1CO D
@9?.-- oa-n..{.?o
AN

« PO

PRTTTIT T,
. .

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Quantitative Assessment of the Impact of Automatic Static Analysis Issues on Time Efficiency

Original

Quantitative Assessment of the Impact of Automatic Static Analysis Issues on Time Efficiency / Vetro' A.; Torchiano M;
Morisio M.. - ELETTRONICO. - (2011), pp. 1-8. ((Intervento presentato al convegno Informatica Quantitativa 2011
tenutosi a Lipari, Isole Eolie (IT) nel 27-29 giugno 2011.

Availability:
This version is available at: 11583/2437375 since:

Publisher:

Published
DOI:

Terms of use:
openAccess

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

04 August 2020

Quantitative Assessment of the Impact of Automatic
Static Analysis Issues on Time Efficiency

Antonio Vetro’, Marco Torchiano and Maurizio Morisio
Dipartimento di Automatica e Informatica
Politecnico di Torino
Corso Duca degli Abruzzi, 24 - 10129 TORINO - ITALY
Email: name.surname@polito.it

Abstract—Background: Automatic Static Analysis (ASA) tools to review all the warnings not to lose too much time, and
analyze source code and look for code patterns (aka smells) managers give up the introduction of static analysis tools i
that might cause defective behavior or might degrade other o jevelopment process. However, this flip side can bedinit
dimensions of software quality, e.g. efficiency. There are amy th h tomization: ASA tool ’ t . d oriositi
potentially negative code patterns, and ASA tools typicayl rQUQ C‘_JS omization: 0ools C_a egorize an_ pr,'oe' 1z
report a huge list of them even in small programs. Moreover, their warnings to help programmers in the customization and
so far, little evidence is available about the negative impzt enable only those issues related to the quality dimension(s
on performance of code patterns identified by such tools. A of interest. Moreover, the research community is incregsin
consequence is that programmers cannot appreciate the befis jis jnterest in assessing the value of static analysis, fiist t
of ASA tools and tend not to include them in their workflow. . ; . NN . .

effort is addressed mainly in the prioritization of issueishw

Aims: Quantitatively assess the impact of issues signaledyb "€SPect to their relationship to defects in the code. Exampl
ASA tools on time efficiency. are the researches conducted by Kim and Ernst on open source

software and defects found with static analysis ([2] and

Method: We select 20 issues and for each of them we sete_g_ [3]), the studies of Wagner et al. on the type of bugs

up two source code fragments: one containing the issue and .
the corresponding refactored version, functionally idenical but detectable by ASA tools (e.g. [4] and [5]) , whilst Ayewah and

without the issue. We set up three different platforms, isated Pugh ([6]) and [7]) used FindBugs on production software to
from network and other user programs, then we execute the cael catch defects. We also conducted a similar study in uniyersi
fragments, and measure the execution time of both code vemis. context [8] to discover which FindBugs issues were related t
Results: We find that el) h wal i defects introduced by students in Java programs. The above
e e I el S e P o Sl eSSt represent research focused on the impact of ASA
estimation for the delay provoked by a single execution. issues on defectiveness, conversely small effort is destida
other aspects of code quality, e.g. efficiency or maintalitgb
Conclusions: We produce a set of issues with a verified negaé referring to the framework defined by the ISO/IEC 9126
impact on performance. They can be checked easily with an product quality model [9]. The standard identifies 6 quality
analysis tool and code can be refactored to obtain a provably o, cteristics: Functionality, Reliability, Usabilifficiency,
more efficient code. We also provide the estimated delay cost = . . . o . . .
of each issue in the environments where we conduct the tests.Maintainability, Portability. This work is focused on Efigmcy

These results can be improved with the help of other researers: and in the use of ASA tools to improve it in Java programs.
repeating the tests in several platforms would make it posbie

to build up a wider benchmark. Il. BACKGROUND AND RELATED WORK
Efficiency, in terms of time behavior, is measured by
computation or approximation of the execution time of the
Automatic static analysis tools analyze source code lapkisoftware function under study. A fundamental concept is thi
for violations of bug patterns that might cause defectiveomputation is that the execution time is not determinjtic
behavior. However, finding defects is not the unique scope ibfhas a certain variation depending on the input data or on
these tools: developers can use them to verify code congdiamifferent contexts of the platform in which it is executedrF
to standards or to assess the internal quality of the degdlojthis reason, for a given code there is a best-case execution
system. In fact, ASA tools are also able to look for patterrtane (BCET), i.e. the shortest possible execution time, and
of bad programming practices and suggest refactoringp$] ti worst-case execution time (WCET), i.e. the longest possibl
A positive side effect is that programmers are encouragegecution time. Whilhelm et al. [10] identified in literatuand
to improve specific software internal characteristics dirth industrial practices two approaches to determine the BCET
product. A drawback instead is the high number of warningsxd the WCET. The first approach is characterized by static
(issues) signaled to the users, among which many false alammethods: the code and the possible paths are analyzed and,
can be present: as a consequence, users could be discouragethining different techniques, upper and lower bounds for

I. INTRODUCTION

TABLE |

the e_xecution time are provided. This methodology does not EXPERIMENT GOAL DEFINITION
take into account the hardware and the environment on which
the code is executed, hence the bounds overestimate the WCET Evaluate a subset of FindBugs issues

. . for the purpose of assessing the actual impact
and underestimate the BCET. The second methodology is compared to their removal by refactoring

measurement-based: the code, or a portion of it, is executed with respect to the time efficiency of code

on a given hardware or a simulator for a set of inputs. from the viewpoint of Java programmers

Then, WCET and BCET are obtained from observation: these —-1e context of _ archetypal ad-hoc code.

methods provide estimates and not bounds, and they usually

underestimate the WCET and overestimate the BCET.

Despite the high number of techniques developed for bofttON. The description of the issues provided by the tool
approaches, the problem for WCET analysis in the field ¢f: “If you want to remove all elements from a collection
Java applications has not been deeply examined yet: Harnmnusec. cl ear (), notc. renoveAl | (¢)”. In response
and Klefstad conducted a survey of WCET analysis for Redb such a notification from the tool the developer should
Time Java [11], but they were able to find fewer than twentgfactor the code according to what is suggested by the issue
publications addressing the problem. Source code anongatidescription. i.e. replacingol . removeAl | (col); with

as instructions to WCET tools ([12], [13]), low-level andcol . cl ear () ;.

high level analysis of bytecode ([14] [15]) and Java-native The research question we would like to answer with this
processors ([16]) are the most common solutions proposstljdy is whether the issue represents an actual threat & tim
however it is very difficult to find a methodology to obtairefficiency. In other wordsdoes refactoring out the issue
precise and generalizable bounds for the WCET and the BCFiElds a code that exhibits an improved time efficiency?

in Java: the main motivation is the overhead and the vaitpbil We define our experiment following the GQM template
introduced at execution time by VM services (e.g. automatjt9] for goal definition.

memory management) [17]. However, since the object of our

experiment is very simple code, makes measurement simple©bject of study. The object of the study is represented by
for us. For instance, we test code with only one possible, pathe issues signaled by FindBugs.

thus we can exclude all static measurement-based appachePurpose. The purpose of the experiment is to identify
Moreover, we are interested in the comparison of executitiose issues that impact time efficiency and quantitatively
times: for this reason, we think it is considerable to aband@ssess the delay introduced. Having experimental evidehce
the usual concepts of WCET and BCET and adopt averaifiés impact, programmers can be sure that if they refactr th
values and confidence intervals. We focused on a specific A88de deleting these issues, the system will be faster.

tool that is FindBugs v1.3.9 [18]. FindBugs uses analyzers

called Bug Detectors to search for simple bug patterns. & hes Perspective. The perspective is from the point of view
bug detectors contain numerous heuristics to filter out of programmers of Java applications that take care of
deprioritize warnings that may be inaccurate, or that may neerformance issues in delivering their software.

represent serious problems in practice. FindBugs warrangs

organized in 369 issues or bug pattefysgrouped subse- Quality focus. Efficiency is the quality characteristic that
quently into Categories (Correctness, Performance, gcurwe address. It is defined in ISO-IEC 9126 [9] as "the set
etc) and priorities (high, medium, or low), based to thef attributes that bear on the relationship between thel leve
severity of the problem detected. Both categories andipesr of performance of the software and the amount of resources
are assigned by tool's authors, based on their wisdom amged, under stated conditions”. Efficiency can be specified
experience reviewing warnings in industrial and univegrsitooth in terms of time and resource behavior: we focus our
contexts. A subset of FindBugs patterns is part of categagyperiment on time behavior, i.e. the amount of time to
Performance: they are supposed by tools’ authors to hgwerform one or more operations.

negative impact on Performance, i.e. the efficiency of ttdeco

Context. The context is artificially developed code. We
conduct our tests on code developed ad hoc to violate
Let us consider a simple code fragment: the issues that might impact negatively the efficiency-time
behavior of the code.

IIl. GOAL DEFINITION

Col | ection<l nteger> col =

new Li nkedLi st <l nteger>();
Summarizing, our goal is defined by the scheme in Table I.

col .renoveAl | (col); IV. EXPERIMENT PLANNING

If FindBugs were run on the above code it would signa. Context and Variable Selection
the issue DMI USING REMOVEALL TO CLEAR COLLEC- Ajthough one of the categories defined by the FindBugs tool

1The full list of patterns is available at IS named Performance, we think that also issues belonging
http://findbugs.sourceforge.net/bugDescriptions.html to other categories could actually affect the time efficienc

TABLE I

of code. For this reason, we select from FindBugs site a |SSUES SELECTED AS OBJECTS OF THE EXPERIMENT
subsection of issues that might have a negative impact on the

time efficiency with respect to the following set of criteria

A
B

Code Issue A
1 BC VACUOUS INSTANCEOF
Issue belongs to category performance 2 BX BOXING IMMEDIATELY UNBOXED TO PERFORM
Issue has a negative impact on performance with COERCION X
respect to expert judgment. The selection is made by 3 DS DEAD LOCAL STORE «
the authors of this paper: two of them are professors 5 pm NEW FOR GETCLASS X
of Java Programming course at Politecnico di Torino 6 DM NUMBER CTOR X
since more than ten years, whilst the first authorisa [DM STRING CTOR X
e ~ 8 DM STRING TOSTRING X
second year PhD Student assisting the professors in g pm RANDOM USED ONLY ONCE

the Java Course since four years. The experts read 10 DMI USING REMOVEALL TO CLEAR COLLECTION

- ; ISC INSTANTIATE STATIC CLASS
the description of the issues and for each of them 15 o<\ 'or hNDANT NULLCHECK OF NONNULL VALUE
classified them into one of the following categories 13 REC CATCH EXCEPTION
(and implicitly assigned the relative score): 14 SBSC USE STRINGBUFFER CONCATENATION X

15 SIC INNER SHOULD BE STATIC
a) the issue impacts negatively the time efficiency 16 SS SHOULD BE STATIC
of code (score: +1) 17 UM UNNECESSARY MATH

- : _ _ _ 18 UPM UNCALLED PRIVATE METHOD

b) the issue does not impact negatively the time 19 URF UNREAD FIELD

efficiency of code (score: -1) 20 WMI WRONG MAP ITERATOR
¢) no decision (score: 0)

[N
[N

X XX X o

Each issues is assigned a score that is the sum of . . - - . L
the scores corresponding to the categories selecte(f‘n issue is selected if it satisfies the following combinatio

by the experts. Then an issue is selected for tf?é the five criteria:(A v B) /.\CADAE' . .
experimentation when the total scoresis2 Table 1l shows all the issues selected as objects in the
Refactoring does not change functi()_rlafity For ingXperiment. The first column indicates the numerical ID ef th

. issue, the second column indicates its name, the last iredica

stance, the issue DLS OVERWRITTEN INCRE- hether the i bel ¢
MENT looks for code that performs an incremenréri?ériirn tA)e Issue belongs to category performance or not

operation and then immediately overwrites it (e.g.,
i ++; added in a for loop to skip an iteration). AB. Variable selection and Hypotheses Formulation

possible code refactoring action would be to delete gjnce the goal of the study is to evaluate the relationship
the offending increment: however, this action coulds jssyes with time efficiency the only dependent variable is
change the functional behavior of the code, hengge execution timer. We will consider two variants of the
the issue is not selected. same code: either containing the issug ¢r with the issue
Efficiency does not depend on local (e.g. networkhtactored out R). Therefore the main factor we use is the
factors. For example, the issue _DI\/!I BLOCKING 4 ge type(€ {I,R}.

METHODS ON URL has a negative impact on per- |, aqdition we measure and control other independent
formance because thguals andhashCode method | 4rigbles:

of URL perform domain name resolution, thus this
can result in a performance hit. However, this case *
is out of our interest because the cause of delay
is the network and not the code. For the same’
reason we do not include in the experimentation DMI .

COLLECTION OF URLS . . i, . .
Identification of one issue per equivalence classe Given our original research question and the selected vari-
Sbles we can formulate our null and alternative hypotheses,

The aim is to pick only one issue from each set dt N
similar issues. In fact some issues are redundant,\gpei’ithi sibtscrlpt indicate the level of the factor.
° 0:lr ZLlR

one is a generalization of many others. For instance,
consider the issue BC IMPOSSIBLE INSTANCEOF: * Ha:tr <tr

it is signaled when thenstanceof operator will C. Instrumentation and Experiment Design

always returnfalse, hence this is a useless operation rpe jnstrymentation required for our experiment is a soft-

i?:é&n(;%h; IFSngN?:SgEy'r? s?milar islsue is B are framework that allow the measurement of the ex-
» that Is complementaryy o vion times of the two different code fragments. In-

tp the previous one, because it is signaled Wheﬁ)ired by the JUnit framework for automated software
instanceof test will always returnirue. Therefore

latter issue is representative also for the former one 2http:/iwww.junit.org/

the specific issuesl§sue € 1..20) in the set of issues
selected as described above,

the platform (), both hardware and software, where the
experiment is conducted,

the batch run B) of each specific experiment.

TABLE Il

testing we developed a very simple framework. It consists LIST OF PLATFORMS HOSTING THE EXPERIMENTS
of an abstract classexperi nent, that can be extended
by concrete experimental classes. Each experimental cla%é'j‘tfortr_“ Bb O V://v R 'V'M .
. . peratng untu . INnaows ac .0.

must prow_de two methodgper f or nWt hi Ssue(_) and System kernel 2.6.35-25 Home Premium Darwin 10.6.0
per formi t hout | ssue() that contain respectively the Bits 64 64 64
code including the issue and with the issue refactored aut. IEVOCGSTSOTS |2t | Core 2 ZP o Dual 2| ol Core 2D

s . . roc. lype nte ore entium Dual nte ore uo
addition the methodet Up.() may _be optionally redef!ned 15270 Core T4500
to prepare for the execution. For instance the experimentadroc. Freq.| 1.40 Ghz 2.30 GHz 2.66 GHz
class for the issue DMl USING REMOVEALL TO CLEAR Memory 2 GB 4 GB 4GB
COLLECTION can be written as follows: Java SE 1.6 160 1.6.0

: build _22-b04 _23-h05 24-b07

public class
DM _USI NG_REMOVEALL_TO_CLEAR_COLLECTI ON

ext ends Experinent { to the experimented code fragments, we decided to execute
Col | ecti on<I nt eger > col ; the experiment batch on three different platforms. Table I
private void setUp(){ contains the characteristics of the platforms that hoshbed t
col = new Li nkedLi st <I nteger>(); experiments.

for(int i=0;i<1000;i++){

. D. Analysis methodology
col . add(I nteger.val ued (i)); . . .
} The goal of data analysis is to apply appropriate statistica

} tests to reject the null hypothesis. The analysis will be-con
ducted separately for each issue in order to evaluate which
one has an actual impact on time efficiency.

First of all we will test the null hypothesiél, for each
issue across all platforms. Then we will analyze separately
the different platforms.

public void performWthlssue() {
col .renoveAl | (col);

public void performWthoutlssue() {
col.clear();

} Since we expect the values not to be normally distributed,
} we will adopt non parametric tests, in particular we selécte
the Mann-Whitney test [20]. Since the hypothesis is clearly
The execution times of the meth-directional the one-tailed variant of the test will be apgliwe
ods performA t hi ssue() and will draw conclusions from our tests based on a significance

per for M/ t hout I ssue() are expected to be in the ordenevel o = 0.01, that is we accept a 1% risk of type | error —i.e.
of nanoseconds. Unfortunately the standard measuremgfjécting the null hypothesis when it is actually true. Mmver,
methods are not able to record precisely times at such ordgice we perform multiple tests on the same data — precisely
of magnitude. For this reason, the execution of each methgglce: first overall and then by platform — we apply the
is repeated consecutively a very high number of times (e®onferroni correction to the significance level and we altyua

1 million) to accumulate enough time to be detected ybmpare the test results versusig = 0.01/2 = 0.005.

system APIs. We assume that each execution of the measuregifter testing our experimental hypothesis, we will also
methods is independent on each other. This is true if r@eck the potential confounding effect introduced by the co
attribute is used except those initialized in teet Up() factors: the platform and the different batch runs. Sineecth

method. . factors have more than two levels, we analyze the dependence
The framework provides the method: of execution time on them using the Kruskall-Wallis rank sum
perfornm(int nSamples , long niter) test [20]. The null hypotheses we will attempt rejectinghiatt

that returns the results of the experiment in terms of thRe co-factors have no effect on the dependent variable)tim
execution times. It takes as parameters two integers: the

number of measurement samples to be genera®anpl es, E- Validity evaluation

set to 100 by default), and the number of iterations of the We identify two important threats to the validity of the

perform methodsnl t er, set to 1 million by default). At experiment. The first threat affects the internal validigyg-

the end of the experiment we will haveSanpl es samples, periments are executed inside an operating system, hence

each of them representing the execution timesnot er confounding factors could affect final results. Moreoveisi

iterations of both perform methods. We decide to have a batgbssible that the execution times for individual instracs

of 6 runs of the basic experiment; each run was carried are not independent from the execution history [10], begaus

at different random times during the day to compensate thé caches and pipelines in processors, that could also cause

possible confounding effect of periodical tasks perforrbgd the appearance of timing anomalies: therefore, we accept

the operating system. that the execution time of individual instructions may vary
In addition, since the software and hardware platform gepending on the state of the processor in which they are

extremely relevant in terms of complexity when comparegkecuted, because we can not control the processor and avoid

the hardware-related problems. However, it is possiblake t
some counter measures to reduce the noise introduced by the

TABLE V
P-VALUES OF KRUSKAL-WALLIS TEST FOR CO-FACTORS

:) ID Platform Run
upper levels (OS and VM): we repeat the experiment 6 times 1 <0001 ~ 0.01
on three different operating systems and machines, ohtgini g E 8-881 N _ o%gf .
overall 1800 samples for each version of the code, and we 4 <0001 * _ 002
isolate as much as possible the environment in which the 5 <0001 * 0.16
experiment program runs, disabling for instance network an 6 <0001 * 0.02
K routi ding to | h th in th 7 <0001 * <0001 *
network routines or avoiding to launch the program in the 8 <0001 * <0001 *
same time of operating system subroutines. Furthermoee, th 9 <0001 * 0.19
experiment is the only user program that runs in the machine. 1(1) E 8-881 N _ o%éf .
AII _these provisions do not delete the confogndlng factbus, 12 <0001 * _ 004
limit them and let us to have a reduced noise on results. 13 <0001 * <0001 *
The second threat is a construct threat: if a difference is oS L SN
found, we say that the cause of the difference is the refiagtor 16 <0001 * _ 005
action. However, the platform on which the code runs could 17 <0001 * <0001 *
affect results. Therefore, there are generalization grobl we 18 <0001 * <o0001 *
| this th b : h dife latf 19 <0001 * <0001 *
try to control this threat by using three different platfarm 20 <0001 * <0001 *

Moreover, we make available on our websttehe Eclipse
project the experiment framework developed and we invite

other researchers to repeat the experiment and compare the

results with ours. In this way it is possible to build up &, 12, and 18. Among the remaining issues: for issues 3 and

benchmark and make the empirical validation of the impa&B we rejected, overall and on two out of three platforms,

of issues on efficiency more reliable. for issue 1 we could reject overall and on 1 platform, and for
issues 5, 15, and 17 we could reject only on one platform.

V. ANALYSIS AND INTERPRETATION The effect of co-factors on the main dependent variable has

The data collected during the experiments are summariZegen checked with the Kruskal-Wallis test, whose resuks ar
in table 1V, which reports the average execution times efeported in table V.

pressed in milliseconds, for the three different platfolans

We observe that, concerning the Platform, the hypothesis

separating the execution time of the code containing theeisscan be rejected for all issues. While, the batch Run influgnce
(t;) from the execution time of code with the issue refactorgtie execution time of 11 out of 20 issues.

out (tR).

We can immediately observe a wide variability of times and. Discussion

small differences mainly among different issues, but atsa t
smaller extent between platforms. In order to report in the
same diagram such varying values we opted for the rest
this analysis to plot times using a logarithmic scale.

Columns p in table IV report the p-values of Mann-
Whitney tests carried on overall and by platforms (W, U, 2
M); statistically significant values are reported in boldda
The boxplot of figure 1 reports the execution times recorded
in the experiment, divided by issue, in practice it add the
dispersion to the information provided in the first four cohs
of the table. Execution times of code containing the issue is
drawn in black, while for code with the issues refactored out6
(R) it is represented in red. A gray background is present
corresponding to the issues for which we can reject the null
hypothesis. The boxplot in figure 2 is similar but it repofts t
execution times recorded in each platform.

We can observe a range of patterns in terms of hypothesis
rejection overall (figure 1) and for specific platforms (fig@). 9
On one side, the null hypothesis can be rejected both overall
and for every tested platform for issues 2, 4, 6,7, 9, 10,4], 1
16, 19, and 20. At the opposite side, the null hypothesisctoul
not be rejected neither overall nor on any platform for issue

Shttp://softeng.polito.it/vetro/confs/InfQ2011/EffaxicySmells.zip

Based on results in table 1V, 11 of the issues selected have
ur}doubtably a negative impact on time efficiency, sinceeher
.0 o A : : "

is a statistically significant difference in all conditiorSuch
issues are:

A primitive boxed value is constructed and then imme-
diately converted into a different primitive type (e.g.,
newDouble(d).intValue()) instead of performing direct
primitive coercion (e.g.(int)d).

4 A method invokes a Boolean constructor, instead of using

Boolean.valueOf(...)

Code uses newlInteger(int) whereas
Integer.valueO f(int) should be used, because it
allows caching of values to be done by the compiler,
class library, or JVM.

7 The java.lang.String(String) constructor is used in-

stead ofString parameter directly.

Code creates gava.util. Random object, uses it to gen-
erate one random number, and then discardthelom
object. Subsequently, to generate a new random number,
a newjava.util. Random object is created. Code should
be refactored so that thRandom object is created once
and saved to be invoked each time a new random number
is needed.

TABLE IV
SUMMARY OF EXECUTION TIMES.

Platform: all M] W
ID i tr P tr ir P i ir P i ir P
1 34.72 34.48 < 0.001 5541 55.32 0.01 47.04 47.13 1.00 1.70 1.00< 0.001
2 8.39 2.78 < 0.001 10.03 3.67 < 0.001 12.70 2.73 < 0.001 2.45 1.93 < 0.001
3 68.10 35.27 < 0.001 109.43 54.32 < 0.001 90.78 46.99 < 0.001 4.10 451 1.00
4 9.81 543 < 0.001 10.57 419 < 0.001 13.63 7.18 < 0.001 5.24 493 < 0.001
5 180.20 183.31 1.00 167.03 155.49< 0.001 237.84 242.74 1.00 135.72 151.69 1.00
6 9.65 4.78 < 0.001 10.64 3.07 < 0.001 13.77 7.12 < 0.001 453 416 < 0.001
7 14.72 5.15 < 0.001 17.29 420 < 0.001 18.88 7.09 < 0.001 7.99 416 < 0.001
8 84.16 88.54 1.00 75.29 75.79 1.00 113.92 121.16 1.00 63.26 8.676 1.00
9 216258 1117.11 < 0.001 326.57 164.02 < 0.001 3687.10 1901.80 < 0.001 2474.06 1285.49 < 0.001
10 468.66 213.77 < 0.001 411.45 210.21 < 0.001 728.38 27832 < 0.001 266.16 152.78 < 0.001
11 8.70 5.08 < 0.001 8.24 417 < 0.001 13.15 6.84 < 0.001 4.70 4.22 < 0.001
12 591.41 592.08 0.74 80.33 80.22 0.42 1671.77 1673.89 1.00 2142 2214 0.47
13 35.81 35.47 < 0.001 55.64 55.08 < 0.001 47.25 47.31 1.00 4.54 4.03 < 0.001
14 56195 302.34 < 0.001 45571 268.63 < 0.001 767.91 409.92 < 0.001 462.24 22846 < 0.001
15 6.98 7.04 0.08 5.28 5.66 1.00 8.82 9.07 1.00 6.83 6.39 0.001
16 9.71 8.62 < 0.001 10.78 8.35 < 0.001 13.77 13.45 < 0.001 457 4.05 < 0.001
17 592.05 594.41 0.55 3.84 4.15 1.00 1767.72 1775.06 0.01 9 45 4.01 < 0.001
18 537.67 544.22 1.00 462.41 462.53 1.00 707.32 716.04 1.00 43.28 454.10 1.00
19 11.80 11.04 < 0.001 13.94 13.89 < 0.001 16.23 13.93 < 0.001 5.22 5.30 < 0.001
20 58291 539.86 < 0.001 558.12 514.13 < 0.001 668.55 633.61 < 0.001 522.05 471.84 < 0.001
(%]
o 00
-~] T T T
] s D
¢
[0} g T éi T . *
£ 8711 A = -§ . - .
2 = .
! T |
: T T I T e T 5 8 : T
g | | s I BTDT I -:-(IP | ? -
i ' =" =ty
e B lgem o "o -
(2]
e
N S I B O B N I B D B D O B I B B I
IRIT RIRIRIRIRIRIRIRIRIRIRIRIRIRIRIRIRIRIR
1.2 3 4 5 6.7 8.9 10 11 12 13 14 15 16 17 18 19 20
Issue
Fig. 1. Boxplot of execution times for all issues.
10 The code removes all elements from a collectipusing to use an iterator on thentrySet of the map, to avoid
c.removeAll(c) instead ofc.clear(). the Map.get(key) lookup.
11 A class allocates an instance of a class that only supplie

14

16

19
20

static methods. The refactoring action is to use the stag{jﬂore than half of the issues (nr 2, 4, 6, 7, 9, 11) concerns

methods directly using the class name as a qualifier.
Code builds aString using concatenation in a loop
instead of usingStringBuf fer.

A class contains an instance final field that is initialieed

a compile-time static value. Since the field is immutabl
for each object of the class, it should be static.

A field which is never read

Code accesses the value affaip entry, using a key that
was retrieved from a keySet iterator. It is more efficie

useless creation of objects. The other issues are related t
different problems, relating to inefficient, albeit furaially
correct, set of operations.
Being known the number of times that the code containing
e issues is invoked, it is possible to estimate the average
elay that each of these issues bring to the code. The code
fragments invoke issues only once to minimize the confound-
ing factors: therefore the total number of invocations is 1
Hpillion times. However, issues 14 and 20 are insidéoa
cycle of respectively 5 and 10 iterations, thus they are @ezet

§_
(/)_
- a = - e = ""r
—_— £Z - -
= 2 e —
=Es7 a4l i - =—aa
= .
" o o N 8 8 o
E P 4 log R j-_i_o l'i'
= + 4 4 4+ < alne e
g
- N N B S S B B B S S B B B B B B B B B B B U B B B BN B S B B B R B R
Il R'1 R 1TRIRIRIRIRIRIRIRIRIRIRIRIRIRIRIRIRIR
a4 v e
-
» == —
- Y - e == e e
=
wg e .+ =
DEo - -~ el
=8 | &4y - . Lo .
2 i a + 4 L L 4L
€
o] lﬂ i &2 4 A 'Li = -
4
[}
g
- NN N B BT S B B T B S S B B B B B B B B B B BN R N B S B BN B S B R B RS B R
- I R'1 R'1 R'I R'l R'1 R'I R' R' R'I R'l R'l R'I1 R:‘ R‘l R'1 R'I R'1 R'I R'I R
S
-
o _| —-——
- o~ e > e g
@ £ o= e [
SE o S
« l:° e ol
£] 81§ 8 .
] 8 - 8
@ _|_j_-l-J.
g
- T
I R'1 R/ 1 R/ I R/l RI1 R/I R/l Ri1 R/ I R/l R/l Ri/I R/l RiIl R/ I R/I Rl R/ I R/I R

Fig. 2. Boxplot of execution times for all issues.

TABLE VI

MEAN EXPECTED DELAY [ns] OF VERIFIED ISSUES 9 (useless Random object) has the highest delay, that is in

the order of magnitude of Ls. Also issue 10 (emptying the

Platform content of a collection) exhibits high delays (in the ordér o
Issue lIterations U w M itude of hundredsof h ; 14

> o 553 03 517 magnitude of some hundredsaf), whereas issue causes a
4 1M 6.43 0.43 6.29 delay of tens ofis. The smallest delays are those ones of issue
6 1M 6.67 0.43 7.40 16, a field that should be static, and issue 19, a field that is
7 im 1181 391 13.02 never read. In real contexts these numbers can easily reach t
9 1M 1786.00 1185.80 159.60) . T :
10 1M 44920 113.00 20110 order ofms ands: in real projects there are millions of lines of
11 1M 6.29 0.43 3.90 code where there can be millions of these simple issues or eve
" VIR A S billions if they are insidefor /while cycles. Moreover, these
19 1M 2.01 0.44 011 figures may be directly relevant in Real Time Applications,
20 10 M 4.36 4.96 4.07 where the usage of Java is steadily increasing (for instance

Boeing has adopted real-time Java in drone aircrafts, amd th
United States Navy decided to use it in its next-generation
battleships [11]).
5 and 10 millions times. Table VI contains the estimated on the basis of the above findings, we can assert that
delays, in nanoseconds, for each issue and platform, c@&upyfely also the following issues, which were not object of ou
aggregating the measurements of the different batches. experiments, have impact on time efficiency, because ttlate
All issues concerning the useless creation of objects (#xcéo the previous eleven: BX BOXING IMMEDIATELY UN-
nr 9) have similar unitary delays: few nanoseconds (3 toi1) BOXED, BX UNBOXED AND COERCED FOR TERNARY
environments U and M, less than 1 in environment W. Simil@PERATOR, DM BOXED PRIMITIVE TOSTRING, DM FP
delay is for the wrong map iteration (issue 20). The issue NMUMBER CTOR (similar to issues 2, 6), DM STRING VOID

CTOR (similar to issue 7), issue UUF UNUSED FIELDplatforms: we will be grateful to collect results and build a

(similar to issue 19). benchmark.
Moreover, we observe that issues 8, 12 and 18, instead,

do not have any negative impact on performance. We further

i i i i ; i [1] M. Fowler, Refactoring: Improving the Design of Existing Code
investigate this fact computing the estimated differences Boston, MA, USA: Addison Wesley, 1999,

tween the two set of execution timeg; (- t). Issue DM [2] S.Kim and M. D. Ernst, “Which warnings should i fix first? ESEC-
STRING TOSTRING (nr 8, calltoString() on a String) FSE ’07: Proceedings of the the 6th joint meeting of the Eeeop

; ; ; software engineering conference and the ACM SIGSOFT syamamn
.has negative differences both overall and in every platjorm The foundations of software engineerindNew York, NY, USA: ACM,
issue RCN REDUNDANT NULLCHECK OF NONNULL 2007, pp. 45-54.

VALUE (nr 12, check of a known null value) has a significant[3] —, “Prioritizing warning categories by analyzing sefire history,” in

difference onIy in pIatform U. whilst UPM UNCALLED MSR '07: Proceedings of the Fourth International WorkshopMining
. . Software RepositoriesWashington, DC, USA: IEEE Computer Society,
PRIVATE METHOD (nr 18, a private method never used) is q07, p. 27.p g P Y

significantly different under all conditions. This data &0 [4] S. Wagner, F. Deissenboeck, M. Aichner, J. Wimmer, andSkhwalb,

that the refactored code of these three issues perform worst “An evaluation of two bug pattern tools for java,’” WCST '08:
P Proceedings of the 2008 International Conference on Soé&wasting,

than the o.rig.inal code: this is an l_me?(peCted result. Nev- verification, and Validation Washington, DC, USA: IEEE Computer
ertheless, it is probable that optimization enforced by the Society, 2008, pp. 248-257.

compiler and/or the hardware deletes the negative effect &fl S: Wagner, J. Jiens, C. Koller, P. Trischberger, and T.M#chen,
. . h Comparing bug finding tools with reviews and tests,” pp. 39-2005.
the three issues at run time. All the three issues concefg N. ajewah and W. Pugh, “The Google FindBugs fixit,” Rroceedings

useless operations and bad programming practice: even if of the 19th international symposium on Software testing analysis

they do not impact the efficiency, refactor the code is worthy, = Ser- ISSTA10. New York, NY, USA: ACM, pp. 241-252.
y . P . . .- y . .. 171 N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix, and Y.oZh
to increase its maintainability or decrease its complexit “Evaluating static analysis defect warnings on productoftware,” in

Similar issues in Findbugs, not selected for our experitnent PASTE '07: Proceedings of the 7th ACM SIGPLAN-SIGSOFT wogks
are : RCN REDUNDANT (COMPARISON OF NULL AND on Program analysis for software tools and engineerindNew York,

’ NY, USA: ACM, 2007, pp. 1-8.
NONNULL VALUE, COMPARISON TWO NULL VALUES, [8] A. Vetro’, M. Torchiano, and M. Morisio, “Assessing therggision
NULLCHECK OF NULL VALUE, NULLCHECK WOULD of findbugs by mining java projects developed at a univeisity

imi i Proceedings of MSR 2010 C. Press, Ed., 2010, pp. 110-113.
HAVE BEEN A NPE) that are similar to issue nr 12, [9] ISO/IEC, ISO/IEC 9126. Software engineering — Product quality

REFERENCES

and UMAC UNCALLABLE METHOD OF ANONYMOUS ISO/IEC. 2001
CLASS that is similar to issue 18. [10] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thegi D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Merll
VI. SUMMARY AND CONCLUSIONS I. Puaut, P. Puschner, J. Staschulat, and P. Stenstrone, Wbinst-case

) o) execution-time problem overview of methods and survey olsto ACM
We set up an experiment to quantitatively assess the impact Trans. Embed. Comput. Systol. 7, pp. 36:1-36:53, May 2008.

of selected FindBugs issues on time efficiency. We selecté&] T. Harmon and R. Klefstad, “A survey of worst-case ext&rutime anal-
h h iud 20 . . d f ysis for real-time java,Parallel and Distributed Processing Symposium,
through expert judgments, representative issues and for International vol. 0, p. 232, 2007.

each one we compared the average execution time of a c@idg G. Bernat, A. Burns, and A. Wellings, “Portable worsise execution
fragment containing that issue against the same code wdth th time analysis using java byte code” im Proc. 12th Euromicro

. f d Th d d International Conference on Real-Time Syste®@0, pp. 81-88.
Issue refactored out. € measurements were conducte [l(:),]'I E. Y.-S. Hu, G. Bernat, and A. Wellings, “Addressing dymic dispatch-

three different platforms. ing issues in wcet analysis for object-oriented hard rieadtsystems,”
Experts’ examination of issues revealed that maimy bgeau Object-Oriented Real-Time Distributed Computing, IEEEetnational

FindB . . usi f . havi Symposium arvol. 0, p. 0109, 2002.
IndBugs Issue taxonomy Is exclusive, a few Issues aVIﬂ_g] |. Bate, G. Bernat, G. Murphy, and P. Puschner, “Loweleanalysis of a

a potential impact on performance in fact do not belong to portable java byte code wcet analysis framewoReal-Time Computing
the Performance category. Moreover experiment reveaktd th ~ Systems and Applications, International Workshop al. 0, p. 39,

o . 2000.
3 out of 11 verified issues do not belong to the Performanﬁ%] |. Bate, G. Bernat, and P. Puschner, “Java virtual-rmectsupport for

category, while 2 out of 3 unverified issues belong — apphbrent portable worst-case execution-time analysis,IrirProc. 5th IEEE Intl.

without justification — to that category. Overall, based on gg”;% on Object-Oriented Real-Time Distributed Comput#@92, pp.
our findings we can select 11 issues that have a proved amg]i D. S. Hardin, “Real-Time Objects on the Bare Metal: Arfigiént

quantified (table VI) impact on time efficiency Hardware Realization of the JavaTM Virtual Machin®bject-Oriented

We provide these results to programmers that develop their Reaggin;e Distributed Computing, IEEE International Spsipm on
o)) L ; . 0053+,
applications in environments similar to those ones we used[m fﬂp, Amold, S. J. Fink, D. Grove, M. Hind, and P. F. Sweeriéysurvey

the experiments, enabling them to estimate the delay pem/ok of adaptive optimization in virtual machines?roceedings of the IEEE
by code that violates the same issues we identified, or asubse N0 2. Pp. 449-466, Feb. . .

. . . . g]%] D. Hovemeyer and W. Pugh, “Finding bugs is easy,QOPSLA '04:
. We plan to Investigate deeper the issues .thOUt proved” companion to the 19th annual ACM SIGPLAN conference on ®bjec
impact on efficiency and to repeat the experiment for other oriented programming systems, languages, and applicatidtew York,

issues, in different platforms. We are also conducting lgimi NY, USA: ACM, 2004, pp. 132-136.
L L P . . 9 8' [19] R. Van Solingen and E. BerghoutGoal/Question/Metric Methad
experiments in industrial contexts. Finally, we make alalg McGraw-Hill Inc.,US, January.

the code of the experimental Java framework developed [20] M. H. . D. A. Wolfe, Nonparametric Statistical Methods New York:
enable other researchers repeating the tests on their own John Wiley & Sons, 1973.

