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e disponibilità. Un sentito ringraziamento va a tutto il team Ascomp, soprattutto a
Djamel e Chidu per il supporto e l’opportunità concessami. In questi anni ho avuto
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Abstract

This work focuses on the development of efficient computational tools for the
simulation of turbulent multiphase polydispersed flows. In terms of methodologies
we focus here on the use of Large Eddy Simulation (LES) and Quadrature-Based
Methods of Moments (QBMM). In terms of applications the work is finalised, in
order to be applied in the future, to particle production processes (precipitation
and crystallisation in particular). An important part of the work concerns the
study of the flow field in a Confined Impinging Jets Reactor (CIJR), frequently
used in particle production processes. The first part is limited to the comparison
and analysis of micro Particle Image Velocimetry (µPIV) experiments, carried out
in a previous work, and Direct Numerical Simulation (DNS), carried out in this
thesis. In particular the effects of boundary and operating conditions are studied
and the numerical simulations are used to understand the experimental predictions
and demonstrate the importance of unavoidable fluctuations in the experimental
inlets. This represents a preparatory work for the LES modelling of the CIJR.
Before investigating the accuracy of LES predictions for this particular application,
the model and the implementation are studied in a more general context, represented
by a well-known test case such as the periodic turbulent channel flow: the LES model
implementation in TransAT, the code used in this work, is compared with DNS data
and with predictions of other codes. LES simulations for the CIJR, provided with
the proper boundary conditions obtained by the previous DNS/µPIV study, are then
performed and compared with experiments, validating the model in a more realistic
test case. Since particle precipitation and crystallization often result in complex
interactions between particles and the continuous phase, in the second part of the
work particular attention has been paid in the modelling of the momentum transfer
and the resulting velocity of the particles (relative to the fluid). In particular the
possibility of describing poly-disperse fluid-solid systems with QBMM together with
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LES and Equilibrium Eulerian Model (EEM) is assessed. The study is performed by
comparing our predictions with DNS Lagrangian data in the turbulent channel flow
previously described, seeded with particles corresponding to a realistic Particle Size
Distribution (PSD). The last part of the work deals with particle collisions, extending
QBMM to the investigation of non-equilibrium flows governed by the Boltzmann
Equation with a hard-sphere collision kernel. The evolution of the particle velocity
distribution is predicted and compared with other methods for kinetic equations
such as Lattice Boltzmann Method (LBM), Discrete Velocity Method (DVM) and
Grad’s Moment Method (GM). The overall results of this thesis can be extended
to a broad range of other applications of single-phase, dispersed multiphase and
non-equilibrium flows.
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1
Introduction

1.1 CFD modelling in chemical engineering
Computational fluid dynamics turns out to be an essential tool in the devel-

opment of chemical processes as it is demonstrated by the numerous publications,
books and reviews on this subject [Dudukovic, 2010, Fox, 2006, Harris et al., 1996,
Kelly, 2008, Kuipers and Van Swaaij, 1997, Ranade, 2002, Trambouze, 1993]. This
is due to the need of detailed simulations, that can substitute expensive and some-
times impracticable experimental campaigns, at different stages of the development
of a chemical process or of the design and optimisation of a chemical reactor, as
illustrated in Fig. 1.1. Many times however, the simulation context can be very
challenging because of the complexity of the physical mechanisms involved and of
the geometries.

Figure 1.1: Developments stages of a chemical reactor. [Ranade, 2002].
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1 – Introduction

For example, turbulent dispersed multiphase flows are often encountered in many
applications, from the small scale laboratory equipments to large industrial plants:
bubble columns, fluidised beds, reactors for polymer and drugs production, spray
combustion, just to cite a few. These applications are not limited only to chemical
engineering but, refer to a broader range of engineering applications such as energy,
environment, biology, physiology and hydraulic. For a generic introduction and
applications of turbulent dispersed flow simulation the reader is referred to the
numerous published books and reviews [Balachandar and Eaton, 2010, Crowe et al.,
1998, Curtis and Van Wachem, 2004, Loth, 2000, Mashayek and Pandya, 2003,
Prosperetti, 1999, Sundaresan, 2000, Zhou, 2010]. The term “dispersed” is used to
refer to a situation when it is possible to recognise a continuous phase (either gaseous
or liquid) and a dispersed phase (either gaseous, liquid or solid) made by relatively
small particles, droplets or bubbles (particles in a loose sense). We do not focus in
this discussion on free-surface flows in which the main issue is instead represented
by the motion of the interface, even if, in some applications this problem must be
taken into account.

Focusing on chemical engineering, the design, scale-up and optimization of tur-
bulent multiphase processes require deep understanding and characterisation of the
critical and transitional regimes (the most famous and relatively simple among them
is the transition to turbulence). Indeed the simulation of the entire range of flow
conditions and regimes is a very challenging problem but practically impossible be-
cause of the huge number of physical phenomena involved, the different time and
length-scales involved and the complex interactions between them. The most at-
tractive approach is therefore represented by the so-called multi-scale methods that
make use of mathematical models derived at different scales, attempting to couple
them explicitly, or alternatively to pass information between them, to catch the
whole physics involved, optimizing the computational costs. Various attempts have
been made in this direction for the simulation of single-phase turbulence, dispersed
flow modelling, mixing and reaction, etc. [Kalweit and Drikakis, 2008, Lerou and
Ng, 1996, Peters, 2009, Sagaut et al., 2006, Van den Akker, 2010, Van der Hoef
et al., 2006].

The key issue in the simulation of complex systems, however, is not only re-
lated to the mathematical modelling of the different scales and the links between
them (the meso-scales) but also to the computational tools capable of efficiently
solving those models. Three main aspects are investigated in this work: turbulence,
poly-dispersity and non-equilibrium. Each of these is modelled and resolved with
computational tools and models that represent a trade-off between an adequate de-
scription of the physics at competitive computational costs. The choice of these main
subjects has been motivated in particular by the interest in modelling and simulat-
ing chemical reactors for particle production. In this work we are in fact interested

2



1.2 – Non-dimensional numbers and flow regimes

in computational tools capable of describing turbulent mixing of fluids with differ-
ent compositions, resulting in supersaturation, which is the driving force of particle
formation. The model has to be moreover capable of describing the final particle
size distribution of the produced particles. It is also very important to describe
molecular effects for which the particles, because of the particular flow conditions,
do not fully satisfy the continuum hypothesis and the local equilibrium assumption
(in other words particles velocity distribution far from the Maxwellian equilibrium).
This is a very innovative and interesting field in which these three aspects must be
taken into account [Kalweit and Drikakis, 2008, Karniadakis et al., 2005, Marchi-
sio et al., 2006, Salata, 2004, Yu and Lin, 2010, Zhao et al., 2011]. However, as
already pointed out, most of the topics and results of this work can be extended to
the cited range of applications. In this chapter fundamentals of multiphase flows
together with the objectives and motivation of this work are presented, introducing
non-dimensional numbers involved in the simulation of turbulent multiphase flows
and giving a general overview of the problems involved and a brief classification of
flow regimes. Details about theory and models are instead postponed to Chap. 2.

1.2 Non-dimensional numbers and flow regimes

Multiphase flows can be conveniently described and categorised by non-dimensional
numbers. The first important number is the well-known macroscopic Reynolds num-
ber (Re):

Re = ρ|U|L
µ

, (1.1)

where ρ, µ, |U| and L are respectively the density, the viscosity and the mean
(or characteristic) velocity and system dimension. It gives a measure of the ratio
between inertial and viscous forces and consequently quantifies the importance of
turbulence in the system. The transition from laminar to turbulent flows for mul-
tiphase flows is influenced by many physical parameters: the concept of turbulence
itself can be defined either at the macroscopic scale of the system or locally only for
one of the phase [Fox, 2012]. For this reason also a local particle Reynolds number
can be defined as follows

Rep = ρ|Up − U|2r

µ
(1.2)

by using the relative velocity of the particle Up with respect to the surrounding
fluid and the particle radius r, to classify the interaction between the fluid and the
particles. An important example is represented by the drag force FD applied by the
fluid to a spherical particle that can be conveniently described by the drag coefficient

3



1 – Introduction

CD

CD = 2FD

πr2ρ|Up − U|2
(1.3)

which depends on the particle (or relative) Reynolds number, in the way depicted
by Fig. 1.2. In the first part of the plot the Stokes law holds (CD = 24

Rep
) while for

larger relative velocity approximate formulas [Clift et al., 1978] can be used.

Figure 1.2: Drag coefficient CD as a function of the particle Reynolds number [Crowe
et al., 1998].

Figure 1.3: Schematic dynamics of particles with different Stokes number [Crowe
et al., 1998]. Particles with St ≪ 1 follows the fluid while for St ≫ 1 they feels
negligible force from the fluid. In the case of finite St ≈ both inertial effects and
fluid forcing are important.

4



1.2 – Non-dimensional numbers and flow regimes

A second important characterisation of dispersed multiphase flows can be made
on the basis of the ratio between the characteristic response times of particles and
fluid. This is expressed by the Stokes number (St) defined as:

St = τp

τf

(1.4)

where τp and τf are respectively the particle response time and the characteristic
time-scale of the fluid. The former can be written as

τp = (2ρp + ρ)d2

36µ
(1.5)

where d = 2r is the particle diameter and ρp is its density, while the latter can
be arbitrary chosen depending on the system scale or, in case of turbulent flows,
either the turbulence integral scale or the minimum scale, giving place to different
definitions of Stokes number, either global or local. The meaning of the Stokes
number can be easily explained as the tendency of a particle to follow the fluid, as
represented by Fig. 1.3.

The third key indicator for complex multiphase flows is represented by the Knud-
sen number (Kn) that gives an estimation of the importance of particle-particle
interaction. It is defined as:

Kn = λ

L
, (1.6)

where λ is the mean free path of a particle in a fluid between two successive colli-
sions. L can be again defined globally as the system length-scale but to catch the
local micro-scale behaviour of the system also a local length-scale can be used or a
variational scale φ |dφ/dx|−1 considering a generic fluid variable of interest φ [Lockerby
et al., 2009]. The concept of Knudsen number behaves originally to the kinetic the-
ory of gases but most of concepts and tools holds similarly also for gas-particle and
fluid-particle flows [Gidaspow, 1994].

Other important non-dimensional numbers such as Mach number (Ma), Damköhler
number (Da), Prandtl number(Pr), Sherwood number (Sh) and Schmidt number
(Sc) come into play when other phenomena such as compressibility effects, chemical
reactions, heat and mass transfer or scalar transport are considered. However the
focus here is on the first three non-dimensional numbers introduced above. As it has
been already pointed out, these numbers are usually not uniquely defined because
of the multi-scale features of the flow. Nevertheless they represent fundamental
concepts that give a global understanding of the physical mechanisms and allow to
define criteria to choose appropriate computational models. The importance of these
three numbers and the regimes that they define are explained in the next sections,
with particular emphasis to applications for particle formation processes.
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1 – Introduction

1.3 Turbulence
Most of the flows that can be observed in nature and in the process industries are

turbulent and turbulence has been a very active field of research since many decades.
However many problems remain open, especially when turbulence is coupled with
other physical phenomena or is developed within complex geometries. This is the
case, for example of multiphase flows and of mixing in micro-devices.

In principle, when considering flow and mixing in micro-devices, the turbulence
effects are often neglected because the Reynolds number linearly depend on the sys-
tem length-scale. However, for some particular applications (such as the production
of polymeric nano-particles presented in Chaps. 3 and 5), where an adequate mixing
rate is necessary, the flow can be in a transitional regime or even fully turbulent. A
schematic representation of flow regimes in micro-devices is reported in Fig. 1.4.

Figure 1.4: Characterisation of static and micro mixers for particle formation pro-
cesses based on mean flow rate and characteristic length.

Recent hardware developments have given an important acceleration towards the
use of more accurate turbulence modelling approaches such as Large Eddy Simu-
lations (LES) and Direct Numerical Simulations (DNS). When compared with the
classical Reynolds-Averaged Navier-Stokes (RANS) equation approach, these are
becoming acceptable in terms of computational costs, for respectively medium and
small scale industrial applications. In this work we deal with these two tools, focus-
ing in particular on LES models. In fact, contrarily to DNS, that are no more than
virtual experiments, LES requires complex modelling procedures to be applied in
real flows. For example when LES is used to model turbulent multiphase reacting
flows a number of issues arise. One of the most important deals with the effects of
small scale fluctuations to the dynamics of dispersed inertial particles. This problem
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1.4 – Poly-dispersity

is addressed in details in Chap. 6. Another issue that is not investigated in this work
is the micro-mixing problem that come from the fact that chemical reactions occur
at the molecular level [Pope, 2000] and the rate of the chemical reaction therefore
depends on the local and instantaneous concentrations of the local concentration of
reactants (that are not explicitly known in LES). Also the multiphase structures of
the flow can be seen as a closure problem at the microscopic scale that, in LES, is
not fully resolved.

1.4 Poly-dispersity
In many chemical engineering applications (e.g., particle production) one of the

expected output from a simulation is the detailed information about the size of
dispersed particles. Secondarily, since particles of different size (and different St)
behave in a very different manner, this information is crucial also to catch the correct
overall dynamics of the flow. Therefore, a second important aspect we want to model
is the evolution of a specific property (in this case size) for each particle. This is
however a very complex problem because involves a detailed description of the single
particle, giving place to an enormous number of degrees of freedom, related to the
microscopic scale of the system (where each particle is represented explicitly). On
the other hand, remaining at the macroscopic level force us to compute only mean
quantities such as mean particle size or volume fraction. A third possibility is the so-
called “Population Balance Model” [Ramkrishna, 2000, Ramkrishna and Mahoney,
2002, Rigopoulos, 2010], in which some microscopic information is retained, though
in a statistical sense, with the use of a Particle Size Distribution (PSD) that describes
the statistical distribution of particle size at each point of the domain in a continuous
way. This can be achieved considering infinitesimal volumes of the fluid, counting
the number of particles and dividing them into separate particle size classes. This
results in a discrete frequency distribution, depicted in the left part of Fig. 1.5.
Another averaging on the phase space (particle size) leads to a continuous PSD,
also called Number Density Function (NDF) (an example is given in right part of
Fig. 1.5).

More generally, a system constituted by a continuous primary phase and a dis-
persed secondary phase (i.e., droplets, particles or bubbles) can be conveniently de-
scribed by the Generalised Population Balance Equation (GPBE) [Fox and Marchi-
sio, 2007] that can be viewed as a generalisation of the Population Balance, Boltz-
mann, Williams or Particle Dynamics equation for generic dispersed multiphase
flow. In this formulation in fact, not only the size of the particles come into play,
but a generic set of property of the dispersed phase (e.g., velocity, chemical compo-
sition, surface area) is used instead. This approach can be regarded as a meso-scale
modelling tool and has numerous links with the field of kinetic theory of rarefied
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1 – Introduction

gases. Details about this approach are illustrated in details in Chap. 2.3.

Figure 1.5: Examples of discrete (left) and continuous PSD, describing the size of
particles in a certain point of the flow Crowe et al. [1998].

1.5 Non-equilibrium and molecular effects
The development of micro and nano-scale technology have seen a strong accelera-

tion due mainly to the applications for biological lab-on-chip systems and electronic
devices, and the scales of these systems are always decreasing. Therefore there is
an increasing need of theoretical and computational models specifically designed
for the simulation of micro-scale flows [Cao et al., 2009, Karniadakis et al., 2005,
Reese and Zhang, 2009] One of the main differences of these models with respect to
classical macroscopic fluid dynamics, is the capability of predicting non-continuum
(non-equilibrium) effects. On the other hand, these effects are also observed in high-
speed and rarefied flows in aerospace and vacuum technologies [Kogan, 1992, Reese
et al., 2003, Sone and Onishi, 1978]. Although many differences remains between
these two fields of application (e.g., in terms of Re and Ma), they often belong to
the same Knudsen regimes. With the definition given in Eq. 1.6, four regimes can
be defined: continuum, slip, transitional and free molecular flows.

The continuum flow regime corresponds to a situation where the classical macro-
scopic balance equation (either Euler or Navier-Stokes) holds, while in the slip flow
regime some molecular effects start to be relevant but they can be taken into account
by the introduction of slip conditions at the walls [Sone and Onishi, 1978]. However,
when Kn < 0.1, the continuum hypothesis becomes inadequate and microscopic or
kinetic models have to be introduced [Hadjiconstantinou, 2006, Sone, 2002]. Finally
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1.5 – Non-equilibrium and molecular effects

Figure 1.6: Knudsen regimes [Reese et al., 2003].

Figure 1.7: Knudsen regimes and typical applications of nano-technology and MEMS
[Karniadakis et al., 2005].

Kn ≪ 1.0 the particles flow without collisions and they can be described by New-
ton’s laws of mechanics. They are represented in Fig. 1.6 and together with some
applications in Fig. 1.7

As it has been already said, the concepts of collision and Kn regimes, origi-
nally introduced to describe dilute gases, hold similarly for liquids in micro- and

9



1 – Introduction

nano-devices, and dispersed multiphase or “granular flows” in general [Gidaspow,
1994], where a mean free path can be defined either for fluid or solid particles. Ki-
netic equations are the links between the microscopic (molecular- or particle-scale)
description and the macroscopic continuum equations. The latter, in fact, can be
derived rigorously from the kinetic description, like the Euler and Navier-Stokes
equation that can be analytically derived from Boltzmann equation via moment
expansion or asymptotic analysis. Higher order macroscopic equations can be also
derived [Kogan, 1992, Shan et al., 2006, Struchtrup, 2005] to extend the validity
of classical fluid dynamics equations to low Kn but many closures problems arise.
Therefore it is often required the solution of the Boltzmann Equation or other similar
kinetic equations.

The rarefaction effects and break down of the continuum hypothesis has impor-
tant consequences on the transport coefficients such as anomalous viscosity as well
as anomalous diffusivity and modified drag force on dispersed particles. The kine-
matic viscosity for Newtonian fluids, in fact, can be directly derived from the kinetic
theory of gases for collision-dominated flows as

µ ≈ λcρ (1.7)

where c is the mean molecular speed and λ the mean free path.For a simple gas
of hard spherical molecules in thermodynamic equilibrium the mean free path is
(
√

2πd2n)−1 [Bird, 1994], where n is the number of particles per unit volume. Com-
bining Eq. 1.7 with Eq. 1.6, the following relation between Kn, Ma and Re can be
obtained

Kn ≈ Ma

Re
. (1.8)

In Sec. 2.3 the governing kinetic equations for dispersed multiphase flows and
for rarefied gases are presented as particular cases of the GPBE, while in Chap. 7,
the Boltzmann Equation is solved with a QBMM.

1.6 Thesis outline
In this chapter an overview of problems and complex fluid regimes arising in

multiphase turbulent flows has been given. In Chap. 2 an analytic description of the
models and methods used in this work to deal with these problems is reported, while
in the following chapters test cases and applications are presented. In particular the
fluid dynamics analysis of a micro-mixer is carried out in Chap. 3, by means of
µPIV experiments and accurate DNS simulations. In this part of the work, another
important problem that has not been cited yet is also faced: the validation of CFD
models and the comparison with experimental results. In fact, when considering
complex models such as LES for turbulence, the comparison with experimental data
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can be misleading because the experiments itself are affected by errors and limita-
tions that cannot be simply averaged out [Grinstein, 2009]. Therefore coupling of
accurate CFD simulations and experimental measures have to be considered to fully
understand the behaviour of complex fluid in complex geometries. The validation of
a LES model is then performed in Chap. 4 in a simple channel flow geometry. The
outcomes of Chaps. 3 and 4 are then used to validate a LES model for the micro-
mixer. Poly-dispersed particles are introduced in a LES framework in Chap. 6 to
validate an efficient multiphase poly-dispersed turbulent flows coupled model. Non-
equilibrium effects are studied in a more theoretical framework in Chap. 7 focusing
on quadrature methods for the Boltzmann equation. Eventually some comments and
critical analysis of the whole work are presented in Chap. 8, together with possible
extensions and applications.
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2
Models and methods

In this chapter mathematical models and computational methods for multiphase
turbulent flows are introduced and explained, with particular emphasis on Large
Eddy Simulation (LES) as turbulence model and the Generalised Population Balance
Equation (GPBE) and Quadrature based Methods of Moments (QMoM) as a general
tool for multiphase and poly-disperse flows. Eventually in the last section 2.5 the
CFD platform and numerical schemes and details are presented.

2.1 Single-phase flows
A turbulent flow at the macroscopic scale can be represented as a random field

because of the unavoidable perturbation in initial conditions, boundary conditions
and material properties [Pope, 2000]. This means that, when the continuum hypoth-
esis holds and no other approximations are made, the solution of the macroscopic
balance equations for mass and momentum represents a single realization of the
turbulent random field, similarly to the result of an experiment without systematic
error. This is what is obtained from Direct Numerical Simulations (DNS) where the
balance equations are solved with numerical schemes and grids accurate enough to
neglect numerical errors. Therefore, being free of modelling error, DNS are in prin-
ciple fully equivalent to a single experiment realization without any error. However,
as it would be explained after, this approach is computationally very expensive and
is not practicable for many real applications.

The continuity and momentum equations for a Newtonian incompressible fluid
are the well known Navier-Stokes equation:

∇ · U = 0 ,

∂U
∂t

+ U · ∇U = − 1
ρf

∇p + νf∆U ,
(2.1)
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2 – Models and methods

where U = U(x, t) is the velocity vector field, p is the pressure, ρf is the fluid
density and νf = µf

ρf
and µf are respectively the kinematic and dynamic viscosity.

The turbulent random fields can be decomposed into a mean and a fluctuating
component, for example the velocity field can be written as:

U = U + U′ . (2.2)
The balance equations for the mean velocity and pressure are the same except for
an additional stress term in the RHS of the momentum equation that is called the
Reynolds stress tensor:

τij = U ′
iU

′
j (2.3)

The simplest turbulence models are based on the turbulent viscosity hypothesis that
tries to mimic the Newtonian viscous stress assuming

τij = 2
3kδij − νt


∂Ui

∂xj

+ ∂Uj

∂xi


, (2.4)

where the first term is the isotropic part dependent on the turbulent kinetic energy
k = 

i U ′
iU

′
i and the second part is the product of the turbulent viscosity (or “eddy

viscosity”) νt and the mean strain rate. This assumption is however not generally
valid like the Newtonian viscous stress assumption. In fact, considering a simple
shear flow, the molecular viscosity is justified by the fact that the molecular time-
scale, λ/c (where c is the mean molecular speed and λ is the mean free path, see
also Eq. 1.7), divided by the strain time-scale is of the order of Kn Ma that is
usually very small1, while this is much higher considering the turbulent fluctuations
time-scale.

In Reynolds-Averaged Navier-Stokes equation (RANS) models the turbulent vis-
cosity hypothesis is used together with the concept of time-average, i.e.: the decom-
position in Eq. 2.2 is performed with an integration in time (Reynolds average). This
means that the stochastic behaviour of the flow is completely lost and cannot be
reconstructed. A huge number of algebraic and differential RANS models have been
developed and they are widely used in many industrial and practical applications.
An interesting alternative is represented by LES, discussed in the next section.

2.1.1 Large Eddy Simulations
LES models are based on the statistical theory of fully developed turbulence of

Kolmogorov. This is derived from the scale similarities hypothesis and dimensional

1This could not be true for flows at the micro- and nano-scale, rarefied or and high-speed
flows. In these cases in fact there could be effects like anomalous diffusion or other non-continuum
effects. However similar laws can be sometimes derived with transport coefficients (e.g.,viscosity,
diffusivity) calculated from mesoscopic or particle methods. See Sec. 1.5, Sec. 2.3 and Chap.7.
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2.1 – Single-phase flows

Figure 2.1: Energy spectrum for a generic fully developed turbulent flow [Hinze,
1975].

analysis and it has been verified and validated by experiments and numerical sim-
ulations [Pope, 2000]. The main result of this theory is the so-called turbulence
spectrum, depicted in Fig. 2.1. It represents the kinetic energy contained at dif-
ferent length-scales (eddies). The first part of the spectrum for low wavenumber
(very large eddies of the order of the system characteristic size) depends on bound-
ary conditions and domain geometry, while the rest of the spectrum is universally
valid for fully turbulent flows. Most of the energy is contained by large eddies and
is transferred to smaller eddies until the dissipation acts to reduce their size and
finally make the smallest eddies vanish at the Kolmogorov length-scale, λK .

The idea behind LES is to solve the larger scales of turbulence (eddies) and
model (with the so-called sub-grid scale models, SGS) the smaller ones that are
more isotropic therefore easier to model. This theoretical concept can be applied
with low-pass filter in frequency space but has been practically implemented in
most CFD codes (based either on finite volume or finite differences method) with a
“box-filter” operation that makes use of the grid cells (of the size ∆ > λK), volume-
averaging the flow field in each cell. This is one of the most controversial points
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2 – Models and methods

about LES because with this type of filter (a low-pass in physical space) the strong
theoretical framework of LES partially breaks down. It is worth mentioning here
that a new interpretation and derivation of LES has been recently proposed by Pope
[2010] that is more consistent and suitable also for multiphase extensions [Fox, 2012].

The effects of the filtering operation is represented in Fig. 2.2 and in Fig. 2.3 a
schematic representation of LES together with DNS and RANS is proposed.

Figure 2.2: Example of a LES filter operation on the velocity U [Pope, 2000]. U is
the filtered velocity, u′ is equivalent to the fluctuation U ′ defined in Eq. 2.2 and u′

is the filtered fluctuation that is not null.

Real large scale problems (e.g., in aeronautics) are often characterised by Re ∼
105 − −107, and the use of DNS for these problems would requires from years to
hundred of years, even with the most modern computers. The overall CPU time
required for a DNS, in fact, scales as Re11/4, without considering other important
issue such as memory requirement. For LES the requirement in terms of grid points
(and consequently on time steps) is more reasonable but still very challenging, es-
pecially if the viscous sub-layer must be solved in wall-bounded flows. For these
reasons many hybrid RANS-LES approaches have also been recently developed such
as V-LES,URANS,DES [Labois and Lakehal, 2011, Sagaut et al., 2006, Speziale,
1998] that couple LES equation with RANS equation in the near-wall regions.
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2.2 – Multiphase flow

Figure 2.3: Schematic representation of the differences between DNS, LES and
RANS [Ferziger and Peric, 2002, Ranade, 2002]

A more detailed discussion of LES and SGS models together with open problems,
regarding accuracy and consistency are described in Chap. 4 and 5.

2.2 Multiphase flow
Many different models can be used for the simulation of multiphase dispersed

flows, depending on the desired accuracy and the flow conditions. The first flow
indicator, the Stokes number, has been already introduced in Sec. 1.2. Another
distinction can be made between dense and dilute flow. This can be achieved by
looking at the ratio between particle response time τp and particle collision time τC .
The former has been defined in Eq. 1.5 while the latter can be expressed as

τC ≈ 1
πnd2σ

(2.5)

where n is the particle concentration, d is the diameter and σ is the standard de-
viation of particle velocity fluctuations (the counterpart for dispersed flows of the
mean particle molecular speed c, already defined for single-phase flow) that gives
an estimate of the relative velocity between two particles. In Fig. 2.4 a flow map
is depicted for dilute and dense multiphase flow in air, as a function of the particle
diameter and the loading Z = φV/φf which the ratio between the mass fractions of
the continuous and the dispersed phase. In general a multiphase flow is said to be
dilute when τp/τC < 1 and it can be described with one-way coupling models. This
means that particles feel the effect of the fluid but not vice-versa. A dense multi-
phase flow instead is characterised by an important contribution of particle-particle
interaction and collisions that significantly change the particle dynamics. Therefore
three-way and four-way coupling models must be used. The three-way coupling
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Figure 2.4: Dilute and dense flows depending on particle diameter d, particle loading
Z and the standard deviation of particle velocity fluctuations σ [Crowe et al., 1998].

consider to the effects of the elements of the dispersed phase on each other through
the continuous phase, as for example when a particle enters another particle’s wake.
Finally the four-way coupling regime is characterised also by interactions between
particles, through direct collisions.

This distinction can be better analysed by looking at the Stokes number, as
reported in Fig. 2.5. In this flow map the dilution regimes are determined by the
volume fraction of particles, φV , and the Stokes number based on the Kolmogorov
time-scale, that represents the smallest time-scale of a turbulent flow:

τK =


ν

ϵ

 1
2

(2.6)

where ϵ is the dissipation rate of the turbulent kinetic energy. The two-way cou-
pling regime is further divided into two class, depending on the size of the particles.
Bigger particles, in fact, enhance the production of turbulent kinetic energy, while
smaller particles enhance dissipation. Similar conclusions can be drawn with dif-
ferent definitions of Stokes number, based either on the LES time-scale τϵ or other
characteristic time-scales of the fluid.

Focusing on the dilute regime, many different models can be used to describe
the particle motion and their accuracy are directly dependent on the particle Stokes
number. As already introduced in Sec. 1.4, in fact, very small particles follow the
fluid with approximately the same velocity and trajectory (see Fig. 1.3). This means
that the flow can be described as a single-phase flow with variable density. This
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2.2 – Multiphase flow

Figure 2.5: Fluid-particles coupling depending on the volume fraction of particles
φV and the Stokes number St = τp

τK
, defined with the Kolmogorov time-scale τK

[Elghobashi, 1994, 2006].

model is called the Homogeneous Model or Dusty Gas Model and it can be rarely
used to describe accurately real multiphase flow applications. A second and more
accurate model is represented by the Equilibrium Eulerian Model (EEM) [Ferry and
Balachandar, 2001, Ferry et al., 2003] or the Algebraic Slip Mixture Model (ASM
or ASMM) [Ishii, 1975, Manninen and Taivassalo, 1996]. In this case the particle
velocity is linked to the fluid velocity and other flow properties with an algebraic
relation. These models are based on a local equilibrium approximation and are valid
for moderate St. The next step is to relax the local equilibrium assumption, by
solving an independent momentum balance equation for the particles velocity. This
is the common two-fluid (or multi-fluid) approach derived from volume or ensemble
average for the phases [Drew and Passman, 1998].

When particles becomes larger, either a Lagrangian Particle Tracking (LPT)
or a fully resolved method must be used. The former consists in following the
trajectory of each single particle in a Lagrangian manner through the resolution of
Newton’s equations, while the latter refer to those methods, such as the Discrete
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Element Method [Munjiza, 2004] or interface capturing methods like Volume-Of-
Fluid , Level-Set and Front-Tracking [Hirt and Nichols, 1981, Osher and Sethian,
1988, Unverdi and Tryggvason, 1992], where the interface of the particle is captured.
This is particularly important when interface phenomena must be taken into account
or when the geometry of the particles is complex and far from a sphere. Except these
models, all the others are based instead on point-particle approximations. The
differences between Lagrangian and Eulerian methods and between point-particle
and fully resolved approaches are represented in Fig. 2.6.

These models and their validity are illustrated in Fig. 2.7. In the following part
of this section, we focus in particular on the ASM and its differences with the multi-
fluid and the Lagrangian/fully resolved methods. The EEM equations are instead
given in Chap. 6.

2.2.1 Mixture algebraic models
According to the derivation of Manninen and Taivassalo [1996] and Bove [2005],

let us consider a multi-component fluid made of K components, each one charac-
terised by its own density ρk, volume fraction φk and mass weighted velocity Uk

2.
The mixture can be characterised by its density

ρm =
K

k=1
φkρk (2.7)

and its velocity

U =
K

k=1

φkρkUk

ρm

(2.8)

which can be regarded as the velocity of the mixture centre of mass. Finally the
mass fraction ck can be calculated as

ck = φkρk

ρm

(2.9)

The continuity equation for the mixture is

∂ρm

∂t
+ ∇ · (ρmUm) = 0 (2.10)

2The Favre average is used for the phase velocities Uk = ⟨χkρU⟩
⟨χk⟩ , and a phasic average for

ρk = ⟨χkρ⟩/⟨χk⟩, where ρ, U are the local density and velocity of the fluid, χk is the characteristic
function of phase k and ⟨⟩ represents a volume, time or ensemble average.
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2.2 – Multiphase flow

Figure 2.6: Differences between Lagrangian and Eulerian fields and between point-
particle and fully resolved simulations, depending on the diameter of particles d and
the grid spacing ∆x [Loth, 2000].
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Figure 2.7: Balachandar and Eaton [2010]

while the mixture momentum balance equation is
∂

∂t
(ρmUm) + ∇ · (ρmUmUm) = −∇p + ∇ · (τm + τT m + τDm) + ρmg + Mm (2.11)

The three stress tensors represent respectively the average viscous stress, the turbu-
lent stress and the diffusion stress due to phase slip, while the term Mm represent
other momentum sources (e.g., surface tension, phase interactions).

The term τDm in Eq. 2.11 can be expressed as

τDm = −
K

i=1
φkρkUDkUDk (2.12)

where UDk = Uk − Um is the diffusion velocity3. In the ASM diffusion velocity

3Some authors refer to this velocity as the drift velocity. However the drift velocity is usually
defined with respect to the velocity of the centre of volume of the mixture, while the drift velocity
is defined instead with respect to the centre of mass of the mixture [Ishii, 1975].
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2.2 – Multiphase flow

for phase k is not directly calculated but derived from the knowledge of the slip
velocities US,ki = Uk − Ui between phase k and the other phases as

UDk =
K

i=1
ckUS,ki (2.13)

Equivalent models, called respectively Diffusion Mixture and Drift Flux models, are
instead formulated in terms of diffusion or drift velocities [Jakobsen, 2008].

At this stage, the mixture equations are equivalent to the multi-fluid formulation
and the only assumption made is the single pressure shared by the continuous and
the dispersed phase. However, to have a closed set of equations, they must be
coupled with equations for the volume fractions φk, the slip velocities US,ki and
with closure relations for stress tensors and momentum source terms.

As it has been anticipated, we are interested in the use of Population Balance
Model to describe the poly-dispersity of the flow, therefore we do not introduce here
an explicit equation for the volume fraction φk. As it is explained in the next section,
in fact, in the population balance framework the volume fractions are calculated as
the third order moment of the number density function multiplied by a shape factor
(π/6 for spherical particles). Also the source Γk that takes into account exchange of
mass between the phases (due to birth and death terms) can be obtained directly
from the population balance.

The momentum source term Mm can be written as

Mm =
K

i=1
(ΓkUk + Mk) (2.14)

If Γk = 0 and the the surface tension is neglected Mm = 0 because in this case all
the terms Mk sum to zero. Mk can be decomposed in terms of a generalised drag
force and averaged interfacial terms (pressure and shear stresses). Neglecting the
second ones and distinguishing the continuous (primary) phase (for k = 1) from the
dispersed phases (for k > 1) we can write

M1 =
K

k=2
Mk (2.15)

Mk = −MG
k (2.16)

where MG
k takes into account drag, lift, gravity, pressure gradient, virtual mass,

Basset force, buoyancy. These terms must be modelled with specific laws or empirical
correlation.

Neglecting the surface tension and assuming a single pressure for the mixture,
the general differential equation for the slip velocities is
∂

∂t
US,ki+Uk·∇Uk−Ui·∇Ui =


1
ρi

− 1
ρk


∇p+ 1

ρkφk
∇·(φkτk)− 1

ρiφi
∇·(φiτi)+

1
ρkφk

MG
k − 1

ρiφi
MG

i

(2.17)
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or equivalently a similar equation can be derived in terms of diffusion velocities
UDk.

Algebraic equation for the slip velocities can be obtained from Eq. 2.17, under
local equilibrium assumptions. As a matter of fact, the classical ASM is obtained
considering K = 2 (Uk = Up and Ui = U), simplifying Eq. 2.17 neglecting the
time derivative, substituting the pressure gradient from the mixture momentum
balance (Eq. 2.11) and using explicit formulation for the momentum source terms
Mi. The ASM can be extended with a similar derivation for a generic number of
dispersed phases. The multiple-phases extension is needed also for the coupling with
a multiple-classes population balance approach such as the one explained in Sec. 2.4.

The EEM is another example of algebraic closure for the dispersed phase velocity.
It is conceptually equivalent to the ASM but it is derived [Ferry and Balachandar,
2001] as an expansion of the Maxey-Riley equation [Maxey and Riley, 1983], which
is the balance of forces acting on a dispersed particle, in terms of the fluid velocity,
as follows:

DUp

Dt
= DUp

Dt
+ O(τp) , (2.18)

where, D/Dt is the Lagrangian derivative operator and τp is the particle response
time, defined in Eq. 1.5. The explicit equations of EEM are given in Chap. 6.

2.3 Generalised Population Balance Equations
Starting from the concepts of the Population Balance Equation (PBE) [Ramkr-

ishna, 2000] and the Williams Spray Equation [Williams, 1958] and their solution
methods, a new approach has been recently formalised by Fox and Marchisio [2007]
that introduced a generalisation of PBE in a physically-consistent, full mesoscopic
description of multiphase dispersed flow. The key point is the introduction of a
multi-variate phase space for particles, that includes, among the other variables,
also particle velocity. In this section we present this general framework, focusing
in two particular cases of the GPBE: the classical mono-variate population balance
written in terms of particle size and the Boltzmann Equation (BE), that is instead
an equation for the evolution of the particle velocity distribution.

Let us consider a continuum phase and a dispersed phase made of particles (bub-
bles, droplets or solid particles) characterised by many different inhomogeneous
properties (e.g., size, surface area, composition, velocity), described by a vector
s = (s1, . . . , sS) that spans the so-called “phase-space”. It is possible to describe
this inhomogeneity in an Eulerian framework by using a Number Density Function
(NDF) n(x, t; s) whose meaning is the following: n(x, t; s)ds represents the infinites-
imal number of particles per unit volume with properties in the interval (s, s + ds),
around the point x at time t. Its evolution is dictated by the following Generalised
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Population Balance Equation (GPBE):

∂n

∂t
+ ∇x · (Upn) + ∇s · (ṡn) = (∇s ⊗ ∇s) : (Dn) + Q (2.19)

where ∇x and ∇s indicate respectively the gradient with respect to space coordinates
and to internal coordinates, the colon indicates the Frobenius product and ⊗ the
tensor product. The second and third term in the LHS represent respectively the
“real-space” advection and the “phase-space” advection. The former is the variation
due to particles motion whereas the latter is the variation due to the rate of change,
ṡ, of the properties s (called also internal coordinates). The RHS has a phase-
space diffusion term, defined by the diffusion matrix D and a collision term Q. The
diffusion term is generally due to average operations or microscopic processes (such
as Brownian motion or turbulent fluctuations) and in the following description it
is neglected to simplify the discussion. The operator Q represents instead all the
instantaneous or discontinuous events such as collisions. It can be split in three
parts:

Q = Q0 + Q1(n) + Q2(n, n) . (2.20)

The first term, Q0 represent zero-order processes that do not depend directly on
the NDF (such as nucleation of new particles). Q1 and Q2 instead are related
respectively to a single-particle event (such as particle breakage) and two-particle
binary processes (the real collisions of particles with their exchange of properties
between the colliding particles). This dependence on the particles is expressed with
a dependence on the NDF4.

The GPBE in Eq. 2.19 is a kinetic equation and resembles the structure of many
important equations such as the Boltzmann Equation [Cercignani, 1988] and the
Population Balance equation [Ramkrishna, 2000], which can be seen as particular
cases of the GBPE. Other labels are the Smoluchowski equation (which describes
the evolution of particles in space, not to be confused with the Smoluchowski coag-
ulation equation that describes the evolution of particle size) and the Fokker-Planck
equation [Risken, 1996] (which describes the evolution of particle velocity), both
characterised by having a drift and a diffusion term in phase-space. As it has been
already reported, two particular cases of this equation are very important and will
be now introduced and discussed. Let us assume that the property of interests are
limited to particle diameter d and particle velocity Up, therefore s = (d, Up).

4It is important to note that all the collision terms depend on x and t but the dependence has
been omitted to focus on the different dependences on n.

27



2 – Models and methods

2.3.1 Boltzmann Equation
To derive the BE we simply assume that all the particles have the same size,

reducing the phase space to the particle velocity space only, obtaining:

∂n

∂t
+ ∇x · (Upn) + ∇Up · (Apn) = Q , (2.21)

where Ap is the sum of the external forces per unit mass acting on the particles
(e.g.,gravity, drag, electromagnetic forces).

The classical form of the BE is obtained in the case of no external forces, in the
limit of St → 0, when particles act as a granular gas, and for a particular form of
the collisional operator, namely:

Q =


q(x1, Up1, x2, Up2)[n(2)(x1, t; U′
1, x2, t, U′

2)−n(2)(x1, t; Up1, x2, t, Up2)]dx2 dUp2 ,

(2.22)
where the subscript 1,2 indicates that we are following particle 1 in its collision
with particle 2, U′

1−2 indicates the velocities after the collision, n(2) is the pair-
wise distribution function and q(x1, Up1, x2, Up2) is the collision frequency. Three
important hypotheses are now introduced. The first is the molecular chaos as-
sumption (“Stosszahl Ansatz”), that is one of the key points of the BE, for which
n(2)(x1, t; Up1, x2, t, Up2) ≈ n(x1, t; Up1)n(x2, t, Up2). The second assumption is
that particles are small enough that, when colliding, the NDF calculated at x1
is approximately equal to the one at point x2. Finally we introduce the so-called
hard-sphere potential that models the collision as instantaneous event that happens
with a frequency given by

q(x1, Up1, x2, Up2) =


|g| cos Θ
d

if g · x12 > 0 ,

0 elsewhere ,
(2.23)

where g = Up1 − Up2 is the velocity difference, x12 is the versor connecting the
two centres of the particles and Θ is the angle between these two vectors, as it is
illustrated in Fig. 2.8.

Under these hypotheses Eq. 2.22 can be rewritten as:

Q =


Up2


S+

|g| cos Θ[n(x, t; U′
1)n(x, t, U′

2) − n(x, t; Up1)n(x, t, Up2)]dx12 dUp2 ,

(2.24)
where the integral over x12 is performed over an half sphere S+. Finally, simple
geometrical observations and balances of momentum and energy, before and after
the collision, can be used to find the relations between pre- and post-collisional
velocities.
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Figure 2.8: Collisions of two identical particles of diameter d [Struchtrup, 2005].

The BE is further analysed and solved in Chap. 7, in a slightly different formu-
lation that simplify the expression, retaining the physical meaning of hard-sphere
collision. It is important to highlight here that, for realistic multiphase flow, the BE
is often used with linearised model for particle collisions and modification to take into
account ineslatic collision in a more dense regime (Boltzmann-Enskog Equation).

2.3.2 Poly-dispersity models
Let us consider now the size (diameter) of the particles as the only property of

interest of the dispersed phase. Therefore s = (d). The function n = n(x, t; d) in
this case is also called Particle Size Distribution (PSD), that represents the number
of particles with diameter d per unit volume at point x and time t. An evolution
equation for n(x, t; d) can be derived from the evolution of Eq. 2.19 by integrating
out particle velocity. The mesoscopic description of GPBE requires, in fact, the
presence of particle velocity as internal coordinate. This means that in general a
fully kinetic approach, similar to the one described in the previous section, must be
used. This approach is necessary to predict multiphase flow in which the particle
fluctuation collisions are important but are not the dominant effect5. This is the

5In the limiting case of purely collisional flows, in fact, the particle velocity distribution relax
instantaneously to a local equilibrium.
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case, for example, of particle trajectory crossing. After the integration on all the
possible particle velocity the GPBE reads as follows:

∂n

∂t
+ ∇x · (Up(d)n) + ∂

∂d


ḋn


= Q . (2.25)

The real-space advection term remains the same except that now the velocity Up(d)
represents the expected velocity for particle of size d (formally it is a conditional
mean particle velocity, conditioned on a particular particle size). When the particle
velocity is not solved with the GPBE, Up(d) must be modelled with one of the
methods discussed in Sec. 2.2, via a differential momentum equation or with simpli-
fied algebraic relation, depending on the Stokes number and the desired accuracy.
The phase-space advection is now reduced to a single term that represents particle
growth (due to phase change for example) with growing velocity ḋ. The collision
term Q has been redefined to maintain the same notation and includes other phe-
nomena such as particle breakage, coalescence and nucleation. Equation 2.25 is now
exactly equivalent to the classical mono-variate PBE [Ramkrishna, 2000].

As we already mentioned, kinetic equations and PBEs can be viewed as a meso-
scopic (or statistical) description of the huge number of microscopic entities and
events. The connection with more commonly used macroscopic quantities such as
mean concentration or particle size is performed through the definition of the fol-
lowing moments6:

mi(x, t) =
 ∞

0
di n(x, t; d) dd . (2.26)

In this mono-variate case, it is straightforward the derivation from µi of important
macroscopic quantities to describe the dispersed phase such as

• total particle number density: m0;

• mean particle diameter: m1/m0, m2/m1 or m3/m2 (Sauter diameter) or m4/m3;

• mean particle surface area: c2m2/m0, where c2 is the two-dimensional shape
factor;

• mean particle volume: c3m3/m0, where c3 is the three-dimensional shape factor;

• particle volume fraction: c3m3;

• variance of the distribution: m2 − m2
1/m0

6A more general definition of moments for the GPBE, that allows to recover other macroscopic
quantities such as dispersed phase velocities or mixed moments of particle size and velocity, is
also possible but is not reported here. The reader interested is referred to the work of Fox and
Marchisio [2007].
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In the next section a Quadrature-Based Moment Method for the numerical so-
lution of GPBE are introduced. In particular the application to the mono-variate
PBE is analysed while the application of this method for the Boltzmann Equation
is discussed in Chap. 7.

2.4 Quadrature-based Method Of Moments
The Quadrature Method Of Moments (QMOM) is a general tool for solving

kinetic equations and PBEs by using a Gaussian quadrature formula that can ap-
proximate exactly M selected moments of the distribution (usually the first ones).
The moments mi are solved numerically within their transport equation, obtained
directly applying the moments transform to Eq. 2.25 (or to Eq. 2.19 in the more
general case) and the arising unclosed terms (typically the collision term Q) are
approximated with a Gaussian quadrature formula. QMOM was first introduced
by McGraw [1997], as a closure for Population Balance Equations (PBE) of parti-
cles, sprays and dispersed multiphase systems in general. In this case the internal
variables of the distribution function are physical properties of the particles (usu-
ally the size of the particles). In the mono-variate case, when a single property d
is tracked, the NDF n(x, t; d) or if normalised, the Probability Density Function
(PDF) f(x, t; d) is approximated as a sum of M/2 delta functions

n(d) ≈
M/2
i=1

wiδ (d − di) (2.27)

where the dependence on external variables such as time and space is omitted. wi

and di are respectively the quadrature weights and nodes that can be used as a
quadrature formula to calculate whatever integrals involving n. They can be ob-
tained from the first M moments that are exactly approximated with an inversion al-
gorithm that identifies them with the roots of the polynomials orthogonal to the dis-
tribution function. The most used ones are the Product-Difference (PD) algorithm
[Gordon, 1968] and the Wheeler algorithm [Wheeler, 1974]. Quadrature weights
and nodes are identified by these algorithms as the roots of the polynomial orthog-
onal to the distribution in the chosen phase space domain (generally d ∈ [0, ∞]).
QMOM and its variants (e.g., Direct Quadrature Method of Moments, DQMOM)
have been successfully extended and applied also for multivariate distributions and
for different types of kinetic equations in many applications such as multi-variate
PBEs, micro-mixing problem, Fokker-Plank equation, Boltzmann equation [Attar
and Vedula, 2008, Fox, 2006, 2003, Gavi et al., 2007, Lage, 2007, Laurent et al.,
2010, Raman et al., 2006, Sidin, 2009, Upadhyay and Ezekoye, 2008, Wang and Fox,
2004, Yoon and McGraw, 2004a,b]. In general, we talk about Quadrature-Based
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Moment Methods (QBMM), when the concept of adaptive quadrature nodes and
weights, derived from the moments of the distribution, is used.

QBMM turns out to be a very efficient tool for PBEs, compared to other methods
such as the full Probability Density Function (PDF) models or the Direct Simulation
Monte-Carlo (DSMC), that however retains a good accuracy that can be controlled
by the number of moments chosen for the quadrature. In particular the coupling
of QBMM with Eulerian multi-fluid method has been developed in different works
[Fan et al., 2004, Marchisio et al., 2003, Petitti et al., 2010] that demonstrated
the efficiency and the relatively simple implementation in CFD codes. Among the
numerous variants of QBMM we focus now on the DQMOM that is the method
used in this thesis for the solution of PBEs (see Chap. 6 and 8).

2.4.1 Direct Quadrature Method Of Moments
As already mentioned, QBMM make use of quadrature weights and nodes that

are uniquely obtained from a set of moments, provided that a moment transform such
as Eq. 2.26 is given. With the QBMM approximation, the moments are calculated
by the following formula

mi(x, t) =
M/2
j=1

di
j wj . (2.28)

that defines the relation between the set of quadrature nodes and weights, (w1, . . . , wM/2, d1, . . . , dM/2),
and the set of moments, m = (m1, . . . , mM)7. The DQMOM [Marchisio and
Fox, 2005] is a a formulation in which transport equations are derived and solved
for quadrature nodes and weight, collected in a vector of transported quantities
ζ = (w1, . . . , wM/2, w1d1, . . . , wM/2dM/2), where widi ≡ ni represents the weighted
nodes. This approach presents important advantages and some serious drawbacks
that are now briefly presented:

+ the inversion algorithm to obtain ζ from m is no more needed since the values ζ
are always directly accessible;

– a similar inversion must be performed for those quantities, such as moments of
collision source term

∞
0 Qdidd, that are expressed in the moment (QMOM)

formulation;

+ transport equations, if adequately solved, are not affected by the problem of
unrealisable moment;

7This relation is highly non-linear and not always invertible in the desired domain (positive
moments and positive nodes and weights). In fact, there exist unrealisable set of moments that
give place to negative quadrature weights.
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– the numerical discretisation introduces an error on high-order moments that are
not exactly conserved;

+ the expected particle velocity Up(di) can be directly used for the advection of
wi and ni, simplifying the coupling of DQMOM with multi-fluid or algebraic
mixture models;

– the mathematical model degenerates when the distance between two quadrature
nodes tends to zero

For a more detailed analysis of the different QBMM approaches and an accurate
analysis of QMOM and DQMOM the reader is referred to the work of Grosch et al.
[2007], Mazzei et al. [2010, 2011].

2.5 Numerical methods
Before discussing in the following chapters the test cases studied and the results

obtained, it is important to give a brief introduction on the numerical schemes and
tools used in this work, both from a mathematical and practical point of view.

2.5.1 TransAT CFD code
TransAT [Ascomp GmbH, 2009] is a finite volume code, specialised for the simu-

lation of multiphase flows in complex geometries thanks to the coupling of interphase
tracking methods (VOF and LS) and an Immersed Boundary method (explained in
details in Chap. 5) and recently extended to a broad range of CFD applications.
Most of the work carried out in this thesis relies on the TransAT platform, which
has been integrated by ad-hoc models and modules for the specific application,
thanks to a collaboration with Ascomp GmbH (http://www.ascomp.ch).

A QBMM solver for PBEs of poly-dispersed flows have been implemented and
coupled with the ASM model. The EEM was also developed as an alternative
model, especially for dilute passive particles that do not have a feedback on the
carrier flow. In this case, in fact, the particle velocity can be explicitly calculated in
a very efficient way, as explained in Chap. 6. LES and DNS simulations have been
carried out with the available models, opportunely modified for the test cases under
study. Finally some of the numerical schemes and resolution methods are briefly
described in this section.

2.5.2 Convection schemes
Let us define a generic field quantities φ, discretised in the points represented

in Fig. 2.9. From the knowledge of cell centre variable φP , assuming that the fluid
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flows in the right direction and that the cells are equally spaced, an approximation
of the downward cell faces variable φw must be obtained to calculate the fluxes of φ
entering on the volume P .

WW
W

P E
EE

x
1Vw

w

Figure 2.9: Nodes required by convection schemes in a single direction [Ascomp
GmbH, 2009].

Three schemes are used in this work: the central scheme, the HLPA scheme and
the QUICK scheme. The central scheme is a second order approximation based on
the simple formula

φw = φW + φP

2 . (2.29)

The QUICK scheme [Leonard, 1976] approximates the face-value φw by fitting a
parabolic curve through three nodal values φP , φW and φW W :

φw = 3
8φP + 3

4φW − 1
8φW W . (2.30)

Finally the HLPA scheme [Zhu, 1991] can be written as

φw = φW + γw(φP − φW )φW − φW W

φP − φW W

(2.31)

where
γw =


1 if |φ̂W − 0.5| < 0.5
0 otherwise (2.32)

and
φ̂W = (φW − φW W )/(φP − φW W ) (2.33)

is an an upwind-biased normalised variable

2.5.3 Time discretisation
The time discretisation in the coupled CFD/PBE solver is performed with second

order backward differencing scheme because the source term for moments m or
DQMOM variables ζ can be very stiff, causing numerical instability if the source
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term is treated explicitly unless very small time steps are used. The time derivative
is approximated as:

dφ

dt

n+1
≈ 3

2φn+1 − 2φn + 1
2φn−1 , (2.34)

where the superscript indicates the different time steps.
Let us consider the transport equation for quadrature weight i in the DQMOM

framework:
∂wi

∂t
+ ∇x · (Upwi + D∇xwi) = Si. (2.35)

The same equation holds for each component of the DQMOM vector variable ζ. Si

represent the generic source term that, in the DQMOM formulation, is calculated
from the moment source terms with an inversion algorithm. In general S depends
on all the flow variables. Let us focus on the dependence on the DQMOM variables,
such that S = S(ζ). When the diffusivity D /= 0 the source term are corrected to
include also spurious diffusion terms to maintain the equivalence between QMOM
and DQMOM formulation (see the seminal work of Marchisio and Fox [2005]). After
the space discretisation the semi-discrete equations for nodes and weights can be
written as a system of ordinary differential equations:

∂ζ

∂t
+ L(ζ) = S(ζ) , (2.36)

where the operator L is a linear operator that represents the spatial discretisation of
advection and diffusion terms. In the implicit method, the first term is approximated
by Eq. 2.34 and the operator L is calculated at time n+1. Since the dependence of S
on ζ is highly non-linear, the source term cannot be calculated implicitly. Therefore
it is decomposed as follows:

Sn+1 ≈ S(ζn) + ∂S
∂ζ

(ζn+1 − ζn) , (2.37)

splitting the source term in an explicit and an implicit part. The DQMOM variables
are strongly coupled one to each other but a coupled solver, when the number of
nodes and weights become high (> 2) is computationally very demanding. Therefore
the equations are solved in a decoupled way but, since the source term of a single
variable depend on all the others, to ensure the unconditional stability, the maximum
eigenvalue, λS, of the Jacobian |∂S/∂ζ| is calculated and used for all the variables as
implicit part of the source term8. Each component Si of the source term S is so
rewritten as

Sn+1
i = λSζn+1 + (1 − λS) ζn . (2.38)

8When an iterative solver is used, this is equivalent of imposing an adaptive relaxation that
makes the system of ODEs unconditionally stable
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This decomposition of source terms is essential when dealing with source terms
such as complex particle aggregation and breakage kernels or turbulent mixing of
different PSDs.
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3
CFD study of a Confined Impinging Jets Reactor

As it has been reported, the main scope of this work is to develop modelling tools
for the simulation of particle formation processes. Since some of these processes
are conducted in micro-devices, a thorough study of the flow in these devices is
necessary. We are particularly interested in the Confined Impinging Jets Reactor
(CIJR), commonly used for precipitation processes of micro- and nano-particles,
employed in a variety of applications that include pharmaceuticals, cosmetics, dyes
and pesticides. As already mentioned, in this work, with the purpose of gaining a
better understanding of the main mixing mechanisms occurring in a CIJR, the flow
field was studied at four inlet flow rates ranging from Re = 62 to Re = 600. These
conditions correspond to regimes with incipient turbulence in the chamber. Micro
Particle Image Velocimetry (µPIV) experiments and Direct Numerical Simulations
(DNS) were performed and results are compared in this chapter. MicroPIV is an
innovative experimental technique that allows measurement of the instantaneous
velocity fields in microfluidic devices. The coupled numerical-experimental approach
was found to be essential in understanding and explaining the flow behaviour and
the development of turbulence, in particular with respect to the important effects
of the inlet boundary conditions. Oscillations present in the inlet flow of the device
are in fact primarily responsible for the chaotic and turbulent effects in the reactor.
These results provide insights that are important in the development of appropriate
computational models for this type of micro-reactor or mixers.

Part of the contents of this chapter has been published in the work of Icardi et al. [2011].
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3.1 Introduction
Ultra-fine or nano-particles turn out to be very useful in a growing number of

applications [Horn and Rieger, 2001, Salata, 2004], in particular in biology and
medicine. Many novel processes have been developed in order to produce nano-
particles with the desired properties, namely specific particle size distribution, com-
position and morphology. For example the process of solvent displacement can be
employed to produce polymeric nano-particles carrying an active principle to be used
in targeted drug delivery [Johnson and Prud’homme, 2003a, Kipp, 2004, Lince et al.,
2008]. In solvent displacement the pharmaceutical active principle and the polymer
are dissolved in an organic solvent and then rapidly mixed with an anti-solvent. The
faster the overall mixing process occurs, the smaller and the more mono-disperse the
particles will be. Moreover, efficient mixing dynamics at all scales will foster the
interactions between the pharmaceutic active ingredient and the polymer carrier,
preventing further particle growth and, in the case of block-co-polymers, tailoring
the particle surface with the desired hydrophilic properties.

The necessity of carrying out processes in controlled conditions of rapid mixing,
is the main motivation for the development of innovative mixers. A class of mixers
designed to operate in turbulent conditions, characterised by dimensions of the order
of millimetres, with multiple inlets and a zone of high turbulent kinetic energy
dissipation rate, is currently under development. Examples of this kind of mixer
configuration are the T-Mixer [Gradl et al., 2006], the Multi-Inlet Vortex Mixer
[Cheng et al., 2009, Liu et al., 2008] and the Confined Impinging Jets Reactor [Gavi
et al., 2007b, Johnson and Prud’homme, 2003b].

The objective of this part of the work is to investigate the flow field in a three-
dimensional Confined Impinging Jets Reactor (CIJR) with a cylindrical reaction
chamber. The CIJR is characterised by two inlets facing each other opening on
opposites sides of the reaction chamber. The two inlets are operated at high velocity,
therefore they behave as round jets that collide and form an impingement plane
where turbulence is developed and the scale of segregation is rapidly reduced. The
impingement plane is confined by the mixer head, that at the same time provides a
volume in which mixing at the molecular level takes place through diffusion.

Various CIJR geometries and dimensions were studied experimentally by John-
son and Prud’homme [2003b] and their mixing efficiency was evaluated by means
of a parallel competitive reactions scheme. Following that work, Liu and Fox [2006]
applied Computational Fluid Dynamics (CFD) in order to develop a model able to
predict the extent of mixing and reaction in the CIJR and found good agreement
with the experimental data. They employed the Reynolds-Averaged Navier-Stokes
equations (RANS) approach to model the flow field and the Interaction by Exchange
with the Mean (IEM) approach coupled with a presumed Probability Density Func-
tion (PDF) method (i.e., the Direct Quadrature Method of Moments, [Marchisio
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and Fox, 2005]) to model micro-mixing. Another work [Gavi et al., 2007a] extended
the results by considering the effect of the choice of different turbulence models and
near wall treatments on the final model predictions, as well as scale up and scale
down issues and strategies. The outcome of the latter investigation showed that
the choice of the turbulence model and the near wall treatment has a great effect
on the final model predictions, and therefore an independent validation of flow and
turbulent field is needed.

A useful technique to experimentally investigate the flow field in a CIJR is mi-
croscopic Particle Image Velocimetry (µPIV). MicroPIV [Santiago et al., 1998] is
a novel experimental technique where instantaneous velocity fields are determined
from the displacement of small seed particles. It has been increasingly employed to
measure flow fields in planar microfluidic devices (see for example Li et al. [2005]
and Van Steijn et al. [2007]). Recently Liu et al. [2009] published data obtained
with µPIV for a planar CIJR, the inlet jets of which measure 0.5 mm in width. The
experimental flow fields, characterised by a jet Reynolds number between 211 and
1003, were compared with CFD simulation data, obtained with a steady state RANS
approach. Though the agreement between experiments and CFD was satisfactory
overall, the authors observed that the measured turbulent kinetic energy was larger
than CFD predictions, because in the experiments the inlet jets flap significantly
at high jet Reynolds number, a phenomenon not predicted by steady state RANS
simulations; the authors also suggested that an unsteady model such as Large Eddy
Simulation (LES) could be used to improve model predictions.

Many studies exist on free turbulent jets. For example Landreth and Adrian
[1990] measured for the first time by means of PIV the instantaneous velocity field
of a turbulent circular jet impinging on a plate, thus revealing flow structures and
various stages of vortex generation. The same unsteady behaviour for impinging
jets that Liu et al. [2008] described for the CIJR was observed also in different
geometries investigated in other studies. For example Schwertfirm et al. [2007]
investigated by means of PIV the mean flow and turbulent field in a geometry
similar to a T-mixer with round inlets and a square chamber section measuring
80×80 mm at jet Reynolds number equal to 1270. The experimental measurements
were compared to Direct Numerical Simulations (DNS) and, in both experiments
and simulations, a flow field symmetry breakage was observed; this demonstrates
that it could be a characteristic of the studied mixing device, and not only a product
of non-ideal experimental conditions. Santos et al. [2008] investigated by means of
PIV an axial-symmetric Reaction Injection Molding (RIM) (with inlet jet diameter
1.5 mm and chamber diameter 10 mm) in the jet Reynolds number range from 100
to 500. The study depicted the flow structures characteristic of RIM, in which the
jets impingement creates vortexes, with axes perpendicular to the RIM axis.

Various studies in recent years verified the reliability and accuracy of PIV both
by comparison versus analytical solutions or DNS and by comparison versus other
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experimental techniques (e.g. Particle Tracking Velocimetry, Laser Doppler Ve-
locimetry)[Feng et al., 2005], therefore PIV is now considered a mature tool for
investigating the flow and turbulent fields.

Notwithstanding the proven validity of the measurement technique, its applica-
tion on a small and complex geometry such as that of the CIJR is a novelty and
presents many challenges. The CIJR complexity derives from its very small dimen-
sions and from the combined effect that the walls and the impinging jets have on
the flow field. In fact to our knowledge the experimental data used in this chapter
are the very first of this type since there is no other published study reporting data
obtained with µPIV on a three-dimensional CIJR. As already reported, there are
many challenges in the present investigation. Firstly the precise fabrication of such
a small device as a micro mixer is complex and requires specific precision machin-
ery. Secondly, the cylindrical shape of the device and the curved walls of the mixing
chamber cause laser light refraction at the interface between the wall and the fluid, a
phenomenon that can be alleviated by modifying the fluid refraction index to match
the walls material. Thirdly, the control over pumps flow delivery is very difficult to
obtain: in particular, it is complicated to obtain equal and perfectly constant flow
rates at the two inlets. Finally in µPIV unsteady and highly irregular turbulent
flow fields are much more difficult to measure than steady flows. In steady flows
accurate data can be obtained by combining the results from many instantaneous
images using the sum of correlations technique [Wereley et al., 2002] but in unsteady
or turbulent flow field the flow field must be sufficiently seeded so each pair of µPIV
images yields an accurate instantaneous velocity field [Liu et al., 2009].

All these issues are addressed here by combining the experimental flow field
analysis in a CIJR carried out by means of µPIV in a previous work [Gavi, 2009] with
DNS. Nowadays in fact numerical techniques have reached a strong reliability and in
particular DNS can be thought as virtual experiments since no approximations are
employed when solving the governing continuity and Navier-Stokes equations (under
the continuum hypothesis). Of course when working with the DNS the grid has to be
fine enough to capture all the length and time-scales involved. Therefore DNS can be
used also to explain the uncertainty of experimental results underlying effects related
to non-ideal experimental setup. This coupled approach reveals to be essential when
dealing with the already cited difficulties of µPIV for CIJR investigations.

The chapter is organised as follows: in the next two sections the experimental
and numerical set up, respectively, are presented. The description of the operating
conditions investigated in this work follows. The results are finally presented: the
flow field is described, focusing on its evolution with the flow regime and fluctua-
tions and spatial correlations are computed and commented. Eventually the main
conclusions of the study are summarised.
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3.2 Experimental apparatus and µPIV setup

The geometry of the reactor employed in µPIV experiments is shown in Fig. 3.1.
As can be seen, it is characterised by a cylindrical chamber with a conical head and
bottom forming an angle of 45◦ with the reactor axis. An optically transparent
test section was used in the experiments with two inlet pipes that had a diameter
dj = 1 mm, a lenght of 10 diameters and are connected to the pumping system with
flexible tubes of the same diameter. The diameters of the chamber and the outlet
pipe measure D = 4.8 dj and δ = 2 dj respectively. The chamber height is equal
to H = 2 D. The coordinate system for the experiments is defined such that the
x-axis coincides with the jets axis, while the y-axis coincides with the chamber axis
and the origin is centred at the intersection of the two inlet jets.

Figure 3.1: Sketch of the Confined Impinging Jets Reactor (CIJR) geometry.

Although these experiments were performed in another work, it is useful to
remind the main conditions and operating parameters. The experiments were per-
formed for jet Reynolds number ranging from 62 to 600. The jet Reynolds number is
defined by the density of the fluid ρf , the viscosity of the fluid µf , the mean velocity
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Figure 3.2: Experimental set up for µPIV experiments.

in the inlet pipes uj, and the inlet pipes diameter dj as

Re = ujdjρf

µf

. (3.1)

The experimental setup is constituted by the flow delivery facility and by the
elements composing the µPIV apparatus, as shown in Fig. 3.2. The fluid is delivered
to the test section by two micro gear pumps and pump heads (115 VAC console
digital dispensing drive and 0.092 ml/rev suction shoe gear pump head, Cole Parmer
Instrument Co., Vernon Hills, IL), each feeding one of the reactor inlets through
pipes approximately 50 cm long with the same diameter of the reactor inlets. A
reservoir of 150 ml was connected to the flow delivery system with flexible tubing.
The plane surface of the test section was placed on the stage of the inverted biological
microscope (Nikon, model T-300 Inverted Microscope). The light beam from the
double pulsed laser passes through an optical attenuator to reduce the laser energy
per pulse, the maximum energy of which is 120 mJ/pulse, and is then directed
to an aperture in the back of the microscope. The laser apparatus (New Wave
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Research Gemini Nd:YAG PIV laser) emits two independent 532 nm light pulses
at a frequency of 4 Hz per pulse pair. Two sequential images are recorded by a
CCD camera (LaVision Flowmaster 3 camera, LaVision Inc., Ypsilanti, MI). Images
are analysed by the software Davis 6 (LaVision Inc., Ypsilanti, MI) with a cross
correlation technique that yields the instantaneous velocity vector field [Prasad,
2000].

Since the reactor walls are round, there is a problem of refraction of the laser
light at the interface between the fluid and the reactor walls that can be overcome
by matching the refractive index of the fluid with that of the Plexiglas (RI = 1.49).
The option of using a sodium iodide aqueous solution was discarded because of the
resulting high ionic strength, that leads to extensive aggregation of the polymer
micro-particles with which the fluid is seeded. An aqueous solution of urea was
chosen instead, characterised by a density of ρf = 1.14115 g/cm3 and a viscosity of
µf = 1.914 cPs computed by using the equations reported in Kawahara and Tanford
[1966]. The refractive index of the solution was calculated by extrapolating from
experimental data at 20 ◦C taken at wave-length of 589 nm by applying a linear
correlation, that is valid for concentration of urea higher than 2.5 M [Warren and
Gordon, 1966]. An urea solution of 9.38 M resulted in a refractive index of 1.41.

The flow was seeded with fluorescent melamine particles (fluorescent dye rho-
damine B: excitation 540 nm; emission 625 nm) characterised by a nominal diameter
of 2 µm and density ρp = 1.51 g/cm3 (G. Kisker GbR, Steinfurt, Germany). These
particles have been chosen instead of more common polystyrene micro-particles be-
cause of their higher density, lower tendency to aggregation and higher emissivity.
By computing the particle Stokes number St the ratio of particle response time to
the flow time-scale can be quantified:

St =
γρpd2

p

12µf

, (3.2)

where γ is a characteristic rate of strain for the flow and can be approximated as
γ = 2uj/D. For the range of Re here considered St is approximately 3 × 10−4,
therefore it is ensured that particles accurately follow the flow [Samimy and Lele,
1991].

The seeding concentration was optimised by investigating one of the reactor
inlets operating at low flow rate (i.e., uj = 0.105 m/s, Re = 62). A range of
different seeding concentrations was tested and for each one the root mean square
of the velocity was compared to the mean velocity in the inlet, in order to minimise
the noise in the measurements. The timing between laser pulses was set such that
particles moved approximately one fourth of an interrogation spot between pulses.

Differently from what happens in PIV, where only a thin slice of the flow field
is illuminated with a laser sheet, in µPIV the entire volume must be illuminated
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because of the small length-scales involved. There are two consequences related to
this configuration. The first one is that the diameter and intensity of a particle image
are dependent on the distance from the object plane. The second one is that those
particles distant from the object plane form a background glow that makes it difficult
to see the near-focus particles [Olsen and Adrian, 2000a]. Since particles are flood
illuminated in µPIV, rather than illuminated by a laser sheet as in traditional PIV,
in µPIV the measurement volume depth (termed depth of correlation [Olsen and
Adrian, 2000a]) depends on primarily the optics of the system [Olsen and Adrian,
2000a], but also on Brownian motion [Olsen and Adrian, 2000b], on out-of-plane
motion [Olsen and Bourdon, 2003], and even on fluid shear [Olsen, 2009]. In the
present experiments the depth of correlation can be calculated as [Olsen and Adrian,
2000a]

2Zcorr = 2


1 −
√

ε√
ε


f 2d2

p + 5.95(M + 1)2λ2f 4

M2

1/2

. (3.3)

In the above equation ε = 0.01, M is the magnification, λ is the wavelength of
fluorescence emitted by the particles, f is the focal number of the lens and can be
related to the numerical aperture (NA) by the following

f = 1
2NA

. (3.4)

In the present experiments, a 4 × 0.2 NA objective was used with a 0.45× coupler,
yielding a depth of correlation of 47 µm.

A multi-pass interrogation scheme with decreasingly smaller window sizes and a
50 % overlap between adjacent interrogation spots was used with a final interrogation
spot size measuring 16 × 16 pixels. The post-processing performed on the vector field
consisted in the removal of “bad“ vectors (i.e. too different from their neighbours
average) that are replaced with interpolated values. Readers interested in the details
of the ”bad” vector removal process are referred to the specialised literature [Prasad,
2000]. The final spatial resolution was 140 µm in both the x- and y-directions.

3.3 Direct Numerical Simulations and numerical
details

The flow field in the CIJR is simulated by directly solving the continuity and
Navier-Stokes equations for an incompressible fluid in three dimensions:

∇ · U = 0 , (3.5)

∂U
∂t

+ U · ∇U = − 1
ρf

∇p + νf∆U , (3.6)
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where νf is the kinematic fluid viscosity. When DNS is employed the governing
equations are solved without any model. Therefore, if the grid is fine enough and the
numerical discretisation scheme is accurate enough, the flow is described in detail
by resolving all the time and length-scales involved in the turbulent flow In this
respect, fully resolved DNS are virtual experiments that can be used to understand
and interpret experimental data.

Computations are carried out with the commercial Computational Multi-Fluid
Dynamics (CMFD) code TransAT [Ascomp GmbH, 2009]. The equations are solved
with a finite volume approximation, where the pressure-velocity coupling is per-
formed by using the SIMPLEC algorithm. Time discretisation is performed with a
2nd order implicit scheme or with a 3rd order explicit Runge-Kutta scheme. The ad-
vective terms are discretised with both the classical QUICK scheme and the HLPA
scheme [Zhu, 1991], which combines a second-order upstream-weighted approxi-
mation with the first-order upwind differencing under the control of a convection
boundedness criterion. Although HLPA is not the most common scheme for DNS,
it assures a better convergence and stability, especially in the initial transitory part
of the simulations. The simulations were performed also with the QUICK scheme
and the CDS and they revealed no significant differences. Solid boundaries of the
reactor are represented with the Immersed Surface Technique (IST) in which the
cells near the walls are marked using a signed distance function (known as the solid
level-set function) and treated in a separate way to impose no-slip condition there.
By employing this technique the walls can be immersed in a Cartesian grid, which
results in a reduced meshing time and a higher accuracy of the numerical schemes,
since the numerical viscosity due to grid-skewness is simply eliminated [Ferziger and
Peric, 2002]. These two elements make the IST approach very useful to simulate
unsteady turbulent flows with DNS in complex geometries. More details about IST
are explained in Chap. 5.

Grid Cells per block Blocks Internal cells ∆x, µm Parallel
1 40x40x80 1 1 × 105 100-140 O-MP
2 68x60x128 1 3.5 × 105 50-80 O-MP
3 100x84x150 1 8.5 × 105 30-60 O-MP
4 46x42x34 36 8 × 105 50-60 MPI
5 82x52x66 36 8 × 106 17-25 MPI

Table 3.1: Computational grids used for simulations: grid number, number of cells
per block, number of blocks, number of internal cells used for computing the flow,
cells size and parallelization library

Five different grids were prepared to optimise the computing time and ensure
that for each investigated case all the scales were resolved. Details about the grids
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(within the IST context) are reported in Table 3.1. After a dimensional analysis,
explained in the next section, and the comparison of results obtained with different
grids for a test case, it was found that grid 2 was able to capture all the relevant
length-scales for the two lowest flow rates, while for the two highest flow rates a more
refined grid must be used. In this case grid 3 was found to be fine enough since the
local ratio between the mean cell size and the approximated minimum length-scale
of the flow is always between 0.5 and 2. The details about the estimation of the
minimum length-scale of the flow are reported in the next section. Simulations were
performed on a Linux cluster (10 × 8 CPUs AMD Opteron, 2.44 GHz) with either a
shared or a distributed memory parallelism. The former was used with single-block
grids (Open-MP library) and the latter with multi-block grids (MPI library). Using
eight processors with shared memory and a speed-up factor of about 3.5, the total
CPU time needed to simulate 1 s of real time with grid 2 was found to be between
one and four days depending on the flow regime which influence the convergence
and the simulation time step.

3.4 Operating conditions investigated and bound-
ary conditions

The flow field was measured and simulated for four inlet jet Reynolds numbers
(Re): 62, 150, 310 and 600, corresponding to actual average inlet velocities (uj) of
0.105, 0.250, 0.520, 1.01 m/s. For all the four cases the flow in the inlet pipes is
laminar, however inside the chamber a transition occurs; the impingement in fact,
creates strong instabilities and drive the flow towards turbulence. In Table 3.2 the
operating conditions are summarised reporting for each flow rate the mean inlet
velocity, the mean residence time in the CIJR, the inlet jet Reynolds number and
the approximated Kolmogorov micro-scale.

FR, mL/min Mean inlet velocity, m/s τR, s Re λK , µm
10 0.105 1.05 62 -
20 0.25 0.44 150 -
40 0.52 0.21 310 -
90 1.01 0.11 600 ≥ 17

Table 3.2: Nominal flow rates, mean velocities, mean residence times, jet Reynolds
numbers and estimated Kolmogorov micro-scale lengths.

The estimation of this length-scale is a very challenging issue since the flow
under study may be not under fully developed turbulence and the statistical theory
of turbulence is not guaranteed to be valid here. Nevertheless this is a crucial point
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to make sure that a DNS simulation is actually resolving all the time and length-
scales involved. As it is well known, for high Reynolds number flows it is possible
to estimate the Kolmogorov length as λK =


ϵ

νf

1/4
, where ϵ is the dissipation rate

of turbulent kinetic energy. The turbulent kinetic energy can be measured from
experiments or calculated by solving an appropriate transport equation, while its
dissipation rate can be estimated with a mixing length hypothesis or by solving
another transport equation. This is the standard procedure of many RANS models.
For the flow under study it is reasonable to apply these concepts, at least for the
highest flow rate studied, corresponding to Re = 600. In particular, the results of
the work of Hosseinalipour and Mujumdar [1995] in which different RANS models
were compared for impinging opposing jets in a flow regime very similar to this
study, show that the Abe-Kondoh-Nagano Low-Reynolds number model [Abe et al.,
1994] is able to describe acurately opposing impinging jets flow. This model, in
fact, was found to be the most appropriate for this type of flows and resulted in
an estimation of the maximum turbulent energy dissipation rate localised in two
zones on the inlet axis, 1 mm far from the centre. With these values an estimated
Kolmogorov length of λK = 17 µm for the case of Re = 600 was obtained (after
reaching a grid independent solution). As already mentioned, this estimation can
be applied only for the highest flow rate but we can suppose that, for lower flow
rates, the minimum length-scale could not be smaller. Of course the flow condition
in the CIJR under study are not “ideal“ but this is still a reasonable lower limit
approximation. Simulations with other RANS models in fact gives a similar or even
higher estimation of this length-scale. Based on these additional arguments it is
possible to conclude that the grids adopted in this DNS study are adequate

In the experiments, the objective was focused on the plane passing through the
jets and the chamber axes. Before taking images, some time was allowed for the
flow to reach a steady state. The inlet flow rate was adjusted from the pumps
in order to obtain the balancing of the jets. For each jet Reynolds number 1000
realisations were captured and analysed. The µPIV images formed using the 4×
objective and the 0.45× coupling cover an area of approximately 4.6×3.68 mm2,
however the measured area does not cover the entire width of the reactor, but is
limited to an area 4.0×2.5 mm2 due to the cylindrical shape of the device, that
causes the shading region near the wall and an uneven illumination that favours
the measurement in the central region of the interrogation window. The images are
centred at the intersection between the jets and chamber axes.

Experimental results and DNS predictions were compared in the same window
captured by µPIV and a numerical filter equivalent to the experimental one was
developed to spatially smooth data coming from the simulations, which are finer
than µPIV resolution for all the grids. In fact, comparing the µPIV resolution with
the size of the computational cells, one finds that simulations are characterised by
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a better resolution of smallest scales. This does not affect much the comparison
of first order statistics (i.e., mean velocities) but can in principle compromise the
comparison of second order statistics (i.e., velocity fluctuations). In this case
however it was found that the filtering operation simply reduce the mean oscillations
of a small percentage (less than 5 %) so only the unfiltered results are shown.

Simulations data were saved and analysed for each time step (calculated adap-
tively according to stability criteria based on Courant—Friedrichs—Lewy and dif-
fusion conditions [Ferziger and Peric, 2002]) after the transient in a time window of
length equivalent to three residence times for the two lowest flow rates and six resi-
dence times for the highest ones. MicroPIV results instead are recorded with a time
step of a quarter of second for a total experimental time of 250 s. It resulted that
the time steps used for numerical simulations is often more than a thousand times
smaller than the experimental one. Also the total time of analysis is very different.
This complicates the comparison between experiments and simulations since only
the latter ones can give a complete description of the transient development of the
flow. MicroPIV can instead be used to image instantaneous velocity fields and to
calculate statistics which are needed for the simulations setup.

Contrary to what happens with RANS, when employing DNS or LES, the results
are very sensitive to boundary conditions and the proper selection of inflow boundary
conditions becomes crucial. In fact, no time averaging is performed and the system
is highly sensitive to the instantaneous jets behaviour. For this reason the µPIV
data in the inlets were analysed revealing small variations in time which could not
be related to natural instabilities in the system or to turbulence in the chamber.
They are instead related to the pumps feeding the solution to the CIJR. Therefore to
clarify the effect of the experimental inflows two types of simulations were performed
with different boundary conditions.

First a set of simulations were performed with constant laminar inflow profiles:

U(x) =

 Ux|inlet

Uy|inlet

Uz|inlet

 =

 U0 (x)
0
0

 (3.7)

where U0 (x) is the constant parabolic profile in the tubes which depends on the
wall distance, then the inflows were approximated as follows:

U(x) =

 Ux|inlet

Uy|inlet

Uz|inlet

 =

 U0 (x) [1 + K cos (tω + φ)]
0
0

 (3.8)

by superposing to the constant profile a single harmonic with amplitude K (ranging
between zero and 0.2), and frequency ω (≈ 10uj

D
) chosen according to experimental

data. To emphasise the effects of these oscillations the phase lag between the two
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inlets was set to π
2 in order to result in phase opposition. Since the time interval

between the experimental measurements of the inlets is relatively large and of the
same order of magnitude of the total simulations time (∆tµP IV = 0.25 s), an ex-
haustive analysis of the inflow time series is not possible especially when the flow
rate is high and the inflows are more unsteady. For this reason the calculation of
the boundary conditions parameters was carried out for the two lowest flow rates,
analysing the time spectra, and only estimated for the two highest ones. Due to this
lack of data in time and to the strong feedback (for high flow rates) of the internal
flow to the velocity measured at the inlet, it was not possible to investigate in more
depth the experimental inflows, recovering for example more frequencies or impos-
ing exactly the velocity measured by experiments. However, the assumption of a
single frequency can be physically explained by an oscillation due to the mechanical
features of the whole pumping system and it was found to be sufficient to catch the
observed behaviour.

3.5 Results and discussion
The cylindrical geometry of the reactor creates a three-dimensional flow field

which is reproduced also in the simulations. MicroPIV measurements were obtained
the xy-plane with z = 0 therefore all the results are analysed in this plane. However
the z-component of the flow has a strong influence on the development of turbulence,
as it can be seen in the results and which would be completely neglected if a planar
reactor or bi-dimensional simulations were considered instead.

The flow field is first discussed qualitatively by analysing snapshots of the instan-
taneous and the mean flow field measured with µPIV to show the main feature and
structures of the flow. MicroPIV asymmetry is then underlined looking at the mean
x-velocity (UMEAN

x ) along y-direction at the two inlets and in the centre of the reac-
tor. After this overview of the experiments a detailed comparison between µPIV and
simulations in terms of first (i.e., mean velocity, UMEAN) and second order statis-
tics (i.e., root-mean-square, RMS, of velocity fluctuations, U ′RMS) is presented. In
particular x-velocity (Ux) and y-velocity (Uy) statistics are represented respectively
along the x and y-axis. Finally a more detailed analysis of the turbulence inside
the reactor is carried out with spatial correlations and time spectra of velocity fluc-
tuations. Spatial correlations are normalised as follows [Olsen and Dutton, 2002]:

Rij(r) =
⟨U ′

i(x)U ′
j(x + r)⟩

⟨U ′2
i (x)⟩⟨U ′2

j (x)⟩
=

⟨U ′
i(x)U ′

j(x + r)⟩
U ′RMS

i (x)U ′RMS
j (x) . (3.9)

where the brackets represent the averaging operator, i and j represent the indexes
of two spatial coordinates, x = (x, y) are the coordinates of the basis point and
r = (rx, ry) are the coordinates of the displacements from the basis point. The
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stagnation point was chosen as base point. While in the simulations it coincides
with the centre of the reactor and the axis origin, in the experiments it is slightly
off the centre in the positive x-direction. Spatial correlations will be discussed here
only for the highest flow rate investigated (i.e., Re = 600).

3.5.1 Experimental instantaneous flow field

The time evolution of the flow field in the CIJR at the different jets Reynolds
numbers investigated is here described in terms of the experimental instantaneous
velocity vector fields. For brevity only snapshots for Re = 310 and 600 are here
reported, as the chaotic and turbulent behaviour of the flow field in these conditions
is of higher interest for the present study.

−2 −1 0 1 2
−1.5

−1

−0.5

0

0.5

1

1.5

x (mm)

y
 (

m
m

)

 a

−2 −1 0 1 2
−1.5

−1

−0.5

0

0.5

1

1.5

x (mm)

y
 (

m
m

)

 b

−2 −1 0 1 2
−1.5

−1

−0.5

0

0.5

1

1.5

x (mm)

y
 (

m
m

)

 c

−2 −1 0 1 2
−1.5

−1

−0.5

0

0.5

1

1.5

x (mm)

y
 (

m
m

)

 d

Figure 3.3: Four successive instantaneous vector fields obtained with µPIV for
Re = 310.
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Figure 3.4: Four successive instantaneous vector fields obtained with µPIV for
Re = 600.

For the lowest Reynolds numbers (Re = 62) in fact, the instantaneous flow field
is almost stationary, except in the centre of the chamber where a continuous but
relatively slow motion of the impingement plane is detected without the creation
of complicated sub-structures. In these cases, the flow field is well represented by
the mean velocity discussed in the next section (see Fig. 3.5). For Re = 62 the
instantaneous vector fields show that the flow regime is laminar but unsteady, since
the stable impingement plane oscillates from one side to the other of the chamber.
At Re = 150 the flow regime is still laminar, however its unsteadiness is more pro-
nounced, because of the higher momentum belonging to the jets that causes stronger
interactions between the fluid and the walls. Large eddies that interact with the in-
coming jet streams are created, occasionally causing the temporary disappearance
of the impinging plane.
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The flow begins to have a chaotic behaviour at Re = 310. Four successive snap-
shots for this case are shown in Fig. 3.3. The impingement plane shifts more often
and more extensively and is periodically broken in many smaller eddies. Finally,
as clearly evident in the four consecutive snapshots of the vector field represented
in Fig. 3.4 for Re = 600, the flow is fully chaotic, the impingement plane is rarely
imaged in the chamber centre, whereas in most images it is replaced by many small
eddies that interact with the incoming jets streams, promoting mixing of the two
feed streams. The frames reported are not correlated in time, as the 0.25 s interval
between successive µPIV vector fields is far to capture the unsteady behaviour of
the impingement zone. Their purpose is to qualitatively show the main features of
the flow at increasing flow rates. For quantitative comparisons, in the next sections
numerical data have been used.

3.5.2 Mean velocity field
In Fig. 3.5 the mean flow field measured by µPIV is shown for the four jet

Reynolds numbers considered. For all these four conditions the jets entering from
the sides of the window are clearly visible. They collide in the centre of the chamber,
where the x-momentum becomes null and the flow is deviated radially in the y- and
z-directions (as already said the z-direction is not visible because the µPIV images
are purely two-dimensional). The point of collision of the jets is slightly off the
centre for Re = 600, because of the great difficulty in exactly balancing the jets
with the gear pumps. Unfortunately this difficulty increases as the unsteadiness
and turbulence of the flow field increases. This asymmetry between the jets was
also taken into account in some of the simulations by a very small difference in
the mean velocity of the two jets. However in all cases, it was verified that this
unbalance was smaller than 5 %.

The profiles of the x-component of the mean velocity (UMEAN
x ) measured by

means of µPIV are shown in Fig. 3.6 on three different x-planes, for x = −2, 2 and
0 mm and for the four Re considered. The analysis of these data is very important
because it allows the assessment of the overall accuracy of the µPIV approach. For
the three lowest Re the x-component velocities at x = ±2 mm are almost identical
with a mismatch smaller than about 0.08-0.05 m/s, resulting in velocities for x = 0
close to zero. For Re = 600 instead the difference between the jets is slightly bigger
causing the misalignment of the collision point.

Let us now focus on the comparison between µPIV experiments and DNS sim-
ulations. In Fig. 3.7 the mean velocity in the x-direction (UMEAN

x ) along the jets
axis normalised with respect to the maximum velocity is reported. The open sym-
bols refer to the experimental data, the continuous line to the DNS with constant
inflows (see Eq. 3.7) and the dashed line to the DNS predictions with the unsteady
boundary conditions (see Eq. 3.8). The amplitude of the oscillations K is taken
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Figure 3.5: Mean velocity fields measured by µPIV for (a) Re = 62, (b) Re = 150,
(c) Re = 310, (d) Re = 600.

here equal to 1
10 , namely the value that best approximates the experimental inlet.

The data are reported for the x-coordinate ranging from −2 mm to 2 mm, covering
therefore almost the entire chamber diameter. As it is possible to see, the left and
right boundaries of the plot represent the inlet jets that enter the reactor with op-
posite velocities and then collide in the middle. The comparison between DNS and
experiments highlights that the use of unsteady inlet velocities is very important
to predict experimental results, as the structure of the impingement is completely
changed especially at high flow rates.

These results are particularly interesting when compared with the work of Gavi
et al. [2010], where a subset of these data were used to validate RANS predictions.
In that case constant and laminar inflows were adopted, resulting in satisfactory
agreement, proving once again that the importance of accurate unsteady boundary
conditions applies mainly to DNS. The same conclusions can be drawn also from the
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comparison of the mean velocities in the y-direction (UMEAN
y ) along the chamber

axis, reported in Fig. 3.8. Also for these quantities, the unsteady inflows strongly
influence the predictions resulting in a good agreement with experimental data. The
analysis of these two velocity components in other areas of the reactor confirms these
conclusions and support our hypothesis that the small instabilities related to the two
inlets have a strong influence on the final flow field.

3.5.3 Velocity fluctuations
As a first example of second order statistics, RMS of velocity fluctuations in

the x-direction (U ′RMS
x ) along the jet axis are presented in Fig. 3.9. Also in this

case µPIV experiments (symbols) are compared with DNS predictions with constant
(continuous line) and unsteady inflows (dashed line). As it can be observed, with
unsteady inflows the velocity fluctuation intensity is predicted reasonably well, while
constant inflows strongly underestimate it. In particular, for the lowest flow rates,
DNS with steady inflows predicts a steady laminar flow field without fluctuations
in disagreement with the experiments. Also looking at the longitudinal fluctuations
along the chamber axis reported in Fig. 3.10, the same consideration holds.

As a general comment it is possible to state that, especially for high flow rates,
the oscillations are slightly over-predicted. This can be due to different reasons. As
already reported different spatial resolutions were used in µPIV experiments and
simulations. In fact, µPIV has a lower resolution and it may not capture small
scales that are instead included in the numerical results. However, when the spatial
filter was activated to reproduce the micro PIV resolution a small and not relevant
improvement was observed. Most likely this small overestimation could be caused
by the approximation of the inflow boundary conditions with a single oscillating
frequency with the assumption of phase opposition.

3.5.4 Spatial correlations
Spatial correlations were calculated from experiments and simulations according

to Eq. 3.9 in order to further investigate some specific features of the flow field in the
CIJR. However, as previously mentioned, the most interesting results are observed
at the highest jets Reynolds number investigated in this work and therefore the
results discussed in this section are limited to Re = 600.

In Fig. 3.11 Rxx, Ryy and Rxy are shown both for µPIV experiments (left) and
DNS (right). Rxx (top) presents a small area of high correlation around the base
point, and the correlation is non-zero and positive in a wide area that contains the
jet streams. This shape is confirmed by the results reported in Fig. 3.5(d). In fact,
as can be seen due to the jets presence the x-component of velocity changes slowly
along the jets axis, causing the correlation Rxx to remain high over long distances
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Figure 3.6: Profiles of the x-component of the mean velocity measured by µPIV
at x = 0 mm (◦), −2 mm (△), 2 mm (▽) for for (a) Re = 62, (b) Re = 150,
(c) Re = 310, (d) Re = 600.

in the x-direction. In µPIV measurements the correlation decrease faster along the
jet axis with respect to simulations. This small difference can be explained again
with the approximation of inflow conditions with a single frequency and with the
different numbers and lengths of time steps. The correlation Ryy for both exper-
iments and simulations is a plume centred at the base point above the jets axis,
almost symmetric with respect to the chamber axis (and always positive). A second
plume of low negative correlation is situated symmetrically to the first, below the
jets axis, consistently with what reported in Figs. 3.5(d) and 3.4. Along the jet-axis
in fact the y-component of the velocity is almost zero, whereas along the chamber
axis the same component is rather high and changes only a little, determining the
high Ryy correlation. Finally the correlation Rxy is symmetric with respect to an
axis inclined 45◦ to the chamber and jets axes. The correlation is negative in the
first and third quadrants, whereas it is positive in the second and fourth quadrants.
Again the reason for this can be understood by observing the snapshots reported in
Fig. 3.4. The eddies that are formed by the jet with positive x-component velocity
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Figure 3.7: Comparison between profiles of the x-component of the mean velocity
at y = 0 mm measured by µPIV(◦) and predicted by DNS with constant inflows
(continuous line) and DNS with variable inflows (dashed line) for (a) Re = 62,
(b) Re = 150, (c) Re = 310, (d) Re = 600.

rotate anti-clock wise above the jets axis and clock wise below the jets axis, there-
fore originating a negative y-component velocity above and a positive y-component
velocity below the jets axis. A similar situation can be described for the opposite
jet with negative x-component velocity.

3.5.5 Time series power spectra
The important effects of imposing oscillating inflows in the simulations is also

visible in Fig. 3.12 where the power spectra of x-velocity fluctuations (from DNS)
in the impingement point are reported for Re = 310 (dashed line) and Re = 600
(continuous line). The spectra are smoothed using a 7-points moving average to
remove the noise at high frequencies. As it can be seen, the imposed oscillations
are very small in amplitude but they create a wide range of frequencies in the
spectrum of velocity fluctuations. The spectra exhibit marked peaks reflecting the
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oscillations in the inflow (main mode), followed by sub-harmonics, increasing (non-
linearly) in frequencies with the Reynolds number. For the two lowest flow rates
the peak contains more than 90 % of the energy while for Re = 310 and Re = 600
the percentage decreases to 73 % and 55 % respectively. The remaining energy is
transferred to smaller scales. Increasing the flow rate the power spectrum tends to
approach the −5

3 logarithmic slope, characteristic of three-dimensional turbulence.
This result shows that the flow in the reactor is not fully turbulent but it is in
a transitional regime. Furthermore it can be noted that the approximation of the
experimental inflows with a single frequency oscillation is reasonable for the purpose
of simulating the behaviour of the system. A sensitivity analysis modifying the
frequency, the phase displacement between the two inlets and the amplitude of
oscillations within a reasonable range revealed a weak influence of these parameters
on the qualitative behaviour of the system and on the velocity statistics analysed.
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(b) Re = 150, (c) Re = 310, (d) Re = 600.

3.6 Conclusions

In this chapter results concerning the flow field in a CIJR measured with µPIV
and predicted via DNS were presented and discussed. Qualitative and quantita-
tive comparisons in terms of first and second order statistics at four different flow
regime conditions (Re = 62, 150, 310 and 600) were analysed. Only the combina-
tion of the experimental and modelling approach was found to be able to address
the many physical issues involved. MicroPIV data, applied for the first time to a
three-dimensional axisymmetric CIJR, is able to highlight the presence of a rich va-
riety of flow structures and instabilities. In particular it emerges that the flow field
is laminar and unsteady for low jets Reynolds numbers (Re < 310), and turbulent
for and higher values. However these turbulent features increase the difficulties in
the experimental setup and make it extremely hard to understand and fully explain
the results. DNS can therefore be used to gain further insights in the system. Our
results show that the natural instability generated by the impingement of the jets is
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Figure 3.10: Comparison between RMS profiles of the y-component of the fluctuating
velocity at x = 0 mm measured by µPIV(◦) and predicted by DNS with constant
inflows (continuous line) and DNS with variable inflows (dashed line) for (a) Re = 62,
(b) Re = 150, (c) Re = 310, (d) Re = 600.

not enough to explain the chaotic behaviour of the system. Instead, if more accurate
inflow conditions are imposed in DNS, by introducing small oscillations similar to
the experimental ones, a more chaotic behaviour is observed. These oscillations are
not obtained with a fitting procedure but simply imposed according to the experi-
mental data available in the inlets, which revealed small variations in time due to
the feeding system. Since the main purpose of this study is to understand what
happens in micro-reactors applied in industries for continuous operation, it is very
important to analyse the effects of the unsteadiness acting and generated by the sys-
tem, and there is no interest in artificially removing these oscillations but they must
be taken into account in the computational model. DNS with a proper approxima-
tion of the boundary conditions resulted in very good agreement with experimental
data and provide us with an explanation of the structures observed with µPIV: the
breakup of the impingement plane generates many eddies of different sizes that en-
hance turbulence in the device and its mixing performance. These results suggest
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Figure 3.11: From top to bottom spatial correlation functions Rxx, Ryy and Rxy as
measured by µPIV (left) and simulations (right) for Re = 600.
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also that unsteady simulations of this type of micro-mixers must be provided with
accurate unsteady boundary conditions, and this gave the way for the next step of
the work that includes the use of LES with appropriate sub-grid scale models for
the simulations of mixing and reactions in CIJR.
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4
Quality and reliability of LES models

Before applying LES to the CIJR described in Chap. 3, this model (and the
particular implementation used in this thesis) is here studied in a more general
context. In fact, the assessment and reliability of LES models is a topic that is fac-
ing increasing interest in the scientific community because of the increasing need of
three-dimensional and unsteady details in practical CFD applications. Furthermore,
most of the concepts used for laminar flows or RANS simulations cannot be easily
translated into LES framework, where, for example, the important concept of grid
independence cannot be applied. In this part of the work, the influence of Sub-Grid
Scale (SGS) models, numerical schemes and wall models are analysed for a periodic
turbulent channel flow, comparing the results with DNS data. The objective is to
test LES models and CFD numerics commonly used for engineering applications in
a simple setup where their effects and interdependency can be understood. This
preliminary step is particularly important for the simulation of more complex ge-
ometries (such as the one reported in Chap. 5) and more complex problems (such
as the one reported in Chap. 6).

With this objective, a periodic channel is studied with LES for a turbulent flow
characterised by a friction Reynolds number Reτ = 590. Results are compared to
DNS data of Moser et al. [1999].

Part of the work presented in this chapter is the result of the LESinItaly project, a collabo-
ration of different Italian groups active in the field of LES, published in the work of Denaro et al.
[2011]. The simulations have been carried out thanks to the computational resources of CASPUR.
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4.1 Introduction

The recent and always increasing development of computational powers, thanks
to new hardware and new parallelisation techniques, has given the opportunity of
employing LES for small and medium scale industrial applications. LES is, in fact,
more suitable than RANS for many applications in which the three-dimensional and
unsteady behaviour of the flow has a greater influence on the other physical phe-
nomena involved (e.g., chemical reactions, structure vibrations, aerodynamic wakes,
etc.). However, although the main concepts of LES have been introduced in the
1970’s and huge efforts has been put in the last decades for their development and
study, many theoretical and practical aspects are still under a flamed debate, as
it is demonstrated by some recent works [Bouffanais, 2010, Denaro, 2011, Jiménez,
2003, Jiménez and Moser, 2007, Meyers and Sagaut, 2007, Pope, 2004]. In partic-
ular, some of crucial points refer to SGS and wall models, their interactions with
numerical schemes and also on the interpretation of LES itself. In this framework it
is important to mention the Implicit Large Eddy Simulation (ILES) and Monotone
Integrated LES (MILES) [Fureby and Grinstein, 1999, Grinstein et al., 2007, Mar-
golin et al., 2006]. Both these approaches directly use ad-hoc numerical schemes
as sub-grid models, simplifying the LES implementation but loosing the numerical
independence with respect to the model.

The objective of this study is to consider a widely studied and known problem,
such as the wall bounded flows in a periodic channel, and use it as a benchmark test
case for an overall estimation of the prediction ability of our LES platform. This
is a very challenging issue because the numerical (given by the numerical grid and
schemes) and modelling errors (the SGS models and wall functions) are not easily
decoupled in the LES framework and they interact in an unusual and non-linear
way, giving place to a high uncertainty on the results and difficulty in applying the
same conclusions for different applications.

This part of the work considers the performance of different SGS models, numer-
ical schemes, as well as wall and SGS damping functions. A periodic channel with
Reτ = 590 is simulated with periodic boundary conditions on x and z and no-slip
boundary conditions on y and results are compared against DNS data of Moser et al.
[1999]. The channel flow problem has been studied by many previous works [Hoyas
and Jiménez, 2006, Kim et al., 1987, Mansour et al., 1988, Mason and Callen, 1986,
Moin and Kim, 1982, Piomelli et al., 1988] but, as it has been already underlined,
the accuracy of LES strongly depends in a complex way to many numerical and
modelling parameters, therefore it is important to test the available LES platform
in simple test cases before going into more complex applications.
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4.1.1 Test case description
The channel under study is defined by

Lx = 2πH Ly = 2H Lz = πH (4.1)

where H is the half-height of the channel, used as characteristic dimension. The

Figure 4.1: Sketch of the channel [Lampitella et al., 2011].

main flow is directed along x-direction while y is the direction normal to the walls.
Therefore the boundary conditions consist in no-slip conditions at y-boundaries and
periodic conditions at x and z-boundaries.

Being U the x-component of the velocity, the wall shear stress is defined as

τw = ρν
dU

dy


y=0

. (4.2)

The friction Reynolds number Reτ can be defined as [Pope, 2000]:

Reτ = Uτ H

ν
; (4.3)

where Uτ =


τw

ρ
is the friction velocity.

In our model, the fluid flows thank to a constant pressure forcing in x. This
means that the mean flow rate is not directly imposed but it results from the bal-
ance between pressure and shear forces. This makes the model extremely sensitive
to model assumptions and numerical treatment of the walls and permits a better
understanding of the influence of the various model parameters.
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Turbulent flows are characterised by a stochastic behaviour and therefore an
instantaneous comparison of the LES results with DNS is not possible. Therefore the
main quantities of importance come from statistics of the flow field. The statistics
must be calculated from uncorrelated temporal samples, after that the mean flow
rate and the mean resolved kinetic energy have reached a pseudo-stationary state.
Averaging is performed in time and along the periodic directions. In particular,
considering a generic flow field variable f(x, y, z, t) coming from a LES simulation
(i.e., LES filtered quantity) we define the following spatial average:

f
xz(y, t) = 1

LxLz

 Lx

0

 Lz

0
f(x, y, z, t) dz dx, (4.4)

and a temporal average on top resulting in:

⟨fxz⟩(y) = 1
∆T

 ∆T

0
f

xz(y, t) dt. (4.5)

The fluctuations with respect to LES solution are defined as:

f ′(x, y, z, t) = f(x, y, z, t) − f
xz(y, t), (4.6)

and their RMS values as:

fRMS(y) =


⟨(f ′(x, y, z, t))2xz
⟩ (4.7)

Similarly, one-dimensional energy spectra EUU , EV V , EW W for the three velocity
components can be defined at specific wall distance, calculating the Fourier tran-
form along one of the periodic directions x or z and averaging on time and on the
remaining periodic direction.

It is worth noticing that all these quantities are not exactly comparable to the
DNS conterpart because they neglect the sub-grid scales fluctuations filtered out by
the LES filter.

4.1.2 Numerical details
The desired friction Reynolds number is obtained by taking an adimensional

setup with
H = 1 m ρ = 1 Kg/m3 µ = 1

Reτ

(4.8)

and adding an uniform unitary pressure gradient source term in the x-momentum
equation. In this work the friction Reynolds number is Reτ = 590.

Two numerical grids have been used to compute the flow:

1. Non-Resolved Grid (GNR), 64 × 32 × 64 cells with ∆y+ = 1.42
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2. Resolved Grid (GR), 64 × 100 × 64 cells with ∆y+ = 0.45

The grids are uniform in x and z directions and stretched in y direction with a
trigonometric law to increase the boundary layer resolution Since these grids have
a good near-wall resolution, the wall functions are not strictly needed. However,
to understand the effect of the wall functions, the Werner-Wengle law [Werner and
Wengle, 1991] has been tested and compared with the fully resolved simulations.

The simulations are carried out in time with an explicit third-order Runge-Kutta
scheme and a second-order implicit scheme, while the advective fluxes are discretised
with the central scheme, QUICK [Leonard, 1976] and HLPA [Zhu, 1991] scheme.
The explicit time step was adaptively chosen to have the maximum local Courant—
Friedrichs—Lewy (CFL) number below 0.2, resulting in a time step ∆t = 5.0 · 10−4,
while the implicit scheme has been run with ∆t = 1.0 · 10−3.

The simulations have been carried out with the commercial CFD code TransAT,
in a two-way quad-core Opteron 2.1GHz with 16 GB of RAM (hosted by CASPUR,
Roma) with shared memory parallelisation paradigm (OpenMP). The total simula-
tion time for a single run, including the initial transition before statistical station-
arity, was from ten days for the coarse grid, up to sixty days for the finer one. This
reduces respectively to six and fifteen days, when using two and six processors. This
was found to be the best compromise between speed, scalability and accuracy. The
results and the computational time were almost equal with both implicit and explicit
method. Even if the explicit method is 10% faster, the implicit method is preferred
because of the strict control on residuals, especially when additional physics and
equations are added to the flow.

The solution has been initalised with results coming from a coarser grid and
statistics are calculated from 100 samples with a sampling time ∆tsampl = 0.5s
when the flow has reached that transient effects.

4.1.3 Sub-grid Scale (SGS) modelling
In LES the effects of the small scales of the flow are modelled as a sub-grid scale

viscosity
τij = −2 νt Sij (4.9)

where the strain rate tensor Sij is determined from the large scale motion. The
constant Smagorinsky model [Smagorinsky, 1963] is based on this approach and

νt = ℓ2|S| (4.10)

where |S| is the main strain rate defined as

|S| =

2SijSij

1/2
(4.11)
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and where the length-scale ℓ = Cs∆ is based on the filter size (in our case equal
to the cell size) ∆3 = (∆1∆2∆3) . The constant Cs is the Smagorinsky constant
(commonly assumed to be between 0.10 and 0.15).

The reduction of the sub-grid length-scale ℓ in low-Re number flow regions can
be achieved in different ways:

• Van Driest damping function [Van Driest, 1956]:

ℓ = Cs∆

1 − exp


−y+/26


(4.12)

• Harmonic damping:

ℓ = min
Cs∆,


1

C2∆
+ 1

κy

−1
 (4.13)

where C2 is a constant (in this work it is equal to Cs), κ is the Von Karman
constant (≈ 0.41) and y is the distance from the wall.

• Mixing length:
ℓ = min


Cs∆, κy


. (4.14)

In the dynamic model [Ascomp GmbH, 2009, Germano et al., 1991] the eddy
viscosity is determined from the information contained in the resolved velocity field.
The main idea consists of introducing a test filter with a larger width than the
original one, i.e. ∆ > ∆ . This test filter is then applied to the filtered Navier-
Stokes equations, yielding a test-scale stress tensor Tij similar in form to τij that
takes the following form:

Tij = U ′
iU

′
j − Ui

Uj . (4.15)
By virtue of the Germano identity [Germano, 1986], the two sub-grid scale (SGS)

stress tensors τij and Tij are connected through the following relation

Tij − τij ≡ Lij = U ′
iU

′
j − Ui

Uj . (4.16)

Assuming now the Smagorinsky functional form to hold and a variable coefficient
Cs to be used to close the deviatoric parts of τij and Tij, we get

τij = −2(Cs∆)2|S|Sij (4.17)

Tij = −2(Cs
∆)2|S|Sij (4.18)
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where S = (vi,j + vj,i)/2 is the strain tensor of the test-filtered velocity field. Rear-
ranging the last three equations results in:

Lij = −2(Cs ∆)2

 ∆2

∆2 |S|Sij − |S|Sij

 (4.19)

In this work five different models are used to take into account sub-grid scales:

1. no model (νt = 0),

2. dynamic model,

3. constant Smagorinsky model with Cs = 0.10 and Van Driest damping,

4. constant Smagorinsky model with Cs = 0.10 and harmonic damping,

5. constant Smagorinsky model with Cs = 0.10 and mixing length damping.

The influence of the parameter Cs has been tested, by varying it between 0.08 and
0.15 and found to be negligible.

Figure 4.2 shows the length-scale ℓ calculated for the grid GNR with different
damping functions and definitions of mean grid cell size. Usually the mean cell size
is calculated with a geometric law ∆ = (∆x∆y∆z)1/3. Another possible definition is
∆ = max (∆x, ∆y, ∆z) that represents in slightly different way the unresolved scale
when the grid stretching is high. Only the first definition was used in the simulations
since the main shape of the curves does not change much with the other definition.
More differences can be seen instead by varying the damping functions.

4.2 Results and discussion
As it has been already reported, the statistics have been compared to DNS data

of [Moser et al., 1999] in terms of mean velocity, fluctuations and velocity correlations
spectra.

The simulations with the Werner-Wengle wall functions resulted in negligible
effects on the statistics and the flow field, confirming that the grids we used can
solve the wall boundary layer. Then, among the different advection schemes tested,
only the central scheme captured the correct flow behaviour. The QUICK scheme in
fact creates spurious checker-board oscillations in the centre of the channel, while the
HLPA, because its the boundedness criterion, introduce small numerical viscosity
that laminarise the flow, predicting a very large mean flow rate. Therefore in the
following results, only the simulations with the central scheme without wall functions
are shown.
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Figure 4.2: SGS length-scale used in the Smagorinsky model to calculate the SGS
viscosity. Comparison of different damping functions.

It is important to highlight here that, except for the mean quantities, the com-
parison of LES results with DNS, is not fully equivalent, as discussed in the previous
section. In fact LES fluctuations and spectra cannot account for the SGS structures
of the flow. In this setup, where the mean flow rate is implicitly imposed by the
pressure forcing, the main quantity of interests is therefore the mean flow profile
in the x direction. Fluctuations and spectra, compared to DNS, can give however
important information about the effects of the different SGS models and the LES
filter.

4.2.1 Mean and fluctuating velocities
Figure 4.3 represents the mean velocity profile along the wall normal direction

y for the GNR and GR grid simulations with different SGS models. The case
without SGS model shows an overprediction of the profile that affects the mean flow
rate. The prediction seems to be even overestimated when the dynamic model is
used to capture the SGS effects. It is interesting to notice that the results with
the dynamic model are very similar to the Smagorinsky model with the classical
Van Driest damping. The situation changes when the Smagorinsky model is used
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Figure 4.3: Mean velocity profiles of LES simulations with grid GNR (left) and grid
GR (right). TransAT results.

together with a different damping. In fact, the best results are obtained with the
harmonic damping while the mixing-length damping under-estimate the velocity
profile. This seems to demonstrate that the type of SGS model is not as important
as the damping functions and that the flow is very sensitive to the SGS viscosity in
the near-wall region.

These conclusions are confirmed also by the results obtained with the finer grid
(GR). We can conclude therefore that the overall results are not influenced much
by the SGS model nor by the wall-normal resolution. This can be explained with
a possible under-resolution along the stream-wise and span-wise directions that un-
derestimate the effects of eddies and that is compensated by a higher SGS viscosity
near the wall.

This means that, the development of the profile is more influenced by the sub-
grid scale viscosity in the near-wall region than in the central part of the channel.
Both the dynamic and the Van Driest model in fact introduce a significant SGS
viscosity only quite far away from the wall (above y+ > 10) differently from the
harmonic and mixing-length damping. This is shown in Figure 4.4 where the SGS
viscosity is plotted. SGS viscosity near the wall has an opposite effect on the overall
flow rate with respect to the SGS viscosity near the centre of the channel. In the
first case in fact it introduces a higher dissipation near the wall which enables the
development of a profile close to DNS data, while in the second case the dissipation
is acting more on the central part of the channel, where the velocity profile is already
partially developed, inducing an overestimation of the mean flow rate.

More information can be be obtained by analysing the velocity fluctuations. In
Figures 4.5 the velocity fluctuations in the three directions along the wall-normal
direction are plotted. The results in the centre of the channel are always predicted
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Figure 4.4: SGS viscosity profiles of LES simulations. TransAT results.

accurately by all the models but the peaks close to the wall seem to be more in-
fluenced by the choice of the models. In the stream-wise direction the predictions
follows the same behaviour of the mean velocity, with good predictions obtained
with the harmonic damping, while the other models over-predict the fluctuations,
except the mixing length case. In the span-wise and wall-normal directions instead,
the harmonic damping under-predicts the fluctuations peaks. This difference can be
explained again by the fact that the grid near the wall which is more refined in the
y-direction than in the others. This cause the x-fluctuations to be better predicted
by the LES simulations. A post-filtering operation on the DNS data could be useful
in this case to take into account the LES filter in the fluctuations.

4.2.2 Energy spectra
Figure 4.6 shows the Fourier coefficients of stream-wise, span-wise and normal

velocity correlations along x-direction near the wall and in the centre of the chan-
nel. In Figure 4.7 the same quantities are calculated along the z-direction. As
expected, in the centre of the channel the damping functions do not influence the
qualitative behaviour of the dissipative cascade. It is more interesting to notice that
also different SGS models, though giving place to different flow rates and profiles,
results in very similar spectra. The only exceptions are represented by the coarse
simulations with the dynamic model and without model. These simulations, that
are also the ones in disagreement with the DNS in terms of mean flow rate, are also
characterised by low energies in the span-wise structures, and spectra that seem to
be not completely developed. Differences are more evident near the wall, where the
damping functions and the SGS models act in a different and stronger way. In all
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Figure 4.5: Velocity fluctuations profiles of LES simulations with grid GNR (left)
and grid GR (right). TransAT results.
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Figure 4.6: Spectra of stream-wise (up), normal (middle) and span-wise (bottom)
velocities at y+ = 18 (left) and at y+ = 590 (right) along the stream-wise direction.
TransAT results.
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Figure 4.7: Spectra of stream-wise (up), normal (middle) and span-wise (bottom)
velocities at y+ = 18 (left) and at y+ = 590 (right) along the span-wise direction.
TransAT results.
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the cases it is quite clear that LES are not capable to predict the frequencies above
Kx = Kz ≈ 10. This is a direct consequence of the filtering operation. However
also for lower frequencies the results are not always well predicted. Again the coarse
simulation with the dynamic model and without models perform very differently
from the other simulations but in this case, they result in spectra closer to the ones
from DNS. This means that the higher fluctuations and energies in smaller eddies
predicted by these simulations near the wall, result in lower overall accuracy of the
mean flow rate and of the structures in the centre of the channel.

4.2.3 Instantaneous flow field
A comparison between the different LES configurations can be carried out by

looking at the instantaneous vorticity and velocity magnitude in the x − y plane
of the channel, reported in Fig. 4.8. In the first two pictures in the top part of
the figure, the coarser grid is used with respectively the dynamic and the harmonic
damping model. In the bottom part the finer grid is used with the harmonic damping
and without SGS models. The different resolution of the grids can be easily seen
looking at the vorticity structures of the flow. The different mean flow rate is also
visible in the centre of the channel. It is important to highlight here that the
harmonic damping model seems to destroy part of the structures in the near-wall
region because of its bigger SGS viscosity. The dynamic model seems to retain more
structures. Therefore the approximation of this laminar near-wall region results in
different shear stresses at the wall and different flow rates.

4.3 Benchmark
In this section the results from the collaborative test case of the LESinItaly group

(http://cfd.caspur.it) are reported, from the work of Denaro et al. [2011]. The
following groups have been involved in the project:

FD-based: spectral/finite differences code used by Abbá (Politecnico di Milano)
and Germano (Politecnico di Torino).

Fluent: finite volumes commercial code used by Inzoli, Colombo and Lampitella
(Politecnico di Milano)

Openfoam: finite volumes open-source code used by Aprovitola and Marra (CNR)

FV-based: finite volumes in-house code used by Denaro (Universitá di Napoli)

Code Saturn: finite volumes open-source code used by Rolfo (University of Manch-
ester)
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Spectral-based: in-house spectral code used by Marchioli and Soldati (Universitá di
Udine) and Salvetti (Universitá di Pisa). Results not available.

FD/Spectral-based: mixed spectral/finite volumes code used by Iovieno and Tordella
(Politecnico di Torino). Results not available.

In general a huge variability has been found in the results, in particular in the
predicted mean flow rate. This demonstrates that this test case, even if it is well-
known and based on a very simple geometry, can highlight the different capabilities
of the codes and the models to predict the macroscopic behaviour of the flow. This is
because, as already reported, the mean flow rate is not directly imposed but implic-
itly given by the constant pressure gradient and small errors in the approximations
of small scales near the wall can highly affect the results in terms of mean flow rate.

Figure 4.9 shows the results of the simulations with the coarser grid GNR, ob-
tained by the different codes with and without sub-grid scale models, in terms of
mean velocity profiles. The same comparison is performed in Fig. 4.10 for the finer
grid GR. The results clearly indicates that the global performance of finite volume
codes are not as accurate as spectral or mixed-spectral codes. However the latter
are generally very difficult to extend to complex flows and geometries therefore the
rigorous validation of commercial finite volume codes for simple geometries is an
important and issue that cannot be underestimated. This has been done in this
part of the work for TransAT code and similarly other works has been carried out
recently for other codes (e.g., Lampitella et al. [2011]).

4.4 Conclusions
Different LES models have been tested against DNS data in a periodic channel

flow with Reτ = 590. The setup of the test case, imposing a constant pressure
forcing without imposing directly a mean flow rate, is such that the drawback and
the differences of LES models become evident, mainly looking at the predicted
mean flow rate and mean velocity profile of the flow. This is in fact an essential
quantity from an engineering point of view because it is directly related to the
boundary layer approximation and, in particular, the shear stress at the wall. The
results evidence that LES is very sensitive to different model parameters, as well as
numerical schemes and grids. This means that, when extended for different complex
test cases, a simple extrapolation of model and parameters from simpler cases is not
guaranteed to perform adequately.

In these results, the central scheme was found to be able to describe the turbu-
lent behaviour of the flow, while QUICK and HLPA schemes produces respectively
spurious oscillations or high numerical viscosity. The Smagorinsky model better
predicts mean velocity profiles than the dynamic model, especially when coupled
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a.

b.

c.

d.
Figure 4.8: Instantaneous flow field for different simulation setups. Velocity magni-
tude with iso-lines of vorticity magnitude. From top to bottom: GNR with dynamic
model (a), GNR with harmonic damping (b), GR with harmonic damping (c), GR
without models (d).
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Figure 4.9: Mean velocity profiles of LES simulations with grid GNR with (bottom)
and without (top) sub-grid scale models. Comparison of different codes.
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Figure 4.10: Mean velocity profiles of LES simulations with grid GR with (bottom)
and without (top) sub-grid scale models. Comparison of different codes.
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with an harmonic damping, that limits the SGS viscosity in the near wall region,
similarly to the classical Van Driest damping but with a slower rate and without
going exactly to zero at the wall. When a grid with higher resolution in the wall nor-
mal direction is used, the simulations shows qualitatively similar results. This seems
to be related to the fact that the span-wise resolution can be also very important in
wall bounded flows.

References
Ascomp GmbH. Multi-Fluid Navier-Stokes Solver TransAT User Manual, 2009.
R. Bouffanais. Advances and challenges of applied large-eddy simulation. Comput. Fluids,

39(5):735–738, 2010.
F. Denaro. What does finite volume-based implicit filtering really resolve in large-eddy

simulations? J. Comput. Phys., 230(10):3849–3883, 2011.
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5
Validation of a LES model for micro-reactor flows

This part of the work focuses on the prediction of the turbulent flow in a three-
dimensional Confined Impinging Jets Reactor (CIJR) with a cylindrical mixing
chamber by using Large Eddy Simulation (LES). The results and conclusions de-
rived in the previous chapters are here applied to a particular test case. Three
dimensional unsteady simulations with different sub-grid scale models, numerical
schemes and boundary conditions are performed for various flow rates, covering dif-
ferent flow regimes. The Immersed Surfaces Technique (IST), used to simulate solid
wall of the reactor is here derived in details. First, a qualitative analysis of the flow
field is carried out and then predictions of the mean and fluctuating velocities are
compared with micro Particle Image Velocimetry (µPIV) data. Good agreement is
found both for the mean velocity components and the fluctuations. For low to mod-
erate Reynolds numbers the sub-grid scale model is found not to be very relevant,
since small scales are of less importance, as long as scalar transport and chemical
reaction are not in play. An important finding is the good prediction of the high
velocity fluctuations detected in particular at higher Reynolds number due to the
natural instability of the system, strongly enforced by the jets unsteadiness.

5.1 Introduction
In many chemical/process engineering fields (e.g., pharmaceutical, cosmetics,

pesticides, etc.) there is a strong interest in micro- and nano-particles [Gesquiere
et al., 2005, Horn and Rieger, 2001, Kipp, 2004, Le Roy Boehm et al., 2000, Müller,
1998, Müller et al., 2002, Qiu Zhao et al., 2003, Romanus, 2002, Salata, 2004]. These

Part of the contents of this chapter has been published in the work of Icardi et al. [2011].
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particles are generally produced via precipitation processes in particular types of pas-
sive mixers, such as the Confined Impinging Jets Reactor (CIJR) [Liu et al., 2009]
or the multi-inlet vortex reactor [Cheng et al., 2009, Lince et al., 2009, Liu and Fox,
2006, Liu et al., 2008]. CIJRs are indeed widely used nowadays and are preferred
over other geometries due to their high mixing efficiency. In all these processes it
is very important to control the properties of the particles, namely their Particle
Size Distribution (PSD), shape and morphology, as well as composition [Johnson
and Prud’homme, 2003, Lince et al., 2008, Marchisio et al., 2006, 2008]. The PSD
is indeed strongly dependent on the mixing rate, and very fine particles with very
narrow distributions are obtained only under extremely efficient mixing conditions.
The design, optimisation and scale-up of these devices can be efficiently investi-
gated through computational fluid dynamics (CFD). However, the simulation of the
flow field and mixing dynamics is often complicated by the fact that, under typical
operating conditions and due to their small geometry, the flow is usually in the tran-
sitional regime. The first important step of the CFD analysis is to obtain a deep
understanding of the flow field and turbulent phenomena inside the reactors which
strongly influence the chemical reactions, particles formation and their interactions.
In this type of reactors, the particles have a very small size, a density very similar to
the fluid (i.e. water) and they are very dilute, so that they usually have a negligible
influence on the final flow and turbulent fields. Generally the results of single-phase
simulations can be extended to the multiphase real system. For these reasons the
results of this work are limited to the non-reactive single-phase case, which can be
compared to experimental µPIV data, obtained with a single fluid without reactions.

Many studies on the flow field in these devices and reactors have been carried
out with steady-state Reynolds-Average-Navier-Stokes (RANS) simulations [Feng
et al., 2005, Gavi et al., 2010, Liu and Fox, 2006, Marchisio et al., 2006] with differ-
ent turbulence models. This approach is computationally efficient and it can result
in reasonably good agreement with experimental data; however it cannot capture
the truly unsteady behaviour of the flow that could be very important, especially
when chemical reactions are considered. In these cases this approach has to be aban-
doned and other more sophisticated techniques, such as Direct Numerical Simulation
(DNS) and Large Eddy Simulation (LES) should be adopted instead.

DNS can be used, for example, in order to obtain reliable and detailed data on
these systems [Schwertfirm et al., 2007] (see also Chap. 3). In this case, in fact,
no approximation is made in the computational model and the governing Navier-
Stokes equations are directly solved, therefore they can be considered as virtual
experiments and can be used to develop RANS and LES closures. DNS is widely
used for flows characterised by low and moderate Reynolds numbers and can be
employed for both theoretical and applied research. However, since it could be very
expensive in terms of simulation times, especially when it comes to the description
of realistic geometries and flow conditions, it cannot be employed in many industrial
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and practical applications. Another important limitation of DNS becomes apparent
when scalar concentrations have to be calculated for a liquid in the turbulent regime.
In this case the smallest length-scales of fluctuations in scalar concentrations (i.e., the
Batchelor scale) can be much smaller than the Kolmogorov scale (i.e., the smallest
scales of velocity fluctuations) [Fox, 2003] and grids that can resolve the Batchelor
scale are still intractable from a practical point of view. For these reasons the
research on turbulence models is still an open and interesting issue, especially when
applied to turbulent reactive flows. It is in this spirit that the present work has been
undertaken.

As already discussed in Sec. 2.1 and in Chap. 4, an interesting alternative to DNS
is LES [Cheng et al., 2009, Gavi, 2009, Marchisio, 2009]. With this approach, only
the larger scales, containing most of the energy and responsible for the main trans-
port properties, are solved with an appropriate sub-grid scale (SGS) model. These
simulations can be also very expensive compared to RANS (although less expensinve
than DNS) because they are inherently time-dependent and three-dimensional, but
they have recently become very attractive due to increased computing capabilities.

In this chapter of the thesis the analysis of the flow field in a CIJR with LES for
a single-phase non-reactive test-case is discussed and LES predictions are validated
against experimental measurements. The experiments on the CIJR used here for
model validation (see Chap. 3) [Gavi, 2009] were obtained with the micro Particle
Image Velocimetry (µPIV) technique. µPIV is an extension of Particle Image Ve-
locimetry (PIV) developed to study micro-devices [Meinhart et al., 1999, Santiago
et al., 1998]. In a typical µPIV system [Li and Olsen, 2006], the microfluidic device
of interest is imaged using an inverted fluorescence microscope. Fluorescent seed
particles are illuminated by a double-pulsed Nd:YAG laser and the emitted light
from the particles is imaged onto a CCD camera. The images are analysed using
a cross-correlation technique and an instantaneous velocity vector field is obtained.
For more details about µPIV the reader is referred to a recent review [Lindken et al.,
2009]. It is important to highlight here that these measurements are conducted in
a three-dimensional device in a turbulent regime. These conditions make the ex-
perimental setup extremely difficult and results cannot be simply filtered to neglect
spurious fluctuations caused by experimental errors. DNS carried out on the very
same system in Chap. 3 demonstrates that detailed boundary conditions are crucial
to simulate the real experimental behaviour and an accurate approximation was
proposed. Starting from these results, the objective of this work is to build and
validate a LES tool to predict the fluid dynamics in the CIJR to avoid the use of
expensive DNS. This will be of particular importance in a later stage of this work
when computational models for scalar transport, chemical reactions and particles
formation will be added.

The chapter is organised as follows. Firstly the theoretical background and con-
cepts of turbulent flow simulation and numerical methods are presented, followed by
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a description of the operating and boundary conditions. The results are then dis-
cussed and compared with the available experimental data. Finally some conclusions
are drawn and future steps are envisioned.

5.2 Model description

5.2.1 Fluid flow equations
The single phase flow inside the CIJR is investigated by solving the incompress-

ible Navier-Stokes equations (see Sec. 2.1).
In these flows, although the inflow conditions are laminar, the jet impingement

creates strong flow instabilities and spatial variations that lead to turbulence (i.e.,
flow containing a wide range of time and length-scales), and when the computational
grid is not fine enough to resolve all the scales arising from the interaction of the
jets, a model is required to represent their effect on the macro-scale flow.

The governing equations are solved, either within the RANS framework, in which
flow variables are decomposed into an average and a fluctuating term, and only the
average field is described, or in a filtered form (LES), where flow variables appear as
filtered quantities. In the LES framework, the filtered velocity for example becomes
[Pope, 2000]

U (x, t) =


G (r − x) U (r, t) dr , (5.1)

where G is the filter function. The most common filter is the so-called “box filter”,
which directly makes use of the finite-volume approximation of the spatial operators.
The application of Eq. 5.1 to the momentum equation results in a closure problem,
namely the residual stress tensor [Pope, 2000]

τ r
ij = UiUj − UiUj − 1

3

UiUi − UiUi


, (5.2)

that needs to be modelled in terms of macro-scale flow variables by using a SGS
model.

The simplest SGS model is the so-called “constant Smagorinsky” model [Smagorin-
sky, 1963] in which the residual stress terms are modelled as

τ r
ij = −2 (CS∆)2 |S̄|S̄ij , (5.3)

where ∆ is the bandwidth of the filter, S̄ij is the filtered strain rate, |S̄| is its norm
and CS is the Smagorinsky constant. Other SGS models have been developed, and
one of the most popular is the dynamic model of Germano [Germano et al., 1991],
proposed to dynamically predict a wider range of flow regimes, from transitional to
“fully developed” turbulence.
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5.2.2 Numerical methods
Computations are carried out with the commercial CFD code TransAT [Ascomp

GmbH, 2009]. The equations are solved with a finite-volume approximation and solid
boundaries are represented with the Immersed Surfaces Technique (IST) [Ascomp
GmbH, 2009]. In this numerical technique, similarly to the immersed boundary
methods [Mittal and Iaccarino, 2005] , the grid cells intersects the solid walls without
fitting to them. To impose the no-slip condition, instead of using a penalty approach,
it makes use of an implicit representation of the walls by defining of a level set
function (φs). It is a signed distance function positive in the solid phase and negative
in the fluid phase and null on the fluid-solid interface. The equations in the solid
and fluid domain are combined using a smoothed Heaviside function:

H(φs) = 1
2


1 − tanh


2φs

δsf


, (5.4)

which varies between one (in the fluid phase) and zero (in the solid phase) and
takes intermediate values in the fluid-solid finite interface of thickness δsf . The final
density ρ and velocity Ui can be formally defined as

ρ = Hρf + (1 − H)ρs , (5.5)
ρUi = HρfU f

i + (1 − H)ρsU s
i , (5.6)

where U f
i and ρf are respectively the fluid velocity and density and U s

i and ρs are
the corresponding values for the solid.

For the solid phase the following equations are solved [Ascomp GmbH, 2009]:

∂ρs

∂t
+ ∂

∂xj


ρsU s

j


= 0 , (5.7)

∂

∂t
(ρsU s

i ) + ∂

∂xj


ρsU s

i U s
j


= 0 . (5.8)

For the case of non-moving immersed surfaces, the solid phase velocity is set equal
to zero (U s

i = 0) whereas the standard Navier-Stokes equations are solved for the
fluid phase:

∂ρf

∂t
+ ∂

∂xj


ρfU f

j


= 0 , (5.9)

∂ρfU f
i

∂t
+ ∂

∂xj


ρfU f

i U f
j


= −∂pf

∂xi

+ ∂

∂xj


2µfSf

ij


, (5.10)

where Sf
ij is the stress tensor and µf si the fluid viscosity. Summing up the equations

of the solid and liquid phase, multiplied by his respective Heaviside functions and
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using Eq.s 5.5, the following equations are obtained:

∂ρ

∂t
+ ∂

∂xj

(ρUj) = 0 , (5.11)

∂ρUi

∂t
+ ∂

∂xj

(ρUiUj) = −H(φs)
∂pf

∂xi

+ ∂

∂xj

(2µ∂Sij) − 2µfSf
ijnjδ(φs) . (5.12)

The last term in the RHS is a viscous shear stress at the interface (i.e., the solid
wall), where nj is the normal to the fluid-solid interface and δ(φs) is the Dirac delta
function representing the location of the interface. The wall shear itself is modelled
as [Beckermann et al., 1999],

2µfSf
ijnj = 2µf


ρ

ρf


Ui

H
δ(φs) . (5.13)

Since the walls are immersed in a cartesian grid, meshing time is considerably
reduced and the accuracy of the numerical scheme can be preserved since the grid-
skewness induced diffusion is simply eliminated. These two elements make the IST
approach very useful to simulate unsteady turbulent flows in complex geometries.

The pressure-velocity coupling is performed by using the SIMPLEC algorithm
[Ferziger and Peric, 2002]. Time discretization is performed with a 3rd order explicit
Runge-Kutta scheme. The advective terms are discretised with the HLPA scheme
[Zhu, 1991], which combines a second-order upstream-weighted approximation with
the first-order upwind differencing under the control of a convection boundedness
criterion. This scheme assures good convergence and stability properties but was
demonstrated to be not the most suitable for DNS and LES [Denev et al., 2008]
where the algorithms must be accurate enough to avoid numerical viscosity/diffu-
sion [Ferziger and Peric, 2002], which represents an additional viscosity “artificially
introduced” by discretization errors. For this reason simulations with the QUICK
scheme [Leonard, 1976] were also performed.

Two SGS models are used: the Smagorinsky model with a model constant
CS = 0.08, to limit diffusion in the near-wall region and the dynamic Germano
model in its standard formulation. In the wall flow-regions, the Werner-Wengle wall
functions [Werner and Wengle, 1989] are used, together with the van Driest damping
function [Van Driest, 1956].

5.3 Operating and boundary conditions
Figure 5.1 represents the meridian section of the three-dimensional geometry of

the CIJR used both for simulations and experiments. It consists of a cylindrical
reaction chamber and rounded inlet and outlet tubes. The flow enter the reactor

94



5.3 – Operating and boundary conditions

through two opposing tubes of diameter dj = 1 mm with a mean velocity uj, and
then exit through the lower tube of diameter 2dj = 2 mm. The diameter of the
reactor is D = 4.8 mm and the total volume of the chamber is approximately
V = 1.73 · 10−7 m3 resulting in very short mean residence times. The flow regime
in the reactor can be generally characterised by the jet Reynolds number, based on
the inlet jet diameter and the average inflow velocity as

Rej = ujdjρ
f

µf
. (5.14)

FR, mL/min uj, m/s τR, s Rej λK , µm
10 0.105 1.05 62 45
20 0.25 0.44 150 23
40 0.52 0.21 310 14
90 1.01 0.11 600 8
150 1.5 0.074 900 6

Table 5.1: Nominal flow rates, measured mean velocities, mean residence times, jet
Reynolds numbers and estimated Kolmogorov micro-scale lengths.

Grid Cells Internal cells ∆x, µm
1 40x40x80 1 × 105 100-140
2 68x60x128 3.5 × 105 50-80
3 100x84x150 8.5 × 105 30-60

Table 5.2: Computational grids used for simulations: grid number, number of inter-
nal cells used for computing the flow and cell size.

Fluid properties are selected by reference to the experiments, which employed
an aqueous solution of urea with a density ρf = 1.141 g/cm3 and a viscosity µf =
1.914 cPs (this fluid was selected due to its index of refraction which more closely
matched the index of refraction of the reactor walls). Five different flow rates were
investigated and inlet conditions are reported together with the mean residence time
and the estimated Kolmogorov length-scale in Tab. 5.1. The first four conditions
are identical to those analysed in Chap. 3. The Reynolds numbers calculated using
the inlet diameters and the mean velocities show that the flow regime in the inlet
tubes is laminar, thus parabolic velocity profiles have been imposed. Experimental
data are available only for the first four Flow Rates (FR = 10, 20, 40, 90 mL/min)
and the additional case (FR = 150 ml/min) was included to investigate the effects
of numerical schemes and SGS models at higher Reynolds numbers. Due to the
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Figure 5.1: Schematic geometry of the CIJR under study.

unavoidable experimental inaccuracies, these flow rates do not correspond exactly
to the velocities observed in the inlets, therefore we refer to them as “nominal flow
rates”.

In Chap. 3 it has been demonstrated that in the simulations the constant laminar
inflows must be modified, superposing a small oscillation proportional to the laminar
profile. This was due to the impossibility of maintaining purely steady velocities at
the reactor inlets in the experiments. This unsteadiness at the reactor inlets is due
to a number of factors, including inherent pump unsteadiness and varying pressure
within the reactor due to the unsteady motion of the impingement zone feeding
back to cause unsteady inlet flow conditions. Therefore in the present simulations
the same oscillating inflows, solely determined by the experimental data, are imposed
by using a single harmonic oscillation in both the inflows. They are set to be in
phase opposition in order to emphasise the effects of unsteady asymmetric flows.
The oscillation was set proportional to the original parabolic profile (to avoid a
negative inflow velocity) with amplitude equal to one tenth of the constant velocity
to fit the standard deviation obtained in the experiments with FR = 10 mL/min,
which is the case where the external instabilities are more evident.
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5.3 – Operating and boundary conditions

Figure 5.2: The grid used for LES.

Simulations were performed on a Linux workstation (4 × Intel(R) Xeon(R) CPU
5160 3.00 GHz) with shared memory parallelism (Open-MP library). Using four
processors the speed-up factor was found to be between 2 and 2.5 and approximately
one or two days of CPU time were needed to simulate six residence times depending
on the FR investigated.

An initial set of simulations was carried out with three different non-uniform
Cartesian grids with a total factor of refinement between the smallest and the biggest
cell equal to two. The number of total and internal cells (i.e., the grid actually used
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5 – Validation of a LES model for micro-reactor flows

in the IST context to compute the flow) and the minimum cell size of the the
different grids are reported in Table 5.2. Dimensional analysis and grid sensitivity
studies revealed that grid 1 can resolve most of the energy containing scales. In fact
the results for this grid in terms of mean and fluctuating velocity are almost equal
to the results obtained with grid 2 and grid 3. In particular if FR ¡ 40 mL/min,
most of the involved scales are resolved and the LES can almost be considered as
a DNS. In this case in fact the SGS viscosity is very low and the flow is not fully
turbulent. At the higher FR values investigated instead, the SGS model becomes
more important. The results reported in this chapter were obtained with grid 1 and
a meridian section of the grid is displayed in Fig. 5.2.

Results were compared in the same window captured by µPIV and simulations
data were saved and analysed at each time step after that the influence of initial
conditions disappeared (i.e, three mean residence times) for a time interval equiva-
lent to three mean residence times for the two lowest FR. For the two highest FR
when the flow is more chaotic, the time interval length was chosen longer (six mean
residence times) to obtain more accurate statistics. Time steps were chosen adap-
tively according to convergence conditions and resulted approximately in 104 time
steps for each mean residence time. The spatial resolution in µPIV is defined by the
dimensions of the interrogation volume. In the present experiments, the in-plane
velocity vector spacing in the PIV measurements was 140 µm, and the out-of-plane
dimension of the measurement volume, defined as the depth of correlation [Bourdon
et al., 2004, Olsen and Adrian, 2000], was 47 µm. For comparison, the grid cell size
in the large eddy simulations was approximately 100 µm in the region investigated.

5.4 Results and discussion
Similarly to what reported in Chap. 3 and Chap. 4, simulations are statistically

analysed only after transient effects decay, so that the influence of the initial con-
dition has disappeared. First snapshots of the instantaneous flow field from the
simulations with FR = 90 ml/min are reported to emphasise the importance of
imposing the proper boundary conditions. Then detailed comparisons of the mean
velocity UMEAN

x along the x-axis, mean velocity UMEAN
y along the y-axis and the

root mean square (RMS) of fluctuating velocities U ′RMS
x and U ′RMS

y are analysed for
each FR with different SGS models and numerical schemes.

5.4.1 Instantaneous flow field
Figures 5.3 and 5.4 show two instantaneous velocity magnitude fields with FR =

90 mL/min obtained with different inflow conditions. On the left the simulation is
performed by using constant inlet flow rates equal to the nominal one. As it is seen,
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a quasi-steady behaviour with large scale fluctuations is observed. On the right
the results obtained with the more realistic oscillating inlet flow rates, mimicking
the experimental conditions, as shown in DNS in Chap. 3, are shown. As it is
possible to see, the variable asymmetric inflow conditions drastically change the
flow behaviour, developing more scales, which are not created with constant inflows,
even after refining the grid. These different scales are clearly identifiable when
looking at the vorticity magnitude reported in Fig. 5.5.

Figure 5.3: Instantaneous velocity magnitudes with FR = 90 mL/min and constant
symmetric inflows (∆t = 0.1).

Vorticity is a good indicator of the flow structures and scales created and dis-
sipated and their interaction with the local shear. The image on the left, taken
from the constant inflow simulation, shows the onset of large structures created
at impingement. The image on the right, taken from the variable inflows simula-
tion, reveal the existence of smaller scales, generated from the breakup of the larger
ones, responsible for the dissipation mechanism of turbulence. As will be high-
lighted later, this process of creation/destruction of flow scales followed by small
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5 – Validation of a LES model for micro-reactor flows

Figure 5.4: Instantaneous velocity magnitudes with FR = 90 mL/min and constant
symmetric inflows (∆t = 0.1).

scale vorticity generation is very important to guarantee good mixing conditions.
This analysis shows the importance of using accurate boundary conditions. As al-
ready mentioned, our previous work (based on comparison between DNS and µPIV)
showed that only by employing these boundary conditions with small oscillations,
good agreement with experimental data is obtained. Therefore in what follows only
results obtained with oscillating inflows are reported.

5.4.2 Flow statistics

The comparison with experiments can be carried out by analysing the statistics
of the flow along the inlet and outlet axes near the impinging point. This is in
fact the region where the most important phenomena occur. Figure 5.6 shows the
mean x- and y-velocity components and the root-mean-square (RMS) of fluctuations
along the x and y directions. LES predictions obtained with the constant SGS
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Figure 5.5: Details of instantaneous vorticity magnitudes in the center of the reactor
with FR = 90 mL/min: comparison between constant inflows (left) and unsteady
asymmetric inflows (right).

model together with the HLPA scheme (continuous line) are compared with the
predictions obtained with constant Smagorinsky with the QUICK scheme (dashed
line) and with predictions obtained with the dynamic SGS model by Germano with
the HLPA scheme (dotted line). No significant differences were observed within
the three modelling and numerical options because at this FR the flow is quite
uniform. However, as can be observed by comparing simulations with experimental
results (represented with open symbols), LES is capable to approximate both first
order (i.e., mean velocities) and the second order (i.e., RMS of velocity fluctuations)
statistics.

An increase in the inflow velocity triggers the onset of a more unsteady flow
regime and a weakly turbulent behaviour can be observed. In particular with in-
termediate flow rates (FR = 20-40 mL/min) the flow starts to naturally oscillate
but the amplitude and positions of oscillations would not be captured if constant
boundary conditions were used. These operating conditions result in a transitional
regime (between laminar and turbulent). The energy-containing cascade is not fully
developed and this results in less accurate predictions.

In Fig. 5.7, predictions are compared to experiments for FR = 20 mL/min.
Although x-fluctuations are overestimated, causing big fluctuations of the impinge-
ment plane and therefore smaller mean y-velocity at x = 0, the overall behaviour
of the system is decently predicted. At this FR the difference between HLPA and
QUICK schemes seems to be more evident in the propagation of oscillations along
the x-direction, that the latter one seems to preserve, diffusing less than the former.
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Figure 5.6: Flow statistics with FR = 10 mL/min: Comparison between µPIV ex-
periments (symbols), LES with HLPA scheme and constant SGS model (continuous
line), LES with QUICK scheme and constant SGS model (dashed line), LES with
HLPA scheme and dynamic SGS model (dotted line). From left to right and top to
bottom: mean x-velocity along the x-axis at y = 0 mm, mean y-velocity along the
y-axis at x = 0 mm, RMS of x-velocity fluctuations along the x-axis at y = 0 mm,
RMS of y-velocity fluctuations along the y-axis at x = 0 mm.

It should be mentioned that for FR values greater than 40 mL/min, the exper-
imental uncertainties starts to become more and more important. This is partially
related to the curved shape of the reactor walls as well as the small dimension of
the device that make it very difficult to perfectly centre the observation plane. For
example, one side of the piece of Plexiglas in which the reactor chamber is embed-
ded is machined flat to rest on the microscope stage. Any misalignment of this
machined side with the centre plane of the reactor where the inlet jets impinge will
cause some discrepancies when the data are compared with centre-plane simulation
data. Moreover, as the FR is increased, it becomes more difficult for the pumps
to guarantee perfectly constant and balanced flow rates. As a matter of fact, al-
though the experimental data were obtained with state of the art equipments and
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Figure 5.7: Flow statistics with FR = 20 mL/min: Comparison between µPIV ex-
periments (symbols), LES with HLPA scheme and constant SGS model (continuous
line), LES with QUICK scheme and constant SGS model (dashed line), LES with
HLPA scheme and dynamic SGS model (dotted line). From left to right and top to
bottom: mean x-velocity along the x-axis at y = 0 mm, mean y-velocity along the
y-axis at x = 0 mm, RMS of x-velocity fluctuations along the x-axis at y = 0 mm,
RMS of y-velocity fluctuations along the y-axis at x = 0 mm.

carefully selected operating conditions, some asymmetry and misalignement in the
experimental profiles are still detectable (see Figs. 5.8 and 5.9). For example, the
stagnation point is no more centred in the chamber therefore the y-velocity profiles
are also misaligned. More details on the experimental work can be found in [Gavi,
2009].

In Fig. 5.8 comparisons for FR = 40 mL/min are reported. As can be seen, also
in this case (as for FR = 20 mL/min) the RMS is slightly overpredicted, whereas
the predictions for the mean velocities result in better agreement with experiments.
This could be due to the approximation of the fluctuating boundary conditions that
emphasises the collision instability. The agreement, both for first and second order
statistics, significantly improves for the last case for which experimental data are
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Figure 5.8: Flow statistics with FR = 40 mL/min: Comparison between µPIV ex-
periments (symbols), LES with HLPA scheme and constant SGS model (continuous
line), LES with QUICK scheme and constant SGS model (dashed line), LES with
HLPA scheme and dynamic SGS model (dotted line). From left to right and top to
bottom: mean x-velocity along the x-axis at y = 0 mm, mean y-velocity along the
y-axis at x = 0 mm, RMS of x-velocity fluctuations along the x-axis at y = 0 mm,
RMS of y-velocity fluctuations along the y-axis at x = 0 mm.

available. The case for FR = 90 mL/min approaches “fully turbulent” behaviour
and LES can accurately predict the smooth x-velocity profile and the relatively
high fluctuations along the entire x-axis. Also the predictions for the y-velocity
component (both mean value and RMS of fluctuations) result in very good agreement
with experimental data. However it should be remembered here that the experiments
reveal a shifted position of the impingement point that is not predictable in the
simulations where symmetric inflows were imposed. In fact, the impingement point
can be recognised (at least by null mean velocities) even if it moves chaotically in the
chamber. This shifting is further confirmed in the y-velocity experimental profiles
that, for this reason, do not represent exactly the plane where the jets collide.

For high FR the y-velocity profiles are indeed very sensitive to the jets alignment,

104



5.4 – Results and discussion

U
x
M
E
A
N

-2

-1

0

1

2
U
' x
R
M
S

0

0.5

1

1.5

x    (mm)
-2 -1 0 1 2

U
y
M
E
A
N

-0.2

-0.1

0

0.1

 

U
' y
R
M
S

0

0.1

0.2

0.3

0.4

y     (mm)
-2 -1 0 1 2

Figure 5.9: Flow statistics with FR = 90 mL/min: Comparison between µPIV ex-
periments (symbols), LES with HLPA scheme and constant SGS model (continuous
line), LES with QUICK scheme and constant SGS model (dashed line), LES with
HLPA scheme and dynamic SGS model (dotted line). From left to right and top to
bottom: mean x-velocity along the x-axis at y = 0 mm, mean y-velocity along the
y-axis at x = 0 mm, RMS of x-velocity fluctuations along the x-axis at y = 0 mm,
RMS of y-velocity fluctuations along the y-axis at x = 0 mm.

symmetry and oscillations because the y-velocity is everywhere small compared to
the x-component except at the impingement point where it can be relatively large.
So the y-velocity profiles are not always well predicted because the impingement
fluctuations are slightly overpredicted in the simulations (as shown in x-velocity
fluctuations) and the y-fluctuations result to be more distributed along the x-axis
instead of being more concentrated at the measurement position x = 0. However
this effect do not have a strong influence the overall turbulence and mixing efficiency
in the reactor.

As a general comment it is possible to state that the comparison with experi-
mental data showed little influence of the numerical scheme adopted. In fact, for the
operating conditions investigated in this work, predictions obtained with HLPA were
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Figure 5.10: Flow statistics with FR = 150 mL/min: Comparison between LES with
HLPA scheme and constant SGS model (continuous line), LES with QUICK scheme
and constant SGS model (dashed line), LES with HLPA scheme and dynamic SGS
model (dotted line). From left to right and top to bottom: mean x-velocity along
the x-axis at y = 0 mm, mean y-velocity along the y-axis at x = 0 mm, RMS of
x-velocity fluctuations along the x-axis at y = 0 mm, RMS of y-velocity fluctuations
along the y-axis at x = 0 mm.

found to be very close to those obtained with QUICK. This could be a consequence
of the very regular grid used, that are already characterised by a small numerical
diffusion, notwithstanding the numerical scheme adopted. The effect of the SGS
seems to be slightly more important, although no significant difference is detected,
proving probably that for the geometry and the operating conditions investigated
the constant Smagorinsky model is adequate.

Figure 5.10 reports the predictions for FR = 150 mL/min for which no experi-
mental data are available. It is however interesting to compare predictions obtained
with different modelling options. As it is seen, also for this case vary small differ-
ences are detected when improving the numerical scheme and/or the SGS model,
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confirming the conclusions drawn for FR = 90 mL/min.
Moreover, as already reported, for the considered flow regimes the turbulent

behaviour of the system is not only due to the impingement of the jets, which
induces a strong unsteady behaviour limited to a small region in the centre of the
reactor, but also to the non-constant inlet flow rates. This suggests that, although
the results are very close to the experimental data, the remaining mismatch between
predictions and experiments is probably not coming from inadequate turbulence
modelling or numerical issues, but most likely from the inlet flow rate approximation
with the adopted boundary conditions. To improve the agreement more detailed
µPIV measurements at the inlets should be produced and analysed.

As a final comment it is interesting to point out that similar conclusions were
formulated when µPIV data was employed with DNS in Chap. 3. This proves that
the most challenging issue is the proper modelling of the real operating conditions
(in particular the inflow conditions) and once this is achieved, also LES is capable
of describing properly the turbulent flow field inside the CIJR, at least under the
operating conditions investigated here. It is interesting to remember here that
these predictions, resulting in good agreement with experimental data, are obtained
here via LES with grids that are at least ten times less refined than those used
in DNS. This typically results in a reduction of the CPU time of about ten times.
Last but not least, LES allows also for the simulation of liquid turbulent scalar
transport and chemical reactions simply by using the same grids (and appropriate
SGS mixing models) whereas DNS requires the use of much finer grids, making the
DNS approach intractable for the simulation of real liquid reacting systems.

5.5 Conclusions

In this part of the thesis, LES has been employed to simulate the flow field in
a CIJR and predictions are validated against experimental data. The DNS results
obtained in Chap. 3 demonstrated the importance of properly imposing the inflow
boundary and therefore this approach is here extended to the LES framework. In
fact, contrary to what happens with RANS, where simulations generally result in
good agreement with experimental data simply employing the time averaged in-
let flow rates, more details are required to run a successful LES. For the present
application and under the range of operating conditions investigated the spatial dis-
cretization schemes and the SGS models were found not to be crucial for a good
prediction of the turbulent behaviour of the system. However, it has been shown that
the QUICK scheme, in particular at intermediate FR values performs slightly better
than the HLPA. No significant differences were instead noted between the constant
Smagorinsky SGS model and the dynamic model of Germano. In conclusion LES
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5 – Validation of a LES model for micro-reactor flows

can be used instead of expensive DNS (and µPIV experiments) to obtain fast and re-
liable predictions, that are of particular importance when the computational model
is extended to consider mixing and reactive processes. The computational model
that has been validated will be extended to the simulation of turbulent precipitation
processes and validated against experimental data.
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6
Poly-dispersed particle-laden flow

In this chapter we focus on the possible model reductions that can be operated
when working with multiphase systems (such as particle precipitation) that need
fast computations and robust models and that can rarely be fully resolved (e.g., in
a Lagrangian way). We are particularly interested in Eulerian multi-phase models
for the description of poly-disperse systems. Among them the multi-fluid Eulerian
model coupled with the full description of the particle size distributions (e.g., with
full Probability Density Function or Direct Simulation Monte-Carlo methods) can
be computationally very expensive. Furthermore the coupling of these models with
a full resolution of turbulence (i.e. DNS) is practically impossible. On the other
hand, most of the currently practical and highly simplified approaches, based on
strict hypothesis for multiphase flows (e.g., single-phase or homogeneous model) and
averaged models for turbulence (e.g., RANS modelling) are not predictive enough
for many relevant applications. A possible alternative proposed in this work, is
represented by the use of LES models coupled with algebraic models for the phase
interactions and Quadrature-Based Moment Methods (QBMM) for poly-dispersity.

In this framework, the chapter represents a validation of the proposed model
for the simulation of preferential concentration (or turbophoresis) phenomenon in a
periodic channel with Reτ = 150, seeded with inert poly-dispersed particles tracked
with the Eulerian equilibrium model and the Direct Quadrature Method Of Moments
(DQMOM). The sub-grid scale (SGS) motion of particles is reconstructed through
an Approximate Deconvolution Method (ADM). The simulations are carried out
with ad-hoc routines developed in the commercial CFD platform TransAT [Ascomp
GmbH, 2009]. Results are compared to DNS Lagrangian data of Marchioli et al.
[2008b].

Part of the contents of this chapter has been presented at the 8th International Conference on
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6.1 Introduction
The dynamics of particles in a turbulent fluid flow has been widely studied in

the last decades, both experimentally and numerically, from various points of view
and applications such as particles deposition [Brooke et al., 1992, Cleaver and Yates,
1975, Friedlander and Johnstone, 1957, Kaftori et al., 1995, Kallio and Reeks, 1989,
Lavezzo et al., 2009, Liu and Agarwal, 1974, Marchioli et al., 2003, McCoy and
Hanratty, 1975, McLaughlin, 1989, Narayanan et al., 2003, Shams et al., 2000, Slater
et al., 2003, Tang and Guo, 2011, Uijttewaal and Oliemans, 1996, Van Haarlem et al.,
1998, Wang and Squires, 1996a, Young and Leeming, 1997], dispersion in shear flow
and mixing layers [Burns et al., 2004, Cerbelli et al., 2001, Chein and Chung, 1987,
Elghobashi and Truesdell, 1992, Hishida et al., 1992, Hu et al., 2002, Lazaro and
Lasheras, 1992, Marcu and Meiburg, 1996, Parthasarathy and Faeth, 1990b, Pascal
and Oesterlé, 2000, Soteriou and Yang, 1999, Stock and Wang, 1993, Wen et al., 1992,
Yang et al., 2000] or settling and accumulation in homogeneous isotropic turbulence
[Aliseda et al., 2002, Chun et al., 2005, Collins and Keswani, 2004, Maxey, 1987,
Salazar et al., 2008, Wang and Maxey, 1993, Yen and Lei, 1991]. We refer to the
review of Guha [2008] for a complete description of particles deposition problem and
to Geurts et al. [2007], Mashayek and Pandya [2003], Sinaiski and Zaichik [2008],
Zaichik et al. [2008] for an overview of the different methods available.

This problem can be also extended to solve other related problems such as the
turbulence modulation by particles studied by two-way coupling models [Boivin
et al., 1998, Druzhinin, 1995, Elghobashi and Truesdell, 1993, Meiburg et al., 2000,
Narayanan, 2004, Parthasarathy and Faeth, 1990a, Schreck and Kleis, 1993, Squires
and Eaton, 1990, Sundaram and Collins, 1999, Yuan and Michaelides, 1992] or par-
ticle collisions studied by population balance and kinetic theory models [Li et al.,
2001, Reade and Collins, 2000, Sommerfeld and Huber, 1999, Sundaram and Collins,
1997, Wang et al., 2000, 2009, Yamamoto et al., 2001, Zhou et al., 1998].

The motion of inertial particles in turbulent flows is mainly characterised by
the so-called “preferential concentration” [Eaton and Fessler, 1994, Fessler et al.,
1994, Rouson and Eaton, 2001, Shaw et al., 1998, Squires and Eaton, 1991, Wood
et al., 2005, Zaichik and Alipchenkov, 2003] caused by the tendency of particles to
accumulate in low-vorticity regions. This tendency has been called “turbophoresis”,
in analogy to what happens in thermo-phoresis and electro-phoresis, and it is a very
important phenomenon for many physical events such as clouds formation, particles
deposition (in turbines, engines or biological systems), fuel droplet combustion, etc.
Different models can be used for the particle phase and the turbulence description.

Computational Fluid Dynamics in the Oil & Gas, Metallurgical and Process Industries (Trondheim,
Norway 21-23 June 2011).
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The most accurate one is the Lagrangian tracking of particles coupled with a DNS
description of the fluid. This approach is typically too expensive for large scale
industrial problem so many efforts have focused on the development of more efficient
models.

A much faster alternative to the Lagrangian tracking of particles is represented
by a concentration field advected in an Eulerian way. This approach consists in
an average operation (either volume-average or ensemble-average) and is commonly
used in many applications, from dilute to dense granular flows, and has been intro-
duced in different formulations [Drew and Passman, 1998, Guha, 1997, Ishii, 1975,
Prosperetti and Zhang, 1995]. However, dilute inertial particles (with finite Kn
and St) behave like a non-equilibrium highly compressible fluid, therefore the over-
all accuracy and validity of the continuum hypothesis for the dispersed phase in
the different flow conditions is still an open point. Recently models have been de-
veloped, based on a mesoscopic or PDF approach where the average operations is
performed by the moment transform of kinetic equations [Février et al., 2005, Fox,
2012, Minier and Peirano, 2001, Passalacqua and Fox, 2011, Reeks, 1992, Zaichik and
Alipchenkov, 2003]. This means that statistical mesoscopic closures, kinetic equa-
tions or additional stress term equations have to be solved to correctly predict the
particle motion and dispersion. Nevertheless, if the effects at the particle-scale such
as particle-particle collisions, particle-wall collisions and particle trajectory crossing
are neglected, the macroscopic formulation is still a practicable and faster approach
to predict particles accumulation especially when it is dominated by the drag as in
very dilute particle-laden channel flows with moderate St.

Accepting the compromise of the Eulerian mean field approximation, the two-
fluid approach is the standard approach, that consists in solving separate continuity
and momentum balance equations for each phase. This is the most accurate ap-
proach, valid in principle for arbitrary Stokes number (under the continuum hypoth-
esis), but is characterised usually by a system of equations linearly unstable [Arai,
1980, Jones and Prosperetti, 1985, Prosperetti and Jones, 1987, Vreman, 2011], often
resulting in a computational time comparable to Lagrangian methods for medium
scale applications. In particular, when additional physical models must be later
taken into account (e.g., PBE model), this approach can become computationally
inefficient. Therefore in this work we focus on algebraic models for computing the
concentration field of particle velocity [Ferry and Balachandar, 2001, Guillard and
Duval, 2007, Ishii, 1975].

For the sake of computational efficiency, to avoid expensive DNS, turbulence can
be described by LES, filtering out the smallest scales of turbulence. This approach
has many advantages with respect to RANS and has been used by several studies of
particle-laden flows [Berrouk et al., 2007, Boivin et al., 2000, Gobert, 2010, Kuerten,
2006, Kuerten and Vreman, 2005, Moreau et al., 2010, Pandya and Mashayek, 2002,
Shotorban and Balachandar, 2009, Wang and Squires, 1996a,b, Zaichik et al., 2009]
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6 – Poly-dispersed particle-laden flow

with or without SGS models for the unresolved scale of particles velocity. When
the LES approach is coupled with an Eulerian formulation, the filtering operation
can be applied conceptually before or after the averaging operation, giving place
to slightly different models. In fact the fluctuations neglected by the averaging
procedure are conceptually different from the ones filtered out by LES. Some recent
works [Armenio et al., 1999, Marchioli et al., 2008a] that compare DNS results with
a posteriori (post-filtered) LES in a Lagrangian settings for particles, demonstrated
the importance of SGS fluctuations to predict the particles preferential concentration
and accumulation at the wall, especially when using coarse LES. The use of simple
turbulent dissipation approaches, through the eddy viscosity coefficient given by the
fluid SGS model, is not suitable to predict the turbophoresis phenomenon that is
due to the gradient of fluctuating velocities. Therefore the unresolved scales for
particles do not act only as an uniform dispersion force. More complex models must
be introduced such as additional forces, stochastic forcing or deconvolution methods.

Figure 6.1: The variation in deposition rate versus normalised particle relaxation
time in fully developed vertical pipe flow [Guha, 2008]. Full model (red line), pure
diffusion (orange line), pure diffusion with modified wall value (dark blue dashed
line), pure inertial deposition (light blue line) and experiments by Liu and Agarwal
[1974] (blue dots).

A third challenge (beside turbulence and particle motions) is represented by
poly-dispersity. In fact, as it has been already mentioned, the turbophoresis and
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the deposition velocity is highly influenced by the particle relaxation time (i.e., the
size of the particles). This dependence is illustrated in Fig. 6.1 in terms of particle
deposition rate V +

dep in a vertical pipe flow varying the fluid mean flow rate and
consequently the particle Stokes number (indicated here as a normalised particle
relaxation rate τ+). Guha [1997] proposed a macroscopic equation for particle de-
position (red line), based on RANS models, valid only for fully developed pipe flow,
and compared it with experimental data of Liu and Agarwal [1974]. This figure, even
if it is referred to a very specific case, is important to highlight the 3 different regimes
that similarly holds for particles in turbulent flows. In the first regime, illustrated
in the first part of the graph, small particles characterised by St < 1 are moving
and deposit towards wall mainly because of particle and turbulent diffusion. The
deposition rate increases very fast in the central part of the graph, that represents
the regime dominated by turbophoresis and inertial effects, when the Stokes number
range between one and ten. In the final part there is a plateau and deposition rate
stabilise.

DQMOM nodes [µm] PSD moments [mi]
# nodes 2 4 6 8 10 i ith moment

node 1 [µm] 15.4 17.9 10.1 9.1 8.4 0 1.0
weight 1 1.0 0.80 0.60 0.46 0.36 1 1.54 · 10−5

node 2 [µm] × 29.2 22.5 19.1 17.0 2 2.85 · 10−10

weight 2 × 0.20 0.39 0.49 0.54 3 6.40 · 10−15

node 3 [µm] × × 49.9 38.3 32.2 4 1.74 · 10−19

weight 3 × × 0.01 0.04 0.09 5 5.71 · 10−24

node 4 [µm] × × × 80.6 60.8 6 2.27 · 10−28

weight 4 × × × 0.001 0.001 7 1.09 · 10−32

node 5 [µm] × × × × 120.4 8 6.30 · 10−37

weight 5 × × × × 0.0001 9 4.39 · 10−41

Table 6.1: Moments and quadrature approximations of the log-normal PSD.

Let us analyse now the dependence of turbophoresis on particle Stokes number
in the turbulent channel flow under study for heavy particles (with density ρp =
1000 kg/m3) dispersed in air with an initially uniform unitary particles concentration
and let us assume that the particles dynamics could be exactly simulated. In this
case, if the population of particles is approximated with fixed and constant mean
diameter, the predicted accumulation can be affected by a large error due to the
wrong approximation of the PSD. To better understand the importance of poly-
dispersity, let us consider a population of particles characterised by a log-normal
PSD with a mean size of 15 µm, corresponding to St = 0.6 (for this particular test
case) and a standard deviation of 10 µm, meaning that there exists a significant
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6 – Poly-dispersed particle-laden flow

Figure 6.2: Log-normal PSD and DQMOM approximations.

Figure 6.3: QMOM/DQMOM approximation of particle concentration at the wall in
a turbulent channel flow for a realistic log-normal distribution. Results are expressed
in terms of volume fraction, normalised by the initial value and compared with
theoretical finding for a continuous PSD description.

number of particles between 5 µm and 40 µm (corresponding to Stokes number
approximately between 0.2 and 5). For this distribution the moments are reported
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6.2 – Fluid phase

in Tab. 6.1 together with the different quadrature representations used in QMOM
or DQMOM. Fig. 6.2 reports instead the distribution along with the quadrature
representation.

Data from DNS results of Marchioli et al. [2008b] of particles concentration near
the wall when the profiles is fully devoloped are interpolated in the whole size range
of this realistic PSD. The results, reported in Fig. 6.3, represent a theoretical es-
timated value of particle volume fraction at the wall. This is compared with the
different estimations made by a global approximation with QMOM/DQMOM, with
the assumptions of no other sources of error except the PSD approximation and con-
stant quadrature nodes and weights in the whole domain. With QMOM/DQMOM
in fact it is possible in principle to approximate the distribution with an arbitrary
number of nodes and weights that dynamically adapt according to the local PSD
(see Sect. 2.4 for more details about quadrature approximations). As it is possible
to see, the approximation with one node (mean particle size) gives a very rough es-
timate of the accumulation while starting from three nodes the resulting predictions
quickly reach a physically acceptable error. This demonstrates to importance of an
accurate description of poly-dispersity and the capability of QBMM.

The objective of this part of the work is to assess the possibility of combining
this quadrature approximation with a simplified algebraic Eulerian LES model. The
novelty is represented by the coupling of fast and efficient methods for particles
evolution, LES and population balance. In Sec. 6.2, the test case is introduced and
the carrier phase model is described. In Sec. 6.3 the dispersed phase is considered
and the DQMOM approximation is introduced. Sec. 6.4 deals with the particles SGS
model and Sec. 6.5 presents all the numerical details of the simulations. Eventually
results and concluding remarks are reported in Sec. 6.6 and Sec. 6.7.

6.2 Fluid phase

The periodic channel problem already introduced in Chap. 4 is used also in
this chapter. It represents an infinite non-dimensional channel modelled by two
periodic boundary conditions on the stream-wise and span-wise directions and a no-
slip conditions on the walls. The main flow is directed in x-direction and it is driven
by a constant pressure forcing, imposed directly in the momentum equation. Among
the wall-bounded flow problems, this is one of the most famous configuration that
can better show the property and effects of fully developed turbulent behaviour and
study to analyse numerical schemes and SGS models.

The size of the domain in the periodic directions (i.e., x and z) is such that
the periodicity conditions do not influence the flow structures. This means that it
must be larger than the biggest scale of turbulence. For Reτ = 150 the dimension
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6 – Poly-dispersed particle-laden flow

commonly used in literature are the following:

Lx = 4πH Ly = 2H Lz = 2πH (6.1)

where H is the half-height of the channel, used as characteristic dimension.

6.3 Particles phase
The particles are described via a NDF n(L; x, t), representing the infinitesimal

number of particles of diameter L at point x and time t. The evolution of n is
dictated by a population balance equation. The DQMOM (details about the method
are reported in Sec. 2.4) has been used to represent n(L; x, t) and to describe its
evolution, by selecting six moments or, equivalently, three nodes (abscissas) and
the three corresponding weights. The test case under study is mainly devoted to
the validation and analysis of the multiphase and LES models therefore particles
collisions have been neglected, resulting in fixed nodes. This model however can be
easily extended to the mixing of different particle populations or to other particulate
processes (see Chap. 6.7).

This choice is also motivated by the fact the existing DNS Lagrangian data
in literature are mainly based on mono-disperse non-colliding particles so, for the
sake of comparison, we selected initially uniform weights (equal to one) and three
nodes representing three classes of particles corresponding to a Stokes number equal
respectively to 0.2, 1 and 5. The Stokes number St is defined as

St = τp

τf

, (6.2)

where the particle relaxation time is:

τp =
(2ρp

ρ
+ 1)d2

p

36ν
=

(ρp + 1
2ρ)d2

p

18µ
, (6.3)

and the fluid relaxation time is referred to the viscous scale (wall units):

τf = ν

u2
τ

. (6.4)

The particle concentrations are transported with a velocity given by the Equi-
librium Eulerian Model (EEM) [Ferry and Balachandar, 2001, Ferry et al., 2003]:

Up − U = −τp (I + τp∇U)−1


DU
Dt

− g


(6.5)

that represents the first-order expansion of the Maxey-Riley equation [Maxey and
Riley, 1983], for small St neglecting all the forces but the drag.

118



6.3 – Particles phase

The particle Reynolds number can be calculated from the relative velocity and
it can have a feedback on the drag force, if we consider the high Reynolds number
effects [Clift et al., 1978]. These can be taken into account either with an iterative
procedure or by using a modified particle relaxation number proposed by Ferry and
Balachandar [2002] defined as

τ ∗
p = τp


1 + 0.76Re∗

p


1 + 0.025Re∗

p

−0.18
(6.6)

where
Re∗

p = |ρp − ρ|d3

18ν2

DU
Dt

− g
 . (6.7)

This model is based on a analytical expansion based on local equilibrium between
the fluid and the particle phase but, unlike the Drift Flux or Algebraic Slip Models
(ASM), that are more often used for gas-liquid systems, it is written in terms of the
Lagrangian derivatives DU

Dt
. This results in a formulation particularly convenient to

model passive particles whose velocities can be calculated with an explicit algebraic
relation instead of using a separate momentum balance equation or a non-linear
Newton solver, typically used respectively in the two-fluid model adn in the ASM.

According to Balachandar [2009], the EEM approach is strictly valid up to Stκ =
0.2, even if it can be reasonably used up to Stκ = 1; where Stκ is defined with a
fluid relaxation time based on the Kolmogorov time-scale τκ. For this test case the
ratio τκ

τf
range from 2 (in the near-wall region) to 13 in the centre of the channel

[Marchioli et al., 2006, Soldati and Marchioli, 2009]. This means that for St = 0.2
the model should be able to accurately predict the particles motion, while for the
other two Stokes numbers there could be inaccuracies, especially near the wall, where
the term τp∇U in Eq. 6.5 can be locally close or above unity. The stated validity
condition for the EEM can be relaxed when LES is used because the Kolmogorov
time-scale is substituted by the a time-scale, τϵ, referred to the smallest resolved
scale of turbulence [Balachandar and Eaton, 2010].

Although the Eulerian equilibrium model can be easily extended to take into
account other forces and the particles-fluid feedback coupling, we limit our anal-
ysis to a one-way coupling model without gravity and considering only the drag
force. This is, in fact, enough to catch the preferential concentration of particles
as demonstrated by Elghobashi and Truesdell [1992] and other previous works. In
particular the works of Wang et al. [2007], Arcen et al. [2006] and Marchioli et al.
[2007] demonstrated that the lift and gravity forces are not relevant issues for the
turbophoresis phenomenon, when particles are small enough.

Also the classical ASM [Ishii and Zuber, 1979, Manninen and Taivassalo, 1996]
has been tested with a modification proposed by Guillard and Duval [2007], that
makes use of the pressure gradient as the driving force balanced by the drag forces.
This approach would be exactly identical to the EEM in the case of inviscid fluid

119



6 – Poly-dispersed particle-laden flow

since the Lagrangian derivatives in Eq. 6.5 is exactly equivalent in the momentum
equation to the pressure gradient plus the viscous term. The ADM, described in
the next section, in this case should be applied to the pressure that is also a filtered
quantity in LES.

6.4 Sub-grid scale modelling
The SGS model chosen for the fluid is the standard Smagorinsky model with

the harmonic dumping function for the turbulent viscosity near the wall. This
model was found to give good predictions for the main quantities of interests, (mean
velocity and fluctuations), for the single-phase test case of Chap. 4,. However it is
important to highlight here that, since LES is often very sensitive to many numerical
parameters, this could not be true when coupled with different CFD codes (e.g.,
spectral codes), grids or spatial discretisations.

Generally particle concentration is transported with zero molecular diffusion and
and eddy diffusivity equal to

D = νt

ρ ScT

, (6.8)

where νt is the eddy viscosity given by the Smagorinsky model and ScT is the turbu-
lent Schmidt number. To balance the unavoidable numerical dissipation introduced
by the advection schemes different tests have also been performed without eddy
diffusivity and with different turbulent Schmidt numbers. As we already pointed
out, the eddy diffusivity can describe the turbulent dispersion of particles but is not
capable to describe the particle fluctuations responsible for turbophoresis.

The particles are advected with the velocity given by Eq. 6.5, where in the LES
framework U = Ū is the filtered velocity. The same equation can be used, replacing
U with the de-filtered fluid velocity U∗, which is based on a reconstruction of the
unresolved scale.

Different models have been proposed to estimate U∗. In this work we have used
the model proposed by Stolz et al. [2001]:

u∗
i =

N
k=0

(I − G)k ui , (6.9)

where G is the filter function. Choosing k = 1 the above expression gives a rough
estimate of the unresolved scales:

u∗
i = ui + (ui − Gui) . (6.10)

This model has been recently applied to approximate the unclosed stress term
in the momentum equation for the fluid in the work of Stolz et al. [2001] and
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later extended to the particle Lagrangian equation [Kuerten, 2006, Shotorban and
Mashayek, 2005, Shotorban et al., 2007]. In this work we have used it to model the
non-linear term U · ∇U and the time derivatives DU/Dt in Eq.6.5 respectively with
U∗ · ∇U∗ and DU∗/Dt. The deconvolution order k has been set to 1 or 5, as in the
previously cited works. When the deconvolution model is used there is no need to
include a SGS diffusivity in the concentration equations, therefore in this case the
turbulent Schmidt number appearing in Eq. 6.8, has been set to infinity. The filter
function G chosen is equal to the test filter used in the dynamic model (27-points
Gaussian filter).

6.5 Numerical details
As it has been already mentioned, the desired friction Reynolds number Reτ =

150 is obtained by taking the following dimensionless quantities:

ρ = 1 Kg/m3 µ = 1
Reτ

(6.11)

and adding a unitary pressure gradient source term in the x-momentum equation.
The grids described in Chap. 4 have been scaled in z and x direction to match

the actual domain size, without changing the wall-normal resolution. As in Chap. 4
the grids are labelled as:

1. GNR, 64 × 32 × 64 cells with ∆y+ = 0.36,

2. GR, 64 × 100 × 64 cells with ∆y+ = 0.11.

However, contrarily to Chap. 4, since the the Reynolds number is lower here, both
the grids have the first cell below y+ = 1 therefore we can state that both the grid
are fully resolving the wall boundary layer, at least in wall normal direction.

From the results of the single-phase study (see Chap. 4), the optimal schemes and
parameters have been selected to use in this test case. In particular the simulations
are carried out in time with an implicit second-order backward Euler scheme, and
the advective fluxes are discretised with the central scheme for velocities. The
same scheme for particle concentrations cannot be used because it turned out to be
unstable. Particle fluxes are discretised with the HLPA scheme [Zhu, 1991] that is
characterised by a boundedness property together with a good accuracy and strong
stability. The concentrations are in fact advected with a pure transport equation
with small or null diffusivity and they are characterised by high gradients that can
easily give spurious numerical oscillations. So bounded and oscillations-free schemes
typical of conservation laws, could also be used (e.g., TVD, ENO, WENO).

The particles are inserted in the channel with a turbulent flow field fully de-
veloped and particle statistics are calculated when the statistically steady state is
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reached for particle concentration. This steady state is completely physical but it is
important because it is naturally reached with Lagrangian and Eulerian models and
it is fully determined by the simulation parameters In real cases instead when the
particle deposit to the wall, complex interactions between wall, particles and fluid
can happen. However what is important in this case is not the deposition itself but
the turbophoresis phenomenon that is the main driving force for deposition.

The simulations have been carried out with the commercial CFD code TransAT,
in a two-way quad-core Opteron 2.1GHz with 16 GB of RAM with shared mem-
ory parallelisation paradigm (OpenMP). The total simulation time for a single run
was from twenty days for the coarse grid, up to a hundred days for the finer one.
These reduce respectively to ten and thirty days, when using two processors and six
processors.

6.6 Results and discussion
The results obtained with the code TransAT have been compared to DNS data of

the benchmark of Marchioli et al. [2008b], in terms of mean particle concentrations,
mean particle velocity, fluctuations and velocity correlation spectra.

To recognise the statistical steady state the mean concentration of particles in
the region with y+ < 1 has been analysed in time. The steady state for parti-
cle concentration is reached approximately after 20,000 adimensional time units,
depending on the different simulation and Stokes number, that corresponds to a
developing length of approximately 1000 channel heights. This is much more than
the developing-length of a single-phase flow and can give an idea of the very high
computational costs of these simulations. For St = 0.2 Lagrangian DNS data are
only partially available and for a shorter period of time, because this case was not
included in the benchmark. Therefore the statistical steady state is not completely
reached and the mean concentration results lower than expected.

The concentration of particles with St = 5 was found to be subjected to stability
problems, especially when ADM is used. This can be explained by the fact that
very large fluctuations are predicted causing locally an elevate CFL number. This
could be avoided by taking very small time steps but this would reflect in imprac-
ticable simulation times. Finally the simulations with ASM resulted, as expected,
in results almost identical to the EEM. This demonstrates the equivalence of the
two formulations in this case therefore in the following discussion only the results
with EEM will be presented. Due to limited computational resources, simulations
with the finer grid, are reported only for the case without ADM. The simulations
with ADM, in fact, were not carried out for the whole time needed for statistics.
However, analysing the first part of the simulations, we can state that the influence
of ADM is not important as for the coarser grid. This can be explained by the fact
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that more scales are solved in the wall-normal direction and the ADM acts more
only in the remaining directions.

Assuming that the fluid phase is adequately solved (as demonstrated in Chap. 4),
four main sources of errors can be present in the simulation of the dispersed phase:
numerics, Eulerian formulation, unresolved scales and equilibrium model formula-
tion. Therefore it is important to understand which of these affects more the overall
deposition rate. In particular it is worth noticing that, to extract particle statistics
from the Lagrangian data, a volume average must be applied and, depending on
the choice of the control volume, slightly different results can be obtained. In the
following Lagrangian DNS data, taken from the benchmark study of Marchioli et al.
[2008b], are averaged over 193 wall-parallel slabs, distributed non-uniformly along
the wall.

Let us first analyse Fig. 6.4 where results are reported for St = 1.0. This is
the case with more data available and where the most important conclusions can
be drawn. In the top left the evolution in time of mean concentration of particles
accumulated near the wall (in the region y+ < 1) clearly shows the accumulation of
particles near the wall that is particularly fast, in the first part of the simulations.
However very different results are obtained with the different models used. The
simulation with the coarse grid without ADM shows a very low accumulation, far
from the reference DNS results. The prediction significantly improves when the
ADM is included. In particular, the simulation with ADM of order k = 5 results in
a curve very close to the DNS, at least in the initial part. After 4000 time unit, in
fact, the LES results seem to reach the steady state, while the DNS curve continues
to grow up to 10000 time units. This can explained by the numerical dissipation of
the grid and the schemes that a certain point smooth the concentration gradient.
This is confirmed by the top right plot where the mean concentration profile is
represented along the wall-normal direction, where the DNS is characterised, not
only by a higher peak in concentration but also by a steeper curves. LES results
instead tend more to diffuse the concentration in the region y+ < 10. Also the results
with the fine grid (available only for the case without ADM) seem to confirm this
hypothesis. In this case, in fact, the wall-normal resolution is very high, resulting in
lower numerical errors and predicting a steeper concentration profile, with a peak
similar to the DNS one, and a concentration at the wall that grows for more time.
No significant differences instead are reported for the mean particle velocity profile
in the central left panel. The good agreement found by LES with high order ADM is
confirmed also looking at RMS of particle fluctuations in x-direction in the central
right panel, while an overestimation is present for the y- and z-directions.

Figure 6.5 shows the results for St = 0.2 and St = 5. As already reported, these
results are not complete because DNS data are not available for St = 0.2, except
for a mean concentration profile obtained in non completely developed flow, and
LES simulations with ADM are not reported because affected by some numerical
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Figure 6.4: Time evolution of the mean particle concentration near the wall (top
left), mean concentration profile (top right), mean stream-wise particle velocity (cen-
tre left) and RMS of stream-wise (centre right), wall-normal (bottom left) and span-
wise (bottom right) fluctuationsfor St = 1.0.
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Figure 6.5: Time evolution of the mean particle concentration near the wall (left)
and steady-state concentration profile (right) for St = 0.2 (top), St = 1.0 (middle)
and St = 5.0 (bottom).

instabilities. However from the top of Fig. 6.5, where the results for St = 0.2 are
shown, in terms of accumulation over time and concentration profile, it can stated
again that the ADM is crucial to obtain a stronger effect of turbophoresis, even
if in this case, where the approximation made by EEM, can be considered small,
the ADM with k = 1 or the finer grid without deconvolution seem to be enough
to predict the correct concentration profile. The case with St = 5.0 in the bottom
part of Fig. 6.5 shows instead, as expected, the inaccuracy of the EEM model in
predicting the dynamics of bigger particles that, because of their high inertia, cannot
be approximated with the equilibrium assumption.

Eventually these simulations are combined together to describe the evolution
of the PSD for a population of particles initially distributed with a the log-normal
distribution of Tab. 6.1. Results are summarized in Fig. 6.6, where the contour plots
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6 – Poly-dispersed particle-laden flow

of the mean particle size are reported at three different sections of the channel. The
mean particle size is quantified by the Sauter diameter, defined as the ratio between
the moments of order three and two of the PSD:

d32 = m3

m2
=
N=3

α=1 wαL3
αN=3

α=1 wαL3
α

, (6.12)

where the nodes of the quadrature approximation L1, L2 and L3 are constant and
equal to the values reported in Tab. 6.1 for N = 3, whereas the weights w1, w2
and w3 are the particle concentration profiles previously discussed. As it is seen,
starting from an uniform PSD (and mean particle size) throughout the channel,
bigger particles tend to accumulate at the wall, causing an increase in the mean
particle size. By using the first six predicted moments:

mk =
N=3
α=1

wαLk
α, with k = 0, . . . , 5, (6.13)

the PSD can be reconstructed. The reconstructed PSDs are reported (blue line),
for two points in the center of the channel and near the wall, together with the
quadrature approximation (red line).

6.7 Conclusions
In this work a fast LES model is proposed for the simulation of dilute poly-

dispersed multiphase flow with moderate Stokes number, based on an Eulerian ap-
proach and algebraic relations for the relative velocity of the dispersed phase. The
unresolved scales are reintroduced in the particles phase with the ADM.

The model is validated for the turbophoresis phenomenon in a turbulent peri-
odic particle-laden channel flow with Reτ = 150 and particles Stokes number ranging
from 0.2 to 5. Results show good agreement with reference Lagrangian DNS data
for moderate St (≤ 1) and demonstrate the importance of an adequate SGS model
for particles. In particular, the correct deposition is predicted only when the ADM
is applied for the particles velocity. As expected, the different sources of error (nu-
merics, Eulerian formulation, EEM and LES) interact in a complex way and must
be accurately analysed. In particular the ADM seem to compensate the loosing of
small scales fluctuations but it must be controlled, according the grid resolution in
the three dimensions, to control the overestimation of fluctuations. Among the other
causes of errors, the Eulerian formulation seem to be adequate for the simulation of
particular type of dispersed phase, as long as particle collisions are not important.
The numerical error instead can be relevant when approximating the high concen-
tration gradients near the wall and more accurate high-order ENO/WENO schemes
could be used to alleviate this error.
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6.7 – Conclusions

Figure 6.6: Turbophoresis phenomenon in the turbulent channel flow under study:
contour plots of the mean particle size d32 and PSD in the centre of the channel
and near the wall (DQMOM approximations, red line, and reconstructed PSD, blue
line).
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6 – Poly-dispersed particle-laden flow

Finally this model represent an efficient solution for the simulation of turbulent
multiphase dispersed flow with moderate Stokes number, resulting in a computa-
tional time much lower than Lagrangian DNS or multi-fluid simulations and coupled
with a detailed description of the Particle Size Distribution through the use of DQ-
MOM formulation. It can be easily extended to the simulation of micro- and nano-
particles in micro-devices characterised by a high mixing rate, such as the Confined
Impinging Jets Reactor of Chap. 3 and 5. Other interesting applications such as
environmental dispersion can be solved with this model.
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7
Computational models for non-equilibrium flows

The model presented in Chap. 6 completely neglect particle collisions. In this
part of the work we investigate the possibility of using a Quadrature-Based Mo-
ment Method (QBMM), namely the Quadrature Method of Moments (QMOM) as
a closure for the collision kernels of the Homogeneous Isotropic Boltzmann Equation
(HIBE) with a realistic description for particle collisions, namely the hard-sphere
model. The behaviour of QMOM far away and approaching the equilibrium is stud-
ied and results are compared to other approximation techniques. Comparison with
a more accurate and computationally expensive approach, considered as reference,
is also carried out. Our results show that QMOM describes very well the evolution
when it is far away from equilibrium, without the drawbacks or the computational
costs of the other methods, but it is not able to accurately reproduce equilibrium
and the dynamics close to it. Corrections to cure this behavior are here proposed
and tested.

7.1 Introduction
Classical fluid dynamics theory, both for single- or multiphase flows, is based on

the assumption of small deviations from equilibrium, which is however not always
valid. In the case of single phase flows this might happen for gases characterised by
very low pressures: the very few collisions occurring in some parts of the flow result in
velocity distributions far away from the equilibrium. Similar situations are realised
at standard pressure values, when the fluid is flowing in very small channels. In the
case of dispersed multiphase flows, it is very common to have regions of high particle
collision frequencies close to regions of very rare collisions, characterised by large

Part of the contents of this chapter will be published in the work of Icardi et al. [Submitted].
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departures from the equilibrium. Furthermore, molecular effects have to be taken
into account also in high-speed hydrodynamics (when shock waves appear)[Kogan,
1992] or interface processes (evaporation and condensation) [Sone and Onishi, 1978].
These situations are very common in many applications like aerodynamics, vacuum
technology, micro-fluidics and freeze-drying [Rasetto et al., 2010, Reese et al., 2003],
just to cite a few.

A key indicator of the importance of non-equilibrium effects is the Knudsen
number defined as

Kn = λ

L
, (7.1)

where λ is the mean free path of the molecules or particles and L is the length scale
of the system. When Kn ≈ 0.01 non-equilibrium effects start to be relevant and
when it is above unity the continuum hypothesis fails and the classical governing
equations are no more valid[Sone, 2002].

Kinetic models have to be used to account for these non-equilibrium effects. They
are characterised by a transport equation, written in terms of a distribution func-
tion. This distribution represents the state of the system from a mesoscopic point of
view, neglecting the behaviour of the single molecule or particle at the microscopic
scale. The macroscopic quantities (e.g. density, mean fluid velocity, energy) can
then be simply derived from the moments of the distribution function by integra-
tion. The use of kinetic models is grown in the last decades and extended to many
fields such us traffic modelling, semiconductor and social human behaviour [Bellomo
and Pulvirenti, 2000] but the main application remains the simulation of granular
and rarefied flows. In this case the distribution function expresses the infinitesimal
portion of particles with a given velocity at a given time and is generally called the
number density function (NDF), or the probability density function (PDF) if it is
a probability function that integrates to one. As it has been already mentioned,
when the NDF refers to single-phase flows, it quantifies the velocity distribution of
molecules, whereas in dispersed multiphase flows it generally quantifies the velocity
distribution of particles.

The evolution of the NDF (or the PDF) is dictated by a kinetic equation (KE).
The most famous example is provided by the Boltzmann equation (BE) [Cercignani,
1988]: this has been formally derived for the evolution of rarefied mono-atomic gases
but has been extended for the simulation of high density gases (Boltzmann-Enskog
equation) and dispersed multiphase flows with applications to fluidised suspensions
[Gidaspow, 1994] and sprays [Williams, 1958]. It is important to stress here also the
similarities between the BE and the population balance equation (PBE) [Ramkr-
ishna, 2000] developed for crystallisation processes, the Smoluchowski coagulation
equation [Smoluchowski, 1916] and the aerosol dynamic equation [Friedlander, 2000].
These kinetic models are characterised by different internal variables or coordinates
(particle size instead of particle velocity) but the solution methods are usually very
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similar.
Many approaches have been proposed to solve the BE. Discrete Velocity Methods

(DVM) and the Direct Simulation Monte Carlo (DSMC) are those applied with the
full non-linear integral collision operator when detailed knowledge of the NDF is
needed.

DVM [Aristov, 2001, Broadwell, 1964, Gatignol, 1975] is one of the most popular
deterministic method for solving the BE with non-linear integral collision operator.
They encompass those methods based on the systematic discretisation of the mi-
croscopic velocity, using similar approaches than those used for the discretisation of
the space.

DSMC [Bird, 1994] is the reference stochastic solution method for the BE. It is
the best-known approach for very high Kn number flows. However, to reduce the
noise-to-signal ratio in near-continuum flows the method becomes computationally
expensive.

Other methods such as the Lattice Boltzmann Methods (LBM) [e.g. Benzi et al.,
1992, Chen and Doolen, 1998, Qian et al., 1992, Succi, 2001, Wolf-Gladrow, 2000] are
also employed; typically they make use of a simplified collision operator in the form
of linear relaxation towards the equilibrium (i.e., Bhatnagar-Gross-Krook, BGK,
approximation) [Bhatnagar et al., 1954]. From a modelling point of view the use
of an integral collision operator offers a richer and more accurate description of
the behaviour of the fluid far from equilibrium. However, the BGK approximation
results in a simpler and easy to implement model characterised by faster computa-
tional times. LBM makes use of a restricted (and minimal) number of microscopic
velocities that fulfil some lattice symmetry and spatial invariance properties and
preserve some macroscopic moments (e.g. mass and momentum). LBM can be used
for continuum and slightly rarefied flows (the latter characterised by large lattices).

Another class of methods is represented by the Method of Moments (MOM). In
this case equations for the moments of the NDF are derived from the KE and the
resulting closure problem is overcome by making an assumption on the functional
form of the NDF. Among moment methods the so-called Grad’s moment method
[Grad, 1949] is very popular, although it suffers from some important drawbacks.

In this chapter we investigate a closure based on a quadrature approximation for
the solution of moment equations. This closure results in the so-called Quadrature
Method of Moments (QMOM) that has been recently introduced as an alternative
method for KEs [Desjardins et al., 2008, Fox, 2008, 2009, Passalacqua et al., 2011].
In some of the other already published applications of QMOM for KEs with colli-
sions, the BGK approximation or the Maxwellian kernel are used. The application
of QMOM with more complex collision models, such as the hard-sphere kernel, has
been considered for the first time in the work of Fox and Vedula [2010], where
the general source terms for velocity moments are derived starting from the more
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general Boltzmann-Enskog expression for the collision operator. This QMOM ap-
proximation has been then compared with the approximations given by simplified
kernels (BGK and Maxwellian) in the work of Passalacqua et al. [2011] considering
an inhomogeneous system.

The scope of our work is to further investigate the behaviour of QMOM compared
to other methods for KEs. To do this QMOM is applied to the Homogeneous
Isotropic Boltzmann Equation (HIBE) with the full non-linear elastic hard-sphere
collisional integral and is used to simulate the evolution from an initial state far
away from equilibrium to the steady state.

In Sec. 7.2 the equation under study is introduced and explained. Then the
different methods are analysed and applied to the systems under study in Sec. 7.3.
After the description of the test cases in Sec. 7.4, results are presented in Sec. 7.5.
Eventually some final remarks are reported in Sec. 7.6.

7.2 Governing equations

In the MOM for KEs two types of closures typically arise: the convective and the
collisional terms. We will focus here on the collisional term. When using simplified
models for collisions this problem does not arise, instead there exist alternative
models to account for particle collisions more realistically that need an accurate
closure. In particular we want to consider the hard-sphere model to analyse the
unsteady approach to equilibrium starting from an arbitrary distribution function.

To reduce the phase space and preserve the physical meaning of collisions, we
cannot reduce to a single spatial dimension so we assume a three-dimensional spatial
domain with the hypothesis of homogeneity (no spatial variation) and isotropy (no
preferential direction for velocity). This means that polar coordinates can be used
and, neglecting the angles, the phase space is simply represented by the velocity
magnitude (or speed) ξ. Nevertheless the three-dimensional components of particles
velocity are still implicitly taken into account in the collisional integral. Therefore
we consider the equation that operates on a distribution f(t, ξ), function of the
time t ∈ R+ and of the magnitude of the speed ξ ∈ R+. The distribution function
allows one to compute the infinitesimal number of molecules or particles per unit
volume at time t with a speed between ξ and ξ + dξ, namely f(t, ξ)dξ. Clearly the
formulation of the problem in terms of velocity magnitude is equivalent to that in
terms of kinetic energy E = ξ2/2.

Under the previous assumptions the dynamics of f can be described by the
following equation:

∂f

∂t
= Q(f, f)=̇N(f, f) − ν(f) f , (7.2)
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where

N(f, f) = 2 π2
 +∞

0
ξ2

∗

 +1

−1

 +1

−1
f(ξ′)f(ξ′

∗) |ξ∗y − ξx| dx dy dξ∗ , (7.3)

and
ν(f) = 2 π2

 +∞

0
f(ξ∗) ξ2

∗

 +1

−1

 +1

−1
|ξ∗y − ξx|dx dy dξ∗ . (7.4)

The variables x and y are collisional parameters (integration dummy variables),
which are related to the molecular velocities as:

ξ′ = ξ′(ξ, ξ∗, x, y) =


ξ2 (1 − x2) + ξ2
∗ y2 ,

ξ′
∗ = ξ′

∗(ξ, ξ∗, x, y) =


ξ2
∗ (1 − y2) + ξ2 x2 .

(7.5)

The above equations are written considering a normalised dimensionless system
with unitary particle mass and radius. The HIBE, derived and studied in different
previous works [Asinari, 2010, Ernst, 1981, Preziosi and Longo, 1997], is a good
platform for a general analysis of QMOM and its connections to other methods.
Readers are referred to the cited literature for a detailed derivation of HIBE.

Following Asinari [2010], let us introduce a change of variables in the previous
expressions,namely E = ξ2/2, E∗ = ξ2

∗/2, E ′ = (ξ′)2/2 and E ′
∗ = (ξ′

∗)2/2, resulting
in:

N(f, f) = 4 π2
 +∞

0
E1/2

∗

 +1

−1

 +1

−1
f(E ′)f(E ′

∗) |yE1/2
∗ − xE1/2| dx dy dE∗ , (7.6)

and in

ν(f) = 4 π2
 +∞

0
f(E∗) E1/2

∗

 +1

−1

 +1

−1
|yE1/2

∗ − xE1/2| dx dy dE∗ . (7.7)

Consequently the collision relations simplify to what follows:

E ′ = E (1 − x2) + E∗ y2,

E ′
∗ = E∗ (1 − y2) + E x2 .

(7.8)

The HIBE (Eq. 7.2) can be written in terms of the moments of the distribution
function, by defining the following quantities:

Φp(t) = 4π
√

2
 +∞

0
f Ep+1/2 dE , (7.9)

that represents the even moments of the velocity distribution and where the non-
integer exponent is a consequence of the change of variable. For computing the
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equilibrium distribution function, let us take the first two moments, which are the
number density:

n = Φ0 = 4π
√

2
 +∞

0
f E1/2 dE , (7.10)

and specific internal energy:

e = Φ1

Φ0
= 4π

√
2

n

 +∞

0
f E3/2 dE =

+∞
0 f E3/2 dE+∞
0 f E1/2 dE

. (7.11)

It is possible to prove that the operator Q(f, f) conserves the previous quantities,
namely

d n

dt
= dΦ0

dt
= 4π

√
2
 +∞

0
Q(f, f) E1/2 dE = 0 ,

d (ne)
dt

= dΦ1

dt
= 4π

√
2
 +∞

0
Q(f, f) E3/2 dE = 0 ,

(7.12)

which means that these quantities are constant and consequently n = n0 =̇ n(0) and
e = e0 =̇ e(0). The constants n0 and e0 can be computed by Eqs. 7.10 and 7.11 using
the initial condition f0 instead of f , namely

n0 = 4π
√

2
 +∞

0
f0 E1/2 dE ,

e0 = 4π
√

2
 +∞

0
f0 E3/2 dE ,

(7.13)

where n0 is the number density, e0 = (3/2) kBT0, kB is the Boltzmann constant and
T0 is the temperature. By means of the previous quantities it is possible to compute
the equilibrium Maxwellian distribution function, namely:

f eq(E) = n0

(2πE0)3/2 exp


− E

E0


, (7.14)

where E0 = kBT0. Clearly the collisional operator Q(f, f) drives the initial f0(E)
towards f eq(E).

In this case the closure problem arises in the approximation of the collisional
integral which is a bi-linear function of f and in the case of hard-sphere cannot
be simply written in terms of Φp. In order to study the dynamics of this system,
generalising the expression of e for the generic distribution function f we introduce
the normalised moments:

Φp = 4π
√

2
n

 +∞

0
f Ep+1/2dE = Φp

Φ0
. (7.15)

140



7.2 – Governing equations

These quantities calculated for the Maxwellian distribution function f eq yields

Φeq

p = 4π
√

2
n

 +∞

0
fe Ep+1/2dE =

Φeq
p

Φ0
. (7.16)

Let us define, for non-conserved quantities, i.e. for any p such that p > 1, the
following relaxation rate, namely:

Rp =
Φp − Φeq

p

Φeq

p

=
Φp − Φeq

p

Φeq
p

. (7.17)

The dynamics of Φp and Rp can be obtained applying the definitions given in
Eqs. 7.15 and 7.17 to Eq. 7.2, resulting in:

dΦp

dt
= 4π

√
2
 ∞

0
Q(f, f)Ep+1/2dE , (7.18)

and therefore:
dRp

dt
= 1

Φeq
p

dΦp

dt
. (7.19)

Each non-conserved moment evolves with the following characteristic equivalent
relaxation frequency νp:

νp(t) = dΦp

dt

1
Φeq

p − Φp

. (7.20)

The frequency resulting from Eq. 7.20 gives us the rate of change of Φp and an
estimate of the error committed when using the BGK approximation (that is based
on a constant relaxation frequency).

Equation 7.18 can be rewritten more explicitly in terms of the pre-collisional
energies only, by applying an appropriate change of variable described in Asinari
[2010], obtaining
dΦp

dt
= 16π3√2

 ∞

0

 ∞

0

 +1

−1

 +1

−1
|q|

(C+

p ) − (C−
p )


f(E)f(E∗) (EE∗)1/2 dx dy dE∗ dE ,

(7.21)
where q, C+

p , C−
p are the following functions

q = q(x, y, E, E∗) = yE1/2
∗ − xE1/2 ,

C+
p = C+

p (x, y, E, E∗) =

E(1 − x2) + E∗y

2
p

,

C−
p = C−

p (E) = Ep ,

(7.22)

with the following properties
q(y, x, E∗, E) = −q(x, y, E, E∗) ,

q(−x, −y, E, E∗) = −q(x, y, E, E∗) ,

C+
p (−x, −y, E, E∗) = C+

p (x, y, E, E∗) ,

(7.23)

from which it follows also that q(−y, −x, E∗, E) = q(x, y, E, E∗).
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7.3 Solution methods
Let us now analyse in details the following solution methods applied to HIBE:

DVM, LBM, GM and QMOM.

7.3.1 Discrete Velocity Method
In DVM the internal variables of the distribution function are discretised with a

large number of intervals or classes so that the shape of the distribution is accurately
approximated and the integro-differential KE is solved in the discretised phase space.
The main drawback of the method is the very high computational cost for realistic
cases.

The closure of high-order moments is generally accurate if a large number of
discretisation points is used so that the distribution reconstruction is very smooth.
The closure of the collisional integral instead can present some problems because
the discretisation could destroy the invariant properties of collisions. Many mod-
ifications have been proposed to ensure the conservation of collisional invariants
[Aristov, 2001].

We have instead employed the DVM to solve the HIBE test case with a recently
proposed version (HOMISBOLTZ by Asinari [2010]) that discretises the equation
directly in the energy space. The momentum is implicitly conserved by the for-
mulation and the discrete velocities can be adapted to conserve energy. Being this
method very accurate when the number of discretisation points is very large, it has
been chosen as a reference solution for all the other methods.

7.3.2 Grad’s moment Method
The GM is a closure approach for the infinite moment-system, which is based on

the expansion of the velocity distribution function into a series of Hermite polyno-
mial. It was introduced by Grad [Grad, 1949] as an alternative for the Chapman-
Enskog expansion of the Boltzmann equation. See [Struchtrup, 2005] for a modern
description of GM and its applications.

The distribution is approximated with an expansion centred on the equilibrium.
Moments are then computed using this expansion and coefficients are obtained
equating the moments of the expansion with the instantaneous tracked moments.
Using this closure, moment equations are derived up to a predefined number of mo-
ments, which is assumed to properly represent a particular system. Typically, the
Grad’s 13-equations model and the 26-equations model are used for the simulation
of rarefied gases.

In the typical case of Gaussian equilibrium distribution, the expansion is written
in terms of Hermite polynomials. Instead in the energy formulation and when the
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microscopic velocity space is confined to the subspace [0, ∞), as in our case, Hermite
polynomials are replaced by Laguerre polynomial due to the structure of the integrals
in the collision term. These polynomials are also called Sonine polynomials [Sone,
2002].

Similarly, considering HIBE in the energy formulation and its equilibrium dis-
tribution, the Grad’s expansion of the distribution f(E) can be written in a general
way as:

fG(E) = f eq(E)
1 +

M
n=2

 n
p=2


(−1)p n!

(n − p)!p!Rp(t)


L1/2
n (E/E0)

 , (7.24)

where L1/2
n (E/E0) is the generalised Laguerre polynomial of order n and Rp(t) are

the deviations of the macroscopic moment Φp from its equilibrium value Φeq
p .

The time evolution of the moment deviation from equilibrium, considering Eqs. 7.17,
7.9 and 7.2 is:

dRp

dt
= 4π

√
2

Φeq
p

 ∞

0
Q(fG, fG)Ep+1/2 .dE (7.25)

Equation 7.25 is solved below for non-conserved variables up to order M . In the
case M = 2 only R2 is considered and we call it the one-equation model. Equivalently,
a two-equation model for M = 4 can be solved to provide the time evolution of R2
and R3.

The Grad’s expansion of the energy distribution function for the one-equation
model reads as follows:

fG
1 (E) = f eq


1 + R2L1/2

2


E

E0


(7.26)

An analytical solutions for the collisional integral, described in App. A of this chap-
ter, can be performed, resulting in the following differential equation for R2

dR2

dt
= −n0

15


πE0 , R2(R2 + 32) (7.27)

where, as already reported, E0 = kBT0. Solving analytically this equation with
R2o = R2(t = 0) as the initial condition, an expression for the time evolution of R2
is obtained:

R2(t) = 32R2o

(R2o + 32)exp


32
15

√
πE0n0t


− R2o

(7.28)

Being the one-equation model a very crude approximation, the number of mo-
ments M is increased up to four, resulting in the following distribution function for
the two-equation model:

fG
2 (E) = f eq


1 + R2L1/2

2


E

E0


+ (3R2 − R3)L1/2

3


E

E0


. (7.29)
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Following the same procedure described in App. A of this chapter, we obtain

dR2

dt
= − 1

240

125R2

2 + R2(256 − 46R3) + R3(256 + 5R3)
E0π

4 n0 ,

dR3

dt
= 1

1120

981R2

2 + R2(19200 − 94R3) − 3R3(3840 + R3)
E0π

4 n0 .

(7.30)

The solution of this system is computed numerically. It is interesting to notice that,
as in the one-equation model, no linearisation of the collision operator is necessary.

7.3.3 Quadrature Method of Moments
The QMOM has been already introduced in Sec. 2.4 and used as a tool for poly-

dispersity problem in Chap. 6. In this chapter the QMOM equations are derived for
the particular case under study.

To approximate HIBE with QMOM, starting from Eqs. 7.2-7.9, we select Φ0, . . . , ΦM−1
and calculate M/2 quadrature nodes Ej and weights wj with an inversion algorithm
such that the following approximation:

4π
√

2
 ∞

0
P (E)fE1/2dE ≈

M/2
j=1

wjP (Ej) (7.31)

is exact if the integrand P (E) is a polynomial of degree lower or equal to M −1 in the
variable E. It must be noted that in the energy formulation, the inversion to obtain
nodes and weights from the moments is performed with non-integer moments and
the constant 4π

√
2 is also considered in the inversion algorithm and goes directly

into the weights wi. This simplifies the equation and ensures that the collisional
kernel is well approximated.

With this quadrature we can approximate Eq. 7.18 as follows:

dΦp

dt
≈ π√

2

M/2
i=1

M/2
j=1

wiwjΛij,p , (7.32)

where

Λij,p =
 +1

−1

 +1

−1
|q(x, y, Ei, Ej)|


C+

p (x, y, Ei, Ej) − C−
p (Ei)


dx dy . (7.33)

The integration over the collisional parameters x and y can be computed analytically,
by using the symmetric properties of the integrands. The detailed derivation is
given in App. B of this chapter and the explicit equations for M = 4 are reported
in App. C.
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In the hard-sphere model, the closure of the collision integral with QMOM in-
troduces an approximation error that influences the relaxation to equilibrium.

To cure this wrong behaviour a new correction is formulated and proposed here.
New quantities Λ′

ij,p are defined as:

Λ′
ij,p = Λij,p − κpΛeq

ij,p , (7.34)

where Λeq
ij,p are calculated at the equilibrium and κp is a weighting factor that depends

on the distance from the equilibrium. κp must be close to unity when the system is
approaching the equilibrium, to preserve the correct discrete equilibrium for QMOM
approximation. However it should be small enough to retain the QMOM accuracy
far from equilibrium.

If κp = 1 the above equation represents a ”global static” correction (QMOM+SC)
applied at each state of the system. Its disadvantage is that it affects also the
dynamic far from equilibrium. It is possible however to build a “dynamic” correction
(QMOM+DC) defining κp as a function of the moments deviations Rp(t), that retain
QMOM accuracy far from equilibrium, still preserving the correct approximation at
equilibrium. For example we can define

κp(t) =
1 − Rp(t)

Rp(0)


h

=
 Φp(t) − Φp(0)
Φeq

p (t) − Φp(0)


h

, (7.35)

where the exponent h is a tunable parameter.

7.3.4 Lattice Boltzmann Method
LBM can be derived from the BE [Chikatamarla and Karlin, 2006, He and Luo,

1997] by discretising the velocity space using a finite set of velocity vectors. In this
work we want to use and analyse this method as a closure for high-order moments
and collisional terms, focusing in particular on the basic assumptions of the method
by exploiting similarities and differences with QMOM.

In general LBM is a computational method based on lattices labelled as DdQq,
where d is replaced by the spatial dimension and q by the number of microscopic
velocities. Typical lattices for continuum flows are D2Q9 in 2D and D3Q19 or
D3Q27 in 3D. For slightly rarefied flows in 2D the D2Q16 and the D2Q21 lattices
are often used.

The LBM for a general KE characterised by a mono-variate distribution expresses
the moments in terms of a finite set of M weights and M prescribed abscissas.
Typically the prescribed abscissas come from a Gauss-Hermite quadrature (i.e. the
roots of the Hermite polynomials). The employment of these quadratures can be
explained purely in terms of the entropy construction [Chikatamarla et al., 2006].
This approach is not exactly equivalent to the standard LBM but is instead called
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off-Lattice Boltzmann Method (oLBM) [Bardow et al., 2006], because the roots do
not fall on the lattice, so they cannot be used with the standard LBM transport
algorithm.

The same approach can be used in the energy formulation of HIBE, using oLBM
simply as a quadrature method for unclosed integral quantities. In this case, since
the distribution is described in terms of energy, the generalised Laguerre nodes
are the nodes prescribed by oLBM while the weights are directly derived from the
moments Φp instead of using the classical two-steps LBM scheme. The approach
is completely equivalent to the one used with QMOM (explained in Sec. 7.3.3 and
App. B of this chapter) with the only difference that we use M prescribed nodes that
are calculated as the roots of the generalised Laguerre polynomial L1/2

M (E/E0). The
M associated weights are computed by preserving the first M macroscopic quantities
Φp. The analytical formula given in the previous section for QMOM holds for every
type of quadrature rule.

7.4 Test cases and numerical details
The equilibrium condition is univocally determined by the condition

Q(f, f) = 0 , (7.36)

together with initial condition for conserved quantities and it is reached in finite
time from every initial condition.

As it has been already mentioned, classical macroscopic balance equations (e.g.
Navier-Stokes) can be regarded as approximations of a system in local equilibrium or
slightly away from it. Therefore a good approximation of the equilibrium condition
is an important requirement for every kinetic-based method to represent the late
dynamics and to be consistent with classical methods. This would not be an issue
if a high degree of accuracy were chosen by tracking a large number of moments, so
that the distribution function is accurately tracked at each state. However, when
complex three-dimensional problems are taken into account, the number of moments
that can be tracked is usually small to reduce the computational costs and studying
the closure accuracy, in particular at equilibrium, becomes more important.

The test case studied for HIBE represents the evolution of a set of particles in
a state far away from equilibrium, interacting one with each other until the steady
equilibrium state is reached. The time marching procedure is based on the forward
Euler integration rule. To have a very accurate reference solution HOMISBOLTZ
code was used with 400 discrete energies. This ensures a very accurate approxima-
tion of the whole distribution function and its integrals. This model, as well as the
other ones, are all implemented in Matlab.
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Two different functions are considered:

T1: f0(E) = g1 exp


−(
√

E −
√

ET 1)2

(g2/2)


, (7.37)

and

T2: f0(E) = g1


exp


−(

√
E −

√
ET 1)2

(g2/2)


+ exp


−(

√
E −

√
ET 2)2

(g2/2)


, (7.38)

where g1 = 10−3, g2 = 70, ET 1 = 612.5 and ET 2 = ET 2
4 . These two initial conditions

together with the respective equilibrium conditions are shown in Fig. 7.1. As it is
seen, the first condition corresponds to molecules characterised by one single average
energy ET 1, whereas in the second initial condition two characteristic energies ET 1
and ET 2 are visible. For all methods the total simulation time is ∆T = 5 × 10−4 s
discretised in 200 time steps of size ∆t = 2.5 × 10−6s.

Figure 7.1: Initial (continuous lines) and equilibrium (dashed lines) distributions
for test case T1 (left) and T2 (right), computed with reference DVM code HOMIS-
BOLTZ.

QMOM and oLBM can be easily extended to a generic M , while the analytical
equation for GM are difficult to obtain only for M > 4. Furthermore the dynamics
of the system approximated with QMOM and oLBM for M ranging from four to
ten were analysed without showing qualitative differences in the dynamics. There-
fore dynamics results of the different methods are compared with DVM only for
M = 4. This means that the first four moments are tracked and that the following
approximations are used: two-equation model for GM, two nodes and two weights
for QMOM and four discrete velocities for oLBM. In terms of velocity moments
this is equivalent to solving up to the 6th-order moment. The comparison at the
equilibrium is instead carried out at different M values for all methods.
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7.5 Results and discussion
First let us analyse the closure accuracy of the collisional term with a given num-

ber M by comparing the moments of the exact equilibrium with the steady state
solution obtained with QMOM, oLBM and GM. In Tab. 7.1 different orders of ac-
curacy are investigated and the relative errors of each approximation are calculated.
The QMOM error in the prediction of the equilibrium of a different system has been
highlighted by Passalacqua et al. [2011] for the steady state velocity moments up to
5th-order. Our results analyse the steady state, reached by the discretised system
with the initial condition T1 (see Eq. 7.37), in terms of energy moments up to 6th-
order (equivalent to the 10th-order for velocities), varying the number of moments
and the quadrature order and comparing it with oLBM and GM.

M = 4 M = 6 M = 8

×108 Φ2 % Φ2 % Φ2 %
GM (exact) 1.0034 0.0 1.0034 0.0 1.0034 0.0

oLBM 1.0033 0.01 1.0034 0.003 1.0034 0.001
QMOM 0.9704 3.29 0.9979 0.55 1.0022 0.12

QMOM+SC 1.0034 0.0 1.0034 0.0 1.0034 0.0
QMOM+DC 1.0034 0.0 1.0034 0.0 1.0034 0.0

×1011 Φ3 % Φ3 % Φ3 %
GM (exact) 1.4921 0.0 1.4921 0.0 1.4921 0.0

oLBM 1.4919 0.02 1.4921 0.004 1.4921 0.002
QMOM 1.4707 1.44 1.4874 0.31 1.4910 0.08

QMOM+SC 1.4921 0.0 1.4921 0.0 1.4921 0.0
QMOM+DC 1.4921 0.0 1.4921 0.0 1.4921 0.0

×1014 Φ4 % Φ4 %
GM (exact) × × 2.8529 0.0 2.8529 0.0

oLBM × × 2.8527 0.005 2.8528 0.002
QMOM × × 2.8302 0.80 2.8478 0.18

QMOM+SC × × 2.8529 0.0 2.8529 0.0
QMOM+DC × × 2.8529 0.0 2.8529 0.0

×1017 Φ5 % Φ5 %
GM (exact) × × 6.6666 0.0 6.6666 0.0

oLBM × × 6.6662 0.006 6.6665 0.002
QMOM × × 6.6244 6.34 6.6548 0.18

QMOM+SC × × 6.6666 0.0 6.6666 0.0
QMOM+DC × × 6.6666 0.0 6.6666 0.0

Table 7.1: Exact values, approximations and relative errors of the tracked moments
at steady state with different closure methods and closure order M .
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GM is characterised by construction to relax to the exact equilibrium state so the
approximation of the equilibrium moments is always exact. In the case of oLBM,
the error is negligible since it is always less than 0.03%. This can be explained
by the fact that, although the oLBM quadrature does not approximate exactly the
collisional kernel (because it is not a polynomial), it makes use of prescribed nodes
that are the best choice near the equilibrium. QMOM instead presents an error in
the approximation of the collisional integral that drives the flow towards the wrong
steady state (with an error on moments between 0.1% and 6%). Both the static
(QMOM+SC) and the dynamic correction (QMOM+DC) can fix this problem and
approximate exactly the equilibrium by construction.

Figure 7.2: Errors committed in approximating dΦp

dt
at the exact equilibrium condi-

tion, normalised by Φeq
p (see Eq. 7.19), for p = 2 (dashed line) and p = 3 (continuous

line), for different M . QMOM (✁), oLBM (∗).

The quadrature accuracy in the approximation of the collisional term can be
observed in Fig. 7.2 where the source term dΦp

dt
, calculated at equilibrium and nor-

malised by Φeq
p (see Eq. 7.19), is reported for p = 2 and p = 3, as calculated by

QMOM and oLBM. These terms would be null if the quadrature formula were ex-
act. Instead, because of the non-polynomial structure of the kernel, there is an error
that decreases with the number of tracked moments M . oLBM always has an error
smaller than QMOM because it is based on the equilibrium assumption, however
it can be highlighted that the error associated with it has a slower convergence.
Furthermore we can observe in this figure that the QMOM quadrature with M = 8
is equivalent to the oLBM quadrature with M = 4. This is due to the fact that
QMOM is a Gaussian quadrature formula, whose nodes and weights are adapted
to the macroscopic state of the system (given by the moments). So the M/2 nodes
calculated at equilibrium result to be exactly the roots of the Laguerre polynomi-
als. oLBM instead prescribes M fixed Laguerre nodes by hypothesis and only the M
weights are calculate with an inversion algorithm, resulting in a “double” accuracy at
equilibrium. Results with GM and corrected QMOM are not reported here because
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they approximate exactly the collisional term at equilibrium by construction.

Figure 7.3: Approximations of initial conditions T1 (left) and T2 (right). Exact
values (continuous line), GM (dashed-dotted line), QMOM (△), oLBM (∗).

Let us discuss the dynamical evolution of the system towards the steady state,
considering the two initial conditions reported in Fig. 7.1 and focusing on the case
M = 4. The main characteristics of the methods can be easily understood by
looking at the approximation of the initial conditions T1 and T2 introduced in
Eqs. 7.37-7.38 and Fig. 7.3. The main drawback of GM is that the positivity of
the distribution function is not guaranteed. In the depicted test case for example,
the distribution function becomes negative predicting negative number density (or
probability) of particles with small kinetic energy E. The same problem occurs for
the third node of the oLBM closure. This would be a problem when considering
spatial transport terms which would yield unrealisable moments [Vikas et al., 2011].
QMOM instead intrinsically preserves the positivity of the quadrature weights for
all sets of realisable moments.

Figure 7.4 represents the evolution of the second and third moments of f(E),
equivalent respectively to the 4th and 6th moments of the velocity magnitude dis-
tribution f(ξ), in terms of the relaxation rates Rp for the test cases T1 and T2.
Figure 7.5 reports the same comparison in a logarithmic scale normalising Rp with
the initial value Rp(0). This scaling makes clearly visible that the approach to equi-
librium is exponential. In these results DVM has been considered the reference exact
solution. All the other methods apparently seem to predict well the first part the
relaxation towards equilibrium but, as this is approached, some differences become
evident. In the last part of the dynamics, for example, Fig. 7.5 clearly shows that
although QMOM predicts well the initial dynamics and results in positive weights, it
wrongly predicts the relaxation towards equilibrium. In fact, as it has been already
seen in Tab. 7.1, the moments tend to values slightly different from those expected
and this error (typically less than 10%) must not be overlooked. This behaviour is
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Figure 7.4: Evolution over time of the 2nd (top) and 3rd (bottom) moment relax-
ations for test case T1 (left) and T2 (right). Reference DVM (continuous line), GM
(dashed-dotted line), QMOM (✁), QMOM+SC (✄), QMOM+DC (△), oLBM (∗).

directly related to the fact that the equilibrium arises from the collision integral, ap-
proximated (and not exactly solved) by the quadrature rule. This error can however
be corrected by the procedures proposed in this work (see Sec. 7.3.3).

The first static correction (QMOM+SC) fixes this problem by construction but
presents one serious drawback. The approach to equilibrium is no more monotonic,
in the sense that the macroscopic quantities Φp cross the equilibrium value and after
that they slowly relax to it. This is thermodynamically inconsistent because KEs
must be characterised locally by a monotonic relaxation to equilibrium. Further-
more Fig. 7.5 shows that the static correction predicts a too fast dynamics, with
a relaxation which is more than exponential. This error in the prediction of the
dynamics cannot be seen in Fig. 7.4.

When the dynamical correction (QMOM+DC) is used QMOM becomes very
accurate and close to the reference results. After some tests, it was found that the
parameter h (in Eq. 7.35) must be chosen between one and two to preserve the
correct approach to equilibrium. In particular we have considered here h = 1.5,
resulting in very accurate results. This is clearly visible in Fig. 7.5 where, as already
reported, the normalised moment relaxation rates are plotted in logarithmic scale.
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Figure 7.5: Evolution over time of the 2nd (top) and 3rd (bottom) moment normalised
relaxation rates for test case T1 (left) and T2 (right). Reference DVM (continuous
line), GM (dashed-dotted line), QMOM (✁), QMOM+SC (✄), QMOM+DC (△),
oLBM (∗).

In general GM and oLBM give very similar results because they are based on
very similar assumptions (either Laguerre polynomials or Laguerre nodes) but, as
we already discussed, oLBM introduces a small error in the approximation of col-
lisions and does not relax exactly to the equilibrium. It should be also highlighted
that although the predictions of Rp made by GM and oLBM in Figs. 7.4-7.5 seems
good, the reconstruction of the distribution can lead to negative values during the
evolution, especially far away from equilibrium. This inaccuracy in the initial part
of the dynamics becomes more evident when analysing other quantities such as the
relative errors or the equivalent relaxation times.

The relative error for each moment (with respect to the DVM reference solution),
depicted in Fig. 7.6, demonstrates the very high accuracy of QMOM+DC that
produces a relative error always very close to zero (below 0.3%) while the other
methods fails either close to equilibrium (QMOM) or far away from it (oLBM,
GRAD, QMOM+SC).

Fig. 7.7 shows the equivalent relaxation time, given by Eq. 7.20, normalised to the
BGK frequency approximation, given by the DVM reference code as the relaxation
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Figure 7.6: Relative errors of the 2nd (top) and 3rd (bottom) moments for test case
T1 (left) and T2 (right). Reference DVM (continuous line), GM (dashed-dotted
line), QMOM (✁), QMOM+SC (✄), QMOM+DC (△), oLBM (∗).

of the lowest discrete energy. Equation 7.20 shows that these quantities represent
also the quadrature errors committed by the different methods, scaled with the
distance from equilibrium. This means that the errors committed in the first part
of the dynamics, when the distance from equilibrium is big, are less evident. One
first comment is that the figure shows the inaccuracy of the BGK approximation,
especially in the first part of the dynamics where the relaxation frequency cannot be
approximated as constant. With QMOM the equivalent relaxation time goes quickly
to zero, meaning that the system has reached the wrong equilibrium state. As we
observed before, when the static correction is enabled the approach to equilibrium
is no more monotonic and the equivalent time relaxation involves a division by zero.
This means that at a certain time their derivatives change sign and the equivalent
relaxation times go to infinity. As it is seen the static correction drives the frequency
to infinity, leading to a non-physical behaviour. The correct behaviour instead is
recovered with the dynamic correction. A more accurate analysis of this figure in the
initial part of the dynamics reveals also the inaccuracy of the equilibrium assumption
made by GM and oLBM, showing significant error from the reference solution that

153



7 – Computational models for non-equilibrium flows

Figure 7.7: Evolution over time of the 2nd (top) and 3rd (bottom) moment equivalent
relaxation time for test case T1 (left) and T2 (right). Reference DVM (continuous
line), GM (dashed-dotted line), QMOM (✁), QMOM+SC (✄), QMOM+DC (△),
oLBM (∗); the arrows indicate the behaviour of QMOM+SC across the singularity.

is not present in QMOM+DC that can predict very accurately the early dynamics
as much as the late dynamics.

7.6 Conclusions
In the framework of non-equilibrium flows, the Quadrature Method of Moments

(QMOM) is tested as a closure for the Homogeneous Isotropic Boltzmann Equation
(HIBE) with a hard-sphere elastic collisional kernel. Results are compared with
other closures such as the Grad’s moment Method (GM), the off-Lattice Boltzmann
Method (oLBM), and with the solution obtained from a very accurate Discrete
Velocity Method (DVM) as a reference.

QMOM is characterised by great flexibility and adaptivity; however a small but
non negligible error in reproducing the Maxwellian equilibrium is evidenced. This
problem can be only partially solved by increasing the number of moments tracked
and consequently the quadrature order. In fact, a residual error in the approximation
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clearpage
of the equilibrium (and in the relaxation time and dynamics) remains because of
the intrinsic structure of the method.

Analysing the steady state of the system, we can conclude that, as expected,
GM provides the exact closure by construction since it is based on the hypothesis of
small perturbation from equilibrium. Also oLBM provides an accurate closure of the
steady state, with an error always below 0.03%, because it makes use of a quadrature
purposely designed for the equilibrium state (Gauss-Laguerre in our case).

When considering instead distributions far from equilibrium (very important in
the initial dynamics) QMOM better predicts the moments and their dynamics, with
quadrature weights always positive or in other words, with a reconstructed distri-
bution always valid. GM and oLBM instead, since they are based on equilibrium
assumptions, produce significant errors and they can also predict non-physical neg-
ative values of the distribution. This can be a problem when considering spatial
transport terms which will yield unrealisable moments.

Corrections to QMOM are proposed to increase the accuracy close to equilib-
rium, by including physically-based information, such as the a priori knowledge of
the equilibrium state. In particular, a correction to the collisional integral, based
on a distance from the equilibrium, is tested obtaining very accurate results compa-
rable to the reference DVM solution, but at a much lower computational costs (i.e.
solving only four instead of 400 differential equations). More generally, the idea of
using a dynamically corrected QMOM, that is capable to exploit the equilibrium as-
sumptions of the oLBM quadrature depending on the state of the system (together
with initial condition and equilibrium condition) seems to be very promising.
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7.7 Appendices

A. Analytical integration of Grad equations for HIBE

Let us consider the case M = 2. Applying Eq. 7.26 in Eq. 7.25, considering the collision
operator described by Eqs. 7.3 and 7.4, we obtain, after performing a change of variables
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ψ = E/E0 and arranging terms, the following expression
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(7.39)

To obtain an analytical expression for Eq. 7.39 it is convenient to rewrite this equation in
the following compact form:
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by defining the following integrals:
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(7.44)

These quantities can be integrated analytically giving place to an explicit collision term
for R2, Eq. 7.27.

The same procedure can be applied for R2 and R3 in the case of M = 4. The compact
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form of the evolutions equations is:
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where the following additional integrals are introduced:
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Integrals (kb1, ..., kb12) are equal to integrals (k1, ..., k12) but replacing ψ6 by ψ8. Integrat-
ing analytically Eqs. 7.45 and 7.46 we obtain Eq. 7.30.

B. Analytical integration of QMOM equations for HIBE

In order to calculate analytically the integrals of Eq. 7.33 over the collisional parameters
x and y let us define
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It is possible to rewrite the above integrals by splitting the integration domain in four
parts and using the symmetry properties of the integrands. It follows that

Λ+
ij,p|Ei≥Ej = 2

 −δij
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 +1
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+
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p
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if Ei ≥ Ej , while for Ei < Ej

Λ+
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Assuming that the nodes are numbered such that EM ≥ · · · ≥ Ej ≥ · · · ≥ E1 ≥ 0 we
can write Eq. 7.32 as

dΦp

dt
= π√
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(7.58)
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and Λ±
ij,p as
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ij,p = 2Ep
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where E+ = max (Ei, Ej), E− = min (Ei, Ej), rij = min


Ei
Ej
,


Ej

Ei


and

γij =

α if Ei ≥ Ej

β if Ei < Ej

The derivation described here to compute the integrals over x and y can be easily
extended to the continuous case (without quadrature approximation) giving place to a
more general result.

The discrete (with QMOM approximation) equilibrium condition is univocally deter-
mined by the following M conditions on the M QMOM variables

M/2
i=1

M/2
j=1

wiwjΛ+
ij,p =

M/2
i=1

M/2
j=1

wiwjΛ−
ij,p, ∀p ∈ [0,2M − 1] (7.60)

C. Explicit QMOM equations for HIBE with M=4
The explicit evolution equations for Φ2−3 with QMOM considering M = 4 are
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=
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(7.61)

The source term for Φ0 is clearly null because all the integrands vanish. The same thing
happens for Φ1 when the sum over the quadrature indexes is performed.

These equations are difficult to analyse qualitatively because the relation between
macroscopic quantities (moments) and QMOM variables (nodes and weights) is highly
non-linear.

DQMOM is a formulation of QMOM where evolution equations for quadrature weights
and weighted nodes, instead of getting them at each time step by using specific algorithms
(e.g. PD algorithm). The drawback of this formulation is that a linear system must be
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solved to calculate the source terms of the equations. In the DQMOM formulation the
above equation can be rewritten as
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−
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To obtain a full QMOM formulation, Eq. 7.61 must be rewritten substituting the
following values for the nodes and weights (calculated with P-D algorithm)
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8
Conclusions and future perspectives

This thesis have investigated various aspects of multiphase poly-dispersed flows that
arise when simulating particle production processes, together with some of the state-of-the-
art mathematical models and computational methods for efficient numerical simulations.
The main results can be summarised as follows:

• in Chap. 3 we have demonstrated the importance of coupling experimental tech-
niques with detailed and computationally expensive numerical simulations, that are
both needed to understand processes happening at small scales, such as the micro-
mixer investigated in this work, or processes involving complex physics.

• This was particularly important for example to understand the proper boundary
conditions of the simulation, that were not completely determined by the experi-
mental parameters, because of the uncertainty and the high difficulty of the micro
Particle Image Velocimetry (µPIV) technique.

• With the objective of finding efficient models to simulate a broad range of turbulent
flow processes, a comprehensive study of Large Eddy Simulation (LES) models in
our Computational Fluid Dynamics (CFD) platform has been performed in Chap. 4
for a well-known test case such as the turbulent periodic channel flow. This activity,
carried out in the framework of the LESinItaly group, was also a possibility to
compare the results with many other different CFD codes and models.

• These results and validations of LES have been then applied, together with the im-
portant findings of Chap. 3, for the simulation of the micro-mixer in a LES frame-
work, which is much more interesting and efficient in terms of computational cost
and makes possible the extension of this tool for other similar systems.

• The efficiency of LES has been coupled with specific models for poly-disperse multi-
phase flows in Chap. 6 where a turbulent channel seeded with finite-size particles is
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studied to validate the LES model for dispersed phase, together with a Quadrature-
Based Moment Method (QBMM) for particle poly-dispersity and an efficient alge-
braic models for particle relative velocity. This model represents a complex balance
between an adequate description of the main phenomena involved in the deposi-
tion of particles in turbulent flows, and an efficient solution to be applied for more
complex geometries such as the ones used for particle production processes.

• Finally a more theoretical activity, with important applications for micro- and nano-
scale flows as well as rarefied flows, has been carried out in Chap. 7, where an
approximated model of the Boltzmann Equation (BE) has been solved with QBMM.
Particle collisions and non-equilibrium effects are studied in a framework that can
be easily extended to general CFD models.

Also some critical comments can be made regarding the possible improvements and
extensions of the work presented in this thesis:

• the cause and the effects of the pumps instability in the micro-mixer can be further
investigated, with specific simulations of the feeding systems and the micro-mixing
of chemical species;

• the LES models proposed for single and multiphase flows can be verified and ex-
tended for a broader range of Reynolds number and reactor geometries, to have a
more general validation of the CFD tool;

• the Population Balance Equation (PBE) model can be solved with QBMM including
particulate processes such as aggregation and breakage of particles;

• the proposed model for the simulation of the BE can be extended for inhomogeneous
system and coupled with poly-dispersity model in a four-way coupled multiphase
model;

• finally, most of the proposed methods can be applied with small modifications, to a
broad range of similar flows such as gas-liquid or liquid-liquid system.

To conclude, we can state that the use of LES and QBMM made in this thesis, goes into
the direction of overcome the most simplified physical models, based on rough macroscopic
average, introducing more physical complexity, through the understanding of phenomena
happening at different scales, and efficient numerical tools to make these approaches usable
for real processes. This turns out to be a crucial issue for many chemical processes and
engineering applications.
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