
04 August 2020

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Realistic performance-constrained pipelining in high-level synthesis / Kondratyev, A.; Lavagno, L.; Meyer, M.; Watanabe,
Y.. - (2011), pp. 1-6. ((Intervento presentato al convegno Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2011.

Original

Realistic performance-constrained pipelining in high-level synthesis

Publisher:

Published
DOI:

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2501070 since:

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PORTO@iris (Publications Open Repository TOrino - Politecnico di Torino)

https://core.ac.uk/display/234892218?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Realistic Performance-constrained Pipelining in
High-level Synthesis

Alex Kondratyev, Luciano Lavagno, Mike Meyer, Yosinori Watanabe
Cadence Design Systems

San Jose, USA
{kalex, luciano, meyer, watanabe}@cadence.com

Abstract— This paper describes an approach to pipelining in high-level
synthesis that modifies control/data flow graphs before and after
scheduling. This enables the direct re-use of a pre-existing, timing- and
area-aware non-pipelined simultaneous scheduler and binder. The
approach ensures that the RTL output can be synthesized within the
given timing and area constraints. Results from real industrial designs
show the effectiveness of this approach in improving Pareto optimality
with respect to area, delay and power.

Keywords- pipelining, high-level synthesis, design exploration

I. INTRODUCTION

 In spite of constantly improving CAD tools, the number of
available transistors grows faster than the ability to effectively design
circuits that use them. Moving beyond RTL calls for a new set of
design tools that will provide the capability of design exploration and
synthesis from high-level specifications, enabling the effective use of
billions of transistors per chip.
 We developed a commercial high-level synthesis (HLS) tool that
has been adopted by many semiconductor and system companies in
their production design flows, and their experience demonstrates the
effectiveness of this technology for productivity gains.
 This paper discusses a particular feature of the tool, namely the
ability to automatically obtain a high-performance pipelined
implementation, which has been used for designs with up to 2GHz
final clock speed. The essential problem of pipelining consists of two
parts. One is resource binding, i.e. how each operation involved in the
pipeline should be implemented, while the other is scheduling, i.e. at
which pipeline stage each of such operations should be executed. As
presented in Section III, the approaches known in the literature either
solve these two problems sequentially, or take a naïve formulation of
the combined problem which is too expensive to solve for practical
designs. The key distinction in our approach is to solve these
problems together, while the resulting algorithm is still applicable to
commercial designs of current high complexity. Our approach first
applies certain transformations to the Control Data Flow Graph
(CDFG) that represents the functionality of the design, and then a
synthesis procedure is applied to the modified CDFG to solve the
binding and scheduling together. This approach captures the effect of
pipelining in the CDFG, rather than in the synthesis algorithms, and
thus the same synthesis procedure is applicable whether the design is
implemented with pipelining or without pipelining. This brings
another advantage that a single synthesis engine can be used
consistently to effectively explore both pipelined and non-pipelined
architectures of the design.

II. DESIGN STEPS

 Our tool takes as input a set of SystemC modules containing one
or more threads and methods, as well as design requirements and

constraints. The modules may be totally untimed, that is, have no
clock statements; or partially timed, that is, have some or all clock
statements inserted. A frequent use case for a partially timed
specification is one in which the protocol is specified in a cycle-
accurate manner (for example, a bus protocol), while the main
computation is loosely timed (for example, it is annotated with a
maximum latency and a target clock cycle). The design requirements
and constraints consist of the clock frequency, communication
protocols, etc.
 A very simple example of input to our tool is shown in Figure
1Figure 1.
class example1: public sc_module {
 sc_in<bool> clk, rst;
 sc_in<int> mask, chrome, scale, th;
 sc_out<int> pixel;
 …
};
void example1::thread() {
 wait();
 while (true) {

int aver = 0;
wait(); // s0
do {
 int filt = mask;
 delta = mask * chrome;
 aver += delta;
 if (aver > th) {
 aver *= scale;

 }
 wait(); // s1
 pixel = aver * filt;
 } while (delta != 0);

 }
}

Figure 1. Example of SystemC specification

The design flow with our tool is shown in Figure 2Figure 2.

Figure 2. Tool design flow

 At the end of elaboration, the input specification is represented by
its control flow graph (CFG) and data flow graph (DFG) [14]. Nodes
of the CFG either serve to fork/join control flow (conditionals and
loops in SystemC) or correspond to “wait()” calls in SystemC. The
DFG nodes are operations, and its edges are data dependencies
between nodes. Every DFG operation is associated with a particular

edge of the CFG. Figure 3 shows the CFG and DFG for the body of
the do_while loop in Figure 1.
 The goal of the optimizer is to simplify the DFG and CFG as
much as possible, by applying standard compiler optimizations, such
as constant propagation, operand width reduction, operation strength
reduction, etc. The branch predication transformation is essential,
since it replaces fork-join structures in the CFG by a straight-line
segment with predicates enabling operations, as shown in Figure 4.
 This transformation increases the mobility of operations in
conditional branches, to enable the computation of a+b, c+d, and
func(), before evaluating the branch condition cond, which can help
to implement the design under tight timing constraints when the
values necessary to evaluate cond are arriving late.
 The micro-architecture transformer changes the control structure
significantly. Examples of transformations include function inlining,
loop unrolling and loop pipelining. It is difficult to accurately
determine which ones of these transforms will improve the final
implementation. Hence, we provide means for designers to manually
and easily specify their intent.
 When optimizations and micro-architectural choices are complete,
the CFG and DFG are scheduled (Figure 2Figure 2). The purpose of
this step, described in detail in Section IV, is to bind each DFG
operation to a time step (edge) in the CFG and to a particular resource
from the given set of resources. Moves of DFG operations within the
CFG are guided by a cost function that takes into account the timing,
area and latency constraints

Loop_top

Loop_ bottom

e1

e2

e3e4

e5

s1

e6

(b)

chrome_read

pixel_write

+

mask_read

scale_read

*

*

*

!=

0

delta

aver

0

MUX

>

th

mul1_op

mul2_op

mul3_op

neq_op add_op

gt_op

loopMux

(a)

e8

e7

If_top

If_bottom

Figure 3. CFG (a) and DFG (b) for the do_while loop body

if (cond == 0) {
 y = a + b;
 z = func();
 wait(); //s1
 else {
 y = c + d;
 wait(); //s2
 }

(a)

s1 s2

T F s1_2 y = (cond == 0) ? a + b : c + d;
 z = (cond == 0) ? func() : z;
 wait(); //s1_2

(b)

Figure 4. Predicate conversion.

 When the scheduler succeeds, the output generator (Figure 2Figure
2) produces a set of models at different abstraction levels: starting
from higher level models (which are used for simulation, for
example, a virtual prototype of an SOC) to RTL (which is used for
synthesis).

Iter 2

Initiation interval
Latency interval

chrome_rd,loopMux
mask_rd, mul1_op,

add_op, neq_op

scale_rd, gt_op,
mul2_op, MUX

mul3_op,
pixel_writeIter1

chrome_rd,loopMux
mask_rd, mul1_op,

add_op, neq_op

scale_rd, gt_op,
mul2_op, MUX

mul3_op,
pixel_write

Stage1 Stage2

Figure 5. Pipelining the example of Figure 1Figure 1 with LI=3 and II=2

 Loop pipelining overlaps operations from different iterations to
create a more compact schedule [1]. Its two key parameters are:
Initiation Interval (II) to specify the number of cycles between the
execution of consecutive iterations, and Latency Interval (LI) to
define the number of cycles to execute a single iteration, as illustrated
in Figure 5Figure 5. The iteration is partitioned into LI/II  pipeline
stages, where each stage contains II states.

III. PRIOR WORK

 In hardware synthesis (contrary to the software domain), resources
are not fixed and delays of operations are often not multiples of clock
cycles. A common situation is time-constrained pipelining, where
resources are minimized, given upper bounds on execution delay.
Known algorithms often appeal to heavy machinery (such as ILP) to
address scheduling and pipelining in a uniform setting [3]. They are
slow and not scalable, which calls for development of efficient
heuristics for automatic pipelining in HLS. In the Sehwa system [4]
pipeline synthesis is done using list scheduling, which takes into
account inter-loop dependencies by defining “resynchronization
events” that prevent pipelines from running at the maximum speed.
The resynchronization mechanism is decoupled from the scheduling
procedure, thus leading to sub-optimal binding of operations to
control steps. Hence [5] improves the Sehwa approach by using
interleaved “ASAP” (as soon as possible) and “ALAP” (as late as
possible) scheduling. Inter-iteration dependencies are taken into
account during the folding step in a constructive way, i.e. if folding
succeeds, then all dependencies are satisfied. When If folding fails,
some pipelining constraints (e.g. loop latency) need to be relaxed.
Separation of scheduling and constraint checking is a significant
source of inefficiency of this method.
 Another group of heuristic methods relies on semantics-preserving
transformations that restructure the CDFG and rewrite the loop to
select a repetitive pattern to be used as the body of a pipelined loop
(this pattern is often called the pipeline kernel). In percolation
scheduling [6] the loop is incrementally unrolled and operations
migrate upwards until the pipeline kernel emerges. Lately this
approach was enhanced in [7] by adding circular dependency analysis
during scheduling, covering inter-iteration and resource dependencies
and improving results when using memories.
 Modulo scheduling [8] is one more popular technique in which the
pipeline kernel is automatically detected when performing scheduling
with backtracking. In modulo scheduling assigning of an operation to
a timing slot is modeled by explicitly placing several instances of this
operation II slots apart. If this causes a conflict with previously
placed operations the schedule chooses a candidate for unscheduling
and backtracks. The drawback of the modulo scheduling is that its
formulation is significantly more involved than that of traditional
scheduling and requires a specialized engine to address pipelining.
 In the last decade basic techniques for pipelined scheduling did
not change much and are used directly in high-level synthesis tools
such as Spark [9] (percolation scheduling), Streamroller[10], Pico
[11] (modulo scheduling). Most of the enhancements were targeted
to lift the limitation of applying pipelining only to the innermost loop
[11,12,13]. These enhancements are orthogonal to our proposed
approach, which focuses on pipelining loops as specified by the user,
who may want to unroll or merge loops beforehand in order to satisfy
cost, performance and power requirements.
 We claim (based on a broad user experience) that separation
between scheduling and kernel selection, as well as between
scheduling and binding, is the main obstacle that prevents obtaining
high quality of results in automated hardware pipelining. The main
contribution of this paper is an approach that makes pipelining
decisions on the fly during the process of unified scheduling and

binding. This improves the efficiency and has a negligible impact on
the complexity of the scheduling.

IV. SCHEDULING APPROACH

 A major drawback of most past research in high-level synthesis is
that the splitting between scheduling and binding does not consider
detailed timing when defining the schedule of operations. Since
meeting a precise clock period is an essential requirement, we
perform iterative simultaneous scheduling and binding passes [14].
At every pass, a latency-, clock cycle- and resource-constrained
scheduling problem is solved, using a limited set of resources. If a
scheduling pass fails, an internal expert system is called to choose an
action to relax some of the constraints. Its portfolio includes adding
states (where permitted by the designer), adding resources,
performing speculation, etc.

A. Creating an initial set of resources

 In order to create a lower bound to the set of resources for the
given CDFG, we define a mapping that relates every operation to
compatible resource types, where a resource type is represented as a
combination of the operation type (addition, subtraction,
multiplication, etc.) with operand and result widths. E.g. A1[7:0] +
B1[4:0] and A2[5:0] + B2[6:0] could be implemented by an 8x6 bit
adder. We do not merge resources of very different bit widths, to
avoid bad impact e.g. on power consumption. Then we create a set of
intervals through intersection and union of ASAP/ALAP ranges of
operations of compatible types. Finally, we estimate the resource
demand for every interval and choose the lower bound to be the
maximal among the demands for all intervals.
 This approach improves over [15] in two ways. First, life spans of
operations are timing aware. In other words, ASAP and ALAP are
determined by performing approximate timing analysis on the DFG,
initially ignoring the sharing multiplexers. Second, we take into
account mutual exclusivity of operations coming from the predicate
transform (see Section II).

B. Pass scheduler

 The salient characteristics of the pass scheduler are listed below:
1. High accuracy of timing estimation.

 Scheduling an operation binds it not only to a CFG edge, but also
to a resource, taking into account the delay of multiplexers and the
potential false combinational cycles created by them.
 The scheduler is tightly integrated with logic synthesis. It builds a
netlist for the part of the CDFG that has been scheduled so far, and
performs timing queries (whose results are cached appropriately) on
the netlist.
2. Chaining and use of multi-cycle operations.

 Analyzing scheduler results on a set of customer designs, we
found that the combinational depth of logic in a single cycle often
exceeds 5 operations. This clearly shows the importance of
supporting combinational chaining within a cycle. The support for
(possibly pipelined) multi-cycle operations is also required to permit
binding of operations to predesigned IP blocks.

3. Handling combinational cycles.

 The occurrence of combinational cycles during scheduling is
illustrated in Figure 6Figure 6. This cycle is never sensitized in any
reachable control state. The false paths could be reported to the
downstream logic synthesis tool; however, this reduces greatly the
room for optimization because logic synthesis must preserve the pins
specifying the path. Instead, we avoid bindings resulting in
combinational cycles. This may require extra resources, but in

practice improves the final post-synthesis quality of results and
satisfies established RTL coding rules.

sc_int<16> x, a, b, v, d, q;
sc_int<32> y, c, w, p;
 wait(); // s1
 x = a + b;
 y = x + c;
 wait(); // s2
 w = d + p;
 v = w.range(15,0) + q;

s2 s1

s2 s1
add_16_16

a

b

+

s2 s1

s2 s1
add_32_16

c

+
d

pq

(a)

(b)
Figure 6. Combinational cycles in scheduling

4. Support of user-defined constraints.

 The tool provides a wide set of constraints to express user
intentions about the final implementation. These constraints range
from specifying the edge and/or resource for a particular operation (to
be respected during scheduling) to providing latency bounds for loops
or blocks of code (for example, between I/O operations).
 The list scheduler implementing the preceding features is
presented in Figure 7Figure 7. The priority function takes into account
the mobility of the operations defined by timing-aware ASAP/ALAP
intervals (similar to Force-Directed Scheduling), the complexity of
operations (more complex ones are scheduled first), the size of the
fanout cone of an operation, etc.

When the pass scheduler fails, the set of scheduling constraints must
be relaxed. The history of the scheduling pass is recorded in a set of
restraints, which are issued every time a binding of an operation to an
edge and/or a resource fails. Restraint analysis is done for the fanin
cones (in the DFG) of the failed operations and of those whose
scheduling suggests some room for improvement. Restraints are
assigned weights based on their proximity to failed operations and the
number of failures they help solve. Each restraint suggests a set of
actions that can be applied to improve the scheduling. Timing
restraints could be fixed by adding states to the CFG, by adding
resources or by speculating operations. Restraints stemming from
combinational cycles forbid the use of a resource for an operation,
etc. Every action has an estimated cost, which is combined with the
number of restraints solved by this action and the restraint weight.
The action with the best estimated gain wins and is used to relax the
constraints for the next scheduling pass.
SCHEDULE_PASS(CFG C, DFG D, clock period T clk ,
Library L, User Constraints U)
Paths ← Set of combinational paths in CFG;
forall p in Paths {
 forall edges in p {
 Ready ← operations ready to schedule;
 Compute_op_priorities(Ready);
 op_best ← highest priority op;
 Op_res ← resources compatible with op_best;
 forall r in Op_res {
 if (bind(op_best,r) == success) break;
 }
 if(op_best failed and e is last in lifespan){
 Failed_ops ← op_best;
 } else {Update(op_best, Ready);}
}
if (Failed_ops != ∅) { return failure;}

}
Figure 7. Performing a single scheduling pass

Example 1. Sequential Microarchitecture. Let us illustrate the
scheduling process on the example from Figure 1Figure 1, with: 1 ≤
latency ≤ 3 for the do-while loop. The scheduler starts from latency 1.
For this example we will use Tclk=1600 and the
artisan_90nm_typical library. Finding the initial set of resources is
trivial: multiplication is the only repeated operation and 3 multiplies

are to be scheduled in at most 3 states, which suggests that a single
multiplier suffices (it is a lower bound that might be reconsidered
during scheduling).

TABLE 1. INITIAL SET OF RESOURCES WITH DELAYS

resource mul add gt neq ff mux2 mux3
delay (ps) 930 350 220 60 40/70 110 115

 Table 1 shows the fastest logic implementation for the resources
of Example 1. Note that the table includes registers (ff) and 2 and 3-
input multiplexers for resource and register sharing.
I/O operations are scheduled at the very same states where they are
specified in the input code. Hence chrome_read and mask_read are
scheduled in s1 and mul1_op is enabled for scheduling. To check the
feasibility of binding mul1_op to resource mul in s1, the scheduler
builds the datapath shown in Figure 8Figure 8(a). Note that resource
mul is instantiated with muxes at its inputs. This improves timing
estimation when resources are shared between several operations.
Using a very simple timing model for the sake of illustration, the
delay of the netlist of Figure 8Figure 8(a) is:
del_ = FF_hold launch + del_mux + del_mul + del_mux + FF_setup
= 40 + 110 + 930 + 110 + 40 = 1230
 The delay satisfies the clock cycle constraint, and thus the
scheduler moves to the next ready operation (add_op). Figure 8Figure
8(b) shows the datapath model when binding add_op to resource add
in state s1 (the DFG has a single addition operation, thus there are no
input muxes). The delay of this netlist is 1580, which satisfies the
clock cycle and the the binding of add_op in state s1 is accepted.

!s1 s1

!s1 s1

mul

(a)

FF

FF

FF

!s1 s1

!s1 s1

mul

(b)

FF

FF

FF

FF

add

chrome chrome

mask mask

aver

32 32

3232

!s1 s1

!s1 s1

mul

(c)

FF

FF

FF

FF

add

chrome

mask

aver

32

32 gt

FF

threshold

FFneq

Figure 8. Datapath modeling during scheduling

Finally Figure 8Figure 8(c) shows the datapath when the scheduler
binds operations neq_op and gt_op to the corresponding resources in
the same state s1. The critical path going through resource gt has a
delay of 1800ps and results in a negative slack of -200ps for this
resource. The scheduler rejects the binding of gt_op in state s1 and
fails because s1 is the only state of the loop. This indicates that the
specification is overconstrained under the current set of resources and
latency 1.
 To relax constraints the scheduler analyzes the set of restraints for
failed operations: lack of resources (for operation mul2_op) and a
negative slack (for operation gt_op). The corrective actions are to add
state to the loop body or to add one more mul resource. Adding a
state can resolve both resource contention and negative slack;, hence
the scheduler adds state s2 and restarts the pass scheduler.
 The second pass will fail again when attempting to bind mul3_op
in state s2 because resource mul is busy implementing operation
mul2_op. The corrective action is to add one more state (s3) to the
loop (adding one more multiplier does not help because two

multiplications cannot fit in the given clock cycle). Using 3 states in
the loop, the scheduler succeeds with the schedule of Table2. It uses
the minimum set of resources and has a throughput of 3 cycles per
iteration.

TABLE 2. SCHEDULE FOR EXAMPLE 1.

 Res
state

mul add gt neq mux

s1 mul1_op add_op neq_op
s2 mul2_op gt_op mux_op
s3 mul3_op

With higher throughput requirements, the user may explore the
pipelining capabilities provided by the scheduler, as an alternative to
selecting faster, and hence much more expensive, resources.

V. PIPELINING APPROACH

 Based on extensive discussions with designers, we formulated the
following conditions for effective pipelining:
1. The II parameter must be specified by the designer.

 It is known that finding the smallest II for a given loop is an NP-
complete problem [1], and many efforts have been documented to
find good heuristics for it. We believe that the practical importance of
this problem in the context of high-level synthesis is limited, because
in hardware the II is a fundamental parameter defining the system
throughput, and designers do not have much flexibility in changing it.
At most they can change it in conjunction with the clock cycle (for
example, double the II and halve the clock period in order to reduce
area at the same overall throughput).
2. The LI parameter should be chosen (within designer-specified

bounds) by the tool.

 When the pipelined loop performs many (often an infinite number
of) iterations before exiting, the LI impact on throughput is
negligible, since it affects only the epilogue of the loop. Exploration
often starts from LI = II+1 (the minimum for pipelined execution).
3. The choice of the pipeline kernels must be timing-driven.

 This suggests that finding the kernel should be incorporated into
the scheduling process, instead of the traditional “schedule-then-
move” approaches like modulo scheduling [2, 8].
 The following procedure describes a new approach for automatic
pipelining of a loop that: a) requires minor extensions of the
constrained scheduling algorithm described in Section IV, and thus
shares all its advantages, b) is effective, as will be shown in the final
section, and c) takes into account timing when choosing the pipeline
kernel, thus resulting in a pipeline that can be implemented with the
required clock cycle.
 For the sake of simplicity, assume that both II and LI are known
for a loop (LI is handled by the scheduler by adding states within
bounds, as in the non-pipelined case). The pipelining of a loop is
implemented in two steps:
I. Scheduling of operations for a single loop iteration within the

latency interval of a loop.

II. Folding the scheduled loop iteration into a pipeline with
PS = LI/II  stages.

Step I is performed as follows:
1. Converting the loop into a straight-line sequence of nodes in the

CFG. This is obtained by first balancing the latency of all
fork/join regions of the loop body (coming from conditional
statements) so that they all have LI states, and then applying full
predicate conversion. Nested loops must either be unrolled or
correspond to the “stalling” of the pipeline (waiting for an
external condition). The stalling loops are ignored during the
scheduling passes and inserted back in the CFG during the “fold
back” step.

2. Identifying edges in the CFG of the loop body (also called
“control steps” in the literature) that are “equivalent” from the
scheduling point of view. These are the edges that are II states
apart in the loop with LI states. They are folded onto a single
edge in the final pipeline. For example, as shown in Figure
5Figure 5, operations from the first loop iteration scheduled in the
first clock cycle of Stage2 overlap with operations from the next
iteration scheduled in the first clock cycle of Stage1. Operations
scheduled on equivalent edges cannot share a resource (unless,
of course, they depend on orthogonal predicates).

3. Scheduling a single iteration within LI state nodes.

 Two additional requirements must be satisfied within the
scheduler in order to address pipelining:
a) Preserving data causality between loop iterations.

 Different loop iterations may be causally related. The next loop
iteration may need to wait until previous iterations compute the
necessary data. Iteration dependencies are represented by cycles that
form strongly connected components (SCC) in the DFG of a loop. It
is easy to see that preserving causality requires all operations from
each strongly connected component of the DFG to be scheduled
within II states. The DFG in Figure 3Figure 3(b) has a single strongly
connected component: that computes aver (involving loopMux,
add_op, mul2_op and MUX). Operations from this SCC must be
scheduled in two adjacent states (since II = 2 for this example). Note
however that there is flexibility in choosing the stage in which to
schedule an SCC, which might be exploited to achieve better timing.
Hence the set of actions of the scheduler includes moving an SCC
from one stage to another when facing negative slack.
b) Constrained resource sharing.

 A resource used for operation op scheduled at edge ej is
considered busy for all edges ek equivalent to ej.
 Once the loop is successfully scheduled in LI states, it needs to be
folded to reduce the number of states in the body to II. This is done
by folding equivalent edges onto a single edge, whose scheduled set
of operations is the union of the operations from the folded edges.
Additional control is added to represent the pipeline stage that is
being executed. In most loop iterations, all stages of the loop are
executed simultaneously. The exceptions are: the prologue and
epilogue of the loop, when only the first or the last stages must be
active, and the stalling loops, in which no stage must be active while
the stalling condition is true. To ensure this, all loop operations are
predicated by the corresponding stage signals, generated from the
appropriate FSM state registers (if the stage is not active, the
operation is not executed).

 Note that with the minor exception of requirements a) and b) from
item 3 in Step I, the scheduling procedure for the pipelined loop
remains identical to the non-pipelined case. This is a major advantage
of the suggested approach.

Example 2. Pipelined Microarchitecture (II=2). Due to edge
equivalence, resources should not be shared in states s1 and s3, hence
two mul resources must be created. Then scheduling proceeds exactly
as for the sequential microarchitecture, except that it starts from 3
states (pipelining requires LI>II). The only pipeline constraint is
ensuring that SCC={loopMux, add_op, mul2_op, MUX} is
scheduled in a single pipeline stage. This is satisfied for the schedule
shown in Table 2, which is applicable to the pipelined case as well
(changing only bindings: mul1_op→mul1, mul2_op→mul1
mul3_op→ mul2). This illustrates the uniformity of the approach
between the sequential and pipelined cases.

Example 3. Pipelined Microarchitecture (II=1). Pushing the
throughput requirements to the limit results in implementing a single

loop iteration per clock cycle. Scheduling with LI=2 fails because
two chained multiplications in a single state exceed the clock period.
The scheduler relaxes constraints and increases LI to 3. The
difference from the non-pipelined case is that no resource is shareable
between states (II=1 makes all the edges equivalent), hence 3
multipliers are created in the initial set of resources, and
SCC={loopMux, add_op, mul2_op, MUX} must be scheduled in one
state.
 Scheduling uses the same bindings as in Table 2 until mul2_op.
This operation is a part of the SCC and must be scheduled in the
same state as add_op. This however violates timing, and the
scheduling pass fails. A novel feature of the suggested pipelining
approach is that in the relaxation phase this failure is distinguished
from an ordinary negative slack failure and the corrective action of
moving the whole SCC to state s2 is suggested. With this corrective
action, the scheduler succeeds.
 Different implementation architectures for Example 1 are
compared by throughput and area. All architectures provide
meaningful trade-offs: higher throughput implies larger area. Another
perspective could be provided by fixing the throughput and
synthesizing P1, P2 and S with clock cycles T, T/2 and T/3 (to keep
throughput constant). This experiment is illustrated, with a more
realistic design, in Section VI. It may result in smaller area because
more non-timing critical (hence smaller) resources may require less
total area than fewer critical (hence larger) ones.

TABLE 3. COMPARING MICROARCHITECTURES FOR EXAMPLE 1.

 Sequential(S) Pipe, II=2 (P2) Pipe, II=1(P1)
#cycles/iteration 3 2 1

Area 16094 24010 30491

VI. EXPERIMENTAL RESULTS

 Our experiments illustrate three key points of this approach.
1. The suggested pipelining method is effective and practical.

 Figure 9Figure 9 shows a plot for about 40 industrial designs,
obtained from companies that use our tool for their design flows and
that use the pipelining method previously described. These designs
have different complexities, with the number of operations ranging
from 100 to over 6000 (the average is 1400). They include filters,
FFTs, image processing algorithms, etc. The scheduler time,
including using logic synthesis for area and performance estimates,
never exceeds one hour (on average, it is 7 minutes). Execution time
does not correlate with input CDFG size, but depends on the number
of pass scheduler calls, which in turn depends on how tightly
constrained the design is, by how many conflicts or cycles are
discovered and must be avoided by restraints, by how many times
resources need to be added to the initial estimate, and so on.

0

1000

2000

3000

4000

5000

6000

7000

0 500 1000 1500 2000 2500 3000
Scheduling time (sec)

o

f
O

p
s

Figure 9. Profiling designs and scheduling times

2. Selecting the pipeline kernel by timing is vital.

 We investigated the seven most timing-critical designs among
those reported above, and disabled the action of moving SCCs to later
pipeline stages when a negative slack is encountered. This resulted in

a significant increase of negative slack after synthesis, which had to
be compensated by larger area during subsequent logic synthesis. The
resulting percentual percentage area penalty for these designs is
shown in Table 4. This experiment demonstrates that timing
awareness of the pipelining approach is a key to delivering a
predictable design flow. It allowed us to achieve a frequency of 2GHz
for one of the pipelined designs.

TABLE 4. IMPACT OF TIME-DRIVEN HEURISTICS

 D1 D2 D3 D4 D5 D6 D7 Avg

% Area
Penalty

14.7 2.7 33.0 21.5 3.7 6.4 12.9 13.5

3. Pipelining extends the area-delay-power trade-offs.

We selected an IDCT algorithm used in video decoding, and tried
both pipelined and non-pipelined implementations, with latencies
ranging from 32 to 8 clock cycles. We performed 25 HLS and logic
synthesis runs, exploring a 20X power range, a 7X throughput range,
and a 2X area range.

 Figure 10Figure 10 shows the area/performance curves for various
micro-architectural solutions, to explore the impact of pipelining.
Each curve corresponds to a different microarchitecture (loop
latency). The delay is actually the inverse of the throughput and is
obtained by multiplying the Initiation Interval (which is the same as
the latency for the non-pipelined cases, and half of the latency for the
pipelined cases) by the clock cycle.

Figure 10. Area/delay for different micro-architectures

Figure 11. Power/delay for different micro-architectures

Pipelining in this case improves area at equal throughput, because it
doubles the clock cycle, with a significant advantage in terms of area.
Note also that the best Pareto point (bottom left) can be achieved only
by pipelining (with Initiation Interval 16 and Latency Interval 32,
called “Pipelined 32”). The same performance level could not be

achieved without pipelining, except with a latency of 8 or 16 clock
cycles (“Non-Pipelined 8” and “16”), but with larger area due to the
faster clock.

Of course, that same low area, high performance point has a cost in
terms of power, as shown in Figure 11 (it is the bottom point of the
“Pipelined 32” curve).

VII. CONCLUSIONS

This paper describes a very practical and effective approach to
pipelining for high-level synthesis. It improves over past approaches
by using a highly accurate area and timing model while scheduling
the pipeline. It automatically finds the best pipeline kernel and lets
designers explore better area/delay/power solutions than with non-
pipelined implementations. Finally, it re-uses essentially the same
infrastructure of the non-pipelined scheduler, resulting in smooth and
pragmatic trade-offs between pipelined and non-pipelined
implementations.

REFERENCES

[1] M. Lam. Software pipelining: an effective scheduling technique for
VLIW machines. In Proc. ACM SIGPLAN ’88, 1988, pages 318-327.

[2] B. R. Rau and C. D. Glaeser. Some scheduling techniques and an easily
schedulable horizontal architecture for high performance scientific
computing. In Proc. Fourteenth Annual Workshop on
Microprogramming, 1981, pages 183-198.

[3] F. Sánchez and J. Cortadella. Time Constrained Loop Pipelining. In
Proc. ICCAD, November 1995, pages 592-596.

[4] N. Park and A.C.Parker, “Sehwa: a software package for synthesis of
pipelines from behavioral specifications”, IEEE Trans. Computer-Aided
Design, vol. 7, 1988, pp. 356-370.

[5] C-T Hwang, Y-C Hsu, and Y-L Lin, Scheduling for functional
pipelining and loop winding, Proc ACM/IEEE 28th Design Automation
Conference, pp 764-769, 1991

[6] R. Potasman, J. Lis, A. Nicolau, and D. Gajski. Percolation based
synthesis. In Design Automation Conference, 1990, Proceedings, 27th
ACM/IEEE, pages 444-449.

[7] L. Gao, D. Zaretsky, G. Mittal, D. Schonfeld, P. Banerjee. A software
pipelining algorithm in high-level synthesis for FPGA architectures. In
ISQED 2009, pages 297-302.

[8] B. Ramakrishna Rau: Iterative modulo scheduling: an algorithm for
software pipelining loops. MICRO 1994: 63-74

[9] S. Gupta, N.Dutt, R. Gupta, Al. Nicolau: SPARK: A High-Level
Synthesis Framework For Applying Parallelizing Compiler
Transformations. VLSI Design 2003: 461-466.

[10] R. Schreiber, S. Aditya, R. Rau, V. Kathail, S. Mahlke, S. Abraham, G.
Snider: High-Level Synthesis of Nonprogrammable Hardware
Accelerators. ASAP 2000: 113-124.

[11] M.Kudlur, K.Fan, S.Mahlke: Streamroller: automatic synthesis of
prescribed throughput accelerator pipelines. CODES 2006: 270-275.

[12] K. Turkington, A. Constantinides, K. Masselos, P. Cheung: Outer Loop
Pipelining for Application Specific Datapaths in FPGAs. IEEE Trans.
VLSI Syst. 16(10): 1268-1280 (2008)

[13] J. Cong, W. Jiang, B.Liu, Y. Zou: Automatic memory partitioning and
scheduling for throughput and power optimization. ICCAD 2009: 697-
704

[14] D. Knapp and M. Winslett. A Prescriptive Formal Model for Data-Path
Hardware. In IEEE Trans. Computer-Aided Design, Vol. 11, No. 2, Feb.
1992, pages 158-184.

[15] Sharma A, Jain R. Estimating architectural resources and performance
for high-level synthesis applications. In. Proc. 30th Design Automation
Conference, 1993, pp 355- 360.

