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ABSTRACT 

In this paper, we address the differential representation 
of the time-domain characteristics of lossy MTLs. This 
approach is of great interest for the efficient simulation of 
circuits with long interconnects and nonlinearities. The 
properties of this characterization method are discussed 
with particular emphasis on the bandwidth and on t,he 
order of the differential operators used. Our discussion is 
supported by a complete characterizat.ion example for a 
realistic wideband 3-conductor interconnect. 

I .  INTRODUCTION 

As the number of circuits containing electrically long in- 
terconnects is steadily growing, the transient simulation 
of multiconductor transmission lines (MTLs),  which can 
directly account also for the effects of nonlinear devices, is 
becoming increasingly important (e .g . ,  see [l]). The  main 
problem of the transient simulation of MTLs (consisting of 
the numerical solution of a set of integral-differential equa- 
tions for the variables a t  the line ends) is to  achieve the 
required accuracy a t  an affordable computational cost, in 
view of the complexity of real applications and of the speed 
of available computers. Recently, in order to improve the 
numerical efficiency of the simulation schemes, the use of 
transient equations of differential-difference type has been 
widely considered: the system equations are obtained by 
replacing the linear operator describing the line effect in 
the original transient equations with a finite-order differ- 
ential operator and with an ideal time delay. Although 
not immediately apparent, many simulation schemes ( e.g . j  
the Asymptotic Waveform Evaluation (AWE) method [ a ] )  
share this common approach. 

In this paper, we discuss the main features of the differ- 
ential representation of the MTLs characteristics, namely 
the generation of the differential approximations, their or- 
der and bandwidth, and their use for the transient simu- 
lation. 

11. DIFFERENTIAL LINE CHARACTERISTICS 

The line characteristic operators describing the transfor- 
mations performed by a T L  on the signals at its ends are 
usually expressed as convolution integrals with proper line 
impulse responses (IRs). The  numerical representation of 
the line operators with convolution integrals, however, is 
computationally expensive, since the cost of any new time 
step is proportional to  the number of previous t ime st.eps 
accounted by the convolution integrals. As a result, the 
cost of an n-step transient computation is proportional 
to  n2,  while it becomes proportional to  n x m with the 
use of a differential representation of order m for the line 
operat.ors. In order to  better assess this advantage, some 
further considerations may be useful. The  most direct 
way t,o generate differential representations of the line op- 
erators is to  compute rational approximations of the line 
frequency characteristics. I t  is intuitive tha t  the order 
of the rational approximation grows indefinitely with the 
bandwidth over which a given accuracy is required. Even 
if the linear phase term responsible for the line delay is ex- 
tracted before the approximation, no finit.e order rational 
function can globally approximate T L  transfer functions, 
since, for large enough frequency, they have irrational be- 
havior. The bandwidth of a simulation problem and the 
number of time steps in its solution, however, are strictly 
related, since the latter is determined by the time reso- 
lution needed and by the transient duration. This means 
that  the order required for a rational representation of the 
line operators is a function (hopefully slowly growing) of 
n and that  the cost of an n-step transient computed by 
differential characteristics is actually n x m(n).  A proof of 
this general rule for a specific approximation scheme can 
be found in [3], where the increase of the method order is 
shown with respect t o  the transient duration. 

The differential line characteristics have the important 
additional advantage to  be integrable by a large num- 
ber of standard numerical methods. Many available soft- 
ware packages can be directly applied to  the solution of 
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transient equations of differential-difference type, thereby 
leading t o  efficient MTL simulators at low developement 
cost. Furthermore, many standard circuit simulators ac- 
cept arbitrary rational transfer functions, thus increasing 
even more the interest for the differential chara,cterization 
of TLs. They can be easily (extended to include custom 
i l i lTLs,  described by differential characteristics supplied 
by the user at the accuracy level he needs. 

UifTerential line characteristics can be readily obtained 
in many different ways. Most approximation procedures 
for TL differential characterization rely on the AWE 
method to obtain rational frequency characteristics. Al- 
ternatively, rational approxiniations of network f3unctions 
can be obtained by means of an optimization procedure, 
with the objective of achieving the required accuracy in 
the specified bandwidth. The  variety of possible optimiza- 
tion strategies is quite large, but int,eresting results can be 
sbtained already wit,h MATLAB routine INVFREQS. 

Different,ial representations of the line operators can be 
genc.rated also in the time domain by approximating t,he 
Ins, or their integrals, with exponential sums (e.g., see 
[4]). This approach does not extend the limits of the 
approximation, but  apparent,ly has two advantages, 6 ,  e., 
the exponential approximations can be obtained iby a real 
function fitting and the t imc error of the approinmation 
is directly under control. On the other hand, the tirne- 
doninin fitting requires the knowledge of the line IRs, 
which means addit,ional computation for the characteri- 
zation procedure. Finally, differential line characteristics 
can b e  o h t a i n d  also from discrek niodcls of the line, ei- 
tlicr hased on chains of lumped equivalents or 011 the so- 
lution of t,l;c TI, equation with a discrete along-thc-line 
coortlina,de. 

111. 1)IFFERRNTIAL @HARACTERIS TICS FOR A 

3- c o NI) U c TO R T L 
In ibis Section, we deveiop a complete example of differen- 
tial characterization for a, MTL, with the aim of verifying 
in a real case the considerations developed in the previous 
S e c h n .  The method selected to  generate bhe dXerential 
~haractcrist,ics is the time-domain fitting of the M T E  Ins. 

A .  
The t.ransient equations for it terminated 3-conductor line 
cliaraci.erizcd by iis matched scat,tering parametcrs are 

lmp~11sc' responses of a IMTL 

* aa, b:2 = k& * a? 
(1) f, (up + b, - e, ,  Y * ( u p  - 4 ) )  = 0 

where * means t ime convolution, U,,  h, ( p  = 1 , 2 )  are 
the unknown voltage waves at the line ends, (related t,o 
voltages and currents by up = +(up -i- z * ip), bp = +(vP - 
z * i p ) ,  = (upl,vp2)T, i, = (ipl,ipZ)T, see ~ i g .  I ) ;  

and y (or z )  are the transient expressions of the matched 
transmission scattering parameter and the characteristic 
admittance (or impedance) matrices, respectively, f ,  = 0 
are the vector equat>ions describing the loads and ep = 
(e,l, e,z)T are the driving voltage signals. 

Figure 1: N e t w o r k  represen ta t ion  of a loaded 3 -conduc tor  
TL circui t  with the  variables  used in t h i s  analysis .  

Although the impulse responses of (1) l a  and y are well- 
behaved functions, their accurat,e evaluation for wideband 
( L e . ,  low loss) TI,, as fast interconnects are, is not triv- 
ial. In the wideband case, these functions have a fast 
initial part and a slow!y decreasing tail, which demand 
for nonuniform time sampling and prevent, from a direct 
application of FFT inversion. This problem is discussed 
in [SI, where an algorithm for Laplace Transform inver- 
sion (thereafter indicated by HILT) i s  effectively applied 
to  ihe evaluation of the HRs of a 2-coi1ducto~ TE. With 
the HILT algorithm, a n y  sample of h ( t )  i s  obt,nined as a 

eiected complex s points. 
(ie., t,hc solution of the 

MTL eigenvaluc prc litated by the use of the 
following normalized time anti complex frequency quanti- 
ties: T = vt, S = C + jR = s / u ,  where Y = E&,/L,, R,, 
and L ,  being thc largest elements of the per-unit-length 
DC resistance and inductance mat,riccs, rcspectively. Be- 
sides, the linear phase terms of the propagation factors 
inside H must be extracted before the application of the 
jHLT algorithm. 'To this end, t,he normalized transmission 
matrix is writ,ten in  t,lie form 

( 2 )  

where T k  ( k  = 1,2) are tlrc normalized modal propaga- 
t,ion constants of the MTE in which t,hc asymptotic terms 
-STk are ext>racted, L is the line length, M,(S)  is the 
matrix of the voltage niodal profiles, and A T  = TI - T2. 

The fiinct,ions f i k  are inverse transformed by HIET and 
the IR matrix is obtained as a sum of two contributions, 
z.e., I L ( ~ )  = v { h l ( ~ ( t  - TI)) -+ &(v(t  - ~ 2 ) ) ) .  
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The structure of the example is a two-land PCB with 
length .C = 25 cm, dielectric constant E ,  = 4.7,  substrate 
height 200 p m ,  land thickness 30 pm, separation 90 pm, 
and widths 60 pm and 30 pm.  This structure is a typi- 
cal wideband (low-loss) interconnect, made strongly asym- 
metric t o  test the ability of the inversion method to  han- 
dle frequency-dependent modal profile matrices. Losses 
in the ground plane are neglected, whereas the per-unit- 
length resistance of the lands is described by the simple 
Holt's resistance model, since in the considered time inter- 
val the behavior of the IRs is controlled by the skin losses 
[ 5 ] .  When needed, more accurate resistance models can 
be freely used in this inversion procedure. 

The  normalized IR hll(T) for this structure is shown 
in Fig. 2: logarithmic scales are used to  include both the 
slow and the fast part of the waveform. Besides, tshe loga- 
rithmic time scale has a first origin in T = 0,  a t  the arrival 
of the contribution of the faster mode (the odd one), and 
a second origin in AT,  a t  the arrival of the contribution 
of the slower mode (the even one). Since the scale factor 
of this example is v = 3.1 x lo6,  the time interval shown 
spans up to  30 ns, i.e., about 30 time delays. 
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Figure 2: Normal i zed  IR  hll(T) of t h e  RLC 3-conduc tor  
TI; of t h e  example .  Special logar i thmic  scales,  e x p h i n e d  in 
t h e  t ex t ,  are w e d  t o  highlight t h e  f ea tures  of t h e  wave form.  
T h e  i n s e r t  exp la ins  t h e  m e a n i n g  of t h e  h e lemen t s .  

Fig. 3 shows, in conventional linear scales, all the four 
elements of the MTL transmission response matrix in the 
form of step responses, i.e., F p q  = hdT ' .  As it can be 
seen, the cross terms of this matrix consistently have the 
typical shape of the crosstalk signals caused by step input 
signals. For brevity, we skip the evaluation of the transient 
characteristic admittance matrix,  which is obtained with 
the same procedure and is made of functions similar t o  
the transient admittances of 2-conductor TLs. 

B. Exponen t ia l  fitting 
i n  this Section, we generate a differential represen_tation 
of the line operator (h,,(T)*) by approximating hl l (T)  
wit.h a sum h, of exponentials. We apply here, in a more 
general context, the idea of [4], and add some important 
remarks. 

The  most relevant point of a differential characteriza- 
tion obtained by t,ime fitting is the selection of the time 
interval [T,,, , T,,,] on which carrying out the approxi- 
mation. The  minimum time depends on the driving sig- 
nals and on the bandwidth of the line loads, which is 
always finite owing to  the parasitics present a t  the line 
ends. The  maximum time coincides with the transient 
duration. Differential characteristics accurate outside this 
time int,erval are useless. I t  should be emphasized that 
approximations accurate for arbitrarily small time val- 
ues are equivalent to infinite bandwith representations, 
and have no physical meaning. The  additional condition Jw"''- z,(T)dT = JTm"' x11(T)dT must be imposed to  en- 
sure the consistency of the approximation, also when a 
significant part  of the IR falls before Tmin. This simple 
condition can account for the neglected part of the IR, 
because the signals transformed by the line operators are 
approximately constant over a time interval of duration 
Tmin ' 

In order to  automatically satisfy this condition and to  
deal with functions with a smaller dynamic range, i t  is 
preferable t,o fit the step response function F l l .  We seek 
an approximate exponential step response of the form F a  = 
F,l + F a 2 ,  where ?,I = (c1 - xi c l i e - ' l t T ) u ( T )  is fitted to  
Fll in [T,i,, AT]?and F a 2  = (~2-c~ c2ie-'Zt(T-AT))u(T- 
AT) is fitted to Fll-F,l in [AT+T,i,,T,,,]. For our ex- 
ample, the time constants of the approximating function 
are assumed real and positive, and are determined by a 
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standard least square fitting procedure over four decades, 
z.e., in the interval [TmZn =: T,,, = lo-’], Of 
course, the accuracy of the  approximation or its interval 
of validity grow with the  number of the time constants 
used. For our example, the  influence of the approxima- 
tion order can be seen in Fig. 4, where x,,(T) is com- 
pared with two approximations of order (2,3) and (2,s) 
((mj , m2) indicates m k  time constants in F a k ) .  

\ *. _yl 5--..r ’ ”.””’ - 
10:. 10-1 T - A T  

Figure 4: Comparzson of the second pulse of hll(T) 
wzth two exponentzal approxzmatzons zn the range [AT + 
l W “ ,  lo-’]. The solid curve represents the exact IR; the 
dashed one refers t o  an approxzmatzon of order (2>3) ~ and 
the dotted one t o  an approxzmatzon o f  order (2,5). K o t r  
t he  use o f  doubly-loganthniac scales. 

C. Line output from a diflerential characterzstie 
The final differential-difference eqiiat,ions Corresponding to 
our exponential approximati’m are obtained from 

( 3 )  
b Z l ( t )  = [h,l(t - TI) + h < 2 2 ( t  - 7 3 ) l  * Z( t1  
b i l ( t )  = h,l(t) * z(t - T I )  + h,,z(t) * Z ( t  -- T Z ) ,  

where r k  = vTk and ha,  are the IRs corresponding to  r , k .  

To complete the example, we show in Fig. 5 a solution, 
computed by a Runge-Kutta routine, of the differential 
equation obtained from ( 3 )  for the (2,3) h,  approxima- 
tion of Fig. 4. The  input is a step voltage wave U, wit,h 
a nasrmalized rise timp T, = 2 x and the equation 
solved describe the transmission of this signal d o n g  the 
land # 1 when no signa.1 is impinging on land ## 2. For 
validation purposes, the exact b z I j  computed by HILT of 
~ ~ ~ ( ~ S ) A s ( S ) ,  is also shown. Even if the  rise time of the 
input signal is close t o  Tmin := the  agreement of the  
two curves is remarkably good. 

IV .  CONCLUSIONS 
In this paper, we highlight the relationship between the 
bandwitdh of a MTL simulation problem and the order 
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Figure 5: Approximate (solid curve) a n d  reference (dot- 
led) output on land # I ,  f o r  a real step input signal 
(dashed). The approximation is computed by integratzon 
of a di f ferent ial  characteristic, and  the  reference is deter- 
mined via HILT  (5ee  text) .  The output signals are shifted 
in T = 0. 

required for the differential chara~t~erist ics of the MTL. 
The  considerations are supported by a detailed example 
for a realistic asymmet.ric MTL, where a diflerential char- 
acteristic is obt,ained by fitt,ing the accurate IRs of the 
structure. From this analysis, differential characteristics 
appear less efficient than commonly believed, yet easy to  
obtain and solve. Therefore, they constitute an important 
tool for the transient simulation of MTLs. 
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