View metadata, citation and similar papers at core.ac.uk

-

L

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Realistic performance-constrained pipelining in high-level synthesis

Original

Realistic performance-constrained pipelining in high-level synthesis / Kondratyev, A.; Lavagno, L.; Meyer, M.; Watanabe,
Y.. - (2011), pp. 1-6. ((Intervento presentato al convegno Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2011.

Availability:
This version is available at: 11583/2501070 since:

Publisher:

Published
DOI:

Terms of use:
openAccess

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

04 August 2020

brought to you by i CORE
provided by PORTO@iris (Publications Open Repository TOrino - Politecnico di Torino)

https://core.ac.uk/display/234892218?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Realistic Performance-constrained Pipelining in
High-level Synthesis

Alex Kondratyev, Luciano Lavagno, Mike Meyer, Y osinWatanabe

Cadence Design Systems
San Jose, USA
{kalex, luciano, meyer, watanabe}@cadence.com

Abstract— This paper describes an approach to pipelining in igh-level
synthesis that modifies control/data flow graphs Here and after
scheduling. This enables the direct re-use of a pwxisting, timing- and
area-aware non-pipelined simultaneous scheduler andoinder. The
approach ensures that the RTL output can be synthé&ed within the
given timing and area constraints. Results from réaindustrial designs
show the effectiveness of this approach in improvi Pareto optimality
with respect to area, delay and power.

Keywords- pipelining, high-level synthesis, design exploration

. INTRODUCTION

In spite of constantly improving CAD tools, themumber of
available transistors grows faster than the abititgffectively design
circuits that use them. Moving beyond RTL calls fonew set of
design tools that will provide the capability ofsin exploration and
synthesis from high-level specifications, enabling effective use of
billions of transistors per chip.

We developed a commercial high-level synth@disS) tool that
has been adopted by many semiconductor and sysimpanies in
their production design flows, and their experiedeenonstrates the
effectiveness of this technology for productivigirs.

This paper discusses a particular featuréheftbol, namely the
ability to automatically obtain ahigh-performance pipelined
implementationwhich has been used fdesigns with up to 2GHz
final clock speedThe essential problem of pipelining consistsvad t
parts. One is resource binding, i.e. how each diperavolved in the
pipeline should be implemented, while the othesciseduling, i.e. at
which pipeline stage each of such operations shbeldxecuted. As
presented in Section lll, the approaches knowménliterature either
solve these two problems sequentially, or takeiaenfmrmulation of
the combined problem which is too expensive to esdtwr practical
designs. The key distinction in our approach isstive these
problems together, while the resulting algorithnstil applicable to
commercial designs of current high complexity. @Qpproach first
applies certain transformations to the Control Dktaw Graph
(CDFG) that represents the functionality of theiglesand then a
synthesis procedure is applied to the modified COBGolve the
binding and scheduling together. This approachureptthe effect of
pipelining in the CDFG, rather than in the synthedgorithms, and
thus the same synthesis procedure is applicabléhehthe design is
implemented with pipelining or without pipelininghis brings
another advantage that a single synthesis engime bea used
consistently to effectively explore both pipelinadd non-pipelined
architectures of the design.

Il. DESIGNSTEPS

Our tool takes as input a set of SystemC nesdubntaining one
or more threads and methods, as well as designireegents and

constraints. The modules may be totaligtimed that is, have no
clock statements; gpartially timed,that is, havesomeor all clock
statements inserted. A frequent use case for aalbartimed
specification is one in which the protocol is sfiedi in a cycle-
accurate manner (for example, a bus protocol), evllile main
computation is loosely timed (for example, it isnatated with a
maximum latency and a target clock cycle). Thegtesequirements
and constraints consist of the clock frequency, roamication
protocols, etc.

A very simple example of input to our tool skown in Figure
1Figure-l
class examplel: public sc_module {

sc_in<bool> clk, rst;

sc_in<int> mask, chrome, scale, th;

sc_out<int> pixel;

void examplel::thread() {
wait();
while (true) {
int aver = 0;
wait(); // sO
do {
int filt = mask;
delta = mask * chrome;
aver += delta;
if (aver > th) {
aver *= scale;

wait(); // s1
pixel = aver * filt;
} while (delta != 0);

Figure 1. Example of SystemC specification
The design flow with our tool is shown fiigure 2Figure-2

Jwayshs
Jojeloge|3
Jaziwndo
Jajnpayag
Jojesaush
ndino

J3ULIOjSuBI |
2IMBYDIE0IIN

|

Figure 2. Tool design flow

At the end of elaboration, the input spectfima is represented by
its control flow graph (CFG) and data flow grapt~@®) [14]. Nodes
of the CFG either serve to fork/join control flowofditionals and
loops in SystemC) or correspond to “wait()" calfs SystemC. The
DFG nodes are operations, and its edges are datendencies
between nodes. Every DFG operation is associatdd avparticular

edge of the CFGFigure 3showsthe CFG and DFG for the body of
the do_while loop irFigure 1

The goal of the optimizer is to simplify the=@ and CFG as
much as possible, by applying standard compileimipations, such
as constant propagation, operand width reductiperation strength
reduction, etc. The branch predication transforomatis essential,
since it replaces fork-join structures in the CF & straight-line
segment with predicates enabling operations, asrslroFigure 4

This transformation increases the mobility @perations in
conditional branches, to enable the computatiora+j, c+d, and
func(), before evaluating the branch conditicond which can help
to implement the design under tight timing constigiwhen the
values necessary to evaluatndare arriving late.

The micro-architecture transformer changescirrol structure
significantly. Examples of transformations includection inlining,
loop unrolling and loop pipelining. It is difficulto accurately
determine which ones of these transforms will imyerdahe final
implementation. Hence, we provide means for desgoemanually
and easilyspecify their intent.

When optimizations and micro-architecturalices are complete,
the CFG and DFG are schedulgdgre 2Figure-p. The purpose of
this step, described in detail in Section IV, iskimd each DFG
operation to a time step (edge) in the CFG andparicular resource
from the given set of resources. Moves of DFG dpara within the
CFG are guided by a cost function that takes istmant the timing,
area and latency constraints

el
Loop top

e2
If_top
e4 e3

If_bottom
e5

sl

e
Loop_ bottom

@

Figure 3. CFG (a) and DFG (b) for the do_while lop body

if (cond == 0) {
)z, N :Lr:clz) T F s1_2 y=(cond==0)?a+b:c+d;
wait(); /51) 2= (cond ==0) ? func() : z
else { ' sl S wait(); //s1_2
y=c+d;
wait(); //s2 (b)

}

Figure 4. Predicate conversion.

When the scheduler succeeds, the output gendFéigure 2Figure
2) produces a set of models at different abstradémels: starting
from higher level models (which are used for sirtialg for
example, a virtual prototype of an SOC) to RTL (ethis used for
synthesis).

Stagel Stage2

chrome_rd,loopMuf scale_rd, gt_op, mul3_op,
Iter1 | mask_rd, mull_op| mul2_op, MUX pixel_write
add_op. neq_op
chrome_rd,loopMux scale_rd, gt_op, mul3_op,
Iter2 | mask_rd, mull_op| mul2_op, MUX pixel_write

- -

Initiation interval

add_op. neq_op

Latency interval

Figure 5. Pipelining the example ofigure 1Figure-1with LI=3 and I1=2

Loop pipelining overlaps operations from diffiet iterations to
create a more compact schedule [1]. Its two keyampatersare:
Initiation Interval (Il) to specify the number of cycles between the
execution of consecutive iterations, ahdtency Interval(Ll) to
define the number of cycles to execute a singtatiten, as illustrated
in Figure 5Figure-5 The iteration is partitioned intd_l/ll /pipeline
stages, where each stage contains Il states.

Ill. PRIOR WORK

In hardware synthesis (contrary to the sofendomain), resources
are not fixed and delays of operations are oftérmmudtiples of clock
cycles. A common situation is time-constrained |uireg, where
resources are minimized, given upper bounds onutoec delay.
Known algorithms often appeal to heavy machinetglfsas ILP) to
address scheduling and pipelining in a uniformirsgtf3]. They are
slow and not scalable, which calls for developmehtefficient
heuristics for automatic pipelining in HLS. In tBehwa system [4]
pipeline synthesis is done using list schedulingictv takes into
account inter-loop dependencies by defining “rebyowization
events” that prevent pipelines from running at thaximum speed.
The resynchronization mechanism is decoupled froenscheduling
procedure, thus leading to sub-optimal binding glerations to
control steps. Hence [5] improves the Sehwa apprdac using
interleaved “ASAP” (as soon as possible) and “ALARs late as
possible) scheduling. Inter-iteration dependencies taken into
account during the folding step in a constructivaeywi.e. if folding
succeeds, then all dependencies are satisfidebn- If folding fails,
some pipelining constraints (e.g. loop latency)dhez be relaxed.
Separation of scheduling and constraint checking isignificant
source of inefficiency of this method.

Another group of heuristic methods relies emantics-preserving
transformations that restructure the CDFG and tewvihie loop to
select a repetitive pattern to be used as the bbdypipelined loop
(this pattern is often called thgipeline kernél In percolation
scheduling [6] the loop is incrementally unrolleddaoperations
migrate upwards until the pipeline kernel emergkately this
approach was enhanced in [7] by adding circulaeddpncy analysis
during scheduling, covering inter-iteration andorgge dependencies
and improving results when using memories.

Modulo scheduling [8] is one more popular téghe in which the
pipeline kernel is automatically detected when grening scheduling
with backtracking. In modulo scheduling assignifiguo operation to
a timing slot is modeled by explicitly placing sealeinstances of this
operation Il slots apart. If this causes a conflith previously
placed operations the schedule chooses a candatatescheduling
and backtracks. The drawback of the modulo schegu$ that its
formulation is significantly more involved than thaf traditional
scheduling and requires a specialized engine teeadgipelining.

In the last decade basic techniques for pipél scheduling did
not change much and are used directly in high-leyathesis tools
such as Spark [9] (percolation scheduling), Stredlerf10], Pico
[11] (modulo scheduling). Most of the enhancememngse targeted
to lift the limitation of applying pipelining onlto the innermost loop
[11,12,13]. These enhancements are orthogonalutopecoposed
approach, which focuses on pipelining loops asifipddy the user,
who may want to unroll or merge loops beforehandrder to satisfy
cost, performance and power requirements.

We claim (based on a broad user experiencaf) skparation
between scheduling and kernel selection, as well besveen
scheduling and binding, is the main obstacle tlatvgnts obtaining
high quality of results in automated hardware piped. The main
contribution of this paper is an approach that nakapelining
decisions on the fly during the process of unifsetheduling and

binding. This improves the efficiency and has aigixe impact on
the complexity of the scheduling.

IV. SCHEDULING APPROACH

A major drawback of most past research in Hégtel synthesis is
that thesplitting between scheduling and binding does mutsier
detailed timing when defining the schedule of opemns. Since
meeting a precise clock period is an essential ireopent, we
perform iterativesimultaneous scheduling and bindipgsseq14].
At every pass, a latency-, clock cycle- and resswanstrained
scheduling problem is solved, using a limited detesources. If a
scheduling pass fails, an internal expert systeaalied to choose an
action to relax some of the constraints. Its pdidfscludes adding
states (where permitted by the designer), addingourees,
performing speculation, etc.

A. Creating an initial set of resources

In order to create a lower bound to the setesburces for the
given CDFG, we define a mapping that relates ewggration to
compatible resource types, where a resource typepresented as a
combination of the operation type (addition, sudticm,
multiplication, etc.) with operand and result wisltfe.g. A1[7:0] +
B1[4:0] and A2[5:0] + B2[6:0] could be implementbgl an 8x6 bit
adder. We do not merge resources of very diffeténtvidths, to
avoid bad impact e.g. on power consumption. Thermngate a set of
intervals through intersection and union of ASAPAR. ranges of
operations of compatible types. Finally, we estamtite resource
demand for every interval and choose the lower Hotmbe the
maximal among the demands for all intervals.

This approach improves over [15] in two wahisst, life spans of
operations are timing aware. In other words, ASAlR ALAP are
determined by performing approximate timing analysn the DFG,
initially ignoring the sharing multiplexers. Seconde take into
account mutual exclusivity of operations comingnirthe predicate
transform (see Section II).

B. Pass scheduler

The salient characteristics of the pass scleeduk listed below:
1. High accuracy of timing estimation.

Scheduling an operation binds it not only t6FEG edge, but also
to a resource, taking into account the delay oftiplekers and the
potential false combinational cycles created byrthe

The scheduler is tightly integrated with logymthesis. It builds a
netlist for the part of the CDFG that has been dateel so far, and
performs timing queries (whose results are caclpgdopriately) on
the netlist.

2. Chaining and use of multi-cycle operations.

Analyzing scheduler results on a set of customesigns, we
found that the combinational depth of logic in aghe cycle often
exceeds 5 operations. This clearly shows the imapog of
supporting combinational chaining within a cycleneTsupport for
(possibly pipelined) multi-cycle operations is ateguired to permit
binding of operations to predesigned IP blocks.

3. Handling combinational cycles.

The occurrence of combinational cycles dursaheduling is
illustrated inFigure 6Figure-6 This cycle is never sensitized in any
reachable control state. The false paths could dperted to the
downstream logic synthesis tool; however, this cedugreatly the
room for optimization because logic synthesis nmusserve the pins
specifying the path. Instead, wavoid bindings resulting in

practice improves the final post-synthesis qualify results and
satisfies established RTL coding rules.

sc_int<16>x, a, b, v, d, q;
sc_int<32>y, ¢, w, p;
wait(); // s1
x=a+h;
y=x+c; a
wait(); // s2
w=d+p; q
v =w.range(15,0) + q; b

(a)

s2 sl s2 sl

add_16_16 add_32_16
d

E +[t +
c

s2 sl

Figure 6. Combinational cycles in scheduling
4. Support of user-defined constraints.

The tool provides a wide set of constraints etxpress user
intentions about the final implementation. Thesast@ints range
from specifying the edge and/or resource for aipadr operation (to
be respected during scheduling) to providing lagdsmunds for loops
or blocks of code (for example, between I/O opere).

The list scheduler implementing the precedifegtures is
presented irFigure ZFigure-7 The priority function takes into account
the mobility of the operations defined by timing-aware ASAP/ALAP
intervals (similar to Force-Directed Schedulintf)e complexity of
operations (more complex ones are scheduled fitst) size of the
fanout cone of an operation, etc.

When the pass scheduler fails, the set of scheglabnstraints must
be relaxed. The history of the scheduling pasgdsnded in a set of
restraints, which are issued every time a bindingnooperation to an
edge and/or a resource fails. Restraint analysioie for the fanin
cones (in the DFG) of the failed operations andthtafse whose
scheduling suggests some room for improvement. r&ett are
assigned weights based on their proximity to fadpdrations and the
number of failures they help solve. Each restrairggests a set of
actions that can be applied to improve the scheduliTiming
restraints could be fixed by adding states to tl&Cby adding
resources or by speculating operations. Restratgsmming from
combinational cycles forbid the use of a resounrean operation,
etc. Every action has an estimated cost, whicloimshined with the
number of restraints solved by this action and résgraint weight.
The action with the best estimated gain wins angsed to relax the
constraints for the next scheduling pass.
SCHEDULE_PASS(CFG C, DFG D, clock period T
Library L, User Constraints U)
Paths ~ Set of combinational paths in CFG;
forall pinPaths {

forall edgesinp{

Ready — operations ready to schedule;

Compute_op_priorities(Ready);

clk s

op_best — highest priority op;
Op_res ~ resources compatible with op_best;
forall rinOp_res{

i f (bind(op_best,r) == success) br eak;
i f (op_best failed and e is last in lifespan){
Failed_ops ~ op_best;
} el se {Update(op_best, Ready);}

i f (Failed_ops !=
}

0){ return failure;}

Figure 7. Performing a single scheduling pass

Example 1. Sequential Microarchitecture. Let us illustrate the
scheduling process on the example frBigure 1Figure-1with: 1 <
latency< 3 for the do-while loop. The scheduler starts fratehcy 1.
For this example we will use Tclk=1600 and the
artisan_90nm_typical library. Finding the initiadtsof resources is

combinational cyclesThis may require extra resources, but intryial: multiplication is the only repeated opécat and 3 multiplies

are to be scheduled in at most 3 states, whichestigghat a single
multiplier suffices (it is a lower bound that mighe reconsidered
during scheduling).

TABLE 1. INITIAL SET OF RESOURCES WITH DELAYS

multiplications cannot fit in the given clock cykléJsing 3 states in
the loop, the scheduler succeeds with the schedulable2. It uses
the minimum set of resources and has a throughfp8taycles per
iteration.

TABLE 2. SCHEDULE FOR EXAMPLE 1.

resource mul add gt neq ff muxp mux3
delay (ps) 930 350 220 6 40/70 110 116 Res mul add gt neq mux
sta
Table 1 shows the fastest logic implementaf@n the resources sl mull_op add_op neq_o
of Example 1. Note that the table includes regis@y and 2 and 3- s2 mul2_op gt op mux_oj
input multiplexers for resource and register shaarin s3 mul3_op

I/O operations are scheduled at the very samesstetere they are
specified in the input code. Heneghrome_readandmask_readare
scheduled irs1and mull_opis enabled for scheduling. To check the
feasibility of bindingmull_opto resourcemul in s1,the scheduler
builds the datapath shown ifigure 8Figure-@a). Note that resource
mul is instantiated with muxes at its inputs. This improves timing
estimation when resources are shared between Seygzeations.
Using a very simple timing modébr the sake of illustrationthe
delay of the netlist ofigure 8Figure-@) is:
del_ = FF_held launch+ del_mux + del_mul + del_mux + FF_setup
=40 + 110 + 930 + 110 + 40 = 1230

The delay satisfies the clock cycle constragmd thus the
scheduler moves to the next ready operatamd(op). Figure 8Figure
8(b) shows the datapath model when bindidd_op to resourcedd
in states1 (the DFG has a single addition operation, thueetilage no
input muxes). The delay of this netlist is 1580 ickhhsatisfies the
clock cycle and the the binding afld_opin stateslis accepted.
sl s1 Is1 s1

chrome

chrome

aver

threshold
Figure 8. Datapath modeling during scheduling

aver

Finally Figure 8Figure-) shows the datapath when the schedule

binds operationseq_opandgt_opto the corresponding resources in
the same statel The critical path going through resoumghas a
delay of 1800ps and results in a negative slack26Dps for this
resource. The scheduler rejects the bindingtobpin states1 and
fails becausesl is the only state of the loop. This indicates thnet
specification is overconstrained under the cursehf resources and
latency 1.

To relax constraints the scheduler analyzes#h of restraints for
failed operations: lack of resources (for operationl2_op and a
negative slack (for operatiat_op. The corrective actions are to add
state to the loop body or to add one morel resource. Adding a
state can resolve both resource contention andinegdack; hence
the scheduler adds sta2and restarts the pass scheduler.

The second pass will fail again when attengptm bindmul3_op
in states2 because resourceaul is busy implementing operation
mul2_op The corrective action is to add one more sta8e to the
loop (adding one more multiplier does not help lbseatwo

With higher throughput requirements, the user maplage the
pipelining capabilities provided by the schedubs,an alternative to
selecting faster, and hence much more expensiseyrees.

V. PIPELININGAPPROACH

Based on extensive discussions with designerdormulated the
following conditions for effective pipelining:
1. The Il parameter must be specified by the designer.

It is known that finding the smallest Il forgiven loop is an NP-
complete problem [1], and many efforts have beecudwnted to
find good heuristics for it. We believe that thagtical importance of
this problemin the context of high-level synthe&dimited, because
in hardware the Il is a fundamental parameter dwfirthe system
throughput, and designers do not have much fleiibii changing it.
At most they can change it in conjunction with tleck cycle (for
example, double the Il and halve the clock perioarder to reduce
area at the same overall throughput).

2. The LI parameter should be chosen (within desigperified
bounds) by the tool.

When the pipelined loop performs many (ofterirdinite number
of) iterations before exiting, the LI impact on dbghput is
negligible, since it affects only the epilogue bétloop. Exploration
often starts from LI = II+1 (the minimum for pipeéd execution).

3. The choice of the pipeline kernels must be timiriged.

This suggests that finding the kernel showddirizorporated into
the scheduling process, instead of the traditidisehedule-then-
move” approaches like modulo scheduling [2, 8].

The following procedure describes a new apgrdar automatic
pipelining of a loop that: a) requires minor exiens of the
constrained scheduling algorithm described in 8actV, and thus
shares all its advantages, b) is effective, aslv@lshown in the final
section, and c) takes into account timing when sh@gpthe pipeline
kernel, thus resulting in a pipeline that can bplemented with the
required clock cycle.

For the sake of simplicity, assume that bétanid LI are known

rfor a loop (LI is handled by the scheduler by addstates within

bounds, as in the non-pipelined case). The pipalirof a loop is
implemented in two steps:
Scheduling of operations for a single loop itenatigithin the
latency intervabf a loop.

Il. Folding the scheduled loop iteration into a pipelimnvith
PS =/LINIl /stages.

Step | is performed as follows:

1. Converting the loop into a straight-line sequenteagles in the
CFG. This is obtained by first balancing the lateraf all
fork/join regions of the loop body (coming from cbtional
statements) so that they all have LI states, aed #pplyingull
predicate conversionNested loops must either be unrolled or
correspond to the “stalling” of the pipeline (wadi for an
external condition). The stalling loops are ignoihating the
scheduling passes and inserted back in the CF@glthe “fold
back” step.

2. Identifying edges in the CFG of the loop body (atsaled
“control steps” in the literature) that are “equert” from the
scheduling point of view. These are the edges dhatll states
apart in the loop with LI states. They are foldedooa single
edge in the final pipeline. For example, as showrFigure
SFigure§ operations from the first loop iteration schedutethe
first clock cycle ofStage2overlap with operations from the next
iteration scheduled in the first clock cycleSthgel Operations
scheduled on equivalent edgeennot share a resourdenless,
of course, they depend on orthogonal predicates).

3. Scheduling a single iteration withiri state nodes.

Two additional requirements must be satisfiaithin the
scheduler in order to address pipelining:
a) Preserving data causality between loop iterations.

Different loop iterations may be causally teth The next loop
iteration may need to wait until previous iterasonompute the
necessary data. Iteration dependencies are repedsey cycles that
form strongly connected components (SCC) in the @F@ loop. It

loop iteration per clock cycle. Scheduling with Rl#ails because
two chained multiplications in a single state extc#ee clock period.
The scheduler relaxes constraints and increaddsto 3. The
difference from the non-pipelined case is thatesource is shareable
between states (Il=1 makes all the edges equijalérance 3
multipliers are created in the initial set of resms, and
SCC={loopMux, add_op, mul2_op, MUXhust be scheduled in one
state.

Scheduling uses the same bindings as in Tahietil mul2_op
This operation is a part of the SCC and must bedded in the
same state amdd_op This however violates timing, and the
scheduling pass fails. A novel feature of the sstgk pipelining
approach is that in the relaxation phase this ffaiis distinguished
from an ordinary negative slack failure and theredtive action of
moving the whole SCC to sta$ is suggested. With this corrective
action, the scheduler succeeds.

Different implementation architectures for BEwde 1 are
compared by throughput and area. All architectumsvide
meaningful trade-offs: higher throughput impliesgler area. Another

is easy to see thareserving causality requires all operations fromperspective could be provided by fixing the thrqugh and

each strongly connected component of the DFG tosdieeduled
within Il states. The DFG ipigure 3Figure-@) has a single strongly
connected component: that computager (involving loopMux,
add_op, mul2_opand MUX). Operations from this SCC must be
scheduled in two adjacent states (sihee 2 for this example). Note
however that there is flexibility in choosing thiage in which to
schedule an SCC, which might be exploited to aehlestter timing.

synthesizingP1, P2 and S with clock cycles T, T/2 and T/3kigep
throughput constant). This experiment is illugtcatwith a more
realistic design, in Section VI. It may result imaler area because
more non-timing criticalhence smallerjesources may require less
total area than fewer criticalhence largerpnes

TABLE 3. COMPARING MICROARCHITECTURES FOR EXAMPLE. 1

Hence the set of actions of the scheduler includesing an SCC

from one stage to another when facing negativekslac

b) Constrained resource sharing.

Sequential(S)| Pipe, II=2 (P2 Pipe, I1=1(P1)
#cycles/iteration 3 2 1
Area 16094 24010 30491

A resource used for operatiamp scheduled at edgej is
considered busy for all edgekequivalent taej.

Once the loop is successfully scheduled isthtes, it needs to be
folded to reduce the number of states in the body. tThis is done
by folding equivalent edges onto a single edge,sehecheduled set
of operations is the union of the operations fréma folded edges.
Additional control is added to represent the pipelstage that is
being executed. In most loop iterations, all stageshe loop are
executed simultaneously. The exceptions are: tr@ogue and
epilogue of the loop, when only the first or thetlatages must be
active, and the stalling loops, in which no stagestibe active while
the stalling condition is true. To ensure this,lalp operations are
predicated by the corresponding stage signals, rg@tk from the
appropriate FSM state registers (if the stage is axiive, the
operation is not executed).

Note that with the minor exception of requisstts a) and b) from
item 3 in Step |, the scheduling procedure for gielined loop
remains identical to the non-pipelined case. This imajor advantage
of the suggested approach.

Example 2. Pipelined Microarchitecture (11=2). Due to edge
equivalence, resources should not be shared ssthinds3 hence
two mulresources must be created. Then scheduling proesedtly
as for the sequential microarchitecture, except ithatarts from 3
states (pipelining requires LI>Il). The only pip®i constraint-is
ensuring thatSCC={loopMux, add_op, mul2_op, MUX} is
scheduled in a single pipeline stage. This is fsatior the schedule

shown in Table 2, whichisapplicable to the pipelined case as well

(changing only bindings: mull_op-mull, mul2_op>mull
mul3_op~ mul2) This illustrates the uniformity of the approach
between the sequential and pipelined cases.

Example 3. Pipelined Microarchitecture (lI=1). Pushing the
throughput requirements to the limit results irpilementing a single

VI. EXPERIMENTALRESULTS

Our experiments illustrate three key pointthig approach.
1. The suggested pipelining method is effective aadtiwal.

Figure 9Figure-9shows a plot for about 40 industrial designs,
obtained from companies that use our tool for thlesign flows and
that use the pipelining method previously describBtese designs
have different complexities, with the number of igiens ranging
from 100 to over 6000 (the average is 1400). Theyude filters,
FFTs, image processing algorithms, etc. The scleedtime,
including using logic synthesis for area and perfamce estimates,
never exceeds one hour (on average, it is 7 mipuEegcution time
does not correlate with input CDFG size, but depesrdthe number
of pass scheduler calls, which in turn depends ow hightly
constrained the design is, by how many conflictscgcles are
discovered and must be avoided by restraints, wy hm@any times
resources need to be added to the initial estiraatéso on.

7000 7S
6000
5000 +
1%
& 4000 -
S 3000 & N4
H
2000
1000 8% % o ,
* o * *
0 T T T T T
0 500 1000 1500 2000 2500 3000
Scheduling time (sec)

Figure 9. Profiling designs and scheduling times
2. Selecting the pipeline kernel by timing is vital.

We investigated the seven most timing-critidalsigns among
those reported above, and disabled the action #fng&CCs to later
pipeline stages when a negative slack is encouhtétes resulted in

a significant increase of negative slack after lsgsis, which had to
be compensated by larger area during subsequeatdpathesis. The

achieved without pipelining, except with a laterafy8 or 16 clock
cycles (“Non-Pipelined 8” and “16”), but with langarea due to the

resulting percentual_percentagarea penalty for these designs is faster clock.

shown in Table 4. This experiment demonstrates that timing

awareness of the pipelining approach is a key tdiveeng a

predictable design flowt allowed us to achieve a frequency of 2GHz

for one of the pipelined designs.

TABLE 4. IMPACT OF TIME-DRIVEN HEURISTICS

D1 D2 D3 D4 | D5 | D6 D7
14.7 2.7 330 | 215 | 37 | 64 12.9

Avg
13.5

% Area
Penalty

3. Pipelining extends the area-delay-power trade-offs.

We selected an IDCT algorithm used in video deogdand tried
both pipelined and non-pipelined implementationsth watencies
ranging from 32 to 8 clock cycles. We performedHl5s and logic
synthesis runs, exploring a 20X power range, alf&ughput range,
and a 2X area range.

Figure 16Figure-1®hows the area/performance curves for variouq1]

micro-architectural solutions, to explore the impaé pipelining.
Each curve corresponds to a different microarchitec (loop
latency). Thedelayis actually thenverse of the throughpwnd is
obtained by multiplying the Initiation Interval (e is the same as
the latency for the non-pipelined cases, and Hati®latency for the
pipelined cases) by the clock cycle.

350

—m—Pipelined 32
300

IR\
N

50 L

—e—Pipelined 16

Pipelined 8

——Non-Pipelined 32

—+#—Non-Pipelined 16

\Nsﬂ’ipelined 8

40 60 80
Area

100 120

Figure 10. Area/delay for different micro-architectures

\\ \\
AN N e

100 \
} Non-Pipelined 8
50 ———

(o] 20 40 60
Power

350

—m—Pipelined 32

300
—e—Pipelined 16

250 +—
Pipelined 8

——Non-Pipelined 32

Figure 11. Power/delay for different micro-archite¢ures

Pipelining in this case improves area at equaluginput, because it
doubles the clock cycle, with a significant advagetan terms of area.
Note also that the best Pareto point (bottom teft) be achieved only
by pipelining (with Initiation Interval 16 and Latey Interval 32,
called “Pipelined 32"). The same performance levelild not be

Of course, that same low area, high performancetpas a cost in
terms of power, as shown fgure 11(it is the bottom point of the
“Pipelined 32" curve).

VII. CONCLUSIONS

This paper describes a very practical and effecépproach to
pipelining for high-level synthesis. It improvesevyast approaches
by using a highly accurate area and timing modelenscheduling
the pipeline. It automatically finds the best pipelkernel and lets
designers explore better area/delay/power solutthas with non-
pipelined implementations. Finally, it re-uses essentiallg game
infrastructure of the non-pipelined scheduler, it@sy in smooth and
pragmatic trade-offs between pipelined and nonipipe
implementations.

REFERENCES

M. Lam. Software pipelining: an effective schedglitechnique for
VLIW machines. IrProc. ACM SIGPLAN 881988, pages 318-327.

[2] B.R.Rauand C. D. Glaeser. Some scheduling tgaksiand an easily
schedulable horizontal architecture for high perfance scientific
computing. In Proc. Fourteenth Annual Workshop on
Microprogramming 1981, pages 183-198.

[3] F. Sanchez and J. Cortadella. Time Constrained LRipglining. In
Proc. ICCAD November 1995, pages 592-596.

[4] N. Park and A.C.Parker, “Sehwa: a software pacKageynthesis of
pipelines from behavioral specifications”, IEEE fisaComputer-Aided
Design, vol. 7, 1988, pp. 356-370.

[5] C-T Hwang, Y-C Hsu, and Y-L Lin, Scheduling for fitional
pipelining and loop winding, Proc ACM/IEEE 2®esign Automation
Conference, pp 764-769, 1991

[6] R. Potasman, J. Lis, A. Nicolau, and D. Gajski.cB&tion based
synthesis. InDesign Automation Conference, 1990, Proceeding8, 27
ACM/IEEE pages 444-449.

[7] L. Gao, D. Zaretsky, G. Mittal, D. Schonfeld, P.nBgee. A software
pipelining algorithm in high-level synthesis for GR architectures. In
ISQED 2009pages 297-302.

[8] B. Ramakrishna Rau: lterative modulo scheduling: adgorithm for
software pipelining loops. MICRO 1994: 63-74

[9] S. Gupta, N.Dutt, R. Gupta, Al. Nicolau: SPARK: AigH-Level
Synthesis Framework For Applying Parallelizing Cdlemp
Transformations. VLSI Design 2003: 461-466.

[10] R. Schreiber, S. Aditya, R. Rau, V. Kathail, S. Mah S. Abraham, G.
Snider: High-Level Synthesis of Nonprogrammable dvare
Accelerators. ASAP 2000: 113-124.

[11] M.Kudlur, K.Fan, S.Mahlke: Streamroller: automatsynthesis of
prescribed throughput accelerator pipelines. CORE®: 270-275.

[12] K. Turkington, A. Constantinides, K. Masselos, ReGng: Outer Loop
Pipelining for Application Specific Datapaths in GRs. IEEE Trans.
VLSI Syst. 16(10): 1268-1280 (2008)

[13] J. Cong, W. Jiang, B.Liu, Y. Zou: Automatic memgqrtitioning and
scheduling for throughput and power optimizaticdCAD 2009: 697-
704

[14] D. Knapp and M. Winslett. A Prescriptive Formal Mbébr Data-Path
Hardware. INEEE Trans. Computer-Aided Desigviol. 11, No. 2, Feb.
1992, pages 158-184.

[15] Sharma A, Jain R. Estimating architectural resciecel performance
for high-level synthesis applications. Proc. 30th Design Automation
Conference, 1993, pp 355- 360.

