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Abstract—In this paper we present methodological advances that reduces the correlation for an important class of call
in anomaly detection, which, among other purposes, can be holding time distributions; for our VoIP data we show that th
used to discover abnormal traffic patterns under the presence best fitting model for the call holding times is a mixture of

of deterministic trends in data, given that specific assumptions S o .
about the traffic type and nature are met. A performance study two log-normals and a Pareto distribution, which is inchiicte

of the proposed methods, both if these assumptions are fulfilled this class. To assess the efficacy of the resulting procgdigre
and violated, shows good results in great generality. Our study have modified the overload detection methodology presented

features VoIP call counts, but the methodology can be applied to in [2] to work with Normally distributed input data and exten
any data fﬁ!'olz"”r;gﬁ.aalleag rough'ya a ”f‘?.”'rf‘lomoge”eous Poissongjyely tested its performance, including situations inchtihe
process (think of highly aggregated traffic flows). independence assumption is violated; these tests congiyci
show that our approach works well in great generality.

The rest of the paper is organized as follows: Section Il
Network operators and service providers have taken a kggigsents related work. A description of the dataset is ptede
interest in managing the Quality of Service (Qo0S), and hoy Section IIIl. After describing how to remove the diurnal
it is perceived by their end-users (Quality of Experiend®). trend from the VoIP call count data in Section IV, we present
this light, a broad range of techniques have been proposedHe alternative measurement technique in Section V. Next,
detect QoS degradation, see e.g. [1]. Some of these splyificge provide in Section VI a description and performance

focus on the Voice over Internet Protocol (VoIP) serviceereh evaluation of the overload detection methodology. Finally
performance degradation (due to packet loss, and increasrgtion VIl concludes the paper.

delay/jitter) occurs during periods with high loads. Conse

quently, timely detection of such overload periods is @lci

for management of VoIP services [2], as they enable a better 1. RELATED WORK

cost control if applied in an automated fashion [3]. Such

automated techniques rely on the statistical analysistwfork The analysis of traffic in communication networks has

traffic measurements, which commonly assumes stationarifiyvays attracted much attention; see e.g. [5]; even itsudeol

of the data. A complication, however, is that network traffithroughout time has been studied [6]. The ubiquitous daily

measurements can usuaiigt be considered as stationary, bupattern evidently depends on the kind of users that access

rather exhibit a, roughly periodic, diurnal (day-night)tiean. the network, although it can be deemed as roughly invariant
The violation of the stationarity assumption may lead t(having a similar shape from day to day, that is) when the

erroneous conclusions [4], in terms of large amounts okfalkind and number of users are fixed [7]. A similar conclusion

positives/negatives. To remedy this, we propose in thiepagolds when focusing on VoIP traffic only [8], [6], where

a simple, yet effective methodology for removing the iniéreit is noted that these VolP-related studies primarily focus

daily pattern; in our study VoIP call counts data serves as thn call characteristics (in terms of the call arrival preces

leading example. The methodology relies on the fact that taad call holding time distribution) rather than daily/wek

call arrival process is time-varying Poisson, which we shopatterns. The call arrival process is widely accepted to be

to be valid for the data of our case study. After removing theccurately modeled by a time-inhomogeneous Poisson moces

daily trend, we obtain standardized samples (i.e., zeronmgaoughly stationary at short timescales, ranging from r@au

and unit variance) that are nearly Normally distributedpag to hours [6], [9]). Conversely, there is no consensus as folwh

as there is sufficient traffic aggregation — as a consequeno®del should be used for the call holding times (whers it

the fit improves when the night periods are removed frogiear that the exponential distributionrist a good candidate).

the sample (in which the chances of overload are negligibde broad range of distributions have been proposed, such as

anyway). The (nearly Normal) output samples awt (by the hyper-exponential [6], the inverse Gaussian [8], are th

approximation) independent, though, which is problemasic log-normal [10]. The trend-removal issue can be approached

this is required in many detection algorithms. To mitigdtis t relying on general traffic forecasting techniques [11], gr b

effect, we propose an alternative measurement methodoldgye series with seasonal cycles [12].

I. INTRODUCTION



TABLE |

[1l. DATASET DESCRIPTION RESULTS OF THE ARRIVAL PROCESS ASSESSMENT
Experiments in this paper are using actual traffic traces

collected from an operational network. Using Tstat [13], we L (min)  Rejection % L (min) Rejection %
monitored IP traffic exchanged by customers in a large Point- 90 74% 25 27%
of-Presence (POP) of an operator in Italy where \oIP is 22 2(1)22 ig 122//‘;
deployed. A total of 22,000 customers were continuously 35 39% 10 9%
monitored for more than 4 months, starting from November 30 35% 5 7%
2010. Tstat is used to identify VoIP flows, i.e., voice calls,
and to extract several performance indexes for each call [8] TABLE Il

In particular, in the context of the present paper we are GOF RESULTS FOR DIFFERENT FITTING MODELS

interested in the call arrival process and call holding time
distribution. The resulting dataset contains the log of the
call arrival epochs and the corresponding durations. Later pareto Log-Ny Log-No

. . .. Pareto + p=0.6793 p=0.2023 p=0.1184
in this paper, we statistically analyze these, and use the |og-Ns & =02749 1 =6.0857 u=35410  0.0046

Distrib. Parameters KS statistic

resulting processes/distributions to assess the perfarenaf o =63.1607 o =0.9523 o =0.5201
our algorithm. Log-N; Log-No

The dataset containing start and end times of the calls will 2 Log:N p= (3)'(13232 p= 2-%238;(13 0.0074

. - n = o. o= 4. .
be referred to asletailed below. = 04810 o= 15528
A. Call Arrival Process Weibull Log-N -
. . . . Weibull p=0.0968 p =0.9032

The Poisson process is the classical model for the arrival+ Log-N X\ = 42.7199 4 = 4.2964 0.0075

process of voice calls. Evidently, at longer timescales thi k =24978 o =1.5385

model does not match with reality, due to the absence of a

day-night pattern (and a weekly pattern). To cope with this

effect, non-homogeneous Poisson processes are useddinsi@aour dataset as well. Consequently, in our Goodness-of-
where the arrival rate is usually assumed constant for blo€k Fit (GoF) assessment we restrict ourselves to heavy-tailed
time, of say,L minutes. As our data set consists of 5 minutegistributions (that is, heavier than the exponential digtion).
samples, we wish to verify the ‘local Poisson claim’ for some To measure the GoF we use again the KS test. Such a
L being a multiple ofs. To this end, we apply to our detailedprocedure is in principle not justified, as we asimating the
dataset a test presented in [9]. To construct the test, we sphrameters of the hypothesized models from the sample [14].
up a day into disjoint blocks of length, resulting in a total However, we still can use the KS statistic as a measure of
of I blocks. LetT;; be the;™ arrival time in thei"" block. model discrepancy, so as to select the best fitting model.

Denoting with J; the total number of arrivals within theh Table Il presents the models that fitted the data reasonably
block, we then definél}op = 0 and forj = 1,...,J; and well. We sorted them by the value of the KS statistic (the lowe
i=1,...,1, the better), along with the Maximum Likelihood Estimates
_ . LT (MLE) of the corresponding parameters. Fig. 1 showsl tige
Rij = (J(i) +1 _3)( — log (ﬁ”il)) (1) log plot of the empirical CCDF of the data along with the

. ) i . models presented in Table Il. In line with the quantitative
Under the null hypothesis (arrival rate is constant withaigle eqits, we observe in the figure that the best fit is provided

block), theR;; are independent standard exponential variablegy' the mixture of two log-normal and a Pareto distribution.
see [9] for further background and a justificatipn of the.testrnhis mixture model is capable of fitting the whole body of
In Table | we present the results of applying the test {@e data, while there is a slight lack of fit in the very end
different block sizesL. We use the Kolmogorov-Smirov of the tail. Furthermore, we can observe a small oscillation
(KS) test to verify the null hypothesis at the 5% significancg, ihe tail corresponding to the data, not captured by any of

level. The results presented in the table indicate that the fitting models, probably due to the lack of samples of this
arrival process can be regarded as non-homogeneous Poisgpa

at relatively short timescales only, say less than 10 msute
(which is sufficient for our objectives later on in this paper IV. DETRENDING METHODOLOGY

B. Call Holding Time (CHT) Distribution A. Methodology Description and Expected Results

In the literature it is generally concluded that the CHT Our methodology exploits the presence of a weekly pattern
is poorly modeled by the exponential distribution. Insteadlo estimate and remove the seasonality from the measurement
distribution with heavier tails have been proposed. A Misuao as to a sequence of zero-mean, unit-variance obsersation
inspection usingog-1og plots of the empirical Complementary In our set-up the measurements are time series of traffic
CDF (CCDF) of the sample, which allow us to gain insight imetrics (think of number of active calls) at a given time
the tail of the distribution, evidences the heavy-tailedure granularity — 5 minutes in our study. These measurements
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are denoted by, with i = 0,1,2,...,2015 corresponding & ol
to the 5-minute interval within the week (starting on Monda’g
midnight), andn to the week number within the datase® -2t 1
(out of a total of N weeks). The goal is to provide a goodg al ]
estimatey™ for the measurement vector of weekx"”, using ¢
the information available from previous weeks’, ; < n, 61 il
assuming the differences from Wee!< t'o week in the week g & & e & ~ 5 @é &
pattern to be due to random deviations from an avera_ RO <© RS & =~
network usage pattern. To this end, we propose the following N A

model for the measurements” = o + ", wherea denotes Fig. 3. Residuals obtained after standardization with tterated pattern.

the average pattern ard® are the random deviations from
such pattern. +
The proposed estimation computes the tremdas an 4k +
arithmetic average of the observations of the last= 5
weeks. This window sizev balances accuracy and robustnes
to pattern shifts quite well; we have also tested differels
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negligible.

We can then remove the estimated pattern from the actig _
measurements, so as to obtain zero mean residuals. Rgcag -4 -~
that our arrival process is locally Poisson (cf. SectiorAl)]
and because Poisson variates with a high mean are apprt
mated well by the Normal distribution, the resulting resitu 8 ‘ ‘
(by approximation) form a sequence of zero mean Normal -3 -2 St; serd Nc?rmal Qu;m"es 2
distributed random variables. Note, however, that theynate
homoscedastic (that is, they dot have a uniform variance). Fig. 4. Gaussian Quantile-Quantile plots of the residuals.
Therefore they need to be standardized, which can be done
by dividing each residual by its standard deviation. Indtef
designing another model for estimating the pattern vagandhe results for one week, which turned out to be highly
we exploit the fact that for Poisson random variables, tharmerepresentative. We found that the variance of the residuass
and the variance are equal. Hence, we obtain standardigg@stantially higher than expected, with some values elege

Quantiles of |

D
T
+

residuals through 5¢. This is caused by the fact that during nights the load
n_xt—y" @) decreases drastically, thus leading to large residuals {du
VY the small numerator in (2)). For the further analysis, weehav
then decided to remove the nights (defined as periods from
B. Model Performance Results midnight to 6 a.m.), which is justified as the chances of

We have computed the (standardized) residuals in oaverload during the nights are negligible anyway.
dataset using (2). For the sake of brevity, we only show The corresponding estimated pattern and residuals without



we will assume in what follows that the arrival process is
Poisson with constant arrival rate. Consequently, we nbtai

COV(Mo,Mk-t) N (COV(MO7Mkt)
Var(]V[o) o E[Mo] ’

: : ‘ ; i i i using the Poissonian and stationarity assumptions. To com-

0 100 200 300 400 500 600 700 800 .
Lag pute (3), we define

A, = {# arrivals up to timeu that depart ina, a + ¢|}
B, = {# arrivals in[a, a + t] that depart inja,a + t}
C, = {# arrivals in[a, a + t] that are still present at + ¢}
= {# arrivals up to timeu that are still present at + ¢},
aining the following identity:

0.5

Corr(My, Myt) = 3)

Sample Autocorrelation

Fig. 5. Autocorrelations of the residuals (nights removed).

night periods are shown in Fig. 2 and Fig. 3, respectiveléjgt
Compared to their counterparts with night included (notrgno
here due to space limitations), we have observed that lgavin M,=A,+B,+C,+ D,. (4)
out the nights reduces the variance substantially. Also &ig ) )
which shows the Gaussian Q-Q plot of the residuals witholfow notice that calls that are there at the end of the first
nights, indicates that Normality holds. We present also |Rterval are potentially still present at the beginning bé t
Fig. 5 the autocorrelations of the residuals. This graplwshoSecond interval, so that we only have to take into accdunt
that the residuals amot independent — note that the horizon&nd Do. Also, only calls that arrived before the beginning of
tal lines indicating the 95% confidence interval aroundre the second interval can interact, so for the same reason we
exceeded, particularly for the first lags; we return to temue Only need to included;, and Dy;. Consequently, (3) can be
later in great detail. In addition, there is a periodic comgnt rewritten as follows:
in the residuals. As this periodicity, which is likely to beed
to the inherently simple nature of the detrending procedsre
relatively weak, we do not take it into account in our study.
Statistical overload detection procedures usually asshate
the observations used are independent. As a result, wheg u
our residuals in such a test, the high correlation may lea to Cov(Ny, Nit) = pP(Se > (k — 1)t), (6)
significant performance degradation (in terms of high nusibe
of false positives and negatives). We are inclined to thinkhere in the last identity we have defingd= AE[S], S
that the correlation in the residuals is essentially duehto tbeing the service time distribution (with finite mean), af\d
simplicity of our trend estimation model, which is not abldls excess lifetime; the equality in (6) is well-known from
to adapt dynamically — at a short timescale, say hours gueueing theory. It is also true th#, + C, = F, is the
to deviations from the pattern. As a consequence, wheHdmber of arrivals in the intervak, a + ¢]. This can be used
actual measurements are above the estimated pattern fi@ng§ompute the mean af/, for all a € R:
previous weeks, there is a high probability that this sitrat
would remain the same for the next samples, and vice versa. E[M,] =E[Ngtt + Ful = p+ At = p(
Nonetheless, we have decided to keep the model as simple as ) )
possible at the expense of modest performance degradationsinally, using (6) and (7), we obtain the result for (3):

(which can be controlled as described in Section VI). 3 )

T T
V. MEASUREMENTALTERNATIVE P+ grs7) L+ g

(COV(CO + Dy, At + Dkt)
E[Ag + Bo + Co + Do]

Also realize that for alle ¢ R : C, + D, = N,4; and
ééi‘a + D, = N,. Therefore, the numerator in (5) is

Corr(My, Myt) = %)

t
H@)' @)

8

As mentioned above, the correlations in the residuals of our|t is worth noting that in the previous Computatiof]s) we
detrending procedure are likely to be due to the way the mefid not make any assumption regarding the service time
surements are obtained. Traditionally, detection promsiu distribution, which means that (8) holds for any kind of segv
record the number of calls present in the system at equidistéime distribution given that the arrival process is Poisson
points in time (e.g.,Ng, Ny, Nog,...). In this section we
analyze an alternative, and compare its performance (insterB. Correlations Study: Impact of Service Time Distribution
of Correlation) with the traditional one. More DTECiSE|yeW We now compare the correlation resu]ting from (8) with
define M, as the number calls present during the interv@he one from the traditional call count proce’s, assuming
[a,a + ], for a givent. specific service distributions; the main question is whethe
or not Corr(My, My:) < Corr(Ny, Ny.); if yes, then the
correlation is reduced.

To evaluate the performance of this alternative, we computeFor the exponential distribution, it is easy to verify that
the correlation between two measurements at different tirttee inequality is never satisfied, so that the traditionalhoe
instants — e.g.My and My,;. To simplify the computations, is preferred for exponential service times. For the Pareto

A. Alternative Procedure



0.12 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ detection procedure in [15] for a changepoint in the mean of
\ — — - simple fitting i.i.d. Normally distributed samples (with known and comsta
01\, Mixture fitting variance) can be adapted to a changepoint in the variande (wi
known and constant mean). (Semi-)closed-from results were
included in [2], but the performance of the resulting tesswa
not evaluated. Furthermore, the case sfraultaneous change

in both mean and variance was not covered in [2].

Below we provide a detailed analysis featuring a procedure
to detect a simultaneous change of the mean and variance. We
asses its performance in case the independence assungption i
fulfilled, but also when it is violated due to non-negligible
correlations. The latter case is obviously highly relevamt
0 2 4 6 s 10 12 14 16 18 20 our VoIP context: as we saw in Section IV, our detrending

k method leaves some autocorrelation in the residuals. If the
Fig. 6. Correlation comparison of both measurement alterestassuming changepoint de_te_Ctlon method developed for the md_epdenden
the call holding time is distributed accordingly to the twesbéitting models Ccase works sufficiently well (at least up to some specificlleve
as presented in Section lI-B. of correlation), it may be an attractive and viable altekm@at
to the idea of explicitly incorporating correlation intoeth

o ] ~ test (which will lead to a considerably more complicated
distribution with s > 1 and parametet, the corresponding procedure).

excess lifetime distribution reads

P(S, > y) = ﬁ /Oo P(S>7)dr = (1+y)'  (9)

Corr(N;)-Corr(M;)
o
o
(2]

A. Changepoint Detection

It turns out that we need to check whether ) o o
; o We wish to detect a changepoint in the Normally distributed
f(t) = (1 - 7) <1+ (a—1)t=:g(t). (10) data, thatis, whether during our observation period thamar
1+ kt eter vector(u, o) (which we denote as the probability model
To find a sufficient solution for this new inequality, we wik@ ) changes intdv, n) # (1, o) (the modelQ). More formally,
the fact that, iff(0) < g(0), then f'(t) < ¢'(t) ¥t > 0 guar- we consider the following (multiple) hypotheses. L%} be

anteesf(t) < g(t). Applying this argument three times, wethe sequence of independent observations obtained from the
obtain the following sufficient conditiort > «/2. However, Normal distribution.

we observed by numerical analysis that the condition is even N o _
less restrictive: for some cases with< a/2 the inequality Ho: (Xi)i-, are distributed according to a Normal random

still holds, and the alternative procedure is to be preterre variable with parameters vector, o). .
For some other distributions, like log-normal, it is nofl1: For somﬁgj € {1/n2/n,....(n —1)/n}, it holds
possible to obtain any analytical results; hence, the iakityu that (X;),—;" is distributed according to a Normal ran-

needs to be verified numerically. We do not include these dom variable with parameters vectgp,o), whereas
experiments here; instead we provide an example in which (Xi)i_ |, is distributed according to Normal random
we compare both measurement alternatives, assuming the variable with parametefv,n) # (i, o).

call holding time obeys the best fitting models obtained
in Section llI-B (a simple log-normal fit, and the mixtur
with one Pareto and two log-normal components). Fig.
shows the difference between both models, indicating that

Following the notation used in [2], we consider the
eIé?lfelihood—ratio test statistic (cf. Neyman-Pearson leamym

the alternative procedure outperforms the traditional dine 1 n ) Q(X3)
difference between both correlations is maximal at the firs{Zif, | 7, Y. Li—¢@)], with L;:=log P(X,)’
lags, which is the timescale of interest for the purposes of i=|nd]+1 (11)
the methods presented in this paper. We have therefore foynd . S '

P hap Yo some functiony(-) which is defined shortly. If the test

practical evidence using actual network measurementghbat
alternative measurement procedure reduces correlatiodss
therefore more suitable to be used in the statistical detect
procedures.

statistic is larger than 0, we rejedi,. The function ¢(-)

is introduced to get an essentially uniform alarm rate with
respect tod. As in [2], ¢(-) is given in the implicit form
using Legendre transformi(u) = supy(Yu — log M (99)) of
VI. OVERLOAD DETECTION METHODOLOGY the moment generating functial ():

In [2] an overload detection algorithm is studied for an
M/G/co queuing system, relying on the testing framework of ST (@(1 — 6)> o
6 - 3

[15, Section VI.E]. It was also pointed out in [2] that the (12)



wherea* = —log «/n; herea is a measure for the likelihood All the changepoint detection tests presented below use pa-
of false alarms (for instance 0.05) and rametergu, o) = (0,1) (modelP) and(v, ) = (3.075,1.083)
5 5 (model Q) unless explicitly stated otherwise. However, we
oo XD <§ (“” ; ”) — % (x & “) > dx want to underline, that the algorithm for changepoint ditec
M(9) _/ ., in Normally distributed data we provide here is generic in
oo V2mlol=? 13 that sense that any valueg,o) and (v,) can be used.
(13) Moreover, we may abstract from our VoIP situation, and

so that use the proposed method for any type of data obeying the
9(1 —9)(u — v)? Gaussianity assumption.
91 1—9)1
log M(d) = — 20 (1 — ) — 200 0 logn + ( logo 1) Synthetic Independent Data: Here we will present the
& - 1 9 1-—9 results of an experimeng() in which we draw200 indepen-
PRl (R dent samples from the distributid followed by anothe200

. . . ! . . samples rom the distributio). We take a window of length
It is possible to explicitly find the value/*, optimizing samples, that is, we test wheth&k, should be rejected
I(u) = 0"(u)u — log M(9*(u)) (not shown due to spacep,qsaq on data pointX;;. ..., X; 49, for i = 1 up to 351.
limits), thus to _numencally solve Eq. (?2), and to obtain thepe first window in which the influence of the parameters
threshold functionp(-), and the test statistic (11). (v,m) is noticeable is therefore window numb&52. 5000
B. Analysis with Synthetic Data independent repetitions of this expe_nment were run tosssse

) i ) the performance of the method. In Fig. 7(a) we see that before

Itis clear that applying the above test to the (approxinyaté{he changepoint (red vertical line) the detection ratiojcivh
Normally distributed) residuals that we ge_nerated in ®ectijs in this case an estimate of the false alarm ratio (type |
IV-A, allqws us. to detect whether or not a given pattern showsgqy probability), is about the assumed level56f. Already,
substantially higher values than those suggested by the.tréyhen only one observation from the distributi@inis present
Alternatively, one may be interested in tests that det?ﬂt'héT (window number152 as explained above), the detection ratio
or not the offe_red load is getting close to the system’s d@pac (which now estimates the power of the test) is abigift. The
Below we point out how to set up a test that focuses Qfbtection ratio then increases sharply as more samples from
anomalies of the latter kind; a procedure to detect anosialige new distribution appear. Furthermore, the positionhef t
of the former kind can be set up similarly. changepoint returned by the test is in general very closkeo t

Due to the normalization procedure (2), in our case thg,e one, as indicated on Fig. 7(b). One has to bear in mind,
parameters in modé are equal tqu, o) = (0,1) while these powever, that for a less pronounced change (for instance a
related to the modeD will typically be provided by the SYStemfgradual change) the detection ratio would grow slower,hsf. t
administrator who derives them after assessing what is fisyits in 2.
instance an accgptable overload probability level. An glam 2) Synthetic Dependent Data: As it was stated earlier, the
of such calculations, based on the Erlang model, is present@nsidered changepoint detection test is designed faf. i.i.
in [2, Sec. 5, Example 1]. The figures provided th(?re were trﬁyﬁta. Nevertheless, in practice one may be interested in the
following: an expected number of users during ‘busy ho”lberformance of the proposed algorithm in casedefendent
was equal t320 and a number of users which, if reached, wWagata Below we present the results of an experim@), (
considered to be overload was equabTs (that was the value \yhich is similar to E;, but now the observations before
of the parameter one tested against if considering a cquarter 5 after the changepoint originate from AR(1) processes

of the modelQ presented here). For the finite capacity systematoregressive processes, see for example [16]) witbreift
with these numbers a blocking probability would be aroundyels of correlation. The AR(1) process is defined as
0.1%. If we then use these figures to calculate the parameters

of the modelQ presented here, we get due to Eq. (2), Xi—p=9¢Xi-1 —p)+e

375 — 320 375 where {¢;} is a sequence of i.i.d. random variables with
= ——=3.075, n=4/---~1083 (14) iance ;
/320 320 zero mean and variance’, has meary, and autocorrelation

o . function
In our situation, where the expected number of calls is not (k) = 6, for k= 0,1,

constant but fluctuates (cf. Fig. 3), to keep a (roughly) tamts

blocking probability, one would have to constantly upddite t Note, that because of the relationshprX; = 72/(1—¢?) =
values of (v,n) to be tested against. While this is entirelyr? the value ofr used to generate the sample after the change
possible, from a practical standpoint it may be more aftract will be equal tor = 1.0831/1 — ¢? (not just1.083). The find-

to stay with just one fixed pair. For the number of callings related tcEs,, for ¢ € {0.2,0.8}, are presented in Fig. 8
larger than, say]00 one would not observe much change imnd show how the performance of our method is degraded
blocking probability despite changing the parametersaeslu by increasing the level of autocorrelation. By we consider
while for lower numbers of calls a blocking probability willa larger set of autocorrelations: € {0.2,0.4,0.6,0.8}; the

be somewhat underestimated. results are given in Table III.



TABLE Il

1 E3 AND E4: IMPACT OF CORRELATION ON FALSE ALARM RATIO AND
DETECTION RATIO. UPPER PART o = 5% — LOWER PARTa = 0.5%
0.8 f ) Es mean E, false Es E4 detection
of detection alarm ratio | detection ratio ratio for
ratio in for window | trues = 42
2 o6l | windows 1-151 no. 152
[ ’ 0 5.7% 5.7% 76.6% 76.8%
_§ 0.2 10.1% 5.3% 77.9% 77.0%
§ 0.4 17.7% 10.4% 80.8% 79.8%
3 0.4f 4 0.6 27.2% 17.9% 85.9% 82.7%
0.8 36.8% 24.0% 90.3% 88.8%
0 0.6% 0.6% 45.6% 46.0%
o2l | 0.2 1.8% 0.7% 47.6% 45.7%
' 0.4 5.4% 1.8% 49.2% 47.8%
0.6 12.7% 5.4% 54.8% 50.3%
0.8 23.8% 11.3% 59.3% 50.9%
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1 1
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= 7"uzeg% f d d
+ X of detected’s
08 0.8 8 25% of detected’s
0.4+ B 2 + Q50% of detected's
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s . Q 97.5% of detected's
+ g o
+ § 04 0.4
0.2 4 b
errr 0.2 0.2
T
T
£ 0 0
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LS —L window number window number
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window number (b) ¢ =08
(b) Fig. 8. E> for different autocorrelation levels; left column: detectiratio;

right column: distribution of detected changepoints.
Fig. 7. E;i: (a) detection ratio; (b) distribution of detected changsfs.

spurious detection ratio is abot0% (versus the prescribed
5%, which is achieved in case of the ‘regenereted’ samples of
"E4), while the position of the detected changepoint is close
to the true one. In other words, for these low valueshdhe
%étection procedure performs well.

When increasingy the performance degrades: the false
%larm ratio increases, while also the position of the detect
changepoint becomes less accurate. If the false alarmigatio
rSgarded to be too high, a quick fix is to lower the nominal

X?ue of a. Obviously, again the price we pay lies in the

&tection ratioE; and E, were redone withe = 0.005; see
tHe lower part of Table Ill. One can see that for example for
¢ = 0.6 the false alarm ratio is now close to the prescribed

The detection ratios ifEo should be interpreted with care
in case of non-negligible correlation, the relative fremgyeof
detections before the actual change happens is not anymor
unbiased estimator of type-I error probability. This is dese
if the test incorrectly detected a changepoint using data ¢
tained ink*™ window, in the next step window + 1 contains
the same data apart form the oldest observation (which
dropped) and the appended newest observation which is
highly dependent on several previous ones. As a result,
chance of spurious detection is increased and at the sarag ti
also a power of the test (detection ratio) is affected. Tesss
this effect, we performed an addiiional experimeRj) that value. This indicates that by an appropriate tuning thedast

is the same ak&;, apart from the fact that. samples of lengt e adjusted such that it has the desired performance.
50 are generated. In other words, the size of these samples

equals the detection window, thus completely ‘regenegatinC. Results on Real Data Trace
the input data for each of th&00 repetitions. In this section we present results obtained by applying our
For the somewhat lower value @f = 0.2 (Fig. 8) the anomaly detection method to a real data trace. To demoastrat



a trend is a kind of nonstationarity by itself, its presence i
most cases has a negative effect on the performance of any
changepoint detection algorithm. Thus, the anomaly detect

method we proposed in our paper consists of two steps:
trend estimation and removal, which results in obtaining so
called residuals, and then applying a changepoint detectio
method to those residuals. Our contribution to the first step
is verifying and exploiting the fact that the arrival prosds
non-homogeneous Poisson, which leads to a straightforward
yet effective trend removal procedure. The contributiomhi
second phase is twofold: a methodology to simultaneously
detect changes in mean and variance, and extensive tests for

cases of both independent and correlated input. Besides
also present and discuss a measurement procedure that

leads to potentially significant correlation reductiomadly, a

real data example is included showing how the system could

11
5001
10.8
400
10.6
u
© 300
o
10.4
2001
calls 10.2
100 pattern
anomaly pos. the
0 . . . 0 we
850 900 950 1000 1050 1100
time
Fig. 9. Real data example

its performance, we select one day (the Friday of Week 11}]
from our repository and give detailed comments about the
outcome of the tests. Figure 9 should be interpreted asifsllo [

o On theleft scale we record the actual and average number
of calls (a pattern) based on observations from fivef3]
previous weeks, as indicated in Section IV-A.

« On theright scale we have a relative position of the
anomaly detected in the window &) samples which 4
ends at the given time point (meaning that we have
decided to skip the first9 values as they would require [5]
readings from a previous day). A value of 1 means ‘no
anomaly detected’, while for example a value @94 [6]
observed at time point nd. = 926 means that at that
moment a system reports an anomaly, and declares it h&$
happened observations before & 923) (as for a detec-
tion window of size50 distance between two consecutive (8]
observations i9.02 and 1 — 0.94 = 0.06 = 3 - 0.02). [9]
Later on, we again observe a series of readings with no
alarm reported. Then, at the onset of the ‘afternoon peak’
(t = 955), after some uncertainty at the beginning, w[elo]
observe a consistent period that the detector reports that
the number of calls is significantly higher than average,
which is confirmed by a visual inspection. Fram= 1032 15
on, the system again declares no anomaly.

Observe, that the proposed method is capable of not o
detecting an overload, defined as a situation when the system
approaches its capacity limits, but also the situation that
number of calls, while still being below the aforementioned*
capacity limits, grows (falls) faster (slower) than thentigsee [15)
also the remark at the start of Section VI-B). Such infororati
can be useful for example in call centers, as it may indic
the need for more staff than was initially planned.

VII. CONCLUDING REMARKS

We have discussed the problem of anomaly detection in the
situation that a strong trend (diurnal pattern being a tesiul
human behavior) is present in the analyzed sample. As such

be implemented in practice.
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