

#### POLITECNICO DI TORINO Repository ISTITUZIONALE

#### Comparison of Ni-Cr and Co-based alloys for fuel injectors

| Original Comparison of Ni-Cr and Co-based alloys for fuel injectors / Scavino G.; Matteis P.; Mortarino G.M.M.; Firrao D (2011).        |
|-----------------------------------------------------------------------------------------------------------------------------------------|
| (2011).                                                                                                                                 |
| Availability:                                                                                                                           |
| This version is available at: 11583/2458383 since:                                                                                      |
| Publisher:                                                                                                                              |
|                                                                                                                                         |
| Published                                                                                                                               |
| DOI:                                                                                                                                    |
| Terms of use:                                                                                                                           |
| openAccess                                                                                                                              |
| This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository |
|                                                                                                                                         |
| Publisher copyright                                                                                                                     |
|                                                                                                                                         |
|                                                                                                                                         |
|                                                                                                                                         |
|                                                                                                                                         |
| (Astisla Lastina and Lastina)                                                                                                           |
| (Article begins on next page)                                                                                                           |

04 August 2020

## COMPARISON OF Ni-Cr AND Co-BASED ALLOYS FOR FUEL INJECTORS

G. Scavino, P. Matteis, G.M.M. Mortarino, D. Firrao

Politecnico di Torino – DISMIC Torino, Italy

#### Introduction

- reduction of fuel consumption and pollutant emission
  - higher efficiency motor development
  - increase of fuel injection pressure in cylinders
  - higher stresses in injection system components



- inadequacy of steels → use of Co based alloys or Ni-Cr alloys for components mechanically stressed at high temperature
- literature about these alloys mainly concerns wear and corrosion resistance at high temperature, with few data on high temperature fatigue



A Ni-Cr alloy is compared with previously examined Co-based ones

### Materials & specimens

#### Tensile and fatigue cylindrical (not notched) specimens, 8 mm diameter

- "weloral" Ni-Cr alloy made by powder metallurgy + HIP
- "stellite 6" Co alloys, produced by casting, or by powder metallurgy + HIP

### Experimental methods

#### Mechanical tests

- hardness and micro-hardness tests at R.T.
- tensile tests at R.T., at 250 or 500 C
- pulsed traction fatigue tests (R  $\approx$  0) up to 2·10<sup>6</sup> cycles at 500 C

#### Crystallographic and micro-structural tests

- both on as received material, and after the 500 C treatment
- X ray diffraction (Co anode)
- optical and scanning electron metallography and EDS micro-analysis

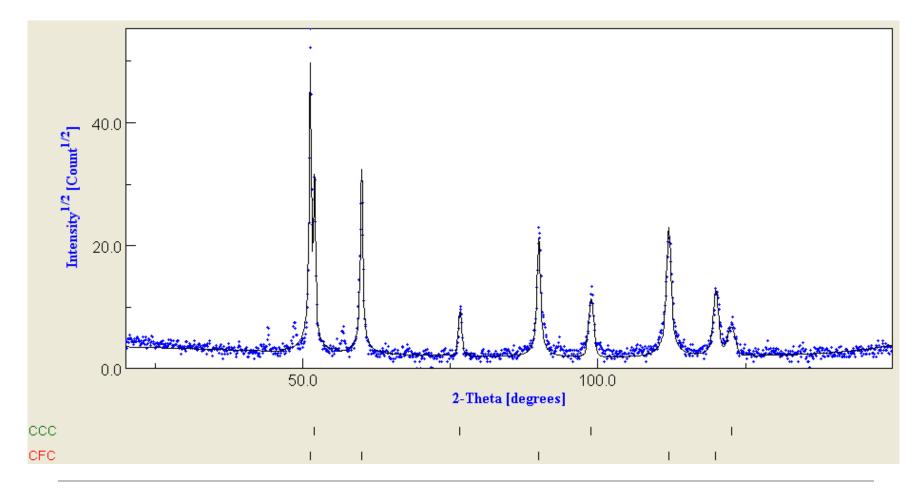
#### Fractography

### Chemical composition (% wt.)

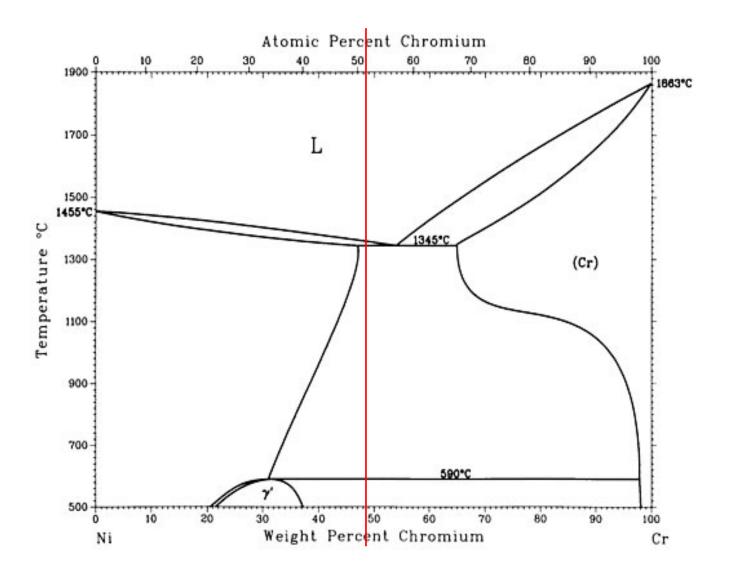
### **HIP PM Ni-Cr Alloy**

| Ni   | C    | Cr   | Al    | Co    | Si   | Mn   | Fe   | V     | Mg    |
|------|------|------|-------|-------|------|------|------|-------|-------|
| bal. | 0.46 | 48.5 | 0.055 | 0.023 | 0.41 | 0.11 | 0.14 | 0.028 | 0.028 |

#### **Cast Co Alloy**


| Co   | C    | Cr   | W    | Ni   | Si   | Mn   | Fe   | V     | Nb    |
|------|------|------|------|------|------|------|------|-------|-------|
| bal. | 1.19 | 25.5 | 5.21 | 1.99 | 1.56 | 0.69 | 0.85 | 0.028 | 0.034 |

#### **HIP PM Co Alloy**


| Со   | C    | Cr   | W    | Ni   | Si   | Mn   | Fe   | V     | Nb    |
|------|------|------|------|------|------|------|------|-------|-------|
| bal. | 1.48 | 27.2 | 4.78 | 0.30 | 1.21 | 0.21 | 0.44 | 0.021 | 0.002 |

# XRD Analyses – HIP PM Ni-Cr alloy (Bragg-Brentano geometry, Co anode)

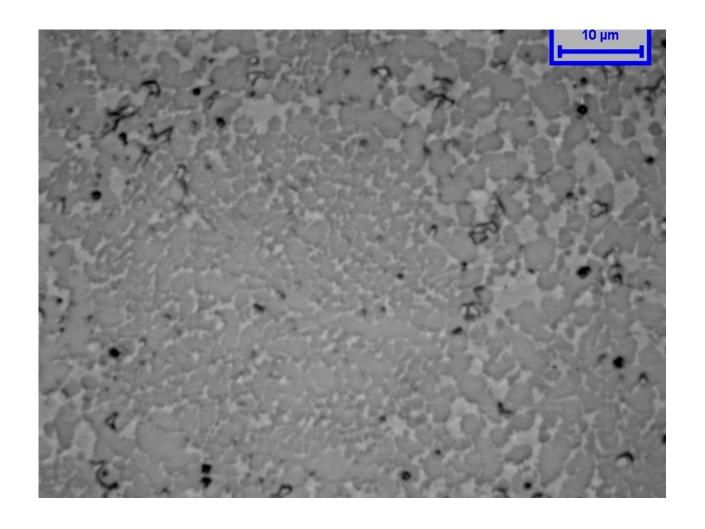
- $-\approx 70$  % FCC Ni with some Cr in solid solution
- $-\approx 30$  % BCC Cr
- Possible Cr carbides



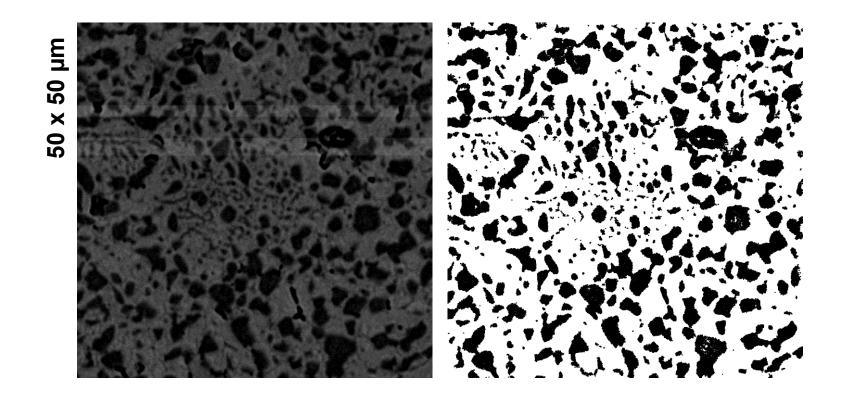
### Alloy position in the Ni-Cr phase diagram



### XRD Analyses - Co alloys (Bragg-Brentano geometry, Co anode)

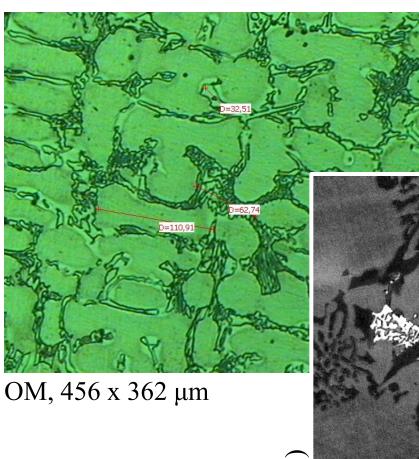

### \*Cast alloy:

- \* Probable prevalence of Co<sub>FCC</sub> in respect to Co<sub>HCP</sub>
- \* Other phases: Cr carbides and intermetallic compounds
- \* Possible phase evolution on heating at 500 C


### \*HIP PM alloy:

- \* Prevalence of Co<sub>FCC</sub>, with some Co<sub>HCP</sub>
- \* Possible presence of intermetallic compounds and carbides
- \* No phase evolution on heating at 500 C

### Microstructures - HIP PM Ni-Cr alloy *(OM)*




### Microstructures - HIP PM Ni-Cr alloy image analysis of SEM – back-scattered (BS) electrons images



Cr-rich BCC phase (black): ≈30%

### Cast Co alloy microstructure

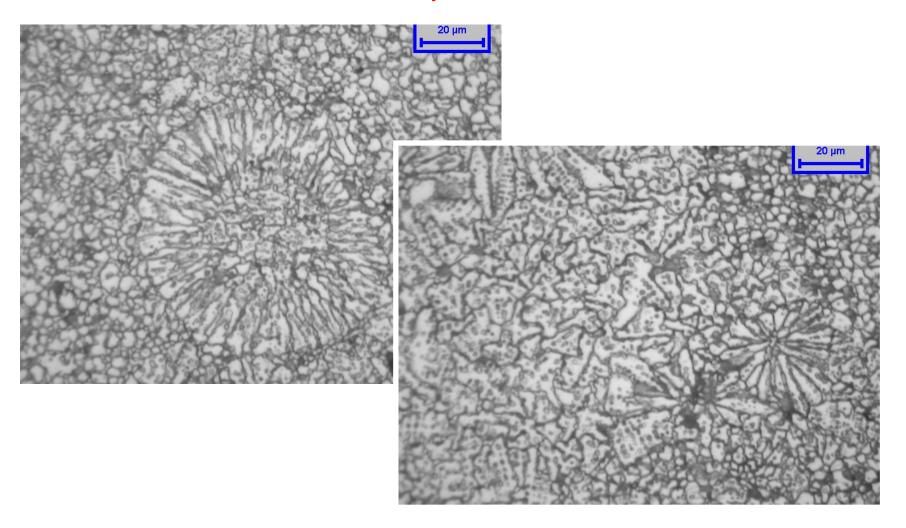


Main primary dendrites Inter-dendritic carbides (lamellar) No differences after 500 C treatment

Matrix

| Cr | Co | W   | Mo   | Si   |
|----|----|-----|------|------|
| 24 | 71 | 3.5 | 0.24 | 0.65 |

#### Cr carbides


| Cr | Co | W   | Mo   |  |  |
|----|----|-----|------|--|--|
| 78 | 15 | 6.3 | 0.43 |  |  |

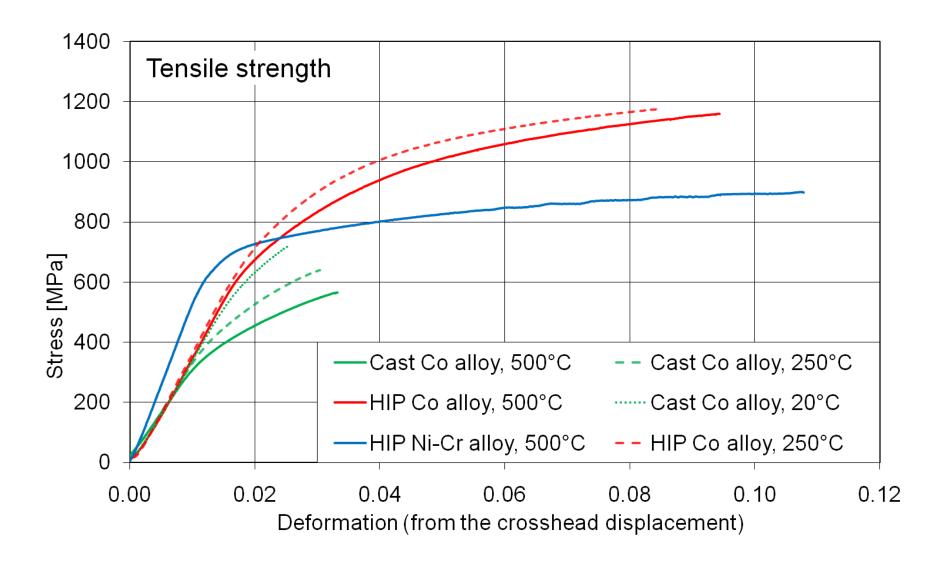
Co, W carbides

| Cr | Co | W  | Mo  |
|----|----|----|-----|
| 21 | 47 | 29 | 2.7 |

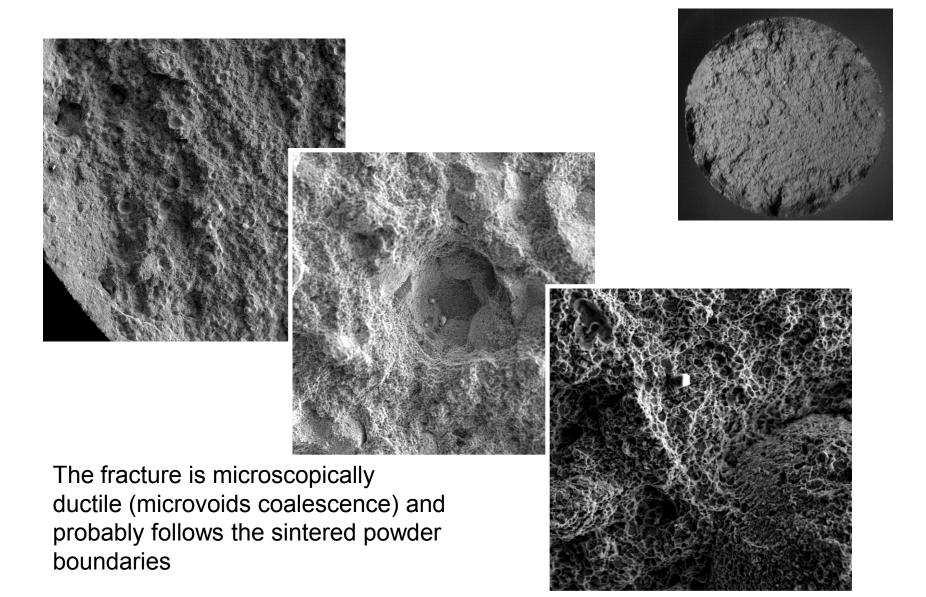
SEM (BS)

### HIP PM Co Alloy microstructure

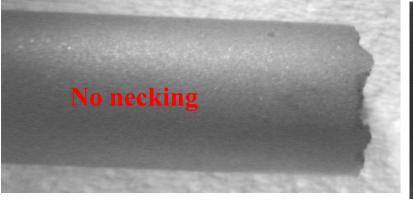


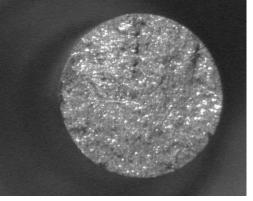

Co rich matrix, dispersed carbides, about 2  $\mu m$  diameter. Grain size in the range of 5-40  $\mu m$  with the most part in the range 5-10  $\mu m$ .

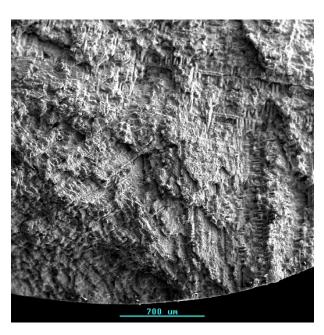
#### Hardness and microhardness

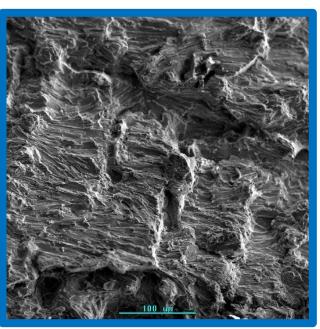

| Alloy         | Macroscopic | HV 0.05         | HV 0.05             |  |  |
|---------------|-------------|-----------------|---------------------|--|--|
| Alloy         | hardness    | Dendritic zones | Carbides rich zones |  |  |
| HIP NiCr      | 370 HV100   |                 |                     |  |  |
| Alloy         | 3/0 H V 100 | _               | _                   |  |  |
| Cast Co Alloy | 370 HV50    | 400-430         | 530-1100            |  |  |
| HIP Co Alloy  | 460 HV50    | -               | -                   |  |  |

Cast sample: scattered results on precipitated carbide zone (hardness indent large in respect to dimension of carbides)


#### Mechanical tests





### Fractography – HIP PM NiCr alloy, tensile fracture at 500 C




### Fractography – cast Co alloy, tensile fracture at 500 C









Mainly inter-dendritic fracture (a), with some trans-dendritic quasi-cleavage fracture

### Fractography – HIP PM Co alloy tensile fracture at 500 C



The fracture is ductile, nucleated by the presence of an inclusion

### **Fatigue - HIP PM Ni-Cr alloy**

pulsed traction fatigue tests (R  $\approx$  0), up to  $2 \cdot 10^6$  cycles, at **500** C

| Strenght |   |   |   | Spec | ime | ns re | sults | S |   |    | Results |   |
|----------|---|---|---|------|-----|-------|-------|---|---|----|---------|---|
| Mpa      | 1 | 2 | 3 | 4    | 5   | 6     | 7     | 8 | 9 | 10 | X       | О |
| 660      |   |   |   |      | X   |       | X     |   |   |    | 2       |   |
| 650      |   |   |   |      |     |       |       | X |   |    | 1       |   |
| 640      |   | X |   | О    |     | О     |       |   | X |    | 2       | 2 |
| 630      |   |   |   |      |     |       |       |   |   |    |         |   |
| 620      |   |   | О |      |     |       |       |   |   |    |         | 1 |
| 610      |   |   |   |      |     |       |       |   |   |    |         |   |
| 600      | O |   |   |      |     |       |       |   |   |    |         | 1 |

### Fatigue limit (for $2 \cdot 10^6$ cycles) $\approx 640$ MPa

X: specimen broken before  $2 \cdot 10^6$  cycles

O: specimen completes  $2 \cdot 10^6$  cycles

#### **CAST** Co-Alloy

pulsed traction fatigue tests (R  $\approx$  0), up to  $2 \cdot 10^6$  cycles, at **500** C

| Strenght |   |   |   | Results |   |   |   |   |   |    |   |   |
|----------|---|---|---|---------|---|---|---|---|---|----|---|---|
| Mpa      | 1 | 2 | 3 | 4       | 5 | 6 | 7 | 8 | 9 | 10 | X | О |
| 410      | X |   | X |         |   |   |   |   |   |    | 2 |   |
| 400      |   |   |   |         |   |   | X |   |   |    | 1 |   |
| 390      |   | О |   | X       |   | О |   | X |   | X  | 3 | 2 |
| 380      |   |   |   |         |   |   |   |   | О |    |   | 1 |
| 370      |   |   |   |         | О |   |   |   |   |    |   | 1 |

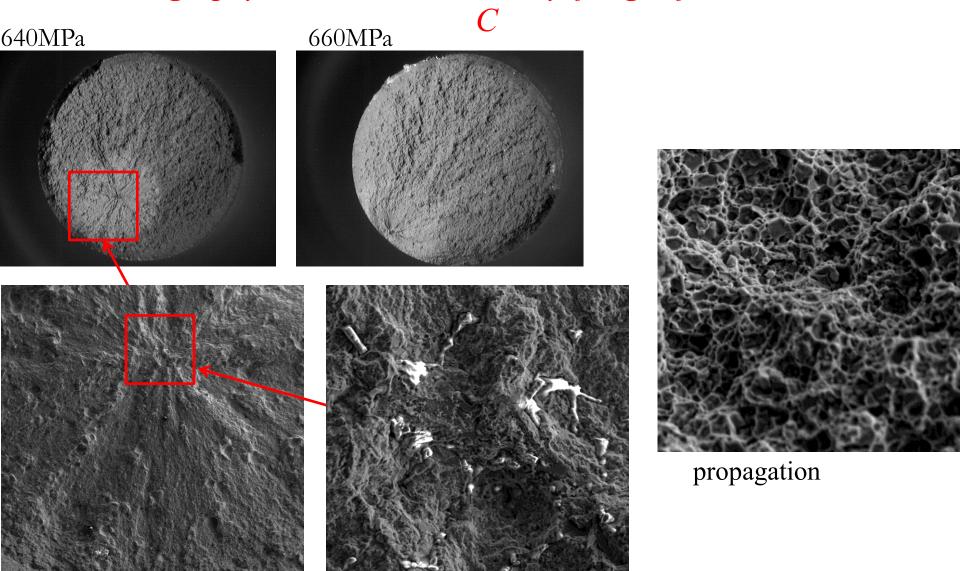
### Fatigue limit (for $2 \cdot 10^6$ cycles) $\approx 390$ MPa

X: specimen broken before  $2 \cdot 10^6$  cycles

O: specimen completes 2·10<sup>6</sup> cycles

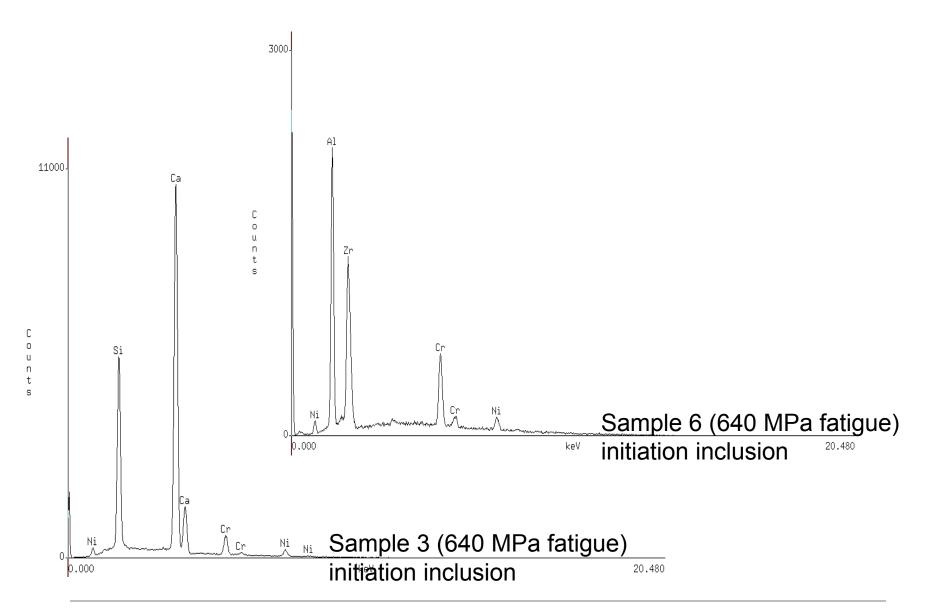
#### **HIP PM** Co-alloy

pulsed traction fatigue tests (R  $\approx$  0), up to  $2 \cdot 10^6$  cycles, at **500** C

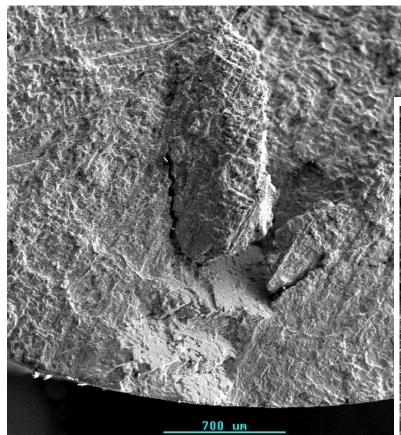

| Strenght |   |   |   | Results |   |   |   |   |   |    |   |   |
|----------|---|---|---|---------|---|---|---|---|---|----|---|---|
| Mpa      | 1 | 2 | 3 | 4       | 5 | 6 | 7 | 8 | 9 | 10 | X | О |
| 740      | X |   |   |         |   |   |   |   |   |    | 1 |   |
| 720      |   |   |   |         |   |   |   |   |   |    |   |   |
| 700      |   | X |   |         |   |   |   |   |   |    | 1 |   |
| 680      |   |   |   | X       |   | О |   |   |   |    | 1 | 1 |
| 660      |   |   | O |         | O |   |   |   |   |    |   | 2 |

### Fatigue limit (for $2 \cdot 10^6$ cycles) $\approx 660$ MPa

X: specimen broken before  $2 \cdot 10^6$  cycles


O: specimen completes  $2 \cdot 10^6$  cycles

### Fractography – HIP PM NiCR alloy, fatigue fracture at 500




Nucleation zone (detail)

### Fractography – HIP NiCR alloy, fatigue tests at 500 C



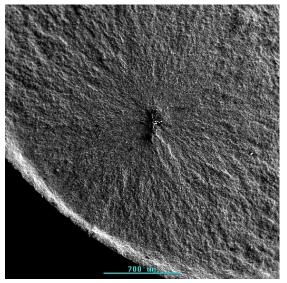
### Fractography – cast Co alloy, fatigue fracture at 500 C



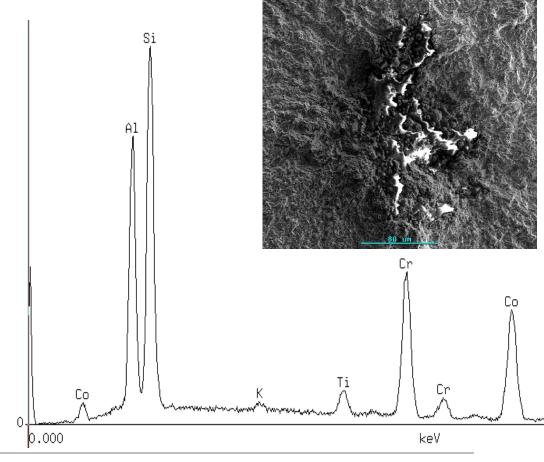
Nucleation and propagation fatigue fracture zones

detail of stair-step fatigue propagation

G. Scavino et al. – ... alloys for fuel injectors


### Fractography – HIP PM Co alloy, fatigue test at 500 C




Fracture surface observed by means of Stereo Macro-scope.

The fatigue fracture is nucleated by the

presence of an inclusion.



Nucleation zone (detail)



### Discussion and conclusions (I/II)

- ★ Hipped PM Ni-Cr are biphasic, with about 70% Ni-rich FCC and 30% Cr BCC phases (confirmed by XRD analyses), with 1-5 µm grain size, with some porosity and inclusions
- \* The cast Co alloy samples are formed by cobalt rich, FCC primary dendrites and lamellar inter-dendritic zones (eutectic mixtures) with high carbides content. EDS micro-analyses evidenced two carbide types: one with high Cr content, the other with high W content.
- \* Hipped PM Co alloy samples present a Co rich matrix and dispersed carbides, about 2 μm diameter. Grain size is in the range of 5-40 μm with the most part in the range 5-10 μm.

### Discussion and conclusions (II/II)

- The best performance both in tensile tests and in fatigue tests was observed for the hipped PM samples. In particular, in monotonic tests, the hipped Cr-Ni alloy was intermediate between the cast Co alloy and the hipped alloy. In fatigue tests the hipped Cr-Ni alloy behaved almost as the hipped Co alloy and much better than the cast Co one.
- The tensile fracture of the cast Co alloy is mainly inter-dendritic, completed by a quasi cleavage intra-dendritic fracture. In the HIP treated materials (both the Ni-Cr alloy and the Co one), a ductile fracture is nucleated by inclusions.
- In fatigue tests, the crack of cast samples is nucleated by casting defects and propagates on crystallographic planes, in a trans-dendritic way, with a stair morphology. The crack of hipped samples is nucleated by an inclusion and the fracture is mainly ductile.