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Abstract—In this paper we present methodological advances
in anomaly detection, which, among other purposes, can be
used to discover abnormal traffic patterns under the presence
of deterministic trends in data, given that specific assumptions
about the traffic type and nature are met. A performance study
of the proposed methods, both if these assumptions are fulfilled
and violated, shows good results in great generality. Our study
features VoIP call counts, but the methodology can be applied to
any data following, at least roughly, a non-homogeneous Poisson
process (think of highly aggregated traffic flows).

I. I NTRODUCTION

Network operators and service providers have taken a keen
interest in managing the Quality of Service (QoS), and how
it is perceived by their end-users (Quality of Experience).In
this light, a broad range of techniques have been proposed to
detect QoS degradation, see e.g. [1]. Some of these specifically
focus on the Voice over Internet Protocol (VoIP) service, where
performance degradation (due to packet loss, and increased
delay/jitter) occurs during periods with high loads. Conse-
quently, timely detection of such overload periods is crucial
for management of VoIP services [2], as they enable a better
cost control if applied in an automated fashion [3]. Such
automated techniques rely on the statistical analysis of network
traffic measurements, which commonly assumes stationarity
of the data. A complication, however, is that network traffic
measurements can usuallynot be considered as stationary, but
rather exhibit a, roughly periodic, diurnal (day-night) pattern.

The violation of the stationarity assumption may lead to
erroneous conclusions [4], in terms of large amounts of false
positives/negatives. To remedy this, we propose in this paper
a simple, yet effective methodology for removing the inherent
daily pattern; in our study VoIP call counts data serves as the
leading example. The methodology relies on the fact that the
call arrival process is time-varying Poisson, which we show
to be valid for the data of our case study. After removing the
daily trend, we obtain standardized samples (i.e., zero mean
and unit variance) that are nearly Normally distributed, aslong
as there is sufficient traffic aggregation — as a consequence,
the fit improves when the night periods are removed from
the sample (in which the chances of overload are negligible
anyway). The (nearly Normal) output samples arenot (by
approximation) independent, though, which is problematicas
this is required in many detection algorithms. To mitigate this
effect, we propose an alternative measurement methodology

that reduces the correlation for an important class of call
holding time distributions; for our VoIP data we show that the
best fitting model for the call holding times is a mixture of
two log-normals and a Pareto distribution, which is included in
this class. To assess the efficacy of the resulting procedure, we
have modified the overload detection methodology presented
in [2] to work with Normally distributed input data and exten-
sively tested its performance, including situations in which the
independence assumption is violated; these tests convincingly
show that our approach works well in great generality.

The rest of the paper is organized as follows: Section II
presents related work. A description of the dataset is presented
in Section III. After describing how to remove the diurnal
trend from the VoIP call count data in Section IV, we present
the alternative measurement technique in Section V. Next,
we provide in Section VI a description and performance
evaluation of the overload detection methodology. Finally,
Section VII concludes the paper.

II. RELATED WORK

The analysis of traffic in communication networks has
always attracted much attention; see e.g. [5]; even its evolution
throughout time has been studied [6]. The ubiquitous daily
pattern evidently depends on the kind of users that access
the network, although it can be deemed as roughly invariant
(having a similar shape from day to day, that is) when the
kind and number of users are fixed [7]. A similar conclusion
holds when focusing on VoIP traffic only [8], [6], where
it is noted that these VoIP-related studies primarily focus
on call characteristics (in terms of the call arrival process
and call holding time distribution) rather than daily/weekly
patterns. The call arrival process is widely accepted to be
accurately modeled by a time-inhomogeneous Poisson process
(roughly stationary at short timescales, ranging from minutes
to hours [6], [9]). Conversely, there is no consensus as to which
model should be used for the call holding times (where itis
clear that the exponential distribution isnot a good candidate).
A broad range of distributions have been proposed, such as
the hyper-exponential [6], the inverse Gaussian [8], and the
log-normal [10]. The trend-removal issue can be approached
relying on general traffic forecasting techniques [11], or by
time series with seasonal cycles [12].



III. D ATASET DESCRIPTION

Experiments in this paper are using actual traffic traces
collected from an operational network. Using Tstat [13], we
monitored IP traffic exchanged by customers in a large Point-
of-Presence (POP) of an operator in Italy where VoIP is
deployed. A total of 22,000 customers were continuously
monitored for more than 4 months, starting from November
2010. Tstat is used to identify VoIP flows, i.e., voice calls,
and to extract several performance indexes for each call [8].
In particular, in the context of the present paper we are
interested in the call arrival process and call holding time
distribution. The resulting dataset contains the log of the
call arrival epochs and the corresponding durations. Later
in this paper, we statistically analyze these, and use the
resulting processes/distributions to assess the performance of
our algorithm.

The dataset containing start and end times of the calls will
be referred to asdetailed below.

A. Call Arrival Process

The Poisson process is the classical model for the arrival
process of voice calls. Evidently, at longer timescales this
model does not match with reality, due to the absence of a
day-night pattern (and a weekly pattern). To cope with this
effect, non-homogeneous Poisson processes are used instead,
where the arrival rate is usually assumed constant for blocks of
time, of say,L minutes. As our data set consists of 5 minutes
samples, we wish to verify the ‘local Poisson claim’ for some
L being a multiple of5. To this end, we apply to our detailed
dataset a test presented in [9]. To construct the test, we split
up a day into disjoint blocks of lengthL, resulting in a total
of I blocks. LetTij be thejth arrival time in theith block.
Denoting withJi the total number of arrivals within theith

block, we then defineTi0 = 0 and for j = 1, . . . , Ji and
i = 1, . . . , I,

Rij := (J(i) + 1− j)
(

− log
( L− Tij

L− Ti,j−1

))

. (1)

Under the null hypothesis (arrival rate is constant within each
block), theRij are independent standard exponential variables;
see [9] for further background and a justification of the test.

In Table I we present the results of applying the test to
different block sizesL. We use the Kolmogorov-Smirnov
(KS) test to verify the null hypothesis at the 5% significance
level. The results presented in the table indicate that the
arrival process can be regarded as non-homogeneous Poisson
at relatively short timescales only, say less than 10 minutes
(which is sufficient for our objectives later on in this paper).

B. Call Holding Time (CHT) Distribution

In the literature it is generally concluded that the CHT
is poorly modeled by the exponential distribution. Instead,
distribution with heavier tails have been proposed. A visual
inspection usinglog-log plots of the empirical Complementary
CDF (CCDF) of the sample, which allow us to gain insight in
the tail of the distribution, evidences the heavy-tailed nature

TABLE I
RESULTS OF THE ARRIVAL PROCESS ASSESSMENT.

L (min) Rejection % L (min) Rejection %

90 74% 25 27%
60 61% 20 19%
45 50% 15 14%
35 39% 10 9%
30 35% 5 7%

TABLE II
GOF RESULTS FOR DIFFERENT FITTING MODELS.

Distrib. Parameters KS statistic

Pareto Log-N1 Log-N2

0.0046
Pareto + p = 0.6793 p = 0.2023 p = 0.1184
2 Log-Ns k = 0.2749 µ = 6.0857 µ = 3.5410

σ = 63.1607 σ = 0.9523 σ = 0.5201

2 Log-N

Log-N1 Log-N2 -

0.0074
p = 0.1089 p = 0.8911
µ = 3.6421 µ = 4.2926
σ = 0.4810 σ = 1.5528

Weibull Log-N -

0.0075
Weibull p = 0.0968 p = 0.9032
+ Log-N λ = 42.7199 µ = 4.2964

k = 2.4978 σ = 1.5385

in our dataset as well. Consequently, in our Goodness-of-
Fit (GoF) assessment we restrict ourselves to heavy-tailed
distributions (that is, heavier than the exponential distribution).

To measure the GoF we use again the KS test. Such a
procedure is in principle not justified, as we areestimating the
parameters of the hypothesized models from the sample [14].
However, we still can use the KS statistic as a measure of
model discrepancy, so as to select the best fitting model.

Table II presents the models that fitted the data reasonably
well. We sorted them by the value of the KS statistic (the lower
the better), along with the Maximum Likelihood Estimates
(MLE) of the corresponding parameters. Fig. 1 shows thelog-
log plot of the empirical CCDF of the data along with the
models presented in Table II. In line with the quantitative
results, we observe in the figure that the best fit is provided
by the mixture of two log-normal and a Pareto distribution.
This mixture model is capable of fitting the whole body of
the data, while there is a slight lack of fit in the very end
of the tail. Furthermore, we can observe a small oscillation
in the tail corresponding to the data, not captured by any of
the fitting models, probably due to the lack of samples of this
size.

IV. D ETRENDING METHODOLOGY

A. Methodology Description and Expected Results

Our methodology exploits the presence of a weekly pattern
to estimate and remove the seasonality from the measurements,
so as to a sequence of zero-mean, unit-variance observations.
In our set-up the measurements are time series of traffic
metrics (think of number of active calls) at a given time
granularity — 5 minutes in our study. These measurements
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Fig. 1. CCDFlog-log plots of the data and the best fitting models according
to the KS statistic value.

are denoted byxn
i , with i = 0, 1, 2, . . . , 2015 corresponding

to the 5-minute interval within the week (starting on Monday
midnight), andn to the week number within the dataset
(out of a total ofN weeks). The goal is to provide a good
estimateyn for the measurement vector of weekn, xn, using
the information available from previous weeks,x

j , j < n,
assuming the differences from week to week in the weekly
pattern to be due to random deviations from an average
network usage pattern. To this end, we propose the following
model for the measurements:xn = α+ ε

n, whereα denotes
the average pattern andεn are the random deviations from
such pattern.

The proposed estimation computes the trendy as an
arithmetic average of the observations of the lastw = 5
weeks. This window sizew balances accuracy and robustness
to pattern shifts quite well; we have also tested different
averaging processes, but the differences in performance are
negligible.

We can then remove the estimated pattern from the actual
measurements, so as to obtain zero mean residuals. Recalling
that our arrival process is locally Poisson (cf. Section III-A),
and because Poisson variates with a high mean are approxi-
mated well by the Normal distribution, the resulting residuals
(by approximation) form a sequence of zero mean Normally
distributed random variables. Note, however, that they arenot
homoscedastic (that is, they donot have a uniform variance).
Therefore they need to be standardized, which can be done
by dividing each residual by its standard deviation. Instead of
designing another model for estimating the pattern variance,
we exploit the fact that for Poisson random variables, the mean
and the variance are equal. Hence, we obtain standardized
residuals through

r
n =

x
n − y

n

√
yn

. (2)

B. Model Performance Results

We have computed the (standardized) residuals in our
dataset using (2). For the sake of brevity, we only show
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Fig. 2. Data samples for the week under study and estimated pattern based
on previous weeks data samples.
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Fig. 3. Residuals obtained after standardization with the estimated pattern.
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Fig. 4. Gaussian Quantile-Quantile plots of the residuals.

the results for one week, which turned out to be highly
representative. We found that the variance of the residualswas
substantially higher than expected, with some values exceeding
5σ. This is caused by the fact that during nights the load
decreases drastically, thus leading to large residuals (due to
the small numerator in (2)). For the further analysis, we have
then decided to remove the nights (defined as periods from
midnight to 6 a.m.), which is justified as the chances of
overload during the nights are negligible anyway.

The corresponding estimated pattern and residuals without
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Fig. 5. Autocorrelations of the residuals (nights removed).

night periods are shown in Fig. 2 and Fig. 3, respectively.
Compared to their counterparts with night included (not shown
here due to space limitations), we have observed that leaving
out the nights reduces the variance substantially. Also Fig. 4,
which shows the Gaussian Q-Q plot of the residuals without
nights, indicates that Normality holds. We present also in
Fig. 5 the autocorrelations of the residuals. This graph shows
that the residuals arenot independent — note that the horizon-
tal lines indicating the 95% confidence interval around0 are
exceeded, particularly for the first lags; we return to this issue
later in great detail. In addition, there is a periodic component
in the residuals. As this periodicity, which is likely to be due
to the inherently simple nature of the detrending procedure, is
relatively weak, we do not take it into account in our study.

Statistical overload detection procedures usually assumethat
the observations used are independent. As a result, when using
our residuals in such a test, the high correlation may lead toa
significant performance degradation (in terms of high numbers
of false positives and negatives). We are inclined to think
that the correlation in the residuals is essentially due to the
simplicity of our trend estimation model, which is not able
to adapt dynamically — at a short timescale, say hours —
to deviations from the pattern. As a consequence, when
actual measurements are above the estimated pattern from
previous weeks, there is a high probability that this situation
would remain the same for the next samples, and vice versa.
Nonetheless, we have decided to keep the model as simple as
possible at the expense of modest performance degradations
(which can be controlled as described in Section VI).

V. M EASUREMENTALTERNATIVE

As mentioned above, the correlations in the residuals of our
detrending procedure are likely to be due to the way the mea-
surements are obtained. Traditionally, detection procedures
record the number of calls present in the system at equidistant
points in time (e.g.,N0, Nt, N2t, . . .). In this section we
analyze an alternative, and compare its performance (in terms
of correlation) with the traditional one. More precisely, we
define Ma as the number calls present during the interval
[a, a+ t], for a givent.

A. Alternative Procedure

To evaluate the performance of this alternative, we compute
the correlation between two measurements at different time
instants — e.g.,M0 andMkt. To simplify the computations,

we will assume in what follows that the arrival process is
Poisson with constant arrival rate. Consequently, we obtain

Corr(M0,Mkt) =
Cov(M0,Mkt)

Var(M0)
=

Cov(M0,Mkt)

E[M0]
, (3)

using the Poissonian and stationarity assumptions. To com-
pute (3), we define
Aa = {# arrivals up to timea that depart in[a, a+ t]}
Ba = {# arrivals in [a, a+ t] that depart in[a, a+ t]}
Ca = {# arrivals in [a, a+ t] that are still present ata+ t}
Da = {# arrivals up to timea that are still present ata+ t},
obtaining the following identity:

Ma = Aa +Ba + Ca +Da. (4)

Now notice that calls that are there at the end of the first
interval are potentially still present at the beginning of the
second interval, so that we only have to take into accountC0

andD0. Also, only calls that arrived before the beginning of
the second interval can interact, so for the same reason we
only need to includeAkt andDkt. Consequently, (3) can be
rewritten as follows:

Corr(M0,Mkt) =
Cov(C0 +D0, Akt +Dkt)

E[A0 +B0 + C0 +D0]
(5)

Also realize that for alla ∈ R : Ca + Da = Na+t and
Aa +Da = Na. Therefore, the numerator in (5) is

Cov(Nt, Nkt) = ρP(Se > (k − 1)t), (6)

where in the last identity we have definedρ = λE[S], S
being the service time distribution (with finite mean), andSe

its excess lifetime; the equality in (6) is well-known from
queueing theory. It is also true thatBa + Ca = Fa is the
number of arrivals in the interval[a, a+ t]. This can be used
to compute the mean ofMa for all a ∈ R:

E[Ma] = E[Na+t + Fa] = ρ+ λt = ρ
(

1 +
t

E[S]

)

. (7)

Finally, using (6) and (7), we obtain the result for (3):

Corr(M0,Mkt) =
ρP(Se > (k − 1)t)

ρ(1 + t
E[S] )

=
P(Se > (k − 1)t)

1 + t
E[S]

.

(8)
It is worth noting that in the previous computations we

did not make any assumption regarding the service time
distribution, which means that (8) holds for any kind of service
time distribution given that the arrival process is Poisson.

B. Correlations Study: Impact of Service Time Distribution

We now compare the correlation resulting from (8) with
the one from the traditional call count processNt, assuming
specific service distributions; the main question is whether
or not Corr(M0,Mkt) < Corr(N0, Nkt); if yes, then the
correlation is reduced.

For the exponential distribution, it is easy to verify that
the inequality is never satisfied, so that the traditional method
is preferred for exponential service times. For the Pareto
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distribution with s > 1 and parameterα, the corresponding
excess lifetime distribution reads

P(Se > y) =
1

E[S]

∫ ∞

y

P(S > τ)dτ = (1 + y)1−α. (9)

It turns out that we need to check whether

f(t) :=
(

1− t

1 + kt

)1−α

< 1 + (α− 1)t =: g(t). (10)

To find a sufficient solution for this new inequality, we will use
the fact that, iff(0) ≤ g(0), thenf ′(t) ≤ g′(t) ∀t > 0 guar-
anteesf(t) ≤ g(t). Applying this argument three times, we
obtain the following sufficient condition:k > α/2. However,
we observed by numerical analysis that the condition is even
less restrictive: for some cases withk < α/2 the inequality
still holds, and the alternative procedure is to be preferred.

For some other distributions, like log-normal, it is not
possible to obtain any analytical results; hence, the inequality
needs to be verified numerically. We do not include these
experiments here; instead we provide an example in which
we compare both measurement alternatives, assuming the
call holding time obeys the best fitting models obtained
in Section III-B (a simple log-normal fit, and the mixture
with one Pareto and two log-normal components). Fig. 6
shows the difference between both models, indicating that
the alternative procedure outperforms the traditional one. The
difference between both correlations is maximal at the first
lags, which is the timescale of interest for the purposes of
the methods presented in this paper. We have therefore found
practical evidence using actual network measurements thatthe
alternative measurement procedure reduces correlations,and is
therefore more suitable to be used in the statistical detection
procedures.

VI. OVERLOAD DETECTION METHODOLOGY

In [2] an overload detection algorithm is studied for an
M/G/∞ queuing system, relying on the testing framework of
[15, Section VI.E]. It was also pointed out in [2] that the

detection procedure in [15] for a changepoint in the mean of
i.i.d. Normally distributed samples (with known and constant
variance) can be adapted to a changepoint in the variance (with
known and constant mean). (Semi-)closed-from results were
included in [2], but the performance of the resulting test was
not evaluated. Furthermore, the case of asimultaneous change
in both mean and variance was not covered in [2].

Below we provide a detailed analysis featuring a procedure
to detect a simultaneous change of the mean and variance. We
asses its performance in case the independence assumption is
fulfilled, but also when it is violated due to non-negligible
correlations. The latter case is obviously highly relevantin
our VoIP context: as we saw in Section IV, our detrending
method leaves some autocorrelation in the residuals. If the
changepoint detection method developed for the independent
case works sufficiently well (at least up to some specific level
of correlation), it may be an attractive and viable alternative
to the idea of explicitly incorporating correlation into the
test (which will lead to a considerably more complicated
procedure).

A. Changepoint Detection

We wish to detect a changepoint in the Normally distributed
data, that is, whether during our observation period the param-
eter vector(µ, σ) (which we denote as the probability model
P) changes into(ν, η) 6= (µ, σ) (the modelQ). More formally,
we consider the following (multiple) hypotheses. LetXi be
the sequence of independent observations obtained from the
Normal distribution.

H0: (Xi)
n
i=1 are distributed according to a Normal random

variable with parameters vector(µ, σ).
H1: For some δ ∈ {1/n, 2/n, . . . , (n − 1)/n}, it holds

that (Xi)
⌊nδ⌋
i=1 is distributed according to a Normal ran-

dom variable with parameters vector(µ, σ), whereas
(Xi)

n
i=⌊nδ⌋+1 is distributed according to Normal random

variable with parameter(ν, η) 6= (µ, σ).

Following the notation used in [2], we consider the
likelihood-ratio test statistic (cf. Neyman-Pearson lemma):

max
δ∈[0,1)





1

n

n
∑

i=⌊nδ⌋+1

Li − ϕ(δ)



 , with Li := log
Q(Xi)

P(Xi)
,

(11)
for some functionϕ(·) which is defined shortly. If the test
statistic is larger than 0, we rejectH0. The functionϕ(·)
is introduced to get an essentially uniform alarm rate with
respect toδ. As in [2], ϕ(·) is given in the implicit form
using Legendre transformI(u) = supϑ(ϑu − logM(ϑ)) of
the moment generating functionM(ϑ):

δI

(

ϕ(1− δ)

δ

)

= α⋆, (12)



whereα⋆ = − logα/n; hereα is a measure for the likelihood
of false alarms (for instance 0.05) and

M(ϑ) =

∫ ∞

−∞

exp

(

−ϑ
2

(

x− ν
η

)2

− 1−ϑ
2

(

x− µ
σ

)2
)

dx

√
2πηϑσ1−ϑ

,

(13)
so that

logM(ϑ) = −
ϑ(1− ϑ)(µ− ν)2

2η2(1− ϑ)− 2ϑσ2 + ϑ log η + (1− ϑ) log σ

1
2 log

(

ϑ
η2

+ 1− ϑ
σ2

)

It is possible to explicitly find the valueϑ⋆, optimizing
I(u) = ϑ⋆(u)u − logM(ϑ⋆(u)) (not shown due to space
limits), thus to numerically solve Eq. (12) and to obtain the
threshold functionϕ(·), and the test statistic (11).

B. Analysis with Synthetic Data

It is clear that applying the above test to the (approximately
Normally distributed) residuals that we generated in Section
IV-A, allows us to detect whether or not a given pattern shows
substantially higher values than those suggested by the trend.
Alternatively, one may be interested in tests that detect whether
or not the offered load is getting close to the system’s capacity.
Below we point out how to set up a test that focuses on
anomalies of the latter kind; a procedure to detect anomalies
of the former kind can be set up similarly.

Due to the normalization procedure (2), in our case the
parameters in modelP are equal to(µ, σ) = (0, 1) while these
related to the modelQ will typically be provided by the system
administrator who derives them after assessing what is for
instance an acceptable overload probability level. An example
of such calculations, based on the Erlang model, is presented
in [2, Sec. 5, Example 1]. The figures provided there were the
following: an expected number of users during ‘busy hour’
was equal to320 and a number of users which, if reached, was
considered to be overload was equal to375 (that was the value
of the parameter one tested against if considering a counterpart
of the modelQ presented here). For the finite capacity system,
with these numbers a blocking probability would be around
0.1%. If we then use these figures to calculate the parameters
of the modelQ presented here, we get due to Eq. (2),

ν =
375− 320√

320
≈ 3.075, η =

√

375

320
≈ 1.083 (14)

In our situation, where the expected number of calls is not
constant but fluctuates (cf. Fig. 3), to keep a (roughly) constant
blocking probability, one would have to constantly update the
values of (ν, η) to be tested against. While this is entirely
possible, from a practical standpoint it may be more attractive
to stay with just one fixed pair. For the number of calls
larger than, say,100 one would not observe much change in
blocking probability despite changing the parameters values,
while for lower numbers of calls a blocking probability will
be somewhat underestimated.

All the changepoint detection tests presented below use pa-
rameters(µ, σ) = (0, 1) (modelP) and(ν, η) = (3.075, 1.083)
(model Q) unless explicitly stated otherwise. However, we
want to underline, that the algorithm for changepoint detection
in Normally distributed data we provide here is generic in
that sense that any values(µ, σ) and (ν, η) can be used.
Moreover, we may abstract from our VoIP situation, and
use the proposed method for any type of data obeying the
Gaussianity assumption.

1) Synthetic Independent Data: Here we will present the
results of an experiment (E1) in which we draw200 indepen-
dent samples from the distributionP, followed by another200
samples rom the distributionQ. We take a window of length
50 samples, that is, we test whetherH0 should be rejected
based on data pointsXi, . . . , Xi+49, for i = 1 up to 351.
The first window in which the influence of the parameters
(ν, η) is noticeable is therefore window number152. 5000
independent repetitions of this experiment were run to assess
the performance of the method. In Fig. 7(a) we see that before
the changepoint (red vertical line) the detection ratio, which
is in this case an estimate of the false alarm ratio (type I
error probability), is about the assumed level of5%. Already,
when only one observation from the distributionQ is present
(window number152 as explained above), the detection ratio
(which now estimates the power of the test) is about75%. The
detection ratio then increases sharply as more samples from
the new distribution appear. Furthermore, the position of the
changepoint returned by the test is in general very close to the
true one, as indicated on Fig. 7(b). One has to bear in mind,
however, that for a less pronounced change (for instance a
gradual change) the detection ratio would grow slower, cf. the
results in [2].

2) Synthetic Dependent Data: As it was stated earlier, the
considered changepoint detection test is designed for i.i.d.
data. Nevertheless, in practice one may be interested in the
performance of the proposed algorithm in case ofdependent
data. Below we present the results of an experiment (E2),
which is similar to E1, but now the observations before
and after the changepoint originate from AR(1) processes
(autoregressive processes, see for example [16]) with different
levels of correlation. The AR(1) process is defined as

Xi − µ = φ (Xi−1 − µ) + ǫi

where {ǫi} is a sequence of i.i.d. random variables with
zero mean and varianceτ2, has meanµ, and autocorrelation
function

γ(k) = φk, for k = 0, 1, . . .

Note, that because of the relationshipVarXi = τ2/(1−φ2) =
σ2 the value ofτ used to generate the sample after the change
will be equal toτ = 1.083

√

1− φ2 (not just1.083). The find-
ings related toE2, for φ ∈ {0.2, 0.8}, are presented in Fig. 8
and show how the performance of our method is degraded
by increasing the level of autocorrelation. InE3 we consider
a larger set of autocorrelations:φ ∈ {0.2, 0.4, 0.6, 0.8}; the
results are given in Table III.
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Fig. 7. E1: (a) detection ratio; (b) distribution of detected changepoints.

The detection ratios inE2 should be interpreted with care:
in case of non-negligible correlation, the relative frequency of
detections before the actual change happens is not anymore an
unbiased estimator of type-I error probability. This is because
if the test incorrectly detected a changepoint using data con-
tained inkth window, in the next step windowk+1 contains
the same data apart form the oldest observation (which is
dropped) and the appended newest observation which is now
highly dependent on several previous ones. As a result, the
chance of spurious detection is increased and at the same time,
also a power of the test (detection ratio) is affected. To assess
this effect, we performed an additional experiment (E4), that
is the same asE3, apart from the fact that samples of length
50 are generated. In other words, the size of these samples
equals the detection window, thus completely ‘regenerating’
the input data for each of the5000 repetitions.

For the somewhat lower value ofφ = 0.2 (Fig. 8) the

TABLE III
E3 AND E4 : IMPACT OF CORRELATION ON FALSE ALARM RATIO AND

DETECTION RATIO. UPPER PART: α = 5% — LOWER PARTα = 0.5%

φ E3 mean E4 false E3 E4 detection
of detection alarm ratio detection ratio ratio for

ratio in for window true δ =
49

50

windows 1–151 no. 152
0 5.7% 5.7% 76.6% 76.8%

0.2 10.1% 5.3% 77.9% 77.0%
0.4 17.7% 10.4% 80.8% 79.8%
0.6 27.2% 17.9% 85.9% 82.7%
0.8 36.8% 24.0% 90.3% 88.8%

0 0.6% 0.6% 45.6% 46.0%
0.2 1.8% 0.7% 47.6% 45.7%
0.4 5.4% 1.8% 49.2% 47.8%
0.6 12.7% 5.4% 54.8% 50.3%
0.8 23.8% 11.3% 59.3% 50.9%
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(a) φ = 0.2.
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Fig. 8. E2 for different autocorrelation levels; left column: detection ratio;
right column: distribution of detected changepoints.

spurious detection ratio is about10% (versus the prescribed
5%, which is achieved in case of the ‘regenereted’ samples of
E4), while the position of the detected changepoint is close
to the true one. In other words, for these low values ofφ the
detection procedure performs well.

When increasingφ the performance degrades: the false
alarm ratio increases, while also the position of the detected
changepoint becomes less accurate. If the false alarm ratiois
regarded to be too high, a quick fix is to lower the nominal
value of α. Obviously, again the price we pay lies in the
detection ratio.E3 and E4 were redone withα = 0.005; see
the lower part of Table III. One can see that for example for
φ = 0.6 the false alarm ratio is now close to the prescribed
value. This indicates that by an appropriate tuning the testcan
be adjusted such that it has the desired performance.

C. Results on Real Data Trace

In this section we present results obtained by applying our
anomaly detection method to a real data trace. To demonstrate
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Fig. 9. Real data example

its performance, we select one day (the Friday of Week 11)
from our repository and give detailed comments about the
outcome of the tests. Figure 9 should be interpreted as follows.

• On theleft scale we record the actual and average number
of calls (a pattern) based on observations from five
previous weeks, as indicated in Section IV-A.

• On the right scale we have a relative position of the
anomaly detected in the window of50 samples which
ends at the given time point (meaning that we have
decided to skip the first49 values as they would require
readings from a previous day). A value of 1 means ‘no
anomaly detected’, while for example a value of0.94
observed at time point no.t = 926 means that at that
moment a system reports an anomaly, and declares it has
happened3 observations before (t = 923) (as for a detec-
tion window of size50 distance between two consecutive
observations is0.02 and 1 − 0.94 = 0.06 = 3 · 0.02).
Later on, we again observe a series of readings with no
alarm reported. Then, at the onset of the ‘afternoon peak’
(t = 955), after some uncertainty at the beginning, we
observe a consistent period that the detector reports that
the number of calls is significantly higher than average,
which is confirmed by a visual inspection. Fromt = 1032
on, the system again declares no anomaly.

Observe, that the proposed method is capable of not only
detecting an overload, defined as a situation when the system
approaches its capacity limits, but also the situation thatthe
number of calls, while still being below the aforementioned
capacity limits, grows (falls) faster (slower) than the trend (see
also the remark at the start of Section VI-B). Such information
can be useful for example in call centers, as it may indicate
the need for more staff than was initially planned.

VII. C ONCLUDING REMARKS

We have discussed the problem of anomaly detection in the
situation that a strong trend (diurnal pattern being a result of
human behavior) is present in the analyzed sample. As such

a trend is a kind of nonstationarity by itself, its presence in
most cases has a negative effect on the performance of any
changepoint detection algorithm. Thus, the anomaly detection
method we proposed in our paper consists of two steps:
trend estimation and removal, which results in obtaining so-
called residuals, and then applying a changepoint detection
method to those residuals. Our contribution to the first step
is verifying and exploiting the fact that the arrival process is
non-homogeneous Poisson, which leads to a straightforward,
yet effective trend removal procedure. The contribution tothe
second phase is twofold: a methodology to simultaneously
detect changes in mean and variance, and extensive tests for
the cases of both independent and correlated input. Besides,
we also present and discuss a measurement procedure that
leads to potentially significant correlation reduction. Finally, a
real data example is included showing how the system could
be implemented in practice.
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