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Abstract—We present a Waveform Relaxation approach for
fast transient simulation of electrically long high-speedchannels.
The proposed technique is based on a two-level transverse and
longitudinal partition of the coupled interconnect. All couplings
and feedback from terminations are represented as correction
sources, which become explicit in a Waveform Relaxation frame-
work. We show that the proposed schemes are consistent and
allow for very efficient implementations. Simulation results show
speedup factors of up to two orders of magnitude with respect
to circuit-based (SPICE) solvers.

I. I NTRODUCTION

This paper presents a fast simulation technique for complex
and electrically long coupled interconnects, terminated by
possibly nonlinear drivers and receivers. Common examples
for such structures are point-to-point links connecting different
chips and routed through geometrically complex paths running
through packages, printed circuit boards, connectors, etc. Sig-
nal Integrity verification of such systems via fast simulation
is of paramount importance [1]-[4].

Electrical characterization of multi-chip links is usually
available in form of tabulated frequency samples of their scat-
tering matrix. These are available either from direct measure-
ment or from simulations. In the latter case, the overall channel
characterization is typically obtained by cascading individual
scattering matrices for the single blocks forming the channel,
such as connectors, via fields, or transmission line segments,
which are computed using 2D or 3D field solvers [2]. Con-
versely, driver and receiver circuits are intrinsically nonlinear
and require adequate representation, either as transistor-level
circuits or as nonlinear behavioral macromodels. The above
characteristics make the transient simulation of multi-chip
links a quite challenging problem.

Various approaches are available for setting up a transient
channel simulation [1], [2], [3], [4]. If the terminations are
approximated by linear circuits, the entire solution can beper-
formed in the frequency domain, and the transient termination
voltages and currents can be derived as a postprocessing step
via inverse Fourier Transform. The reliability of this approach
is limited by the inexact representation of terminations. Al-
ternatively, the transient scattering impulse responses of the
channel can be computed via inverse Fourier transform, and
the transient solution of the terminated channel can be obtained
via convolution. This approach is numerically robust but can

be slow. Alternative approaches are based on macromodeling
techniques. The channel is first represented as an equivalent
circuit, which is extracted by curve fitting with passivity
constraints from the tabulated scattering data [6]-[14]. Once
available, this circuit can be combined with terminations and
directly solved with SPICE [13]. Unfortunately, also this
approach may be too slow for the long transient simulations
that are required for a detailed Signal Integrity verification.

In this work, we use a different approach. We also derive a
macromodel for the channel, which is expressed in closed form
as a combination of rational functions and delay operators
in the Laplace domain [6]-[14]. Analytic Laplace transform
inversion leads to a functional expression of the channel
impulse responses, which allow to cast convolutions in a
recursive form [5], or equivalently as IIR (Infinite Impulse
Response) filters. These characteristics are exploited in atwo-
level Waveform Relaxation framework [16]-[30], where the
overall simulation problem is split and approximated as a
set of individual decoupled and simpler simulations, which
require reduced computational cost. Convergence to the exact
solution is recovered by applying relaxation sources, consist-
ing of inter-channel couplings and reaction from terminations.
Numerical results show that our preliminary implementation
of the two-level WR scheme outperforms SPICE by more than
two orders of magnitude in runtime, with the same level of
accuracy.

II. D ELAYED-RATIONAL MACROMODELS

We consider a fully-coupledP -port (P even) channel termi-
nated by single-ended drivers and receivers. Figure 1a depicts
this structure for the caseP = 4. We make the assumption
that the only coupling between different nets occurs within
the channel, with no explicit coupling between individual
drivers and receivers. This case is quite common in practical
applications.

The channel is known from its sampled scattering matrix
Ĥl ∈ C

P×P at the discrete frequenciesωl, l = 1, . . . , L.
The first step of our proposed technique is the derivation
of a macromodel, which can be cast in a form suitable for
transient analysis. We define as Delay-Rational Macromodel
(DRM) [6]-[12] the Laplace-domain scattering matrix with
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Fig. 1. System topology (a) and various partitioning schemes: longitudinal
(b), transverse (c), and two-level (d). Light and dark gray boxes denote
longitudinal and transverse decoupling and relaxation sources, respectively.
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wheres is the Laplace variable,i, j denote output and input
port, respectively, corresponding to the selected scattering
response,τ i,jm are delays corresponding to the various arrival
times of the signal reflections induced by an input unit pulse.
The rational coefficients
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(2)

are used to approximate attenuation and dispersion effects.
The identification of (1) from the sampleŝHl, i.e., solving

min ‖H(jωl)− Ĥl‖ , (3)

where the minimum is taken over the unknown delaysτ i,jm

and matrix rational functionsQi,j
m (s) is performed using the

so-called Delayed Vector Fitting (DVF) [7], which is well
documented and is not further commented here. We remark
that also the passivity of (1) is easily checked and enforced,
see [10], [12].

Analytic inversion of (1) can be carried out, leading to the
impulse response

hi,j(t) =

Mi,j∑

m=0

Ni,j
m∑

n=1

Ri,j
mne

pi,j
mn(t−τ i,j

m )u(t− τ i,jm ) +Di,jδ(t) ,

(4)
which in turn can be used to compute the channel response
y(t) due to any input signalx(t) through convolutiony(t) =

h(t) ∗ x(t) . Due to the exponential kernel, this convolution
can be discretized on a uniform time gridtk = kδ and approx-
imated as a superposition of scalar three-tap Infinite Impulse
Response filters. Dropping for simplicity superscriptsi,j and
restricting to the case of a single pole term (m,n fixed), we
have

y(tk) ≃ α0yk−1 +β0x(tk−k̄)+β1x(tk−1−k̄)+β2x(tk−2−k̄) ,
(5)

where coefficientsα0, β0,1,2 depend on the polep, residueR,
and discretization time stepδ, and where

τ = k̄δ + τǫ, where k̄ =
⌊τ
δ

⌋
(6)

denotes the integral part of the delayτ with a remainderτǫ <
δ. A detailed derivation of (5) is available in [32].

The above formulation of the time-domain channel model
can be cast in a compact operator notation. If we denote with
a and b the vector-valued arrays collecting all time samples
tk, k = 0, . . . ,K of the scattering signals that impinge into
and are reflected from all channel ports, respectively, we have

b = Ha , (7)

where each element of the matrix-valued operatorH corre-
sponds to a superposition of time-domain recursive convolu-
tions (5). Application of this operator requires a computational
cost that scales only linearly with the number of samplesK.

We turn now to the formulation of the termination equations.
The scattering waveb that is reflected by the channel is clearly
the impinging wave into the terminations, viewed as a single
multiport element. Therefore, we cast also the termination
equations using a scattering representation as

a = F (b) , (8)

where operatorF is diagonal (it couples only impinging
and reflected waves at a single port) but can be nonlinear,
dynamic and possibly include time-varying source terms as
in the case of drivers. The compact notation (8) assumes that
any differential terms in the termination equations have been
suitably discretized over the assumed gridtk.

III. SYSTEM PARTITIONING AND WAVEFORM

RELAXATION

The direct solution of coupled equations (7) and (8) would
require the direct solution of nonlinear equation

b = HF (b) (9)

to be performed at each time step. This is what SPICE does,
using Newton-Raphson iterations repeatedly. Here, we want
to avoid any direct nonlinear solution and/or time-stepping
iteration. This can be accomplished by system partitioningand
Waveform Relaxation. The following three sections describe
the proposed longitudinal, transverse, and combined system
partitioniong schemes, which lead to corresponding Waveform
Relaxation iterations. We remark that only the final two-level
relaxation of Sec. III-C is interesting from the computational
standpoint. The first two schemes are presented separately in
order to illustrate the advantages of each partitioning strategy.
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Fig. 2. Definition of the decoupling source for a single interface port.

A. Longitudinal Partitioning

Longitudinal partitioning involves a cut at all channel ports
in order to separate the channel from its terminations. The
hanging terminals are then connected to suitable decoupling
networks, which ensure that the partitioned system is equiv-
alent to the original. This condition is easily achieved by
the circuits depicted in Fig. 2, where we used the definition
{a, b} = v ± R0i of the (voltage) scattering waves in terms
of port voltage and current. Panel (b) of Fig. 1 provides a
graphical illustration of this process.

Waveform Relaxation is now introduced by using the de-
coupling blocks as relaxation sources. We define an iteration
index ν and we relax the instantaneous coupling of the two
equations (7) and (8) by delaying one of the terms by one
iteration. The result is{

bν = Haν−1 ,

aν = F (bν) .
(10)

The iterative process starts with zero initial conditions,a0 = 0

and stops when the approximation error estimate

δν = aν − aν−1 (11)

is below a prescribed threshold. The longitudinal partitioning
and relaxation has the main advantage of not requiring any
coupled solution, since the two equations in (10) are just
applied one at the time, until the solution estimate stabilizes
through iterations.

B. Transverse Partitioning

We now introduce a transverse partitioning strategy, which
is alternative or complementary to the longitudinal partitioning
of Section III-A. This second partitioning scheme is motivated
by the physical structure of most point to point links in
state of the art technologies. In order to guarantee sufficient
bandwidth for high-speed applications, several independent
links are usually routed in close proximity for chip to chip
communication. This leads to multiport interconnect systems,
whose scattering matrix has a particular structure. Since there
is no direct electrical connection between different links,
which are only coupled through electromagnetic interactions
occurring during the signal propagation along the channel,
transmission and reflection coefficients are usually mugh larger
in magnitude than near and far end crosstalks. Consequently,
the scattering operator for such systems can be decomposed
as

H = D + C (12)

whereD collects all direct transmission and reflection coeffi-
cients, and operatorC collects all crosstalks. Clearly, operator

D is block-diagonal with2× 2 blocks after a suitable permu-
tation depending on the port numbering is applied. In a good
design, operatorC is “small” in some sense with respect toD
and can be interpreted as a second-order correction. We can
restate (7) and (8) as





θ = C a
b = D a+ θ

a = F (b) ,
(13)

where arrayθ collects the crosstalk contributions, which can
be interpreted as dependent correction sources applied to a
set of decoupled channels. Figure 1c provides a graphical
illustration of this transverse partitioning scheme.

We now introduce a transverse Waveform Relaxation
scheme, which corrects solution estimates through iterations
µ by applying the coupling termsθ not instantaneously, but
delayed by one iteration. We have system





bµ = D aµ + θµ−1

aµ = F (bµ)
θµ = C aµ .

(14)

which is solved with a suitable initial condition, e.g.,θ0 = 0.
The main difficulty is the solution of the first two coupled
equations in (14). On one hand, this problem is simpler
than (10), since only two port variables are involved at the
time (operatorD is block diagonal). However, its solution still
requires the exact solution of a nonlinear system. This is why
we introduce a two-level partitionin scheme and relaxationin
Section III-C.

C. Two-level partitioning

In this section, we combine the advantages of longitudinal
and transverse partitioning into a single two-level Waveform
Relaxation scheme. We start with (14) and we apply a fur-
ther longitudinal partitioning and relaxation to the first two
equations, as in Section III-A. We obtain

{
bµ,ν = D aµ,ν−1 + θµ−1 ,

aµ,ν = F (bµ,ν) ,
(15)

where iteration indexesµ and ν correspond to transverse
and longitudinal relaxation, respectively. Transverse relaxation
forms an outer loop. At any step of this outer loop, i.e., for
fixedµ, the outer relaxation sourcesθµ−1 are known and fixed
from previous outer iteration. Therefore, we can apply an inner
longitudinal relaxation in order to solve individual channels.
This inner loop is initialzed by using the solution estimatethat
is available at the end of previous outer iteration

aµ,0 = aµ−1,Iµ−1
, (16)

whereIµ is the total number of inner iterations for any fixed
µ. Once the inner loop has terminated, the outer relaxation
sources are updated according to

θµ = C aµ,Iµ
(17)

and the process is repeated until convergence is achieved. A
graphical illustration of the two-level partitioning scheme is
available in Fig. 1d.



Convergence of inner and outer loops is detected by mon-
itoring the respective residual norms with respect to a pre-
scribed thresholdǫ

ξµ,ν = ||aµ,ν − aµ,ν−1|| (18)

δµ = ||aµ,Iµ
− aµ−1,Iµ−1

|| . (19)

The norm ξµ,ν measures the amount of correction that is
applied to the solution by theν-th inner iteration, whereas the
normδµ measures the difference between two outer iterations,
computed at the end of the inner loop. Throughout this work,
we use the∞-norm, i.e., the maximum deviation among all
time samples of all port responses, in order to monitor uniform
convergence.

D. Linear convergence analysis

We now address the convergence of the three proposed
Waveform Relaxation schemes. The analysis is carried out
in the frequency domain by assuming linear terminations,
characterized by a scattering matrixΓ and internal source
vector Υ. Only the main results are presented here, for a
complete derivation and proof see [32]. The frequency-domain
formulation of the two-level Waveform Relaxation scheme
reads 




Bµ,ν = DAµ,ν−1 +Θµ−1 ,

Aµ,ν = ΓBµ,ν +Υ ,

Θµ = CAµ,Iµ
.

(20)

For simplicity, we assume that a constant number of inner
iterationsI is performed, independent on the outer iteration
indexµ. Defining

PI = P+ (ΓD)
I
(I−P) (21)

where
P = (I− ΓD)

−1
(ΓC) , (22)

it is possible to prove by direct substitution [32] that the error
between the solution estimateAµ,I at the outer iterationµ
and the exact solutionAexact reads

Eµ,I = Aµ,I −Aexact = −P
µ
I
Aexact . (23)

Convergence and consistency is thus guaranteed if the spectral
radius (the magnitude of the largest eigenvalue) of operator PI

is such that
ρmax{PI} < 1 . (24)

This condition may be checked with a suitable frequency
sampling process. Finally, we remark that the condition for
convergence of pure transverse relaxation of Section III-Bis
recovered by solving exactly the inner loop, or equivalently
by taking the limit forI → ∞, obtaining

ρmax{P} < 1 , (25)

whereas convergence of the pure longitudinal relaxation of
Section III-A is guaranteed when

ρmax{ΓH} < 1 . (26)
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Fig. 3. Comparison between macromodel and raw scattering samples for
S11 of Case III.

IV. N UMERICAL RESULTS

The performance of the proposed Waveform Relaxation
scheme is illustrated on four benchmarks. Case I is a simple
structure with two segments of 9-conductor coupled lossy
transmission lines separated by a discontinuity due to a via
field. The other structures (Cases II–IV) are chip-to-chip links
in real industrial products (courtesy of IBM), characterized
by various topologies and electrical length. In particular:
Case II connects a CPU to an I/O card through a PCB
and a connector, Case III connects two CPUs on different
PCB’s through a flexible backplane, and Case IV connects
two CPU’s on the same PCB. In all cases the number of ports
is P = 18, corresponding to a victim channel (ports 9 and 10)
surrounded by eight aggressor channels. Figure 3 illustrates the
accuracy of the computed passive Delay-Rational Macromodel
for Case III by comparing one of its scattering responses
to the raw frequency samples. The plot shows an excellent
accuracy throughout the modeling bandwidth. Similar results
were obtained for all cases.

Figure 4 depicts the spectral radius of iteration operator
PI for different values of the inner iterationsI = 2, 4,∞.
A set of realistic linear terminations (40Ω drivers and 1 pF
receivers) were used for this analysis. In all cases the spectral
radius does not exceed one, implying that convergence is
expected, according to (24). Running the WR loops on a
sequence of 500 bits led to the results depicted in Fig. 5, where
the evolution of the inner loop error estimate (continuous
line) and outer loop error estimate (dots) is plotted. A global
iteration count is used in order to simplify visualization and
interpretation. The figure panels show that the inner iterations
converge quickly, although onlyI = 4 inner iterations are
used in this examples. Similarly, the error between successive
outer iterations (dots) converges down to the the prescribed
stopping threshold, in this caseǫ = 10−6.
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Fig. 5. Evolution of the inner (continuous line) and outer (dots) loop errors
through iterations for all cases.

Figure 6 reports the evolution of the input voltage of the
victim channel (Case II) through the first WR iterations. In
this analysis, nonlinear and dynamic behavioral models of the
MπLog class [31] were used for the drivers. It can be shown
that such macromodels can be easily cast in the compact
form (8), thus plugging naturally in our WR framework. These
plots demonstrate that the final solution is indeed achievedby
applying small iterative perturbations, thus providing a proof
of concept of the proposed technique.

We conclude with some remarks on efficiency. Table I
reports a comparison of the simulation times required by
SPICE and by various implementations of our WR scheme
to run a pseudo-random sequence of 1000 bits on Case II. In
particular, we compare a prototypal Matlab implementation,
a more advanced implementation coded in C language, and
a preliminary parallelized version (OpenMP paradigm [33])
specifically tailored for multicore hardware, which was run
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Fig. 6. Case II with nonlinear terminations. Solution at various WR iterations
(blue dashed line) compared to the reference SPICE solution(red line).

TABLE I
COMPARISON OF SIMULATION TIMES REQUIRED BYSPICEAND BY

DIFFERENT IMPLEMENTATIONS OF PROPOSEDWR SCHEME TO RUN1000
BITS ON CASE II.

Solver CPU time Speedup
SPICE 22m 55s –
WR (Matlab) 62s 22 X
WR (C, 1 thread) 31s 44 X
WR (C, 9 threads) 5s 275 X

using 9 concurrent threads. A major speedup is observed,
particularly for the C-based parallel implementation. These
preliminary results show excellent scalability of proposed WR
scheme, which is capable of processing thousands of bits on
fully coupled multiport channels (P = 18 ports) in seconds.

V. CONCLUSIONS

We presented three Waveform Relaxation (WR) schemes
for transient simulation of complex multiport channels with
possibly nonlinear terminations. These schemes are based
on a longitudinal and/or transverse partitioning of the struc-
ture through suitable decoupling sources, which are relaxed
through an iterative process. All schemes are consistent and
converge quickly on a set of industrial benchmarks. Suitable
conditions for convergence were also presented through a
linear analysis.

Numerical results show that the same level of accuracy of



SPICE may be achieved in much faster runtime, especially
if the WR scheme is parallelized for multicore hardware.
The major speedup with respect to SPICE is mainly due to
the optimized treatment of the small coupling terms due to
inter-channel crosstalk, which are handled as second-order
corrections. A generic SPICE solver is not aware of this
structure, hence it is not able to exploit it to enhance numerical
efficiency.
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