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1. Introduction

One of the most relevant tools in risk evaluations of portfolios of hedge
funds was introduced by Markowitz [16]. In his approach, risky investments
comparisons are carried out through means and variances of the prospects:
given a random vector of risky assets X = (X1, . . . , Xn)

′ and a real vec-
tor w = (ω1, . . . , ωn)

′ describing the allocation of wealth, the risk averse
decision maker assigns to the portfolio ZX = w′X the utility U(ZX) =
E(ZX) − αV ar(ZX), where α > 0 is the degree of risk aversion, and choose
among portfolios maximizing the utility U(ZX). Markowitz model has some
drawbacks; for instance, it is not consistent with respect to the usual stochas-
tic order (see Müller and Stoyan [18]), where the consistency is the mono-
tonicity of a utility function or of a risk measure with respect to some
stochastic order (see Bauerle and Müller [2] and references therein). In fact,
starting from the assumption that utility functions are increasing and con-
cave, which is common in economic theory, consistency means that stochastic
comparisons between two different vectors X and Y of risky assets implies
comparisons between the utilities EU(ZX) and EU(ZY) for the same vector
of allocations,. The aim of this paper is to introduce a new multivariate
stochastic order that may be useful in finding out new guidelines for alloca-
tion of risks in static portfolios.

Comparisons among random variables and vectors in different stochastic
ways have been extensively considered during the last thirty years. Applica-
tions of these stochastic orderings have been provided in several disciplines,
from economic theory to reliability and queueing theory (see, e.g., Barlow
and Proschan [1], Stoyan [23], Shaked and Shanthikumar [24], Denuit et al.
[3]). Among the stochastic orders defined and studied in the literature, most
of them deal with comparisons between random vectors, like the multivariate
usual stochastic order or the multivariate dispersion orders, with applications
in decision making in multiple output scenarios.

In this paper we introduce a new multivariate stochastic order, called
extremality order, that is a generalization of the upper and lower orthant
order discussed in Shaked and Shanthikumar [24] and Marshall and Olkin
[17], and that, unlike these two orders, allows comparisons of random vectors
in different directions, determined by a unit vector. Essentially, it is based on
rotation of the non-negative orthant in a direction given, obtaining a cone,
which is isomorph to the non-negative orthant.

The extremality order is based on the multivariate data ordering intro-
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duced in Laniado et al. [13], where an extremality measure was defined to
find multivariate extremes from a directional approach. Inspired on the ex-
tremality directional data ordering, we propose in this paper a probabilistic
comparison between multivariate random vectors based on the probability
assigned on some extremes sets on a given direction. We show in the paper
that, in portfolio comparisons, other directions can be more interesting than
those used to define the upper and lower orthant orders.

The paper is organized as follows. Some preliminaries are described in
Section 2 , while the properties of the extremality order, and its relation-
ships with other multivariate stochastic orders (in particular, with the upper
orthant and lower orthant orders), are described in Section 3. A list of its
applications in portfolio theory are provided in Sections 4 and 5. Finally, in
Section 6 we summarize the main conclusions.

2. Preliminaries

For ease of reference, first we briefly recall some notation that will be
used throughout the paper. Random vectors taking values in Rn will be
considered, unless otherwise stated. The space Rn is endowed with the usual
componentwise partial order, which is defined as follows: given two vectors
x = (x1, · · · , xn) and y = (y1, · · · , yn) in Rn, then x ≤ y if xi ≤ yi for
i = 1, · · · , n. A function ϕ : Rn −→ Rn is said to be an increasing function
when ϕ(x) ≤ ϕ(y) for x ≤ y. Throughout the paper the terms ‘increasing’
and ‘decreasing’ stand for ‘non-decreasing’ and ‘non-increasing’, respectively.
Moreover, we shall adopt the following notations: for any random variable Z
we shall denote its distribution function by FZ(x) = P (Z ≤ x) and its sur-
vival function by F̄Z(x) = P (Z > x); the notation =st stands for the equa-
lity in law; the notation u ∧ v and u ∨ v stand for min{u, v} and max{u, v},
respectively.

Concerning the stochastic comparisons, we first provide the definition of
the orders usually considered in the univariate setting.

Definition 2.1. Given two random variables X and Y we say that X is
smaller than Y in the usual stochastic order [convex order, increasing convex
order, increasing concave order] (denoted by X ≤st [≤cx,≤icx,≤icv] Y ) if
and only if E[ϕ(X)] ≤ E[ϕ(Y )] for all increasing [convex, increasing convex,
increasing concave] functions ϕ for which the expectations exist. Moreover,
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we say that X is smaller than Y in the Laplace transform order (denoted by
X ≤Lt Y ) whenever ϕ(t) = −e−at where a is any positive number.

It should be recalled that in economics, where comparisons among expected
utilities are commonly considered, the usual stochastic order and the increasing
concave order are referred as First order Stochastic Dominance (FSD) and
Second order Stochastic Dominance (SSD), respectively.

In the multivariate setting, the following stochastic orders have been de-
fined as multivariate generalization of the usual stochastic order.

Definition 2.2. Given two random vectors X and Y, X is said to be smaller
than Y in:
(i) usual stochastic order (denoted by X ≤st Y) if E[ϕ(X)] ≤ E[ϕ(Y)] for
any increasing function ϕ with finite expectations;
(ii) upper orthant order (denoted byX ≤uo Y) if F̄X(x1, . . . , xn) ≤ F̄Y(x1, . . . , xn)
for all x, where F̄X, F̄Y denote the survival function of X and Y, respectively.
(iii) lower orthant order (denoted byX ≤lo Y) if FX(x1, . . . , xn) ≥ FY(x1, . . . , xn)
for all x, where FX, FY denote the distribution function of X and Y, respectively.

It is easy to verify that both the upper orthant order and the lower
orthant order are implied by the usual stochastic order. The following two
multivariate stochastic orders have been defined to compare the strength of
dependence between the components of vectors in the same Fréchet class (see
Lehmann [14]). Recall that a function ϕ : Rn → R is said to be supermodular
if ϕ(x ∨ y) + ϕ(x ∧ y) ≥ ϕ(x) + ϕ(y) for all x, y ∈ Rn.

Definition 2.3. Given two random vectorsX and Y having the same marginal
distributions, i.e., such that Xi =st Yi for all i = 1, . . . , n, X is said to be
smaller than Y in:
(i) positive quadrant dependence order (denoted by X ≤PQD Y) if X ≤uo Y,
or, equivalently, if X ≥lo Y;
(ii) supermodular order (denoted by X ≤sm Y) if E[ϕ(X)] ≤ E[ϕ(Y)] for
any supermodular function ϕ such that the expectations exist.

It should be pointed out that the positive quadrant dependence order
and the supermodular order are equivalent for dimension two, while this
is not true anymore in higher dimensions. Further details, properties and
applications of all the stochastic orders defined above may be found, for
example, in Müller and Stoyan [18], Shaked and Shanthikumar [24], or Denuit
et al. [3].
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3. Extremality order

The extremality order, defined here, is a generalization of the upper or-
thant and lower orthant orders, and allows for comparison of random vectors
based on directions specified by a unit vector. Given u ∈ Rn satisfying
∥u∥ = 1, let Ru be a rotation matrix such that

Ruu =
1√
n

1, (3.1)

where 1 = [1, . . . , 1]′ ∈ Rn. We can now formulate the following definition to
characterize the extremality order. From now on we assume that ∥u∥ = 1.

Definition 3.1. Given two random vectorsX and Y in Rn, X is said smaller
than Y in extremality order in the direction u (denoted by X ≤Eu Y) if

P [Ru (X− t) ≥ 0] ≤ P [Ru (Y − t) ≥ 0] , for all t in Rn. (3.2)

In words, X ≤Eu Y means that the probability that all components
jointly assume “large values in the direction of u” is lower for X than for Y,
where for “large values in the direction of a unit vector u” we mean that y
is larger than x if Ru (y − x) ≥ 0. ≤Eu is based on the multivariate data
ordering introduced in Laniado et al. [13], where an extremality measure was
defined to find multivariate extremes from a directional approach.

It is easy to observe that, for u = 1√
n
1, we have the natural component-

wise order in Rn. Therefore, if u = 1√
n
1, then

X ≤Eu Y ⇐⇒ X ≤uo Y and X ≤E−u Y ⇐⇒ X ≥lo Y.

An equivalent definition of the order can be given by using the notion of
oriented sub-orthants introduced in Laniado et al. [13].

Definition 3.2. Given a unit director vector u ∈ Rn and a vertex t ∈ Rn,
the Oriented Sub-Orthant Cu

t is the convex cone

Cu
t = {x ∈ Rn | Ru(x− t) ≥ 0} . (3.3)

Note that if u = 1√
n
1 then, Cu⃗

t = t + Rn
+, and therefore in this case the

extremality order is equivalent to upper orthant order (and similarly for the
lower orthant order).
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According to Definition 3.2 another way of writing (3.2) is thus the
following:

X ≤Eu Y ⇐⇒ PX (Cu
t ) ≤ PY (Cu

t ) , for all t ∈ Rn, (3.4)

where PX and PY are the probabilities induced by the joint distribution
function of X and Y, respectively. Note that (3.2) also is equivalent to

X ≤Eu Y ⇐⇒ E
[
ICu

t
(X)

]
≤ E

[
ICu

t
(Y)

]
, for all t ∈ Rn, (3.5)

where ICu
t
denotes the indicator function of Cu

t . However, as shown in following
Example 3.3, two random vectors can be ordered in extremality even if they
are not comparable in the upper or in the lower orthant orders.

Example 3.3. Consider two random vectors X = (X1, X2) and Y = (Y1, Y2)
such that they are uniformly distributed and independent margins X1 ∼
U(0, c), X2 ∼ U(a, b), Y1 ∼ U(0, d), Y2 ∼ U(0, b), with b > a ≥ 0 d > c ≥
0. Let FX and FY be the joint distribution functions of X and Y, respectively.
We can see easily that, F̄X(0, a) = 1, F̄Y(0, a) =

b−a
b

< 1, F̄X(c, a) = 0 and

F̄Y(c, a) = (d−c)(b−a)
bd

> 0. Now FX(c, b) = 1, FY(c, b) < 1, FX(c, a) = 0
and FY(c, a) = ac

bd
> 0. Therefore, X and Y are not ordered regarding the

upper orthant order and are not ordered regarding the lower orthant order.
However, taking u = 1√

2
[1,−1]′ as unit vector, we have that

PX

(
Cu
(x,y)

)


1 if, x < 0, y > b
y−b
b−a

if x < 0, a ≤ y ≤ b,
c−x
c

if 0 ≤ x ≤ c, y > b,(
c−x
c

) (
y−b
b−a

)
if 0 ≤ x ≤ c, a ≤ y ≤ b,

0 otherwise.

PY

(
Cu
(x,y)

)


1 if x < 0, y > b,
y
b

if x < 0, 0 ≤ y ≤ b,
d−x
d

if 0 ≤ x ≤ d, y > b,(
d−x
d

) (
y
b

)
if 0 ≤ x ≤ d, 0 ≤ y ≤ b,

0 otherwise.
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Assuming (x, y) /∈ (0, c) × (a, b), is straightforward to see that PX(Cu
(x,y)) ≤

PY(Cu
(x,y)), while for (x, y) ∈ (0, c)× (a, b)

PY

(
Cu
(x,y)

)
− PX

(
Cu
(x,y)

)
=

(
d− x

d

)(y
b

)
−
(
c− x

c

)(
y − b

b− a

)
≥ 0,

since that
(
d−x
d

)
≥
(
c−x
c

)
and

(
y
b

)
≥
(
y−b
b−a

)
. Hence, PX(Cu

(x,y)) ≤ PY(Cu
(x,y))

for all (x, y) ∈ R2, and therefore, from (3.4), X ≤Eu Y.

Some properties of the extremality order are described next. The first
one expresses a relation between the extremality order and the univariate
stochastic order.

Property 3.4. Let R(r.i)
u denotes the i-th row of the matrix Ru. If X ≤Eu Y,

then R(r.i)
u X ≤st R(r.i)

u Y for every i = 1, . . . , n.

Proof. Since X ≤Eu Y ⇐⇒ RuX ≤uo RuY, the assertion immediately
follows from Theorem 6.G.3-(c) in Shaked and Shanthikumar [24], that states
that the margins of random vectors ordered in upper sense are ordered in the
univariate usual stochastic order. �

An immediate consequence of Property 3.4 is that, whenever X and Y
have finite means,

X ≤Eu Y =⇒ RuE[X] ≤ RuE[Y]. (3.6)

Moreover, since for every vector u it is R′
uRu = In, and, from (3.1),

[
√
nRuu]

′
= 1′, it follows

1′RuX =
[√

nRuu
]′RuX =

√
nu′R′

uRuX =
√
nu′X. (3.7)

Thus, again from Property 3.4,

X ≤Eu Y =⇒ u′E[X] ≤ u′E[Y]. (3.8)

One reason of interest in Property 3.4 is the fact that it provides a tool to
compare linear combinations of random variables, a typical problem conside-
red in portfolio theory. It is well known that, given two sets {X1, . . . , Xn} and
{Y1, . . . , Yn} of independent random variables, ifXi ≤st Yi then

∑n
i=1 aiXi ≤st∑n

i=1 aiYi whenever ai ≥ 0, i = 1, . . . , n. A generalization of this assertion
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was proved by Scarsini [22], who removed the assumption of independence,
proving that if (X1, . . . , Xn)

′ and (Y1, . . . , Yn)
′ have a common copula, then

the stochastic order among the marginals implies the stochastic orders among
the vectors and, as a corollary, the stochastic order among positive combina-
tions of the marginals.

SinceR(r.i)
u X andR(r.i)

u Y are linear combinations, not necessarily positive,
of marginals of X and Y, then Property 3.4 describes conditions to com-
pare non-positive linear combinations of dependent random variables, as it
is shown in the following example.

Example 3.5. Let X = (X1, X2)
′ and Y = (Y1, Y2)

′ be two normally dis-
tributed vectors having the same covariance. Assume that Var(X1)+Var(X2) =
Var(Y1) + Var(Y2). Clearly, X and Y can have different copulas. Let u =
[1, 0]′ be the unit vector, so that the rotation matrix is given by

Ru =
1√
2

(
1 −1
1 1

)
.

Assume that Ru (E[Y]− E[X]) ≥ 0, i.e., that E[Y] belongs to oriented
sub-orthant with vertex in E[X] and oriented by the vector u. Under the

assumptions above it is clear that Var
(
R(r.i)

u X
)
= Var

(
R(r.i)

u Y
)
, i = 1, 2.

Besides,

Cov
(
R(r.1)

u X,R(r.2)
u X

)
=

1

2
(V ar(X1)− V ar(X2))

and

Cov
(
R(r.1)

u Y,R(r.2)
u Y

)
=

1

2
(V ar(Y1)− V ar(Y2)) .

Therefore, from Theorem 3.3.21 in Müller and Stoyan [18] it follows that if

(V ar(X1)− V ar(X2)) ≤ (V ar(Y1)− V ar(Y2)) ,

then X ≤Eu Y. By using Property 3.4, we get both X1 −X2 ≤st Y1 − Y2 and
X1 +X2 ≤st Y1 + Y2.

The following property describes sufficient conditions to compare normal
random vectors in the extremality order sense. Other sufficient conditions
for the extremality comparison will be stated next.

Property 3.6. Let X ∼ N (µX, ΣY) and Y ∼ N (µY, ΣY) be two normally
distributed random vectors, and let u be a unit vector such that Ru (µY − µX) ≥
0.
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a) If ΣX = ΣY =⇒ X ≤Eu Y

b) If ΣY = ΣX+A, where A is a matrix such that ΣY is nonnegative definite
and RuAR′

u has nonnegative components with zero diagonal elements,
then X ≤Eu Y.

Proof. Part a) follows from fact that µRuX ≤ µRuY and ΣRuX = ΣRuY.
Therefore RuX ≤st RuY by Theorem 3.3.13. in Müller and Stoyan [18],
thus X ≤Eu Y. Part b) follows easily from Theorem 3.3.21.(a) in Müller and
Stoyan [18] since µRuX ≤ µRuY and ΣRuY = ΣRuX +RuAR′

u. �

For the next statement, let the oriented upper set in the direction u (de-
noted by Uu) be a set such that x ∈ Uu implies Cu

x ⊂ Uu.

Property 3.7. Let X = (X1, . . . , Xn)
′ and Y = (Y1, . . . , Yn)

′ be two random
vectors. If E [IUu (X)] ≤ E [IUu (Y)] for all oriented upper set Uu in the
direction u, then X ≤Eu Y.

Proof. Since the assumption is equivalent to RuX ≤st RuY, then RuX ≤uo

RuY. Thus, X ≤Eu Y. �
Another sufficient condition for the extremality order, easily checked in

practice, is stated in the next property. Recall that two random vectors X
and Y with densities fX and fY, respectively, are such that X is smaller
than Y in the likelihood ratio order (denoted X ≤lr Y) if

fX(x)fY(y) ≤ fX(x ∨ y)fY(x ∧ y)

for all x,y ∈ Rn. Since the likelihood ratio order implies the usual stochastic
order, the following property immediately follows from the chain of implica-
tions

RuX ≤lr RuY ⇒ RuX ≤st RuY ⇒ RuX ≤uo RuY ⇒ X ≤Eu Y.

Property 3.8. Let X and Y be two random vectors with densities fX and
fY, respectively. If

fX(R′
ux)fY(R′

uy) ≤ fX(R′
u(x ∨ y))fY(R′

u(x ∧ y)) (3.9)

for all x,y ∈ Rn, then X ≤Eu Y.
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Proof. Since Ru is an orthogonal matrix, it follows that the Jacobian of the
transformations RuX and RuY is equal to 1. Moreover, we also have that
R−1

u = R′
u. Therefore, fRuX(x) = fX(R′

ux) and fRuY(x) = fY(R′
ux) for all

x ∈ Rn. Hence, (3.9) iff fRuX(x)fRuY(y) ≤ fRuX(x ∨ y)fRuY(x ∧ y) for all
x,y ∈ Rn. We thus get RuX ≤lr RuY and consequently X ≤Eu Y. �

A random vector X has the MTP2 property if X ≤lr X (see for instance
Karlin and Rinott [8]). For X normally distributed it has a MTP2 iff the
off-diagonal elements of Σ−1

X are nonpositive. Particulary a bivariate normal
density is MTP2 if the correlation coefficient is nonnegative (Karlin and
Rinott [9]). We show in Example 3.9 that for any normally distributed
bivariate random vector X, always there exists a rotation Ru such that RuX
has the MTP2 property. In fact, the same example also provides a sufficient
condition for extremality order in terms of the likelihood order.

Example 3.9. Consider X = (X1, X2)
′ a normally distributed random vec-

tor with covariance matrix ΣX. It is easily seen that ΣX = QDQ′ where
Q = (qij) is an orthogonal matrix and D = (dii) is a diagonal matrix with
nonnegative elements and d11 ≥ d22. Let u = (q11, q21)

′ be the first column of
the matrix Q. Then, according to (3.1),

Ru =

√
2

2

(
q11 + q21 q21 − q11
q11 − q21 q11 + q21

)
.

The vector RuX also is normaly distributed and ΣRuX = RuΣXR′
u (see,

e.g., Valdez and Dhaene [25], Theorem 2).
It is clear that

ΣRuX = RuQDQ′R′
u =

1

2

(
d11 + d22 d11 − d22
d11 − d22 d11 + d22

)
.

As d11 ≥ d22 we have that RuX has the MTP2 property. If we take
Y = X+R′

us where s = (s1, s2)
′ is such that

d11 − d22
d11 + d22

≤ s2
s1

≤ d11 + d22
d11 − d22

,

then from Theorem 3.2-b in Rinott and Scarsini [21] we conclude that RuX ≤lr

Ru (X+R′
us)

and so, X ≤Eu Y.
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The extremality order satisfies the following closure properties (closure
with respect to convergence in distribution and closure with respect to mix-
ture). Here, the notation [Z|A] stands for the random object whose distri-
bution is the conditional distribution of Z given the event A.

Property 3.10. a) Let {Xj, j = 1, 2, . . . } and {Xj, j = 1, 2, . . . } be two
sequences of random vectors such that Xj −→d X and Yj −→d Y as
j −→ ∞, where −→d denotes convergence in distribution. If Xj ≤Eu

Yj for all j = 1, 2, . . . , then X ≤Eu Y.

b) Let X, Y and Θ be random vectors such that [X | Θ = θ] ≤Eu [Y |Θ = θ]
for all θ in the support of Θ. Then X ≤Eu Y.

Proof. a) Clearly, ifXj −→d X andYj −→d Y as j −→ ∞, thenRuXj −→d

RuX and RuYj −→d RuY as j −→ ∞. But RuXj ≤uo RuYj since
Xj ≤Eu Yj, for j = 1, 2, . . . . Applying Theorem 6.G.3-d in [24], it follows that
RuX ≤uo RuY; thus also X ≤Eu Y. b) From [X | Θ = θ] ≤Eu [Y |Θ = θ],
it follows that [RuX | Θ = θ] ≤uo [RuY |Θ = θ]. The assertion follows from
Theorem 6.G.3-e in Shaked and Shanthikumar [24]. �

The following statement describes a property that will be used in Section
4. Recall that the copula C of a random vector X is a cumulative distribution
function with uniform marginals on [0,1] such that, for all x ∈ Rn,

FX(x1, . . . , xn) = C(FX1(x1), . . . , FXn(xn)).

The copula of the vector X describes dependence properties of its compo-
nents, and it is unique if FX1 , . . . , FXn are continuous. For more details about
copulas, see Nelsen [19].

Theorem 3.11. Let X = (X1, . . . , Xn)
′ and Y = (Y1, . . . , Yn)

′ be two ran-
dom vectors and u = (u1, . . . , un) a unit vector. If RuX and RuY have the
same copula, then

X ≤Eu Y =⇒ ϕ(R(1)
u X, . . . ,R(n)

u X) ≤st ϕ(R(1)
u Y, . . . ,R(n)

u Y)

for every increasing function ϕ. In particular, denoted with R(c.i)
u the i-th

column of the matrix Ru, and the assumptions it holds

X ≤Eu Y =⇒
n∑

i=1

a′R(c.i)
u Xi ≤st

n∑
i=1

a′R(c.i)
u Yi

for every vector a = (a1, . . . , an)
′ with nonnegative components.
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Proof. As X ≤Eu Y, then from Property 3.4, R(r.i)
u X ≤st R(r.i)

u Y for all
i = 1, . . . , n. Since RuX and RuY have the same copula, by Theorem 6.B.14.
in Shaked and Shanthikumar [24] it follows that RuX ≤st RuY. Now,
by Theorem 3.3.11 in Müller and Stoyan [18], the first assertion follows.
In particular, letting ϕ(x1, . . . , xn) = (a1, . . . , an)(x1, . . . , xn)

′, where a =
(a1, . . . , an)

′ is a vector with non-negative components, we get

a′RuX ≤st a
′RuY,

i.e., the second assertion. �
Note that, in particular, Theorem 3.11 applies when the unit vector u is
such that RuX and RuY have the copula C(u, v) = uv, i.e., when they have
independent components. To find a unit vector u such that RuX and RuY
have the same copula in some situations it is easy. For example, assume
that X and Y are normally distributed with covariance matrix ΣX and ΣY,
respectively. Assume that the eigenvectors v⃗1, v⃗2 of ΣX and ΣY are the same.
If we define p⃗ = v⃗1

∥v⃗1∥ +
v⃗2

∥v⃗2∥ and u = p⃗
∥p⃗∥ , then RuX and RuY will have the

same copula. A graphical representation of this situation is shown in Figure 1

v⃗1
∥v⃗1∥
v⃗2

∥v⃗2∥p⃗ = v⃗1
∥v⃗1∥ +

v⃗2
∥v⃗2∥u = p⃗

∥p⃗∥XY(a)RuXRuY(b)

Figure 1: Rotations of bivariate normal distributions: (a) different copula; (b) same copula.

Figure 1 shows that in the original system, before the rotation, X has a
negative dependency and Y has a positive dependence. Therefore, their
copulas are different. After of the rotation in the directions u, indicated

12



above, RuX and RuY have the same copula, i.e., C(u, v) = uv. It is inter-
esting to observe that, if X and Y have a common copula, RuX and RuY
may not have common copula. In fact, consider X to have N(µ, I2) distri-
bution and Y have N(µ,D2) distribution, where I2 is the identical matrix
and D2 is a diagonal matrix with d11 > d22. Clearly, X has a spherical dis-
tribution, and X and Y have a common copula. Let now u = [1, 0]′ be the
rotation vector. In the Figure 2 is shown that RuX has the same copula
as before the rotation, but RuY has a different copula copula since positive
dependency can be observed.

u = [1, 0]′XY(a)RuXRuY(b)

Figure 2: Rotations of bivariate normal distributions: (a) same copula; (b) different copula

Corollary 3.12. Under the same assuptions of Theorem 3.11 it holds that

X ≤Eu Y =⇒ u′X ≤st u
′Y

Proof. We need only consider a = [1, . . . , 1]′ and the assertion follows imme-
diately from Theorem 3.11 and formula (3.7) �

The Corollary 3.12 follows also from the fact that if two random vectors
are ordered in the multivariate stochastic order, then the sum of their com-
ponents are ordered in the univariate stochastic order (see, e.g. Theorem
6.B.16-a in Shaked and Shanthikumar [24]). In Theorem 3.11 and Corollary

3.12 it is worth noting that the coefficients a′R(c.i)
u and components of u′

may also be negative; thus Theorem 3.11 gives conditions to compare, in
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usual stochastic order, non-positive linear combinations of dependent ran-
dom variables. If the vectors X and Y have the same means, then the
following property holds.

Theorem 3.13. Let X = (X1, . . . , Xn)
′ and Y = (Y1, . . . , Yn)

′ be two ran-
dom vectors such that E[X] = E[Y]. If there exists a vector u such that
X ≤Eu Y, then

R(r.i)
u X =st R(r.i)

u Y, for all i = 1, . . . , n.

Proof. Since X ≤Eu Y, from Property 3.4, we have R(r.i)
u X ≤st R(r.i)

u Y, i =
1, . . . , n. Observe that

E[X] = E[Y] =⇒ RuE[X] = RuE[Y] =⇒ E[RuX] = E[RuY]. (3.10)

Now the proof follows from the fact that variables ordered in usual stochastic
order having the same mean should also have the same distribution (see
Theorem 1.A.8. in Shaked and Shanthikumar [24]). �

Relationships between extremality order and two positive dependence
orders are obtained in the next result.

Theorem 3.14. Let X = (X1, . . . , Xn)
′ and Y = (Y1, . . . , Yn)

′ be two ran-
dom vectors such that E[X] = E[Y]. If X ≤Eu Y then RuX ≤PQD RuY.
Moreover, if n = 2, it follows also that RuX ≤sm RuY.

Proof. From Theorem 3.13 it is easily seen that RuX and RuY have the
same marginals. Since X ≤Eu Y ⇐⇒ RuX ≤uo RuY, the first assertion
follows from definition of positive quadrant dependence order, while the sec-
ond from the equivalency between ≤PDQ and ≤sm when n = 2. �

Corollary 3.15. Let X = (X1, X2)
′ and Y = (Y1, Y2)

′ be two random vectors
such that E[X] = E[Y]. If X ≤Eu Y then a′RuY ≤cv a

′RuX for all a ∈ R2

such that a1a2 ≥ 0.

Proof. According to Theorem 3.14, it holds RuX ≤sm RuY. Hence, from
Theorem 9.A.9 in Shaked and Shanthikumar [24],(

a1 0
0 a2

)
RuX ≤sm

(
a1 0
0 a2

)
RuY, (3.11)
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for all a1, a2 such that a1a2 ≥ 0. Combining (3.11) and (9.A.19) in Shaked
in Shanthikumar [24], we can assert that a′RuX ≤cx a′RuY and a′RuY ≤cv

a′RuX. �

As a particular case of Corollary 3.15, with a = 1√
2
[1, 1]′, we can also

conclude that, under the same assumptions,

X ≤Eu Y =⇒ u′Y ≤cv u
′X.

We finish this section with a necessary condition for the extremality order.
To this end, recall that given two non-negative random variables X and Y ,
X is said to be smaller than Y in Laplace transform order (briefly X ≤Lt Y )
if only if E[exp−sX ] ≥ E[exp−sY ], for all s ∈ R+.

Theorem 3.16. Let X, Y be two random vectors and u a unit vector such
that RuX and RuY are positive. If X ≤E(−u)

Y then u′X ≥Lt u
′Y and, in

particular, E[u′X] ≥ E[u′Y].

Proof. Since X ≤E(−u)
Y ⇐⇒ RuX ≥lo RuY, and since RuX and RuY

are positive, then from Theorem 6.G.14 in Shaked and Shanthikumar [24] it
follows

n∑
i=1

aiR(r.i)
u X ≥Lt

n∑
i=1

aiR(r.i)
u Y, whenever ai ≥ 0, i = 1, 2, . . . , n.

Assuming ai =
1√
n
, for all i = 1, 2, . . . , n, the assertion follows from 1′RuX =√

nu′X. The second inequality follows as a consequence of the comparison
in Laplace transform order. �

4. Portfolio comparisons with extremality order

In this section we describe some examples of application of previous re-
sults to the the single period portfolio problem. We first describe the problem.
Consider an economic agent with unitary initial capital. Suppose that the
random variables X1, · · · , Xn represent the outcome of n financial positions
which can be chosen for investment. Thus we have risks −X1, · · · ,−Xn. In
this context, a portfolio is a random variable Za =

∑n
i=1 aiXi, where the

weights vector a = (a1, . . . , an) range in the subset An = {a = (a1, . . . , an) :

15



∑n
i=1 ai = 1, ai ≥ 0, i = 1, . . . , n}. When short selling are permitted, then

the condition ai ≥ 0 can be removed. The goal of the single period portfolio
problem consists in determining the allocation a = {a1, . . . , an} of the uni-
tary wealth to the n risks that minimize the total risk, or that maximize the
expected utility of the resulting final wealth Za.

A first problem that the economic agent can consider is the minimization
of the risk, which is commonly expressed as the minimization of the value at
risk at a fixed quantile α (V aRα) of the random loss −Za (see, e.g., Jorion
[7]). It represents the α-quantile of the loss distribution of portfolio. This
means that V aRα is the better loss among the (1−α)100% worst losses, and
it is formally defined as follows: if F is the distribution of −Za and α ∈ (0, 1),
then

V aRα(X) = inf{x ∈ R; | F (x) ≥ α}. (4.1)

Let us first consider the case that the risk manager wants to allocate the
wealth to n risks, and he/she has to chose between two sets of dependent
financial positions, say X = (X1, . . . , Xn)

′ or Y = (Y1, . . . , Yn)
′. Assume

that there exists a vector u = (u1, . . . , un)
′ such that the assumptions of

Theorem 3.11 are satisfied (i.e., X ≤Eu Y and the rotated vectors have the
same copula). Let a = (a1, . . . , an)

′ be any vector such that a
a′Ru1

≥ 0. Since
the usual stochastic order implies the corresponding order between values at
risk for every α (see, e.g., Bäuerle and Müller [2]), then, for every allocation

ω =

(
a′R(c.1)

u

a′Ru1
, . . . ,

a′R(c.n)
u

a′Ru1

)′

,

the economic agent will choose the portfolio ZY =
∑n

i=1 ωiYi rather than
ZX =

∑n
i=1 ωiXi. It is interesting to observe that some of the weights ωi can

be negative, so that even portfolios with short selling can be compared.
Similarly, if the economic agent is non-satiable, which means that he/she

has an increasing utility function U , under the same conditions as above
her/his expected utility will be maximized choosing the portfolio ZY instead
of ZX, since ZX ≤st ZY =⇒ E [U (ZX)] ≤ E [U (ZY)] for any increasing
function U . To illustrate this result, we introduce an example in the bivariate
case.

Example 4.1. Let X = (X1, X2)
′ and Y = (Y1, Y2)

′ be bivariate normally
distributed random vectors with mean µX and µY, respectively and the same
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covariance matrix Σ. Choose any unit vector u = (u1, u2)
′ such that µY ∈

Cu
µX

, (for example the vector u = µY−µX

∥µY−µX∥). According to (3.1), the rotation
matrix is given by

Ru =

√
2

2

(
u1 + u2 u2 − u1

u1 − u2 u1 + u2

)
.

It is easy to check that RuX and RuY have the same copula. Let now ZX

and ZY be two portfolios defined as

ZX =
1

2

(
1 +

a1u1 − a2u2

a1u2 + a2u1

)
X1 +

1

2

(
1− a1u1 − a2u2

a1u2 + a2u1

)
X2

ZY =
1

2

(
1 +

a1u1 − a2u2

a1u2 + a2u1

)
Y1 +

1

2

(
1− a1u1 − a2u2

a1u2 + a2u1

)
Y2,

where X and Y are financial positions which can be chosen for investment.
By Theorem 3.11, we have that

ZX ≤st ZY, (4.2)

for every a = (a1, a2)
′ such that a

a′Ru1
≥ 0. Therefore, if an investor measures

the risk through value at risk, then he/she prefers the portfolio ZY instead
ZY since from (4.2) it follows that, V aRα (−ZY) ≤ V aRα (−ZX), for all
α ∈ (0, 1). Indeed, if the investor is non-satiable the same conclusion can be
drawn. It is also remarkable that the weights of the two portfolios can assume
negative values.

Now, let us consider the case where the economic agent has to chose
between two sets of risks, say X = (X1, X2) or Y = (Y1, Y2), but assume
here that E[X] = E[Y]. Thus the expectation is the same for any linear
combination of the risks. In fact, in such a case, given any two portfo-
lios ZX =

∑2
i=1 biXi and ZY =

∑2
i=1 biYi, they cannot be ordered in usual

stochastic order, since they have the same expectations. However, the eco-
nomic agent can prefer one of the two portfolios if she/he, beside of being
non-satiable, is risk averse. In fact, in this situation, the utility function U is
increasing and concave (see, e.g., Yaari [26]), and a comparison in the concave
order can be used as a criteria to choose between portfolios. By a direct appli-
cation of Corollary 3.15, it can be asserted that, if X ≤Eu Y, expected utility

of the agent will be greater choosing the portfolio ZX =
∑2

i=1 a
′R(c.i)

u Xi
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rather than ZY =
∑2

i=1 a
′R(c.i)

u Yi, for all a = [a1, a2]
′ such that a1a2 ≥ 0.

As above, this fact becomes particularly interesting whenever some of the
allocations to the risks are negative, thus allowing comparisons also in the
case of short selling.

Example 4.2. Let X = (X1, X2)
′ and Y = (Y1, Y2)

′ be two random vectors
elliptically distributed such that E[X] = E[Y]. Assume that the covariance
matrices ΣX and ΣY have the same eigenvalues d1 and d2. Let

Q =

(
q1 q2
q2 −q1

)
and T =

(
t1 t2
t2 −t1

)
be the eigenvectors matrices of ΣX and ΣY, respectively. It is clear that
ΣX = QDQ′ and ΣY = TDT ′ where D = diag(d1, d2). Let u = (Q+T )1

∥(Q+T )1∥ be
the unit vector, this gives

u =
1

∥ (Q+ T )1 ∥
[q1 + t1 + q2 + t2, q2 + t2 − q1 − t1]

′ .

From (3.1) we have that

Ru =

√
2

∥ (Q+ T )1 ∥

(
q2 + t2 −q1 − t1
q1 + t1 q2 + t2

)
.

By straightforward calculations we can see that

ΣRuX = RuQDQ′R′
u and ΣRuY = RuTDT ′R′

u,

have the same diagonal and their off-diagonal elements are given by ρ =
(d1 − d2)(q1t1 + q2t2 + 1)(q1t1 − q2t2) and (−ρ) respectively. Without lack of
generality assume ρ ≤ 0, then RuX ≤pqd RuY (see Landsman and Tsanakas
[12], Corollary 2.) and consequently X ≤Eu Y. Therefore, if we consider the
random variables

ZX =
1

2

(
1 +

q1 + t1
q2 + t2

)
X1 +

1

2

(
1− q1 + t1

q2 + t2

)
X2,

ZY =
1

2

(
1 +

q1 + t1
q2 + t2

)
Y1 +

1

2

(
1− q1 + t1

q2 + t2

)
Y2,

and the Corollary 3.15 with a = ∥(Q+T )1∥
2
√
2(q2+t2)

[1, 1]′, we have that ZY ≤cv ZX.

and ZX ≤cx ZY. Then a risk averse rational decision maker would prefer the
portfolio ZX.
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Moreover, the idea above allows also for criteria based on comparisons of
either portfolio variances or risks measured through a convex measure in
the sense of Föllmer and Schied [5]. Conditional Value at Risk (CVaR) is
a convex risk measure; therefore under the same hypothesis as above, ZX

has less variance and smaller (CVaR) than the portfolio ZY since variance
and CVaR are consistent with respect to the convex order (see Shaked and
Shanthikumar [24] pages 110 to 112 and Bäuerle and Mülle [2]).

Consider now the case in which the agent has to allocate his capital in
two different but not independent risky assets X1 and X2. A typical problem
in portfolio theory is the determination of the allocation α ∈ [0, 1] such that
Zα = (1 − α)X1 + αX2 maximizes the expected utility h(α) = E[U(Zα)],
where U is the increasing and concave utility function of the agent. In 1971,
Hadar and Russel proved that, if X1 and X2 are iid, then h(1

2
) ≥ h(α) for all

α ∈ [0, 1], thus proving that the maximal diversification gives the maximal
expected utility under the assumptions above. This result was generalized in
Ma [15] to the multivariate case, replacing the assumption of independence
with the assumption of exchangeability. Related results have been provided
in Pellerey and Semeraro [20]. Specifically, they proved that if the vector
(S,D) of the sum S = X1 +X2 and the difference D = X2 −X1 of the risks
is positive quadrant dependent (PQD), i.e., if (S,D) ≥PQD (S⊥, D⊥) where
(S⊥, D⊥) is the independent version of (S,D), and if E[X2] ≤ E[X1], then
h(α) is decreasing in α = [1

2
, 1]. Similarly, they proved that if the vector

(S,D) is negative quadrant dependent, NQD, (i.e., if (S,D) ≤PQD (S⊥, D⊥))
and E[X2] ≥ E[X1], then h(α) is increasing in α = [0, 1

2
]. As a consequence of

these results we have that if the vector (X1, X2) is such that E[X2] = E[X1],
and S and D are uncorrelated, then h(1

2
) ≥ h(α) for all α ∈ [0, 1]. A

generalization of this result is given here.

Theorem 4.3. Let X = (X1, X2) be random vector. Consider u = [u1, u2]
′

a unit vector and v =
√
2
2
[u1 − u2, u1 + u2]

′. Let Z = (Z1, Z2) be any random
vector of independent components with mean RvE[X] and let Y = R′

vZ. If
Y ≤Ev [≥Ev ]X and u1E[X2] ≤ [≥] u2E[X1], then for every increasing and
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concave utility function U it holds that

E

[
U(

√
2

2
u1X1 +

√
2

2
u2X2)

]

≥ E

[
U

(√
2

2
(u1 + u2 − 2u2α)X1 +

√
2

2
(2u1α− u1 + u2)X2

)]

for all α ∈ [1
2
, 1] [for all α ∈ [0, 1

2
]].

Proof. We see the proof the case ≤, the another case is similar. It is immedi-
ate that E[Y] = E[X]. From Theorem 3.14 we deduce thatRvY ≤PQD RvX
since Y ≤Ev X. However, RvY has independent components, so RvX is
PQD. On account of (3.1) we obtain(

u1 u2

−u2 u1

)(
X1

X2

)
is PQD. (4.3)

Using the formula (3.1) to construct Ru, with u = [u1, u2]
′ , we have that

RuX =

√
2

2

(
u1 + u2 u2 − u1

u1 − u2 u1 + u2

)(
X1

X2

)
. (4.4)

Denote XR
i the i-th component of the vector RuX, i = 1, 2, and let (SR, DR)′

be the vector of the sum and the difference of the components of (XR
1 , X

R
2 )

′.
Therefore, from (4.4),

SR = XR
1 +XR

2 =
√
2u1X1 +

√
2u2X2,

DR = XR
2 −XR

1 =
√
2u1X2 −

√
2u2X1.

From (4.3) we have that (SR, DR)′ is PQD. Since u1E[X2] ≤ u2E[X1], it
follows that E[XR

2 ] ≤ E[XR
1 ]. By using Theorem 2.1 in Pellerey and Semeraro

[20], we get that

Zα = (1−α)XR
1 +αXR

2 =

√
2

2
(u1 + u2 − 2u2α)X1+

√
2

2
(2u1α− u1 + u2)X2

is decreasing in the concave order in α ∈ [1
2
, 1]. Thus, in particular, for every
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increasing and concave utility function U it holds

E

[
U(

√
2

2
u1X1 +

√
2

2
u2X2)

]

≥ E

[
U

(√
2

2
(u1 + u2 − 2u2α)X1 +

√
2

2
(2u1α− u1 + u2)X2

)]
for all α ∈ [1

2
, 1]. �

Remark 4.4. Note that if there exists a vector u = (u1, u2) such that(
u1 u2

−u2 u1

)(
X1

X2

)
has uncorrelated components (so that it is neither PQD nor NQD), then the
maximal expected utility is reached in

Z1/2 =

√
2

2
u1X1 +

√
2

2
u2X2.

Since
√
2
2
u1 +

√
2
2
u2 ≤ 1, this means that under such conditions it is not

necessary to invest totally the available capital. It also is interesting to ob-
serve that some of the allocations can be negative, thus the case of short
selling are allowed.

5. Optimal portfolio selection through rotations

We now consider the particular case that the risks have joint elliptical
distributions that is a common assumption in portfolio theory since they
allow for the presence of heavy tails and asymptotic tail dependence distri-
butions. The importance and applications of elliptical distributions for risk
management and insurance have been widely studied by Embrechts et al. [4],
Landsman [11] and Landsman and Valdez [10].

Definition 5.1. The random vector X = (X1, . . . , Xn)
′ is said to have an

elliptical distribution with parameters µ and Σ if its characteristic function
can be expressed as

E[exp(it′X)] = exp(it′µ)ϕ (t′Σt) , t = (t1, . . . , tn)
′, (5.1)

for some function ϕ, and if Σ is such that Σ = AA′ for some matrix A(n×
m).
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The moments ofX do not necessarily exist. However, if the mean vector exits,
then it is the parameter µ. Besides, if the covariance matrix exists, then it
is given by Cov(X) = −2ϕ′(0)Σ. A necessary condition for this covariance
matrix to exist is ∥ ϕ′(0) ∥< ∞, where ϕ′ denotes the first derivative of the
characteristic generator ϕ of X. Note that the class of multivariate elliptical
distribution with ϕ(x) = exp(−x

2
) corresponds to the class of multivariate

normal distribution.
Recall that the components of a random vector X = (X1, . . . , Xn)

′ are
said to be exchangeable if for any permutation matrix P the vector PX has
the same distribution as X. The following property will be used later.

Property 5.2. Let X = (X1, X2) be a random vector elliptically distributed
with parameters µ = 0 and ΣX. Then there exists a unit vector u such that
RuX is exchangeable.

Proof. Since ΣX is a symmetric matrix, then it can be expressed as ΣX =
QDQ′, where Q = (qij) is an orthogonal matrix and D = (dii) is a diagonal
matrix with non-negative elements. Let u = (q11, q21)

′ be the first column of
the matrix Q. Then, according to (3.1),

Ru =

√
2

2

(
q11 + q21 q21 − q11
q11 − q21 q11 + q21

)
.

The vector RuX also is elliptically distributed, with parameters Ruµ = 0
and ΣRuX = RuΣXR′

u (see, e.g., Valdez and Dhaene [25], Theorem 2).
It is clear that

ΣRuX = RuQDQ′R′
u =

1

2

(
d11 + d22 d11 − d22
d11 − d22 d11 + d22

)
.

Observe thatΣRuX is symmetric, with the same diagonal elements, which im-
plies that for any permutation matrix P we have that P′ΣRuXP = ΣRuX. It
is easily seen that P′RuX is elliptically distributed. Hence, its characteristic
function will be given by

E[exp(it′X)] = ϕ (t′P′ΣRuXPt) = ϕ (t′ΣRuXt) , t = (t1, t2)
′. (5.2)

Since the characteristic function determines the distribution, then by (5.2)
we have that RuX =st PRuX, and as a consequence, the vector RuX has
exchangeable components. �
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The next statement describes conditions to compare in the concave order
two different portfolios of elliptically distributed risky assets, with possibility
of negative weights.

Theorem 5.3. Let X = (X1, X2) be a elliptically distributed random vector
with parameter Σ and vector of means µ = 0. Let u = (u1, u2)

′ be an
eigenvector of Σ. If (α1, α2) and (β1, β2) are such that α1+α2 = β1+β2 and
α1 ≤ β1, then

√
2

2
[α1(u1 + u2) + α2(u2 − u1)]X1 +

√
2

2
[(α1(u1 − u2) + α2(u1 + u2)]X2

≥cv

√
2

2
[β1(u1 + u2) + β2(u2 − u1)]X1 +

√
2

2
[(β1(u1 − u2) + β2(u1 + u2)]X2.

Proof. As u = (u1, u2)
′ is a eigenvector of Σ, we deduce from Property 5.2

that

RuX =

√
2

2

(
u1 + u2 u2 − u1

u1 − u2 u1 + u2

)(
X1

X2

)
is exchangeable. Applying Theorem 3.A.35 in Shaked and Shanthikumar [24]
we conclude the proof. �

The following Property is an extension of the Property 5.2 for high-
dimension

Property 5.4. Let X = (X1, . . . , Xn)
′ be a random vector elliptically dis-

tributed with parameters µX = 0 and ΣX is such that it has at least n − 1
equal eigenvalues given by λ1 ≥ λ2 = · · · = λn = λ > 0. Then there exists a
unit vector u such that RuX has exchangeable components .

Proof. Our proof starts with the observation that the singular values decom-
position (SVD) ofΣX is given byΣX = QDQ′, whereD = diag{λ1, λ, . . . , λ}
and Q = (qij) is an orthogonal matrix. Consider the unit vector u = Q(c.1) =
[q11, q21, . . . , qn1]

′. From (3.1) we have that RuQ
(c.1) = 1√

n
[1, . . . , 1]′. It is

easy to check that

ΣRuX = RuQDQ′R′
u =

(
RuQ

√
D
)(

RuQ
√
D
)′

(5.3)

Taking H = RuQ we can rewrite (5.3) as (H
√
D)(H

√
D)′. Of course, H

is an orthogonal matrix whose first column is 1√
n
[1, . . . , 1]′. Let σ∗

ij be the
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element (ij) of the matrix (5.3). Hence,

σ∗
ij =

λ1

n
+ λ

n∑
j=2

h2
ij =

λ1

n
+ λ

(
1− 1

n

)
=

λ1 + λ(n− 1)

n

=
tr (ΣX)

n
=

1

n

n∑
i=1

var(Xi), if i = j.

σ∗
ij =

λ1

n
+ λ

n∑
k=2

hikhjk =
λ1

n
+ λ

(
− 1

n

)
=

λ1 − λ

n
, if i ̸= j.

It is clear that the diagonal of ΣRuX has the same elements and the off-
diagonal also have the same elements. It follows that P ′ΣRuXP = ΣRuX

for any (n × n) permutation matrix P. It is easily seen that P′RuX is
elliptically distributed (see, e.g., Valdez and Dhaene [25], Theorem 2). Hence,
its characteristic function will be given by

E[exp(it′X)] = ϕ (t′P′ΣRuXPt) = ϕ (t′ΣRuXt) , t = (t1, . . . , tn)
′. (5.4)

By the one-to-one correspondence between distribution functions and charac-
teristic functions, and from (5.4), RuX =st PRuX, and as a consequence the
vector RuX, has exchangeable components. �

Remark 5.5. Property 5.4 is also valid when µX = kQ(c.1) for some k ∈ R
since RuµX = kRuQ

(c.1) = k√
n
[1, . . . , 1]′. Therefore, RuX has exchangeable

components. In Theorem 5.4 obviously k = 0.

We are thus led to the following strengthening of Theorem 5.3

Theorem 5.6. Let X = (X1, . . . , Xn)
′ satisfy the hypotheses of the Property

5.4. Suppose that the (SVD) of ΣX is given by ΣX = QDQ′ and let u = Q(c.1)

be the unit vector. If a = (a1, . . . , an)
′ is majorized by b = (b1, . . . , bn)

′, then

n∑
i=1

a′R(c.i)
u Xi ≥cv

n∑
i=1

b′R(c.i)
u Xi. (5.5)

Proof. We conclude from Property 5.4 that RuX has exchangeable compo-
nents; hence the assertion follows by Theorem 3.A.35 in Shaked and Shan-
thikumar [24]. �
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6. Conclusions

We have introduced in this paper a generalization of the upper and lower
orthant orders. This new stochastic order allows for comparisons of random
vectors in different directions. We also have given some properties and their
relationships with other stochastic orders studied in the literature. From
applications point of view, we consider the single period portfolio problem
of allocating the wealth to n risks. Some solutions to this problem are given
when two random vectors are comparable in extremality order sense. In the
special case of risks elliptically distributed, we have studied directions to ro-
tate the distributions and finding easily the optimal allocations of the wealth
in order to maximize the expected utility of a risk averse decision maker.
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