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Topological invariants of bifurcation

Jacobo Pejsachowicz

Abstract. I will shortly discuss an approach to bifurcation theory based on
elliptic topology. The main goal is a construction of an index of bifurcation
points for C1-families of Fredholm maps derived from the index bundle of the
family of linearizations along the trivial branch. As illustration, I will present
an application to bifurcation of homoclinic solutions of non-autonomous dif-
ferential equations from a branch of stationary solutions.

Mathematics Subject Classification (2000). Primary 58E07, 58J55; Secondary
47A35, 34C23.

Keywords. Bifurcation, Fredholm maps, Index bundle, J-homomorphism.

1. Introduction

The classical topological approach to bifurcation of zeroes of parametrized fam-
ilies of maps is essentially of local nature [13, 14, 2, 3]. Sufficient condition for
bifurcation are obtained by analyzing the behavior of the linearized family in a
small enough neighborhood of an isolated point of the trivial branch at which
the linearization fails to be invertible. Here, instead, I would like to discuss an
alternative, non-local approach based on elliptic topology. I will consider families
of C1-Fredholm maps of index 0 parametrized by topologically nontrivial spaces
and will use the non-vanishing of a global invariant associated to the family of
linearizations in order to find on the trivial branch at least one bifurcation point.
This kind of argument, applied to families of linear Fredholm operators, was suc-
cessfully used in many places ( see for example [12], [23] among others). My point
here is that, after adding one more tool, essentially the same method works for
nonlinear Fredholm maps as well. Although some of the results stated here were
already proved for families of Fredholm maps of special type in [20, 19], the general
case is an ongoing work and full details will appear in [21].

In what follows I will describe more precisely what I mean by bifurcation
from the trivial branch and the topological invariants under consideration.
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Let X,Y be Banach spaces and let P be an n-dimensional compact connected
smooth manifold. Let f : P ×O → Y be a continuously differentiable map defined
on the product of P with an open neighborhood O of the origin in X. Assume that
f(p, 0) = 0 for all p in P. Solutions of the equation f(p, x) = 0 of the form (p, 0)
are called trivial and the set P ×{0} is called the trivial branch. In what follows I
will identify the parameter space P with the set of trivial solutions and will write
the parameter variable as a subscript. Accordingly I will denote by fp : U → Y
the map defined by fp(x) = f(p, x).

A bifurcation point for solutions of the equation f(p, x) = 0 is a point p∗
in P such that every neighborhood of (p∗, 0) contains nontrivial solutions of this
equation.

Let Lp = Dfp(0) be the Frechet derivative of the map fp at 0. The map L
sending p ∈ P to Lp is called the family of linearizations along the trivial branch.
By the Implicit Function Theorem, bifurcation cannot occur at points where the
operator Lp is an isomorphism. However, in general, the set Bif(f) of bifurcation
points of f is only a proper closed subset of the set Σ(L) = {p ∈ P | Lp is singular}.
Assuming that Lp is a Fredholm operator of index 0 for all p ∈ P, sufficient
conditions for the existence of bifurcation points can be obtained from homotopy
invariants of the family of linearizations along the trivial branch.

Since bifurcation arises only at points of Σ(L), the first invariant that comes
in mind is the obstruction to the existence of a homotopy deforming the family L
into a family of isomorphisms. This obstruction is given by an element IndL of
the reduced Grothendieck group of virtual vector bundles K̃O(P ), called family
index or index bundle [4, 16]. However, in dealing with nonlinear perturbations
of the family L one has to consider a stronger invariant and, quite naturally,
our bifurcation invariant is not IndL but rather its image J(IndL) under the
generalized J-homomorphism which associates to each vector bundle the stable
fiberwise homotopy class of its unit sphere bundle.

Our main result asserts that if J(IndL) does not vanish and Σ(L) is a proper
subset of P then there exists at least one bifurcation point from the trivial branch
for solutions of the equation f(p, x) = 0. The corresponding theorem together
with some consequences and generalizations are stated in Section 2. Section 3
is devoted to a localized version of the basic invariant. To each admissible open
subset U of the parameter space is assigned a bifurcation index σ(f, U) belonging
to the finite group J(P ) defined in [5] which gives a measure of the number of
bifurcation points of f in U . It is related to the global invariant J(IndL) much
in the same way as the local fixed-point index is related to the Lefschetz number
and provides an interpolation between the global invariant and the Alexander-Ize
invariant at isolated bifurcation points [2]. The precise relation with the Alexander
-Ize invariant is discussed in Section 4. In Section 5 the previous theory is used in
order to show how the topology of the parameter space leads to the appearance of
homoclinic trajectories of non-autonomous differential equations emanating from
a stationary solution.
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Few comments to related work: one-parameter families of Ck-Fredholm map-
pings of index 0 were studied in [8, 18] among others. The well known Global Bi-
furcation Theorem of P.Rabinowitz was extended to one parameter families of C1

Fredholm maps in [22] using an appropriate degree theory (see also [11]). For a spe-
cial class of bifurcation problems involving Fredholm maps a different method was
developed by Zvyagin in [24] using a device due to Ize. Krasnosel’skij-Rabinowitz
theory was carried to the setting of several-parameter families of compact per-
turbations of identity mainly by the work of Alexander and Ize [2, 3, 13, 14, 10].
The review paper [15] contains a complete reference list for this topic. In [6, 7] a
different approach to local bifurcation index in the semilinear case was developed
by Bartsch.

2. The Main Result

Let us recall the definition of the index bundle. I will use here a construction
slightly different from the one given by Atiyah in [4] but, of course, both approaches
give the same element in K-theory.

If P is a compact space, the Grothendieck group KO(P ) is the group com-
pletion of the abelian semigroup Vect (P ) of all isomorphisms classes of vector
bundles over P. As a group KO(P ) = Vect (P ) × Vect (P )/∆ where ∆ is the
diagonal sub-semigroup. The elements of KO(P ) are called virtual bundles. Each
virtual bundle can be written as a difference [E]− [F ], where [E] is the equivalence
class of (E, 0).

Let X, Y be real Banach spaces, let Φ(X,Y ) be the space of all Fredholm
operators. With Φk(X,Y ) I will denote the space of operators of index k. Given a
continuous family L : P → Φ(X,Y ) of Fredholm operators parametrized by a com-
pact topological space P, using compactness of P one can find a finite dimensional
subspace V of Y transverse to the family L i.e., such that

ImLp + V = Y for any p ∈ P (2.1)

It follows from 2.1 that the finite dimensional spaces Ep = L−1
p (V ) are fibers

of a vector bundle E over P. By definition the index bundle

IndL = [E]− [Θ(V )] ∈ KO(P ),

where Θ(V ) = P × V denotes the trivial vector bundle over P with fiber V. That
the above virtual bundle is independent from the choice of V follows easily from
the identity [E]− [F ] = [E ⊕H]− [F ⊕H], which holds in KO(P ).

It is easy to see that IndL depends only on the homotopy class of L. It
vanishes whenever L can be deformed by a homotopy to a family of invertible
operators. The index bundle is functorial under the change of parameter space
and moreover it has the logarithmic property of the ordinary index. Namely,
Ind

(
LM

)
= IndL+ Ind M.

I will need also the generalized J-homomorphism. Given a vector bundle E,
let S[E] be the sphere bundle with respect to some chosen scalar product on E.
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Two vector bundles E,F are said to be stably fiberwise homotopy equivalent if for
some n the sphere bundle S[E ⊕ Θ(Rn)] is fiberwise homotopy equivalent to the
sphere bundle S[F ⊕Θ(Rn)]. Let K̃O(P ) be the kernel of the rank homomorphism
rk : KO(P )→ Z and let T (P ) be the subgroup of K̃O(P ) generated by elements
[E]− [F ] such that S[E] and S[F ] are stably fiberwise homotopy equivalent. Put
J(P ) = K̃O(P )/T (P ). The projection to the quotient J : K̃O(P ) → J(P ) is the
generalized J-homomorphism.

The groups J(P ) were introduced by Atiyah in [5] who also proved that J(Sn)
coincide with the image in πs of the stable j-homomorphism. It follows from this
that J(P ) is a finite group for any compact CW-complex P . Since Stiefel-Whitney
characteristic classes can be obtained from the Thom class using Steenrod squares
they depend only on the stable fiber homotopy type of the associated sphere bundle
and hence are well defined on elements of J(P ).

Theorem 2.1. [21] Let P be a compact connected orientable n-dimensional manifold
and let f : P ×O → Y be a C1-family of Fredholm maps of index 0 parametrized by
P such that f(p, 0) = 0. Assume that the linearization Lp = Dfp(0) at the points
of the trivial branch is nonsingular at some point p0 ∈ P and that J(IndL) 6= 0
in J(P ), then the family f possesses at least one bifurcation point from the trivial
branch.

The next theorem uses Stiefel-Whitney classes in order to estimate the cov-
ering dimension of the set of bifurcation points.

Theorem 2.2. [21, 6] Let f : P × X → Y be as in Theorem 2.1 and let m =
min{k/ ωk(IndL) 6= 0}, then the Lebesgue covering dimension of the set Bif(f)
of all bifurcation points of f is at least n−m.

The proof uses the previous theorem and Poincare duality.

Remark 2.3. For P = S1 this reduces to the bifurcation theorems proved in [11]
and [22] by other means. However, in [11, 22] was proved that the bifurcating
branch is global.

In the remaining part of the paper, except when differently stated, Fredholm
means Fredholm of index 0.

Theorem 2.1 is a particular case of a slightly more general result. In order to
formulate it I will need the degree theory constructed in [22]. The construction of
the degree in [22] is based on a homotopy invariant of paths of Fredholm operators
called parity. Given a path L : [a, b] → Φ0(X,Y ) with invertible end points and
transverse to the one-codimensional analytic variety Σ of all non-invertible Fred-
holm operators, its parity σ(L) ∈ Z2 is defined by σ(L) = #(L ∩ Σ)-mod 2. This
definition can be extended to general paths with invertible end points using ap-
proximation by transversal paths (see [11] for this and for a different construction
using parametrices).
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Let f : X → Y be a C1-Fredholm map of index 0 that is proper on closed
bounded subsets. In order to assign to each regular point of the map f an orienta-
tion ε(x) = ±1, with properties analogous to the sign of the Jacobian determinant
in finite dimensions, we choose a fixed regular point b called base point and define
”ad arbitrium” ε(b) = ±1. With this said, the multiplicity ε(x) at any regular
point x is uniquely defined by the requirement ε(x) = (−1)σ(Df◦γ) ε(b), where γ is
any path in X joining b to x. The independence from the choice of the path follows
from the homotopy invariance of the parity. If Ω is an open bounded subset of X
such that 0 /∈ f(∂Ω) and is a regular value of the restriction of f to Ω, then the
base point degree of f is defined by degp(f,Ω, 0) =

∑
x∈f−1(0) ε(x).

It was proved in [22] that when 0 is not a regular value of f the degree can
still be defined using approximation (although not by regular values since the Sard
-Smale theorem does not extend to C1-Fredholm maps of index 1). This assignment
defines an integral-valued degree theory for C1-Fredholm maps which are proper
on closed bounded sets. The base point degree is invariant under homotopies only
up to sign and, as a matter of fact, no degree theory for general Fredholm maps
can be homotopy invariant. However, the change in sign can be determined as
follows: let h : I ×X → Y be a homotopy and let Ω be an open bounded subset
of X such that 0 /∈ h([0, 1]× ∂Ω). Assume(for simplicity) that b is a regular point
both of h0 and h1, then

degb(h0,Ω, 0) = (−1)σ(H) degb(h1,Ω, 0), (2.2)
where H is the path t→ Dht(b).

If f is a C1-Fredholm map and x0 is an isolated but necessarily regular zero
its multiplicity m(f, x0) is defined by m(f, x0) = |degb(f,B(x0, δ), 0)|, where
B(x0, δ) open ball centered at x0 and small enough radius δ and b is any regular
point of f . Notice that properness need not be assumed since all Fredholm maps
are locally proper. Finally, let us denote by Z[ 1

m ] the ring of all rational numbers
whose denominator is a power of m.

Theorem 2.4. Let P be as in 2.1, let O = B(0, δ) be an open ball in X and let
f : P ×O → Y be a C1-family of Fredholm maps parametrized by P. Assume that
the only solutions of f(p, x) = 0 are those of the form (p, 0). Suppose moreover
that for some (and hence all) q ∈ P we have that m = m(fq, 0) 6= 0, then

i) the index bundle IndL is orientable.
ii) J(IndL) = 0 in J(P )⊗ Z[ 1

m ].

Theorem 2.1 follows the above theorem with m = 1.
Sketch of proof: For the first claim one must show that ω1(IndL) vanishes.

For this it is enough to check that for any closed path with γ(0) = q = γ(1),
< ω1(IndL); γ∗[S1] >=< ω1(IndL ◦ γ); [S1] >= 0.

By Proposition 2.7 of [9], < ω1(IndL ◦ γ), [S1] >= σ(L ◦ γ). Consider the
homotopy h(t, x) = f(γ(t), x) and choose a regular base point b ∈ O for fq (there
must be at least one since m 6= 0). The parity of the path t → Dht(b) equals
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σ(L◦γ). On the other hand, since there are no zeroes of h on I×∂O we can apply
the homotopy property (2.2) of the base point degree from which we obtain that
σ(L ◦ γ) = 0 being m 6= 0. This proves the first claim.

The proof of the second claim is roughly speaking as follows: using a modified
version of the Caccioppoli reduction one shows that the zero-set of the map f
coincides with the zero-set of a map f̄ defined on a finite dimensional fiber bundle
M over P with values in Rs and such that f̄ has degree ±m on each fiber. By
construction, the bundle E of tangents to the fibers of M at the points of the trivial
branch represents the index bundle. Composing f̄ with the fiberwise exponential
map produces a map g from the sphere bundle S(E) to Ss−1 of degree ±m on
each fiber. With this, the second assertion follows from the first and the mod-k
Dold’s theorem of Adams [1].

Corollary 2.5. If J(IndL) 6= 0 and for some q ∈ P, the multiplicity m = m(fq, 0)
is defined and is prime to the order of J(P ), then Bif(f) 6= ∅.

Proof. Assume that there are no bifurcation points. By ii) of theorem 2.4 for some
k, mkJ(IndL) = 0. Hence the order of J(IndL), divides both mk and the order
of J(P ). �

3. The Local Bifurcation Index

In this section I will assume that the range of the family, Y is a Kuiper space,
i.e., that GL(Y ) is contractible. Let U be an open subset of a compact connected
manifold P and let f : U×X → Y be a family of C1-Fredholm maps parametrized
by U such that f(p, 0) = 0 for any p ∈ U. The pair (f, U) will be called admissible
if the singular set Σ(L) of the family L of linearizations along the trivial branch
is a compact, proper subset of U.

Theorem 3.1. There exists a function assigning to each admissible pair (f, U) an
element σ(f, U) ∈ J(P ), called bifurcation index , verifying the following proper-
ties:
P1) Existence- If σ(f, U) 6= 0 then the family f has a bifurcation point.
P2) Normalization- If U = P then σ(f, U) = J(IndL).
P3) Homotopy invariance- Let h : [0, 1] × U × X → Y be a C1−Fredholm map

of index 1 such that the set {(t, p)/Dh(t,p)(0) is singular } is compact, then
σ(h0, U) = σ(h1, U).

P4) Additivity- Let U ⊂
⋃
Ui. Put fi = f |Ui and Σi = Σ(f) ∩ Ui. If (fi, Ui) are

admissible and Σi ∩ Σj = ∅, then σ(f, U) =
∑
i σ(fi, Ui).

The construction of the local bifurcation index follows the approach of the
previous Section. If Y is a Kuiper space, then GL(X,Y ), when nonempty, is an
open contractible subset of a Banach space. By a theorem of Borsuk any continuous
map with values in GL(X,Y ) defined on a closed subset of a metric space can be
extended. I will use this fact in order to define for any family L : U → Φ0(X,Y )
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such that Σ(L) is a compact subset of U a localized form of the index bundle
Ind(L,U) belonging to K̃O(P ).

For this, let V be any neighborhood of Σ(L) in U such that Σ(L) ⊂ V ⊂ V̄ ⊂
U . The restriction L|∂V of L to the boundary of V can be extended to a family
L′ : P−V → GL(X,Y ). Patching L′ with L gives a family L̃ of Fredholm operators
parametrized by P which coincides with L in a neighborhood of Σ(L) = Σ(L̃). It is
easy to see that Ind( L̃) is independent of the choice of V and the extension. The
index bundle of the family L on U is defined by Ind(L,U) = Ind(L̃) ∈ K̃O(P ).
Now if (f, U) is admissible we define its bifurcation index σ(f, U) ∈ J(P ) by

σ(f, U) = J (Ind(L,U)) (3.1)

The verification of P2 − P4 is quite standard. The existence property P1
follows from Theorem 2.1 applied to an appropriate extension of the map f to
P ×X. This is the only point where the assumption that Y is a Kuiper space is
essential since Ind(L,U) can be alternatively constructed via K-theory of locally
compact spaces.

Remark 3.2. It follows easily from the results in [8] that if P = S1, viewed as a
one point compactification of the real line R and U = (a, b), then the local index
of bifurcation points σ(f, U) coincides with the parity of the path L.

4. Comparison with the Alexander-Ize invariant

Now let us discuss the relation of the local bifurcation index with the Alexander-Ize
invariant. I will consider here only the stable version defined in [2].

Let g : Rk ×Rn → Rn be a C1-family of maps, parametrized by Rk, such
that gp(0) = 0. Assume that p0 is an isolated point in the set Σ(L). The homotopy
class of the restriction of L to the boundary of a small closed disk D centered
at p0 defines an element in the homotopy group πk−1(GL(n)). Stabilizing this
element through the inclusion of GL(n) into GL(m), n ≤ m, one obtains the
Alexander-Ize invariant γg belonging to the homotopy group πk−1(GL(∞)). Let
πsk−1(S0) = limm→∞ πm+k−1(Sm) be the (k − 1)−stable homotopy group of S0.
In [2] it is shown that the point p0 is a bifurcation point of f provided the image of
γf by the classical j-homomorphism j : πk−1(GL(∞))→ πsk−1(S0) does not vanish
in πsk−1(S0).

In the remaining part of this Section I will take as parameter space the sphere
Sn, viewed as one point compactification of Rn . The definition of γg can be easily
extended to parametrized families of C1-Fredholm maps.

For this, let f : D̄×X → Y be a C2−Fredholm family such that f(p, 0) = 0.
Here D = D(p0, r) ⊂ Rn be an open disk centered at p0. Put Lp = Dfp(0)
and assume that Σ(L) = {p0}. Being D contractible by Theorem 1.6.3 of [8], the
family L has a parametrix. In other words, there exists a family of isomorphisms
A : D̄ → GL(Y,X) such that ApLp = Id+Kp for any p in D̄, where K : D̄ → K(Y )
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is a family of operators such that the image of Kp is contained in a fixed finite
dimensional subspace V of Y. Let Tp be the restriction of Id + Kp to V. By the
preceding discussion the family T defines an element γf in πn−1(GL(∞)) which
can be easily shown to be independent from the choice of the parametrix.

Theorem 4.1. If f : D̄ ⊂ Sn × X → Y, p0 and D are as above, then, upon
identification of the group J(Sn) with Im j,

σ(f,D) = j(γf ). (4.1)

From the above theorem and the computation of j(γf ) in terms of the n-th
Radon-Hurwitz number cn obtained in [3] it follows:

Corollary 4.2. Let f : Sn × X → Y be a C1 family of Fredholm maps such that
f(p, 0) = 0. Assume that there exist ε > 0, δ > 0 such that |Lpx| ≥ ε|p||x|, for
|p| ≤ δ. If D = D(0, δ), then, for n ≡ 1, 2, 4, 8 mod-8, dim kerL0 is divisible by cn.
Moreover if dim kerL0 = k cn with k an odd integer then σ(f,D) 6= 0 in J(Sn).

5. Bifurcation of homoclinic trajectories

This section is devoted to the application of the previous results to bifurcation of
homoclinic solutions of systems of time dependent ordinary differential equations
from the stationary solution.

Let g : Λ×R×Rn → Rn be a smooth family of time dependent vector fields
on Rn parametrized by a compact connected orientable manifold Λ of dimension
m. I will assume that g(λ, t, 0) = 0, (thus u(t) ≡ 0 is a stationary solution of
u′(t)− g(λ, t, u(t)) = 0) and I will look for conditions on the linearization of gλ at
u ≡ 0 which entails the appearance of nonvanishing (but close to zero) solutions
to the problem: {

u′(t)− g(λ, t, u(t)) = 0,
limt→∞ u(t) = limt→−∞ u(t) = 0.

(5.1)

Nontrivial solutions of (5.1) are precisely the trajectories homoclinic to 0.
The linearization of (5.1) at 0 is{

u′(t)−A(λ, t)u(t) = 0,
limt→∞ u(t) = 0 = limt→−∞ u(t)

(5.2)

where A(λ, t) = Dug(λ, t, 0).
I will assume that g and Dug are bounded and that the following asymptotic

condition holds true:
(A1) As t→ ±∞ the family A(λ, t) converges, to a family of matrices A(λ,±∞),

such that A(λ,±∞) has no eigenvalues on the imaginary axis.
As a consequence of (A1), the map λ→ A(λ,±∞) is continuous and by per-

turbation theory [17] the projectors onto the real part of the spectral subspaces
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of A(λ,±∞) corresponding to the eigenvalues with negative (respectively posi-
tive) real part are continuous as well. It follows from this that the generalized
eigenspaces Es(λ,±∞) and Eu(λ,±∞) corresponding to the part of the spectrum
of A(λ,±∞) on the left and right half plane respectively, are fibers of a pair of
vector bundles Es(±∞) and Eu(,±∞) over Λ which decompose the trivial bundle
Θ(Rn) with fiber Rn into a direct sum:

Es(±∞)⊕ Eu(±∞) = Θ(Rn) (5.3)
The bundles Es, Eu are called stable and unstable bundle at ±∞. They can

be alternatively described by

Es(λ,±∞) = {v ∈ Rn | lim
t→∞

etA(λ,±∞)v → 0} (5.4)

Eu(λ,±∞) = {v ∈ Rn | lim
t→−∞

etA(λ,±∞)v → 0} (5.5)

My final assumption is
(A2) For some λ0 ∈ Λ both (5.2) and the adjoint problem{

u′(t) +A∗(λ0, t)u(t) = 0,
limt→∞ u(t) = 0 = limt→−∞ u(t)

(5.6)

admit only the trivial solution u ≡ 0.
Let ω(E) = ω1(E) + ...+ ωn(E) be the total Stiefel-Whitney class of E.

Theorem 5.1. If the system (5.1) verifies (A1), (A2) and if

ω(Es(+∞)) 6= ω(Es(−∞), ) (5.7)
then, at some λ∗ ∈ Λ, bifurcation of homoclinic trajectories from the stationary
solution occurs. More precisely there is a sequence (λn, un) where un 6= 0 is solution
of (5.1) with λn → λ∗ and un → 0 in the space C1

0 (R; Rn) of all C1 functions
vanishing at infinity together with its derivative.

Moreover if k = min{i|ωi(Es(+∞)) 6= ωi(Es(−∞))} then the set of all
bifurcation points has dimension not less than m− k.

Proof. The space H1(R; R2n) of all absolutely continuous functions u ∈ L2(R; R2n)
with square integrable derivative is a natural function space for our problem since
any function u ∈ H1(R; R2n) has the property that limt→±∞ u(t) = 0. Let X =
H1(R; R2n), Y = L2(R; R2n) and let us consider the family of maps f : P ×X → Y
defined by

[f(λ, u)](t) = u′(t)− g(λ, t, u(t)) (5.8)
Because of the continuous embedding of H1 into C(R) it follows that upon

assumption (A1) the map f is C1 and such that f(λ, 0) = 0. Moreover the Frechet
derivative Duf(λ, 0) is the operator Lλ : X → Y defined by

[Lλu](t) = u′(t)−A(λ, t)u(t) (5.9)



10 J. Pejsachowicz

The next proposition shows that f is a C1 Fredholm map of index 0 and com-
putes the index bundle of the family L defined by (5.9) in terms of the asymptotic
bundles.

Proposition 5.2. The family L defined by (5.9) verifies

i) Lλ ∈ Φ0(X,Y ) for all λ ∈ Λ

ii) IndL = [Es(+∞)]− [Es(−∞)] ∈ K̃O(Λ)

Proof. Let us split R into R = R+ ∪R− with R± = [0,±∞] and denote with
X±, Y ± the spaces H1( R±; Rn) and L2(R±; Rn) respectively. Consider the op-
erators L±λ : X± → Y ± defined as in (5.9)by the restrictions of Aλ to R±. I will
show that L±λ are Fredholm and compute their index bundles. Notice that, if
M±λ : X± → Y ± are defined by

[M±λ u](t) = u′(t)−A(λ,±∞)u(t), (5.10)

then K±λ = M±λ − L
±
λ is a compact operator for each λ ∈ Λ. Indeed, if φm is a

smooth function in R+ such that φm ≡ 1 on [0,m − 1] and φm ≡ 0 on [m,+∞),
then K+

λ is limit of

[Km
λ u](t) = φm(t)[A(λ,+∞)−A(λ, t)](u(t). (5.11)

Moreover the operator Km
λ is compact because it can be factorized through the

inclusion H1([0,m] Rn) ⊂ L2(R+; Rn) which is compact. On the other hand it is
well known that Mλ is surjective with kerMλ = Es(λ,+∞). Indeed the second
assertion is clear while for the first it is enough to observe that a right inverse for
Mλ is is given by

Sλ(v)(t) =
∫ t

0

Pλe
(s−t)Aλ(s)v(s)ds+

∫ ∞
t

(id− Pλ)e(t−s)Aλ(s)v(s)ds

where Pλ is the projector onto Es(λ,+∞).
Thus M+

λ and hence also L+
λ are Fredholm operators whose numerical index

equals dimEs(λ,+∞). Moreover by homotopy invariance of the index bundle

Ind L+ = Ind M+ = [Es(+∞)] (5.12)

Similarly we have that L−λ is Fredholm of index dimEu(λ,−∞) by (A3) and
Ind L− = [Eu(−∞)].

In order to compute the index of L let us observe that the restriction map
I : Y → Y − ⊕ Y + defined by Iv = (v|R− , v|R+) is an isomorphism, while the
analogous map J : H → X− ⊕X+ is injective with

Im J = {(u−, u+)/u−(0) = u+(0)}.

Thus Im J = kerψ where ψ(u−, u+) = u−(0)− u+(0) and hence J is a Fredholm
operator of index −n. Moreover there is a commutative diagram
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L−λ ⊕ L
+
λ

X− ⊕X+ −→ Y − ⊕ Y +

J
x I

x
X −→ Y

Lλ

(5.13)

Thus Lλ is Fredholm and by assumption (A3), index Lλ = 0 which proves
i). Now ii) follows from (5.13) by the logarithmic property of the index bundle.
Indeed, considering I and J as constant families, Ind I = 0, Ind J = −Θ(Rn).
Hence, by (5.3),

IndL = [Eu(−∞)] + [Es(+∞)]− [Θ(Rn)] = [Es(+∞)]− [Es(−∞)],

as claimed. �

Theorem 5.1 follows from Theorem 2.2 and the above Proposition. Indeed,
since L takes values in Φ0(X;Y ) it follows that, for δ small enough, the restriction
of f to Λ × B(0, δ) is a family of C1-Fredholm maps such that f(λ, 0) = 0 By
hypothesis, the total Stiefel-Whitney class ω(IndL) 6= 0 and hence by Theorem
2.2 the set of bifurcation points of H1-solutions of (5.1) must be of dimension
at least m ≥ 0. Being H1(R; Rn) ⊂ C(R; Rn) the regularity and convergence in
C1

0 (R; Rn) are easily obtained by bootstrap. �
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