as contact
detection and contact interaction, the transition from continua to discontinua algorithms
must be optimised both in terms of CPU time and RAM requirements. Recent research
efforts regarding fracture modelling in the context of the combined finite-discrete element
method have therefore also included the single crack model. The model presented in this
section is actually a combination of the smeared and single crack approaches. It was
designed with the aim of modelling multiple-crack situations, progressive fracture and
failure, including fragmentation and the creation of a large number of rock fragments of
general shape and size.

The model presented in this section is aimed at mode I loaded cracks only. It is based
on the approximation of stress-strain curves for rock in direct tension, (Figure 7.8). A
typical stress-strain curve for rock consists of the hardening branch (before the peak
stress is reached) and strain-softening part, which represents decreasing stress with
increasing strain.

The strain-hardening part of the stress-strain curve presents no difficulties when imple-
mented in the combined finite-discrete element method, and is therefore implemented in
a standard way through the constitutive law. The strain-softening part of the stress-strain
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Figure 7.8 Typical strain softening curve defined in terms of strains.Figure 4.15: Typical strain softening curve defined in terms of strains (from Munjiza,
2004).

A typical stress-strain curve for rock consists of the hardening branch (before the
peak stress is reached) and strain-softening part, which represents decreasing stress with
increasing strain. The strain-hardening part of the stress-strain curve presents no diffi-
culties when implemented in the combined finite-discrete element method, and is there-
fore implemented in a standard way through the constitutive law. The strain-softening
part of the stress-strain curve is connected with localization of strains, loss of ellipticity
(hyperbolicity) of the governing equation, ill-posed problems and general sensitivity to
mesh size and mesh orientation. To deal with these problems, formulation of the strain
softening by means of stress and displacements is adopted, as shown in Figure 4.16.

The area under the stress-displacement curve represents the energy release rate,
G f = 2γ , where γ is the surface energy, i.e. the energy needed to extend the crack
surface by unit area. The softening stress-displacement relationship is implemented in
the FDEM through the single crack model, i.e. using bonding stress, as shown in Figure
4.17.

In theory, the separation δ = δt = 0 coincides with the bonding stress being equal to
the tensile strength ft , i.e. no separation occurs before the tensile strength is reached.

With increasing separation δ > δt the bonding stress decreases, and at separation
δ = δc the bonding stress drops to zero. Bonding stress for separation δt < δ < δc is
given by

σ = z ft (4.58)

i.e. a scaled tensile strength, with the scaling (softening) function z being defined in such
a way that it represents a close approximation of the stress-displacement curve. Thus, a
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Figure 7.9 Strain softening defined in terms of displacements.

curve is connected with localisation of strains, loss of ellipticity (hyperbolicity) of the
governing equation, ill-posed problems and general sensitivity to mesh size and mesh
orientation. To deal with these problems, formulation of the strain softening by means of
stress and displacements is adopted, as shown in Figure 7.9.

The area under the stress-displacement curve represents the energy release rate, Gf = 2γ ,
where γ is the surface energy, i.e. the energy needed to extend the crack surface by
unit area. The softening stress-displacement relationship is implemented in the combined
finite-discrete element method through the single crack model, i.e. using bonding stress,
as shown in Figure 7.10.

In theory, the separation δ = δt = 0 coincides with the bonding stress being equal to
the tensile strength ft , i.e. no separation occurs before the tensile strength is reached.
With increasing separation δ > δt the bonding stress decreases, and at separation δ = δc

the bonding stress drops to zero. Bonding stress for separation δt < δ < δc is given by

σ = zft (7.11)

i.e. a scaled tensile strength, with the scaling (softening) function z being defined in such
a way that it represents a close approximation of the stress-displacement curve. Thus, a
heuristic formula for z is adopted:

z =
[

1 − a + b − 1

a + b
exp

(
D

a + cb

(a + b)(1 − a − b)

)]
[a(1 − D) + b(1 − D)c] (7.12)
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Figure 7.10 Single crack model with bonding stress.

Figure 4.16: Strain softening defined in terms of displacements (from Munjiza, 2004).
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curve is connected with localisation of strains, loss of ellipticity (hyperbolicity) of the
governing equation, ill-posed problems and general sensitivity to mesh size and mesh
orientation. To deal with these problems, formulation of the strain softening by means of
stress and displacements is adopted, as shown in Figure 7.9.

The area under the stress-displacement curve represents the energy release rate, Gf = 2γ ,
where γ is the surface energy, i.e. the energy needed to extend the crack surface by
unit area. The softening stress-displacement relationship is implemented in the combined
finite-discrete element method through the single crack model, i.e. using bonding stress,
as shown in Figure 7.10.

In theory, the separation δ = δt = 0 coincides with the bonding stress being equal to
the tensile strength ft , i.e. no separation occurs before the tensile strength is reached.
With increasing separation δ > δt the bonding stress decreases, and at separation δ = δc

the bonding stress drops to zero. Bonding stress for separation δt < δ < δc is given by

σ = zft (7.11)

i.e. a scaled tensile strength, with the scaling (softening) function z being defined in such
a way that it represents a close approximation of the stress-displacement curve. Thus, a
heuristic formula for z is adopted:

z =
[

1 − a + b − 1

a + b
exp

(
D

a + cb

(a + b)(1 − a − b)

)]
[a(1 − D) + b(1 − D)c] (7.12)
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Figure 7.10 Single crack model with bonding stress.Figure 4.17: Single crack model with bonding stress (from Munjiza, 2004).
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heuristic formula for z is adopted:

z =

[
1−

a + b−1
a + b

exp
(

D
a + cb

(a + b)(1−a−b)

)]
[a(1−D) + b(1−D)c] (4.59)

where the variable D is given by

D =


0 if δ ≤ δt

1 if δ > δc
δ−δt
δc−δt

otherwise
(4.60)

while the parameters a, b and c are obtained from experimental stress-displacement
curves by curve fitting.
Note that for any value of these parameters, the above heuristic formula results in a
bonding stress of ft for D = 0 and a bonding stress equal to zero for D = 1. The tangent
at the stress displacement curve at D = 0 is horizontal. Thus, parameters a, b and c
control the slope of the curve at D = 1 and the shape of the curve (curvature) at D = 0
together, with the inflection point.

In the discrete crack model, it is assumed that the crack walls coincide with the finite
element edges. Thus initially the total number of nodes for each of the finite element
meshes (every single discrete element is associated with its separate finite element mesh)
is doubled, and nodes are held together through a penalty function method.

Thus the separation δt is a function of the penalty term p employed. In the limit no
separation of adjacent edges takes place before stress ft is reached, i.e.

lim
p→∞

δt = 0 (4.61)

With increasing separation δ > δt the bonding stress decreases, and at separation δ > δc
it is zero and the crack is assumed to propagate.

In finite element discretization of the governing equations, only approximate stress
and strain fields close to the crack tip are obtained. With the bonding stress model as
described above, the stress and strain fields close to the crack tip are influenced by the
magnitude and distribution of the bonding stress close to the crack tip.

For the bonding stress to have a significant effect on stress distribution results, it
is necessary that the size of finite elements close to the crack tip be smaller than the
actual size of the plastic zone. The coarser mesh results in bonding stress in all elements
close to the crack walls being reduced to zero, except for the few elements adjoining
the crack tip. The propagation of the crack is therefore influenced by the orientation of
those elements close to the crack tip. The coarse finite element mesh does not accurately
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represent the stress field in the proximity of the crack tip, and as a result, the stress field
obtained is influenced by the mesh topology close to the crack tip. i.e. the de-bonding
and separation of crack walls occurs on an element-by-element basis. One way to avoid
this problem is to have an element size close to the crack tip much smaller than the size
of the plastic zone. Sensitivity to mesh size and orientation is due to the singularity of
the stress field at the crack tip. The influence of such singularity can be illustrated on the
example of the following function:

σv =
1√
x

(4.62)

being approximated by constant value finite elements, as shown in Figure 4.18. The
relative error of such an approximation can be estimated by

ε =

1√
(n−1)h

− 1√
nh

1√
(n−1)h

100% =

(
1−

√
n− 1

n

)
100% (4.63)

It is evident that the relative error of approximation does not decrease with the decreas-
ing element size. This means that, for a zero length plastic zone, no mesh refinement
would increase the ability of the model to predict the fracture pattern. In other words,
fracture models (often found in the literature) based on the sudden release of stress
(acoustic release) cannot be objective, regardless of the finite element mesh or other type
of grid employed.

In contrast, the combined single and smeared crack model is based on the assumption of a
finite plastic zone. Thus, very fine meshes in conjunction with the combined single and
smeared crack model should result in accurate prediction of both the critical load and
fracture pattern.

The problem is that such fine meshes are in many practical applications simply not
affordable. Coarser meshes when coupled with the combined single and smeared crack
model, result in stress and strain fields in the vicinity of the crack tip being inaccurate by
an order of magnitude. Thus, the resulting fracture patterns are extremely sensitive to
the local element size and element orientation.

4.10.3 Mohr Coulomb failure criterion

The fracture model presented in the previous aimed at mode I loaded cracks only and
assume that tensile strength ft is a material constant; in this approach also the shear
strength fs (mode II) is assumed to be a material constant.
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propagation is to a large extent influenced by the topology of the finite element mesh
in the vicinity of the crack tip. In other words, the result of analysis will be sensitive
to the topology of the finite element mesh employed. The fracture pattern is therefore a
function of both problem parameters (overall geometry, applied load, material properties)
and model parameters (mesh orientation, mesh size).

Sensitivity to mesh size and orientation is due to the singularity of the stress field at
the crack tip. The influence of such singularity can be illustrated on the example of the
following function:

σ = 1√
x

(7.26)

being approximated by constant value finite elements, as shown in Figure 7.12.
The relative error of such an approximation can be estimated by

ε =
1√

(n − 1)h
− 1√

nh

1√
(n − 1)h

100% =
(

1 −
√

n − 1

n

)
100% (7.27)

It is evident that the relative error of approximation does not decrease with the decreasing
element size. This means that, for a zero length plastic zone, no mesh refinement would
increase the ability of the model to predict the fracture pattern. In other words, fracture
models (often found in the literature) based on the sudden release of stress (acoustic
release) cannot be objective, regardless of the finite element mesh or other type of grid
employed. In contrast, the combined single and smeared crack model is based on the
assumption of a finite plastic zone. Thus, very fine meshes in conjunction with the com-
bined single and smeared crack model should result in accurate prediction of both the
critical load and fracture pattern.

The problem is that such fine meshes are in many practical applications simply not
affordable. Small scale problems such as rock crushers, the fracture of smaller size blocks,
and so on, are already affordable on modern day computers. Coarser meshes would
also make large scale problems affordable in terms of CPU time (for instance, blasting

h hh

nh

xh

s

Figure 7.12 A singular stress field approximated by constant stress finite elements.
Figure 4.18: A singular stress field approximated by constant stress finite elements (from
Munjiza, 2004).

To take into account the dependence of shear strength of the material on the con-
finement pressure, the Mohr-Coulomb failure criterion with tension cut-off is then con-
sidered:

if σn ≥ ft fs = c + µiσn
if σn < ft fs = ft

(4.64)

where c is the internal material cohesion, µi is the coefficient of internal friction and σn is
the normal stress acting on the finite element edges.
The Mohr-Coulomb together with the quasi-static friction law implemented in the inter-
action algorithm, describe the behaviour of pre-existing and newly developed fractures.

4.10.4 A need for more robust fracture solutions

The fracture and fragmentation algorithms proposed in the context of the FDEM are in
general sensitive to both element size and element orientation. This is true for both
the smeared strain-softening localization based fracture algorithms (proposed in the
early days of the combined finite-discrete element development), and the single crack
based models proposed in recent years, including the most recent combined single and
smeared fracture algorithm.

Only for extremely fine meshes can one expect accurate representation of the stress
and strain fields close to the crack tip. In such cases, these fields are not a function of
either relative size of individual elements or relative orientation of individual elements.
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The errors in the local crack wall geometry are a function of the size of the finite
elements employed, and reduce with decreasing size of finite elements, while the length
of plastic zone remains constant. This leads to the logical conclusion that with very fine
meshes both critical load and fracture pattern are not sensitive to either mesh size or
mesh orientation.

However, extremely fine meshes for complex fracture patterns are difficult to realize
due to extensive CPU requirements. Thus a problem of this type is and remains a so
called “grand challenge problem” that is likely to be addressed by hardware of the future
(Munjiza, 2010).

4.11 Summary

The combined finite discrete element method (FDEM) was proposed by A. Munjiza in
1990 and further developed by several research centres until these days.

In FDEM each body is represented by a single discrete element that interacts with
the discrete elements close to it. Contact detection and interaction between interacting
individual particles, deformability and fracture of the bodies are the characteristic pro-
cesses of the method. Transition from continua to discontinua is done through fracture
and fragmentation processes. The fracture modes considered are:

• Mode I crack - opening mode (a tensile stress normal to the plane of the crack is
applied);

• Mode II crack - sliding mode (a shear stress acts parallel to the plane of the crack
and perpendicular to it).

The fracture model is actually a combination of the smeared and single crack approaches.
The fractures propagate at the boundaries of the discrete elements (i.e. the crack does
not propagate inside the discrete element), once the fracture conditions in the material
is reached. The FDEM has been implemented in the Y code, which is a robust and ef-
ficient two-dimensional research code suitable for modelling continuum/discontinuum
behaviour.
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Chapter 5

Realistic simulation of simple
slope failure mechanisms

5.1 Introduction

The purpose of this chapter is to present a numerical code based on the combined finite-
discrete element method and to verify its applicability to properly simulate simple slope
failure mechanisms. A series of numerical tests have been carried out to highlight the
advantages of the combined finite-discrete element method with respect to the conven-
tional numerical techniques in the simulation of such geomechanical problems, specially
with reference to the rock fracture process applied to slope stability. The numerical code
used in the present thesis is the Y2D code developed by Munjiza (2004). In the first part
of the chapter a review of the Y-GUI and Y2D input file data structure is presented. Then,
in the second part the results of Y2D numerical modelling are illustrated and discussed.
With the purpose to provide a validation of the Y2D code, for each example, a descrip-
tion of the model set up and the relevant aspects which allow for a reliable simulation is
given.

5.2 Y2D code

The Y2D code, developed by Munjiza (2004), is a two-dimensional FDEM research code
capable of modelling continuum and discontinuum behaviour. The first obstacle one
would face in using this code is related to the creation and verification of input files,
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which had to be typed in an ASCII text editor. To overcome difficulties in the creation of
input file, also referred to as ‘‘Y input file’’, a graphical user interface, Y-GUI, has been
developed for Y2D by the Geomechanics research group of the University of Toronto
(Mahabadi et al., 2010).

5.2.1 Y-GUI

Y-GUI is a Graphical User Interface (GUI) for the Y2D code (Munjiza, 2004). It can sig-
nificantly help the user in the process of setting up a Y2D model. At the same time, the
visualization tools implemented allow one to avoid erroneous model set-up.

For simplicity, the interface has been divided into several sections mainly using tab-
pages for different data input and graphics. The main features implemented in Y-GUI
are listed below:

• easy data input for control database, interaction database, material properties and
boundary conditions;

• mesh import from Phase² (Rocscience, 2010) or Cubit (Sandia, 2009) as Abaqus
mesh, which are the Y2D mesh formats;

• mesh manipulation tools for moving a mesh node, translating selected nodes of a
mesh, drawing a mesh and merging two meshes;

• graphical assignment of material properties, boundary and initial conditions to
selected elements and selected nodes of a mesh, respectively;

• save screenshot, i.e. the contents in the Graphics page as an image (Bitmap, GIF or
JPEG formats);

• graphically define output history points;

• heterogeneity: material properties can be randomly assigned to each individual
finite element using a user defined normal distribution. The percentage of each
set of material property is defined in the Heterogeneity tab-page. This tool helps
count for the natural inhomogeneity of rock masses.

For a more detailed explanation of the Y-GUI refer to Mahabadi et al. (2010).
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5.2.2 Y2D data structure

The different databases of the code, with a brief explanation of their functionality and
some example parameters of each database, are given in Table 5.1. The “Y input file”
typical structure is based on such databases. Moreover, Y-GUI is divided into different
components, as shown in Figure 5.1. Most of the data input and graphical processes are
done in their corresponding tab-page. The structure of different tab-pages together with
their functionalities is given in the following.

ARTICLE IN PRESS

2.2. Y2D data structure

A brief overview of the structure of a typical Y2D input file is

given in Table 1. This table summarizes the different databases of

the code while explaining their functionality and some example

parameters of each database.

2.3. Y-GUI interface

Y-GUI interface is divided into different components, as shown

in Fig. 2. Most of the data input and graphical processes are done

in their corresponding tab-page. More options are made available

through main menus, toolbars, a context menu in the Graphics

page, checkboxes, textboxes and buttons.

As Fig. 2 shows, the interface is divided into:

Menus consisting of File Menu and Help Menu that give mesh/file

import and export options and access to help files, respectively.

A Tabbed-page control for model input and graphical canvas. As

explained before, these pages are essentially laid out following

the data structure of the Y2D code.

A message window to interact with the user about current

actions or if an error has occurred.

Bottom section of the GUI to specify the filename of the mesh

or Y file to be imported and the Y file to be exported. This is

somehow an alternative of the File Menu.

A status bar to prompt general guidelines for the current action

as well as showing the coordinates of the mouse on the graphical

canvas.

Table 1

Data structure of Y2D code.

Database Functionality Example parameters

Control Data that will control the overall behaviour of the model Number of time steps; time step size; gravitational acceleration (g);

output frequency

Elements Data of the mesh elements and their associated property set

numbers

Actual and maximum number of elements; Number of nodes per finite

elements; set of properties associated with each element

Interaction Data used for contact detection and interaction Actual and maximum number of contacting couples of finite elements;

size of buffer around each finite element

Nodes Data of the mesh nodes, their coordinates, initial conditions

and associated property set, i.e. boundary conditions

Actual and maximum number of nodes; nodes coordinates; current nodal

forces/velocities; ID of a property set associated with each node

Output history Data of output history points used to record state variables at

specific points

Number of history variables, i.e. number of points; coordinates of the

nodes; output history type

Properties Data of the property sets of the model including material

properties, boundary conditions and model parameters

(1) Material properties such as shear/tensile strength, fracture energy,

Lame’s constants, friction, density. (2) Boundary conditions such as

element surface pressure/traction, force/acceleration/velocity in x- and y-

direction. (3) Model parameters such as number of mesh refinements,

penalty term, viscous damping.

Fig. 2. Screenshot of Y-GUI interface.

MahabadiO.K. et al. / Computers & Geosciences 36 (2010) 241–252 243

Table 5.1: Data structure of Y2D code (from Mahabadi et al., 2010).

Control DB tab-page. This database allows to input the control parameters for each sim-
ulation, including the number of time steps, their size, output frequency, gravitational
acceleration, as well as the maximum number of elements and nodes (important if the
built-in mesh refinement of Y2D is used).

Interaction tab-page. It allows to input the interaction parameters. The most important
is the maximum number of contacting couples and the size of buffer used for contact
detection. Following a brief description of the meaning of size of buffer is given:

• size of buffer: a buffer zone is used to locate nodes close to any surface during con-
tact detection. The larger the zone, the more expensive the contact interaction com-
putations are, but the cheaper is the contact detection computation. Usually a value
equal to 1/5 of the size of the smallest finite element mesh has to be set.

Properties tab-page. It includes all the properties that can be assigned to the elements
of the mesh, such as Young’s modulus, Poisson’s ratio, friction coefficient and density,
as well as model parameters including viscous damping, penalty term, amount of mesh
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Figure 5.1: Screenshot of Y-GUI interface.
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refinement and the type of property. A brief description of several important parameters
is given as follows:

• viscous damping: the purpose of viscous damping is to minimize high frequencies
oscillations which are unavoidably introduced when contact surfaces frequently al-
ternate between contact and non-contact states. The damping modifies the penalty
force in order to soften the oscillations. The value of the viscous damping depends
on the material properties (E, ρ) and on the finite elements size (h). It is defined as
2h
√

Eρ (finite element smaller than h is critically damped).

• penalty term: the penalty parameters are used to evaluate the normal and tangential
contact forces. The value for the normal penalty is usually in the range E < pn <
10E, where E is the Young’s modulus, and the tangential penalty about 0.1 of the
normal penalty. If one or more nodes penetrate through an element the the penalty
term should be increased. This may also require a reduction in the time step size
(defined in the Controls DB) in order to maintain stability of the solution.

Boundary conditions tab-page. The choice of boundary conditions including force, ac-
celeration, or velocity in x- and/or y-direction, as well as element surface pressure or
traction can be entered here. These parameters can be also used to constrain elements,
e.g., confining the movement of elements by setting velocities to zero.

Graphics tab-page. This page is the main window for all graphical interactions with the
user. The imported mesh or file is drawn on it.

Output History tab-page. Here, general parameters for output database, including ac-
curacy of output and factors to scale time and value, can be specified. As soon as output
history points are inserted in the graphics page, they will be automatically displayed in
a table in the Output History page.

Heterogeneity tab-page. It allows to specify the percentage of different property sets.
Once the summation adds up to 100%, property sets can be assigned to selected or all
elements in a random way.

It is important to highlight that no units are mentioned for any of the variables in the
Y-GUI. Therefore, the user can use any consistent set of units.
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5.3 Application of fracture mechanics to rock slope stabil-
ity

The application of fracture mechanics to rock slope stability has been demonstrated by
numerous authors. Tharp and Coffin (1985) and Singh and Sun (1989) analysed both
single isolated and edge cracks in a variety of loading conditions including mode I and
mode II, and mixed mode I-II. Tharp and Coffin (1985), using a comparison with limit
equilibrium techniques, demonstrated the importance of joint persistence. Singh and
Sun (1989) similarly, using a finite element approach, demonstrated the importance of
both joint persistence and fracture toughness on stability. Scavia (1990) and Scavia and
Castelli (1996) successfully applied the displacement discontinuity method in the invest-
igation of the mechanical behaviour of intact rock bridges and rock slope instability due
to an array of joints.

Consideration of damage mechanics in geotechnical engineering has increased in the
last decade including applications in blasting, underground excavation, petroleum geo-
mechanics and fluid flow studies. Applications to date in rock slope analysis have been
less common. The first application has been provided by Eberhardt et al. (2004) who
simulated the influence of damage due to unloading by glacial ice and cohesive strength
degradation with time, in the stability of the Randa rockslide, using finite element mod-
elling first, then using combined finite-discrete element technique.

Coupled finite-discrete element modelling with fracture propagation has been used
successfully in varied geotechnical fields including blasting (Munjiza et al., 1995), under-
ground excavation design (Klerck, 2000), wellbore breakout (Crook et al., 2003) and rock
slope instability (Stead and Coggan, 2006). Eberhardt et al. (2004) showed how the use of
coupled finite-discrete element models with fracture propagation could be used in con-
junction with conventional continuum and discontinuum codes, to further investigate
the factors influencing the progressive failure of a major complex rock slope.

The use of the combined finite-discrete element method with fracture propagation
capability enables the simulation of the failure initiation stage and also its progressive
development and the fragmentation of the rock mass as it translates and is deposited
at the slope toe. This is demonstrated in the following examples, based on the work of
Stead et al. (2004) and Karami and Stead (2008). A series of numerical tests have been
carried out to asses the suitability of Y2D code to properly and efficiently simulate some
geotechnical and geomechanical problems. To this purpose some standard rock failure
mechanisms have been modelled. The results have been analysed in terms of a “global
mechanical response”, evaluating if the tendency of the fracturing response is realistic.
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The slope instability mechanisms studied in the present thesis are:

• planar failure;

• bi-planar failure;

• multi-step path slope failure.

5.3.1 Planar failure

The planar failure mechanism has been the first slope instability example modelled us-
ing the Y2D code. Figure 5.2 shows the Y2D model geometry of a 100 m high rock slope
with a through-going 45° dipping failure surface. In this hypothetical case study, a linear
elastic isotropic behaviour was assumed for the rock mass whose properties are shown
in Table 5.7 together with the required parameters to characterise the pre-existing joint.
The slope geometry was imported in Cubit (Sandia, 2009) and meshed using a Delaunay
triangulation scheme with an element size of 1 m for the sliding block. Delaunay trian-
gulation scheme maximizes the minimum angle of all the angles of the triangles in the
triangulation; in this way, it tends to avoid skinny triangles.

Figure 5.2: Mesh configuration and material distribution for rock slope with persistent
joint profile.
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The numerical simulation was performed in two stages in order to set the initial stress
conditions (stage1), and to simulate the instability of the slope (stage2). During both
stages computation was led to equilibrium and the total kinetic energy of the model was
recorded and stored in the yh0 history file. Initial in situ stress conditions were based on
a horizontal to vertical stress ratio k of 0.43; during the numerical calculation the vertical
and horizontal stress were monitored at five points along a vertical line and stored in the
corresponding yh1-yh5 history files (Figure 5.2). Plane-strain conditions were assumed.

The boundary constraints were: zero x-velocity on the sides and zero x and y-velocity
on the base. The first equilibrium state was reached under the gravitational acceleration
which was set to 10 m/s², during the first stage. Then, in the second stage, the fracture
process was activated with the intent to simulate the slope instability. The results show
how the Y2D code is able to simulate progressive failure, from the trigger to the material
deposition (Figure 5.3). Due to the low tensile strength, as the block starts moving, frac-
tures develop. If the tensile strength of the block was higher (>3 MPa), the block would
start sliding along the weak surface and fracturing when it hits the ground.

Figure 5.4 shows the same slope where the persistent joint was characterised by a
higher friction angle (φ = 44°); the same value was given to the internal friction angle
of the rock mass and block. It was found that, starting from an early stage of sliding,
some fracture develops, then the lower part of the block becomes heavily fractured, also
if the block is not moved far away from its initial position. Due to the higher value
of the friction angle of the rock mass, at final equilibrium the fragmented rock mass is
deposited at the base of the slope with an overall angle approximately equal to 27°.
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Intact material properties rock mass block

Elastic modulus, E (GPa) 10 5.6
Poisson’s Ratio, ν 0.3 0.3
Density, ρ (kg/m3) 2400 2400
Internal cohesion, ci (MPa) 2.75 2
Internal friction angle, φi (°) 27 27
Tensile strength, σvt (MPa) 11 0.16
Fracture energy release rate, Gf (J/m2) 100 10

Numerical parameters

Viscous damping (kg/ms) 1.96E+07 7.33E+06
Normal contact penalty (GPa) 100 56
Tangential contact penalty (GPa) 10 5.6
Fracture penalty (GPa) 100 56

Discontinuity properties

Friction angle, φ (°) 27
Cohesion, c (Pa) 0

Table 5.2: Rock mass and discontinuity properties.
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Figure 5.3: Selected output of numerical simulation of planar failure mechanism mod-
elled using Y2D code.
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Figure 5.4: Selected output of numerical simulation of planar failure mechanism mod-
elled using Y2D code (joint friction angle φ = 44°).
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5.3.2 Bi-planar failure

The bi-planar failure mechanism is the second example of simple slope instability mod-
elled using the Y2D code. In this analysis an attempt is made to model damage accu-
mulation within a block which leads to an active-passive wedge failure. For purpose the
geometry adopted for the Y2D model is characterised by a sub-horizontal and vertical
joint (Figure 5.5). The upper failure surface may be, for example, a high angle fault and
the lower failure surface a weak bedding plane. A linear elastic isotropic behaviour was
assumed for the rock mass whose properties represent a weak rock mass (Table 5.3). The
geometry of the slope was imported in Phase² (Rocscience, 2010) and meshed with an
element size of 1m for the block, whereas the base of the model was discretised with a
coarse mesh. The boundary conditions consist of setting the x and y-velocity to zero at
the lower edge of the model and the x-velocity to zero at the lateral edges.

Figure 5.5: Mesh configuration and material distribution.

As observed in the numerical simulation, the pre-existing joints lead to a bi-planar
failure involving an active-passive wedge geometry. First a zone of yield due to shear
damage develops along the persistent discontinuities and transforms into a tensile fail-
ure zone approximating located at the contact between the sub-horizontal and the ver-
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tical joint. Then, the tensile failure zone continues upward through the intact rock ma-
terial. As shown in Figure 5.6, during the development of instability, tensile fractures
develop inside the block dividing the rockslide in two distinct blocks, the active and
passive block. These fractures create the required space to allow kinematic release as
shown in some screenshot of the evolution of the failure. Evidence of the internal frac-
turing and progressive damage can be observed as surface faults and graben features on
the topografic surface of the slope. Note that, in the specialised literature, such failure
mechanism is conventionally analysed using an active-passive wedge approach based
on the assumption of an interface between the upper active driving block and the lower
passive or resisting block, in order to allow a solution that satisfies the kinematics of
the failure geometry. As shown in this example, the combined finite-discrete element
method can realistically simulate the complex processes that occur in such bi-planar rock
slope failure.

Intact material properties rock mass block

Elastic modulus, E (GPa) 10 5.6
Poisson’s Ratio, ν 0.3 0.3
Density, ρ (kg/m3) 2400 2400
Internal cohesion, ci (MPa) 2.75 2
Internal friction angle, φi (°) 27 27
Tensile strength, σvt (MPa) 11 1
Fracture energy release rate, Gf (J/m2) 100 50

Numerical parameters

Viscous damping (kg/ms) 1.96E+07 7.33E+06
Normal contact penalty (GPa) 10 5.6
Tangential contact penalty (GPa) 1 0.56
Fracture penalty (GPa) 10 5.6

Discontinuity properties

Friction angle, φ (°) 15
Cohesion, c (Pa) 0

Table 5.3: Rock mass and discontinuity properties.
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Figure 5.6: Selected output of bi-planar rock failure mechanism simulated with Y2D
code.
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5.3.3 Multi step-path failure

The third example is based on the work of Karami and Stead (2008). Pre-existing joints
within a rock mass influence the slope stability and, if oriented in an unfavourable direc-
tion (i.e. dipping out of the slope), may lead to failure. In addition, rock bridges between
discrete fractures must fail before large scale movements can be initiated. In this ex-
ample, an attempt is made to model damage accumulation within a rock slope using the
combined finite-discrete element method.

The case study simulated is a 300 m high pit slope with 30 m high 70° benches. The
overall pit slope angle is 50°. It is assumed that there is a major joint set 35° inclined, dip-
ping out of the slope face. Each joint can have different properties (i.e. friction, dilation
angle and cohesion), with rock bridges in between discrete joints having properties of in-
tact rock. Figure 5.7 shows a rock slope modelled using the Y2D code with several rough
joints of various length. Once rock bridges fail by fracturing, movement is expected to
initiate. In this hypothetical case study, it is assumed that all the joints have the same
strength properties. A rock mass whose properties is assumed to represent a medium
strength rock mass is considered for this analysis. Table 5.4 lists the material properties
considered for the rock slope and pre-existing joints. Figure 5.7 shows the mesh for the
rock slope model with indication of the pre-existing joints. The maximum mesh size at
the joint planes is 5 m.

An early stage of fracturing in the slope is shown in Figure 5.8. During the numer-
ical simulation joint surfaces experience progressive damage as in the rock slope. Rock
bridges fail as higher tensile stresses develop, accommodated by differential movements
across the joints. Progressive damage and failure of rock bridges may facilitate large
scale slope instability and movement. Actually, fractures develop along the joints at the
rock bridges to form a rough yet planar stepped failure surface. Once the failure surface
is through going, the upper blocks start to slide down the slope. This is preceded by
normal and shear displacements along the joint.

In order to simulate a large scale slope instability, a FEM analysis with the computa-
tion of the critical strength reduction factor (SRF), i.e. safety factor, was carried out with
Phase² (Rocscience, 2010). The FEM analysis shows that the slope is unstable (Figure 5.9).
In order to obtain the development of the instability with the Y2D code, it has been ne-
cessary to reduce the internal friction angle of the rock mass which has been set equal to
the joint one. The numerical simulation of slope instability is shown in Figure 5.10. The
screenshots show the generation of predominantly sub-vertical tensile fractures normal
to the direction of downslope movement (i.e. driven by extensional strain). As the dens-
ity of these fractures increases, the shear plane progressively develops perpendicular to
them forming a curvilinear failure surface typical of more ductile failures.
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Figure 5.7: Mesh configuration for rock slope with irregular joint profiles.
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Intact material properties

Elastic modulus, E (GPa) 10
Poisson’s Ratio, ν 0.25
Density, ρ (kg/m3) 2600
Internal cohesion, ci (MPa) 5
Internal friction angle, φi (°) 40
Tensile strength, σvt (MPa) 2
Fracture energy release rate, Gf (J/m2) 200

Discontinuity properties

Friction angle, φ (°) 15
Cohesion, c (Pa) 0

Numerical parameters

Viscous damping (kg/ms) 1.61E+08
Normal contact penalty (GPa) 100
Tangential contact penalty (GPa) 10
Fracture penalty (GPa) 100

Table 5.4: Rock mass and discontinuity properties.
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Figure 5.8: Numerical simulation of multi step-path failure using Y2D code: intact rock
bridges failure.

Figure 5.9: FEM simulation: maximum shear strain and deformed mesh when sliding
occurs.
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Figure 5.10: Subsequent screenshots of the slope instability simulated with Y2D.
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5.4 Block toppling failure

Block toppling failure is a typical rock slope failure mode and involves rotation of columns
or blocks of rock around some fixed pointe. The first analytical method for studying the
block toppling mechanism is the approach proposed by Goodman and Bray (1976).

According to the Goodman and Bray’s classification, the block toppling failure is a
primary toppling mode. It occurs when individual columns of hard rock are divided
by widely spaced orthogonal joints. The short columns forming the toe of the slope are
pushed forward by the loads due to the longer overturning columns behind, and this
sliding of the toe allows further toppling to develop up the slope (Figure 5.11).

Numerical modelling of block toppling                PhD candidate: Giovanna Piovano 
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This note is about block toppling. According to the Goodman and Bray’s 

classification, the block toppling failure is a primary toppling modes. It occurs when 

individual columns of hard rock are divided by widely spaced orthogonal joints. The 

short columns forming the toe of the slope are pushed forward by the loads form 

the longer overturning columns behind and this sliding of the toe allows further 

toppling to developing higher up the slope (Figure 1). 

 
Figure 1. Block toppling (Goodman and Bray, 1976) 

 

The analytical solution of a toppling problem is based on the equilibrium of a single 

block on an inclined surface subjected to external forces. The block has width Δx, 

height y and weight W. Toppling occurs if the gravity load applied in the block’s 

centre of gravity acts outside of his base and sliding does not occurs along its base 

(Figure 2). 
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Figure 2. Limit inclination angle for block overturn (Goodman and Bray, 1976) 

 

Mathematically, sliding not occurs if: 

                                                      μα ≤tan                                                (1) 

Figure 5.11: Block toppling (Goodman and Bray, 1976).

5.4.1 Limit equilibrium analysis of block toppling on a stepped base

Block toppling can be analysed by the limit equilibrium method (Goodman and Bray,
1976). Consider the regular system of blocks shown in Figure 5.12, in which a slope at
angle θ is excavated in a rock mass with layers dipping at 90-α. The base is stepped
upward with overall inclination β.
The constant a1, a2 and b (Figure5.12) are given by:

a1 = ∆x tan (θ − α)
a2 = ∆x tan α

b = ∆x tan (β− α)
(5.1)
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Limit equilibrium analysis of toppling on a stepped base 

Block toppling can be analyzed by limit equilibrium methods. A regular system of 

blocks are considered (Figure 5) in which a slope at angle θ is excavated in a rock 

mass with layers dipping at α−90 . The base is stepped upward with overall 

inclination β. 

 

 

Figure 5. Geometric scheme for limit equilibrium analysis of toppling on a stepped base 

(Goodman and Bray, 1976) 

 

The constant a1, a2 and b in Figure 5 are given by 

( )αθ −⋅Δ= tan1 xa  

                                                        αtan2 ⋅Δ= xa                                                 (5) 

( )αβ −⋅Δ= tanxb  

 

Blocks are numbered from the toe upward. In this model, the height of block n in a 

position below the crest of the slope is  

                                                 ( )banyn −⋅= 1                                            (6a) 

while above the crest 

                                                bayy nn −−= − 21                                            (6b) 

Figure 5.12: Geometric scheme for limit equilibrium analysis of toppling on a stepped
base (Goodman and Bray, 1976).

Blocks are numbered from the toe upward. In this idealised model, the height of block n
in a position below the crest of the slope is equal to:

yn = (a1 − b) (5.2)

while above the crest

yn = yn−1 − a2 − b (5.3)

In the top of the slope, where blocks are shorter, yn/Δx<cotα and blocks are stable
unless α>φ. However, in the latter case, all blocks slide and further analysis is not neces-
sary.

Below the stable zone, the blocks tend to topple, being restrained from doing so by
the normal force transmitted upward from each lower block and the shear forces on the
sides of the columns.

Proceeding down the slope, the blocks become shorter, and as the toe region is reached,
wherein again yn/Δx<cotα , a block will not topple under its own weight. However, toe
blocks may still topple under the normal load transmitted from the toppling zone above.
Thus both sliding and toppling must be examined within the toe region.

The minimum force on the downslope side of block 1, required to prevent both top-
pling and sliding, will be negative if the slope is stable, positive if the slope in unstable,
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or zero if the slope is exactly at limiting equilibrium. To find the friction coefficient re-
quired for limiting equilibrium, one can iterate on the choice of μ to find a value making
the required toe force equal to zero.

If the friction coefficient is known and the slope is unstable, a support force can be
calculated to provide equilibrium.
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Figure 6. Conditions for toppling and for sliding of the n block (Goodman and Bray, 

1976) 

 

Figure 6 shows the conditions for sliding and toppling in block n. The force in block 

n includes the weight of the block Wp.  

Pn and Qn, representing the normal and shear forces acting on the upper side of 

the block n at height Mn; Pn-1 and Qn-1 representing the normal and shear forces 

BLOCK n TOPPLING BLOCK n SLIDING 

Figure 5.13: Conditions for toppling and for sliding of the nth block (Goodman and Bray,
1976).

Figure 5.13 shows the conditions for sliding and toppling in block n. The forces in
block n include: the weight of the block Wp; Pn and Qn, representing the normal and
shear forces acting on the upper side of the block n at height Mn; Pn-1 and Pn-1 repres-
enting the normal and shear forces acting on the lower side of block n at height Ln; and
Rn and Sn representing the normal and shear forces on the base of block n at distance Kn
above the lower corner. If block n is tending to topple, the points of application of all
forces are known, as shown in Figure 5.13.
Below the crest:

Mn = yn
Ln = yn − a1

(5.4)

For the crest block:

Mn = yn − a2
Ln = yn − a1

(5.5)

and above the crest:
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Mn = yn − a2
Ln = yn

(5.6)

Since the sides of toppling blocks are slipping past one another, the shear forces on the
block sides are determined by the normal forces and friction coefficient. There are three
unknowns: Pn-1, Rn and Sn and the problem is determinate. To avoid toppling, a force
Pn-1 is required:

Pn−1,t =
Pn (Mn − µ∆x) + Wn

2 (yn sin α− ∆x cos α)

Ln
(5.7)

If toppling proves critical for block n,

Rn = Wn cos α− µ (Pn−1,t − Pn) (5.8)

and

Sn = Wn sin α− (Pn−1,t − Pn) (5.9)

with the condition that

Rn > 0 and
|Sn|
Rn
≤ µ (5.10)

It is assumed that the coefficient of friction µ along the base of blocks is the same as
between blocks. If Sn<0, the leading corner of block n tends to slide uphill. It will slide
into the riser of the stepped base if Sn<Rnμ, mobilizing a force to take the excess base
shear.

If block n tends to slide, the side forces Q are not known nor are their points of applic-
ation. Assuming Pn, Qn and Mn were known from the previous calculation step, there
are five new unknowns: forces Qn-1, Pn-1 and Rn, and distances Lnand Kn. Though the
problem is indeterminate, Pn-1,s required to prevent sliding of block n can be determined
if an assumption is made about the magnitude of Qn-1. If we assume that Qn-1=μPn-1
then the normal force required to prevent sliding of block n is:

Pn−1,s = Pn −
Wn (µ cos α− sin α)

1− µ2 (5.11)

Rnis given by Equation A.8 with Pn-1,sin place of Pn-1,t and Sn-1=Rn-1.
It should be noted that the above assumption has no effect on the problem as regards
the values of forces within the toppling zone, the condition for limiting equilibrium,
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computation of support force; identical results would be obtained adopting any other
reasonable assumption regarding forces in the sliding zone.

If Pn-1,t>Pn-1,s block n tends to topple and Pn-1=Pn-1,t. For analysis of the next block,
set Pn=Pn-1 and proceed. If both Pn-1,t and Pn-1,s are negative, the slope is stable. To
determine μ for equilibrium, reduce μ and start again from the highest block.

If Pn-1 is positive for block 1, the slope is unstable. Start again with a larger value of
μ or compute a support force to achieve the stability. The factor of safety for toppling
can be defined from the ratio between the coefficient of friction of the last block without
support to the coefficient of friction with support.

Example of block toppling Limit Equilibrium Analysis (LEM). An idealized ex-
ample is shown in Figure 5.14. A rock slope, 92.5 m high is cut on a 56.6° slope in a
layered rock mass, dipping 60° into the hill. A regular system of 16 blocks is placed on a
base stepped 1 m every 5 m (β-α = 5.8°). The constant values are:

a1=5.0 m; a2=5.0 m; b=1.0 m;Δx=10.0 m and γ=25 kN/m3

Block 10 is at the crest, which rises 4° above the horizontal.
Since cotα is 1.78, blocks 16, 15 and 14 comprise a stable zone for all cases in which

φ > 30° (μ > 0.577). In example 1a from Goodman and Bray (1976), μ is set as 0.7855
(φ = 38.15°): P13 is then equal to 0 and P12 calculated as the greater of P12,t and P12,s
given by equation A.7 and equation A.11, respectively.

As shown in Table 5.5, Pn-1,t turns out to be larger until a value of n=3, whereupon
Pn-1,s remains larger. Thus blocks 4 through 13 constitute the potentially toppling zone
and blocks 1 to 3 constitute a sliding zone. The force required to prevent sliding in block
1 tends to zero and the slope is very close to the limit of equilibrium.

In the present thesis, two cases referred to slope geometry shown in Figure 5.14, have
been studied. In Case 1, μ is set as 0.7813 (φ = 38°) and in Case 2, μ is set as 0.5773 (φ =
30°). In both cases, the limit equilibrium solution of block toppling has been obtained by
an iterative method that gave both the interaction forces between blocks and the stability
conditions of each block.

Table 5.5 refers to limit equilibrium solution of Case 1: most blocks are unstable -
blocks 1,2 and 3 are sliding, whereas blocks from 4 to 13 are overturning. In the upper
part of the slope, blocks are stable (i.e. blocks 14, 15 and 16).

The limit equilibrium analysis of Case 2 (Table 5.6) indicates that all blocks are un-
stable, i.e. blocks 1,2,3,4,5 on the toe and blocks 13,14,15 on the top of the slope are
sliding, whereas the blocks from 6 to 13 are overturning.
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Figure 5.14: Geometry of a toppling slope (Goodman and Bray, 1976).
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Table 1. Example - m = 0.7855 (Goodman and Bray, 1976) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.5: Example - μ = 0.7855 (from Goodman and Bray, 1976).
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Case 1

n yn Mn Ln Pn,t Pn,s Pn Rn Sn Sn/Rn NOTE

16 4. -1. 4. 0. 0. 0. 866. 500. .577 STABLE
15 10. 5. 10. -833. -453. 0. 2165. 1250. .577 STABLE
14 16. 11. 16. -458. -1133. 0. 3464. 2000. .577 STABLE
13 22. 17. 22. -83. -1813. 0. 4535. 2458. .542 TOPPLING
12 28. 23. 28. 292. -2493. 292. 5645. 2966. .525 TOPPLING
11 34. 29. 34. 826. -2881. 826. 6790. 3519. .518 TOPPLING
10 40. 35. 35. 1557. -3027. 1557. 7666. 3728. .486 TOPPLING
9 36. 36. 31. 2830. -2976. 2830. 6936. 3401. .490 TOPPLING
8 32. 32. 27. 3929. -1250. 3929. 6398. 3322. .519 TOPPLING
7 28. 28. 23. 4607. 302. 4607. 5867. 3251. .554 TOPPLING
6 24. 24. 19. 4856. 1433. 4856. 5346. 3192. .597 TOPPLING
5 20. 20. 15. 4664. 2136. 4664. 4839. 3151. .651 TOPPLING
4 16. 16. 11. 4013. 2398. 4013. 4360. 3146. .722 TOPPLING
3 12. 12. 7. 2867. 2200. 2867. 3661. 2860. .781 SLIDING
2 8. 8. 3. 1145. 1507. 1507. 2440. 1907. .781 SLIDING
1 4. 4. 4. -1459. 600. 60. 1220. 953. .781 SLIDING

Case 2

16 4. -1. 4. 0. 0. 0. 866. 500. .577 SLIDING
15 10. 5. 10. -833. 0 0. 2165. 1250. .577 SLIDING
14 16. 11. 16. -458. 0. 0. 3464. 2000. .577 SLIDING
13 22. 17. 22. -83. 0. 0. 4594. 2458. .535 TOPPLING
12 28. 23. 28. 292. 0. 292. 5742. 2945. .513 TOPPLING
11 34. 29. 34. 847. 292. 847. 6914. 3476. .503 TOPPLING
10 40. 35. 35. 1621. 847. 1621. 7879. 3647. .463 TOPPLING
9 36. 36. 31. 2974. 1621. 2974. 7024. 3218. .456 TOPPLING
8 32. 32. 27. 4255. 2974. 4255. 6371. 3035. .476 TOPPLING
7 28. 28. 23. 5221. 4255. 5221. 5694. 2863. .503 TOPPLING
6 24. 24. 19. 5858. 5221. 5858. 5029. 2711. .539 TOPPLING
5 20. 20. 15. 6147. 5858. 6147. 4330. 2500. .577 SLIDING
4 16. 16. 11. 6053. 6147. 6147. 3464. 2000. .577 SLIDING
3 12. 12. 7. 5594. 6147. 6147. 2598. 1500. 577 SLIDING
2 8. 8. 3. 4897. 6147. 6147. 1732. 1000. 577 SLIDING
1 4. 4. 4. 3008. 6147. 577 866. 500. .577 SLIDING

Table 5.6: Analytical solution of block toppling.
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5.4.2 Numerical simulation of block toppling using DEM

The two cases described in the previous section and analysed with the Goodman and
Bray’s limit equilibrium method, were also analysed with the distinct element method
(DEM). In the following pages, the numerical simulations are described.

5.4.2.1 Block toppling model (elastic blocks)

The model built with UDEC (ITASCA Consulting Group, 2004), consists of 16 prismatic
blocks and one big block (block number 202) representing the slope (Figure 7.2). The
block 202 was fixed, whereas other blocks were free to move. Blocks behave as isotropic
linear elastic material according to parameters defined in Table 5.7. The Coulomb slip
constitutive model was used for discontinuity strength. This requires the following input
parameters: joint normal stiffness, shear stiffness, friction angle, dilation angle, cohesive
strength, and tensile strength (Table 5.7). Normal and tangential stiffness applied to joint
sets were respectively equal to 4 · 109 Pa/m and 0.0144 · 109 Pa/m.

Figure 5.15: Basic slope geometry used in the numerical modelling.

Case 1. The block toppling failure, simulated with UDEC, is characterised by sliding
blocks at the toe of the slope, overturning blocks in the middle region of the slope, and
stable blocks at the top (Figure 5.16). Consequently, except for the blocks that are stable
on the top of the slope, the numerical solution agree with the analytical one. Actually,
the sligth difference may be due to the different geometry of blocks.
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Intact material properties Case 1 Case 2

Elastic modulus, E (GPa) 6 6
Poisson’s Ratio, ν 0.25 0.25
Density, ρ (kg/m3) 2500 2500

Discontinuity properties

Vertical joints friction angle, φvj (°) 38 30
Base plane friction angle, φbp (°) 38 30
Tensile strength, σvt(MPa) 0 0
Cohesion, c (MPa) 0 0

Table 5.7: Rock mass and joints properties.

Figure 5.16: Block toppling model with elastic blocks: velocity vectors obtained in UDEC
numerical simulation.
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Case 2. The same geometry was modeled with UDEC by assigning to joints a friction
angle of 30° (Table 5.8). It was found that, movement begins at the toe of the slope, where
four blocks are sliding, and block toppling occurs upslope (Figure 5.16). Although the
overall stability is the same, in the analytical solution, one more block is sliding.

5.4.2.2 Block toppling model (elastoplastic blocks)

Other numerical analyses were performed using the Mohr Coulomb elastoplastic con-
stitutive law for modelling the blocks behaviour. The parameters required for blocks are
summarized in Table 5.8: they are internal friction angle, dilation angle, cohesion, and
tensile strength. The properties assigned to joints are the same as the previous ones used
in the UDEC analyses.

Case 1. The numerical results are shown in Figure 5.18 in terms of velocity vectors
and yielded elements. The yielded elements are “yielded in the past”, i.e. they yielded
at the beginning of the simulation, and a subsequent stress redistribution had unloaded
the yielding elements so that their stress no longer satisfies the yield criterion. According
with previous solutions (analytical and numerical), blocks are all unstable except for the
two blocks at the top of the slope.

Intact material properties Case 1 Case 2

Elastic modulus, E (GPa) 6 6
Poisson’s Ratio, ν 0.25 0.25
Density, ρ (kg/m3) 2500 2500
Internal cohesion, ci (MPa) 2.75 2.75
Internal friction angle, φi (°) 38 30
Dilation angle, ψ (°) 0 0
Tensile strength, σvt(MPa) 11 11

Table 5.8: Rock mass properties.

Case 2. If the friction angle of rock the mass and joints is set equal to 30°, the final
result of the block toppling analysis is characterised by instability of all blocks, except
for the uppermost block (Figure 5.17).

5.4.3 Numerical simulation of block toppling using FDEM

In this subsection the FDEM analyses of block toppling are described. Actually, in order
to compare results, the UDEC analyses have been performed also with Y2D code.
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Figure 5.17: Block toppling model with elastoplastic blocks: velocity vectors at the end
of simulation and yielded elements from UDEC.
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The geometry of the slope, shown in Figure 5.24, was imported in Phase² (Rocscience,
2010) and meshed with a nominal element size of 2 m (Figure 5.18). The generated mesh
has 15524 elements and 8201 nodes. The rock mass was assumed to behave according
to an isotropic linear elastic constitutive law with material parameters summarized in
Table 5.7. The boundary conditions assigned to the model were: x and y displacements
fixed on the base and x displacements fixed on the sides.
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Y2D - Case 1: rigid blocks (joints friction angle 38°) 

Figure 18 shows the geometry of the slope as it appears in Y2D code; the mesh 

was built in Phase2 code (Rocscience Inc.), then imported in Y2D. It was 

constituted by 15524 elements and 8201 nodes; the element length is 2m.  

The slope and the blocks were represented with an elastic constitutive law and the 

parameters used in the simulation are reported in Table 7. The Young’s Modulus 

was set very high to reproduce the hypothesis of rigid behaviour of blocks. The 

boundary conditions were: x and y displacements fixed at the bottom and x 

displacements fixed for the vertical boundaries. 

 

 

 

 

 

 

 

 

 

 

Figure 18. Y2D – Case 1: mesh 

 

Elastic properties 

density [kg/m3] 2500 

Young’s Modulus [Pa] 6*1011 

Poisson ratio  0.25 

Joints strength parameters 

tensile strength [kPa] 0 

cohesion [kPa] 0 

vertical joints friction angle [°] 38 

base plane friction angle [°] 38 

Table 7. Y2D – Case 1: rock mass properties and joints strength parameters 

 

The simulation was performed in two stages. In the first stage all the blocks were 

fixed and a state of equilibrium was reached as it is shown in Figure 19 where the 

total kinetic energy versus the simulation time is plotted. 

Figure 5.18: Finite element mesh used for FDEM analysis of block toppling.

The simulation was performed in two stages. In the first stage all the blocks were
fixed and a state of equilibrium was reached as shown in Figure 5.19 where the total
kinetic energy versus the simulation time is plotted. The first stage was performed to
assign the initial in situ stress conditions to the slope. Initial in situ stress conditions
were based on a horizontal to vertical stress ratio k of 0.33. In the second stage, the
constraints applied to the blocks slope removed and the new equilibrium condition was
achieved.

Case 1. According to the UDEC analysis, the block toppling analysed with the Y2D
code shows that all the blocks are unstable except for the two blocks at the top of the
slope (Figure 5.20). In both numerical analyses, at the beginning of simulation, the lower
three blocks were sliding, whereas blocks in the middle of the slope were overturning.
On the other hand, the final static configuration was very different (Figure 5.16 vs 5.20).

Case 2. In this case, the friction angle of joints was set equal to 30°. The results
obtained with the Y2D code simulation of block toppling instability are shown in Figure
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Figure 5.19: Total kinetic energy during the first stage of FDEM analysis.

Figure 5.20: Case 1. Velocity distribution at t = 2s (left) and at the end of simulation
(right).
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Figure 5.21: Case 2. Velocity distribution at t = 2s (left) and at the end of simulation
(right).

5.21. UDEC and Y2D analyses show that all blocks were unstable, and the lower three
blocks were sliding, whereas the other blocks were overturning. On the other hand, the
final static configuration is very different (Figure 5.16 vs 5.21).
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Case 1 - Case 2: simulation of total block toppling instability The main advantage of the
combined finite-discrete element method is its capacity to model the transition from
continua to discontinua by explicitly considering fracture and fragmentation processes.
Such a unique characteristic can be used to apply the “total slope failure” approach to
study block toppling instability.

If in the second stage of the Y2D analysis, the fracturing process is allowed, the com-
plete development of instability, from the trigger to the final state of rest of the material
mobilized, can be simulated. A fracture energy of 100 N/m was used. Figure 5.22 shows
subsequent screenshots of instability due to a block toppling mechanism obtained with
the Y2D code.

Concerning the overall stability of the slope, once again it was similar. Actually, all
the blocks were unstable except for the uppermost block. Despite this, the most im-
portant difference is that the plastic zone in the UDEC analysis was not so extended
to presume the blocks fragmentation obtained with Y2D analysis. Moreover, the run
out distance obtained in the two simulation was quite different. The same conclusion
remarks can be drawn for Case 2 (Figure 5.23).
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Figure 5.22: Case 1. Y2D analysis of block toppling. Selected output.
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Figure 5.23: Case 2. Y2D analysis of block toppling. Selected output.
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5.5 Stability of an homogeneous slope

In this section the numerical simulation of the stability of an homogeneous slope using
the limit equilibrium method (LEM), the finite element method (FEM) and the combined
finite-discrete element method (FDEM), is described. The influence of the method used
to simulate the initial stress conditions and the mesh size are considered. The attention is
then posed on the calculation of the factor of safety for a slope instability along a circular
sliding surface. This work was presented at the 13th IACMAG Conference, May 2011 in
Melbourne, Australia (Piovano et al., 2011).

5.5.1 Definition of the slope problem

The slope to be considered in the following is shown in Figure 5.24. The slope angle with
respect to the horizontal is taken to be equal to 33.7°. The ground is considered to be
homogeneous with the material properties given in Table 5.9, where an elastic perfectly
plastic constitutive behaviour is assumed with the Mohr Coulomb yield function.

IACMAG 2011 – Melbourne, Australia, 9–11 May 2011

FEM/DEM modeling of a slope instability on a circular  
sliding surface

G. Piovano, M. Barla, G. Barla
Department of Structural and Geotechnical Engineering, Politecnico di Torino, Italy

Abstract
This paper describes the numerical simulation of the stability of an homogeneous slope using  
the Limit Equilibrium Method (LEM), the Finite Element Method (FEM) and the Combined Finite 
Element-Discrete Element Method (FEM/DEM). The attention is posed on the calculation of  
the factor of safety for a slope instability along a circular sliding surface. With the purpose to pro-
vide a validation of the combined FEM/DEM method a description is given of the model set up, 
the boundary conditions adopted and the relevant aspects which allow for reliable simulations to 
be performed. The influence of the method used to simulate the initial stress conditions and the 
mesh size are considered.

1 INTRODUCTION

The aim of this paper is to simulate the stability of 
an homogeneous slope using different design analy-
sis methods such as the Limit Equilibrium Method 
(LEM), the Finite Element Method (FEM) and the 
Combined Finite Element/Discrete Element Method 
(FEM/DEM).

If LEM and FEM computations may be consid-
ered to be ordinary practice, the Combined Finite 
Element/Discrete Element Method (FEM/DEM) is 
slightly more than an advanced research tool and 
need to be validated for a possible application to en-
gineering practice.

A case example involving a slope instability along 
a circular sliding surface is taken to provide a valida-
tion of the combined approach. A number of aspects 
and influencing factors will be investigated such as 
the stress distribution in the ground and the influ-
ence of the mesh size.

2 DEFINITION OF THE SLOPE PROBLEM

The theoretical slope to be considered in the follow-
ing is shown in Figure 1. The slope angle with respect 
to the horizontal is taken to be equal to 33.7°. The 
ground is considered to be homogeneous with the 
material properties given in Table 1, where an elastic 
perfectly plastic constitutive behavior is assumed 
with the Mohr Coulomb yield function holding 
true.

3 LIMIT EQUILIBRIUM METHOD (LEM)

The LEM and the Slide code (Rocscience 2009a) 
were adopted to compute the factor of safety of the 
slope. Slide is a 2D limit equilibrium slope stability 
code for evaluating the factor of safety or the proba-
bility of failure along circular or non-circular sliding 
surfaces in soil or rock masses. A number of meth-
ods are available such as those given by Janbu (1968), 
Bishop (1955), Morgenstern & Price (1965), etc.

Table 1 Ground properties

Elastic properties
Unit weight [kN/m3] 19
Young’s modulus [MPa] 50
Poisson’s ratio  0.4

Strength parameters
Tensile strength [kPa] 28
Cohesion [kPa] 28
Friction angle [°] 30
Dilation angle [°] 0

33.7°
20 m

30 m

Figure 1 Geometry of the slope problem.
Figure 5.24: Geometry of the slope problem (Piovano et al., 2011).

5.5.2 Limit Equilibrium Method (LEM)

The LEM and the Slide code (Rocscience, 2007) were adopted to compute the factor of
safety of the slope. The global minimum factor of safety of the slope under study, ob-
tained from the limit equilibrium analysis with the Bishop simplified method, was found
to be 1.781. The corresponding circular sliding surface is shown in Figure 5.25.
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Intact material properties

Elastic modulus, E (MPa) 50
Poisson’s Ratio, ν 0.4
Density, ρ (kg/m3) 1900
Internal cohesion, ci (kPa) 28
Internal friction angle, φi (°) 30
Dilation angle, ψ (°) 0
Tensile strength, σvt(kPa) 28
Fracture energy release rate, Gf (J/m2) 10

Table 5.9: Ground properties.

Figure 5.25: Global minimum sliding surface with the factor of safety computed with
LEM (Piovano et al., 2011).
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5.5.3 Finite Element Method (FEM)

Phase² (Rocscience 2009b) was used to compute the factor of safety of the slope shown
in Figure 5.24 by the Shear Strength Reduction (SSR) method. The critical SRF is found
to be equivalent to the safety factor of the slope. The mesh adopted in the numerical
simulation performed consisted of 10705 elements and 21646 nodes. The element type
is a 6-noded triangle with a 2 m side. Figure 5.26 shows the mesh and the boundary
conditions adopted. Vertical displacements are fixed at the bottom while horizontal dis-
placements are restrained along the vertical boundaries. With the mechanical properties
given in Table 5.9, the SRF obtained with the SSR analysis results to be equal to 1.7 and
agrees with the LEM value. Figure 5.27 shows a plot of the maximum shear strains in
the model including the inferred sliding surface.

Figure 5.26: Finite Element mesh and boundary conditions (Piovano et al., 2011).

5.5.4 Combined finite-discrete element method (FDEM)

The FDEM model of the example slope was built according to the geometry shown in
Figure 5.24. The mesh and boundary conditions are consistent with those adopted with
FEM (Figure 5.26). The numerical simulations were performed in two stages: 1) set the
initial stress conditions, 2) simulate the instability of the slope. The first stage was run
with the intent to reproduce the initial state of stress within the slope with no fracturing
being allowed between the finite elements. An isotropic linearly elastic behaviour was
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Figure 5.27: Maximum shear strains and deformed mesh when sliding occurs in the
model (Piovano et al., 2011).

assumed for the ground during this stage with the material properties assigned as shown
in Table 5.9. The fracture process was activated during the second stage with the intent
to simulate the slope instability. During both stages computation was led to equilibrium.

5.5.4.1 In situ state of stress (Stage 1)

In order to initialize the state of stress in the slope prior to triggering instability, three
different methods were adopted in Stage 1. The simplest method consisted in running
to equilibrium by applying gravity to the model of Figure 5.24 (gravity-turn on). Ini-
tial in situ stress conditions were based on a horizontal to vertical stress ratio k of 0.67.
Equilibrium was reached within 2 · 106 cycles.

An alternative method to set the initial state of stress was to simulate the erosion
process by removing layers of elements in sequence, to create the slope. This method
was tested with layers of different thickness equal to 5 and 2 m respectively. After the
excavation of each layer, the computation was led to equilibrium. Figure 5.28 shows the
model and the layers to be excavated. In these two cases the analyses required a greater
number of cycles to reach the final equilibrium state: respectively 4.5 · 106 cycles and
12 · 106 cycles for the 5 m and the 2 m thick layer model.

Figure 5.29 shows the decrease of the total kinetic energy during Stage 1 for the three
different analyses carried out. In all cases complete equilibrium is reached, with the
number of cycles needed being different.
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Figure 5.28: FDEM model with different excavation layers of 5 m and 2 m thickness
(Piovano et al., 2011).
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Figure 5.29: Total kinetic energy during Stage 1 in the FDEM simulation (Piovano et al.,
2011).

In order to compare the results obtained, the vertical stress at a number of locations
along three vertical lines (A, B and C) was monitored during computation. The mon-
itored points are shown in Figure 5.30. Figure 5.31 compares the computed vertical
stresses along the three vertical lines A, B and C with the expected theoretical values
showing a good agreement. This is well evidenced along lines A and C, with limited
scattering in the computed values resulting along line B. The results show that the best
computed values of the vertical stress are obtained by the methods that include excav-
ation. Nevertheless, the scattering among the different methods is not significant, thus
leading one to conclude that the method to be preferred is that requiring less time to
reach equilibrium. The number of cycles of the gravity turn-on analysis (no excavation
is simulated) is 1/2 to 1/6 times that accounting for excavation. For this reason, the ana-
lyses described in the next subsection were run by using the results of Stage 1 given by
the first method.
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Figure 5.30: Monitored points during the FDEM simulation (Piovano et al., 2011).

Figure 5.31: Comparison between computed with FDEM and expected vertical stresses
along lines A, B and C (Piovano et al., 2011).
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5.5.4.2 Computation of the factor of safety of the slope (Stage 2)

The second simulation stage was conducted to trigger slope instability and to determ-
ine the factor of safety, with the material now allowed to fracture. In order to calculate
the factor of safety with the Y2D code the SSR method was reproduced with cohesion
and friction coefficient being progressively reduced by a given factor, while the tensile
strength was kept constant. The parameters which induce instability represent the crit-
ical ones allowing to compute the factor of safety of the slope (as the fraction between
the real parameters and those triggering instability). Considering that the Y2D code is
computer demanding this process is not straightforward and required a significant com-
putation time (in terms of days) on a 2.33 GHz, 8 GB RAM pc.

In order to investigate the influence of the element size on the results obtained, Stage
2 was performed by adopting meshes with elements of different sizes (h). The SSR
method to compute the factor of safety was first performed on a 4 m element size mesh
and then repeated on a 2m, on a 1m and on a 0.5m element size mesh. A total of four
element size meshes were tested.

Figure 5.32 shows a comparison of the plots at failure for the four types of mesh
considered and the factors of safety obtained in the computations. The selection of the
minimum factor of safety that triggers instability is not an automatic output of Y2D but
needs to be based on personal judgement of the movie of subsequent screenshots. In this
example the factor of safety selected is for a circular sliding surface involving the whole
slope.

Figure 5.33 shows subsequent screenshots of the evolution of the slope instability for
the case of the 0.5 m element size mesh. The influence of the element size is shown in
Figure 5.34. It is noted that the results obtained with FDEM give a factor of safety which
is dependent on the element size and converge to the results obtained with LEM and
FEM.

Table 5.10 summarizes the computed factors of safety with the different methods.
It is shown that the element size plays an important role on the results of the FDEM
computations. If appropriate element sizes are used, the results compare satisfactorily
well with those obtained by the well known methods (LEM and FEM-SSR), commonly
adopted in design practice.
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Figure 7 Monitored points during the FEM/DEM simulation.
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Figure 9 Displacement vectors and deformed assembly when instability is triggered in the FEM/DEM model: (a) 4 m, 
(b) 2 m, (c) 1 m, (d) 0.5 m element size mesh. The value of the computed factor of safety is also shown.Figure 5.32: Displacement vectors and deformed assembly when instability is triggered

in the FDEM model: (a) 4 m, (b) 2 m, (c) 1 m, (d) 0.5 m element size mesh. The value of
the computed factor of safety is also shown (Piovano et al., 2011).
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Figure 5.33: Subsequent screenshots of the slope instability simulated with FDEM (0.5 m
element size mesh) (Piovano et al., 2011).

Computation method Factor of safety

LEM 1.78
FEM-SSR 1.70
FEM/DEM
4 m element size 3.00
2 m element size 2.20
1 m element size 1.90
0.5 m element size 1.80

Table 5.10: Computed factor of safety (Piovano et al., 2011).
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Figure 5.34: Factor of safety of the slope computed by the Y2D code versus the element
size (Piovano et al., 2011).
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5.6 Summary

Although individually both continuum and discontinuum numerical methods provide
useful means to analyse rock slope stability problems, complex step-path failures which
involve mechanisms related to both deformation along existing discontinuities and brittle
fracture of intact rock, are better analysed with the combined finite-discrete element
method (FDEM). This method was introduced as an effective alternative to conventional
analysis methods. Since it can account for internal stress distribution, for the interac-
tion between discrete bodies, and for the transition from continua to discontinua, it has
the potential to overcome the drawbacks associated with conventional numerical tech-
niques.

The first series of models presented is characterised by the assumption of pre-existing
discrete discontinuities. The purpose has been to study typical slope problems with the
Y2D code and to assess its potential in the analysis of simple instability mechanisms
including sliding and block toppling.

The generation of a failure surface was analysed. The model indicated as “multi
step-path failure” includes pre-existing sub-horizontal tectonic fractures. These frac-
tures help to constrain the stepped development of the failure surface. Results show
the generation of predominantly sub-vertical tensile fractures normal to the direction of
downslope movement. As the density of fractures increases, a shear plane progressively
develops perpendicular to them, forming a curvilinear failure surface typical of ductile
failure.

The purpose of the block toppling study was to compare the results of the FDEM
with the analytical solution. Further numerical simulations were performed to outline
the advantages of the combined finite-discrete element method when compared with the
explicit distinct element method (DEM).

The final example was dedicated to the study of the stability of an homogeneous
slope using different methods such as the limit equilibrium method (LEM), the finite
element method (FEM) and the combined finite-discrete element method (FDEM). The
example involving a slope instability along a circular sliding surface, provides a valida-
tion of the combined approach.
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