
04 August 2020

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Quantitative Assessment of the Impact of Automatic Static Analysis Issues on Time Efficiency / Vetro' A.; Torchiano M;
Morisio M.. - ELETTRONICO. - (2011), pp. 1-8. ((Intervento presentato al convegno Informatica Quantitativa 2011
tenutosi a Lipari, Isole Eolie (IT) nel 27-29 giugno 2011.

Original

Quantitative Assessment of the Impact of Automatic Static Analysis Issues on Time Efficiency

Publisher:

Published
DOI:

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2437375 since:

Quantitative Assessment of the Impact of Automatic
Static Analysis Issues on Time Efficiency

Antonio Vetro’, Marco Torchiano and Maurizio Morisio
Dipartimento di Automatica e Informatica

Politecnico di Torino
Corso Duca degli Abruzzi, 24 - 10129 TORINO - ITALY

Email: name.surname@polito.it

Abstract—Background: Automatic Static Analysis (ASA) tools
analyze source code and look for code patterns (aka smells)
that might cause defective behavior or might degrade other
dimensions of software quality, e.g. efficiency. There are many
potentially negative code patterns, and ASA tools typically
report a huge list of them even in small programs. Moreover,
so far, little evidence is available about the negative impact
on performance of code patterns identified by such tools. A
consequence is that programmers cannot appreciate the benefits
of ASA tools and tend not to include them in their workflow.

Aims: Quantitatively assess the impact of issues signaled by
ASA tools on time efficiency.

Method: We select 20 issues and for each of them we set
up two source code fragments: one containing the issue and
the corresponding refactored version, functionally identical but
without the issue. We set up three different platforms, isolated
from network and other user programs, then we execute the code
fragments, and measure the execution time of both code versions.

Results: We find that eleven issues have an actual negative
impact on performance. We also compute for each issue an
estimation for the delay provoked by a single execution.

Conclusions: We produce a set of issues with a verified negative
impact on performance. They can be checked easily with an
analysis tool and code can be refactored to obtain a provably
more efficient code. We also provide the estimated delay cost
of each issue in the environments where we conduct the tests.
These results can be improved with the help of other researchers:
repeating the tests in several platforms would make it possible
to build up a wider benchmark.

I. I NTRODUCTION

Automatic static analysis tools analyze source code looking
for violations of bug patterns that might cause defective
behavior. However, finding defects is not the unique scope of
these tools: developers can use them to verify code compliance
to standards or to assess the internal quality of the developed
system. In fact, ASA tools are also able to look for patterns
of bad programming practices and suggest refactoring [1] tips.
A positive side effect is that programmers are encouraged
to improve specific software internal characteristics of their
product. A drawback instead is the high number of warnings
(issues) signaled to the users, among which many false alarms
can be present: as a consequence, users could be discouraged

to review all the warnings not to lose too much time, and
managers give up the introduction of static analysis tools in
the development process. However, this flip side can be limited
through customization: ASA tools categorize and prioritize
their warnings to help programmers in the customization and
enable only those issues related to the quality dimension(s)
of interest. Moreover, the research community is increasing
its interest in assessing the value of static analysis, but this
effort is addressed mainly in the prioritization of issues with
respect to their relationship to defects in the code. Examples
are the researches conducted by Kim and Ernst on open source
software and defects found with static analysis ([2] and
e.g. [3]), the studies of Wagner et al. on the type of bugs
detectable by ASA tools (e.g. [4] and [5]) , whilst Ayewah and
Pugh ([6]) and [7]) used FindBugs on production software to
catch defects. We also conducted a similar study in university
context [8] to discover which FindBugs issues were related to
defects introduced by students in Java programs. The above
studies represent research focused on the impact of ASA
issues on defectiveness, conversely small effort is dedicated to
other aspects of code quality, e.g. efficiency or maintainability,
referring to the framework defined by the ISO/IEC 9126
product quality model [9]. The standard identifies 6 quality
characteristics: Functionality, Reliability, Usability, Efficiency,
Maintainability, Portability. This work is focused on Efficiency
and in the use of ASA tools to improve it in Java programs.

II. BACKGROUND AND RELATED WORK

Efficiency, in terms of time behavior, is measured by
computation or approximation of the execution time of the
software function under study. A fundamental concept in this
computation is that the execution time is not deterministic, but
it has a certain variation depending on the input data or on
different contexts of the platform in which it is executed. For
this reason, for a given code there is a best-case execution
time (BCET), i.e. the shortest possible execution time, anda
worst-case execution time (WCET), i.e. the longest possible
execution time. Whilhelm et al. [10] identified in literature and
industrial practices two approaches to determine the BCET
and the WCET. The first approach is characterized by static
methods: the code and the possible paths are analyzed and,
combining different techniques, upper and lower bounds for

the execution time are provided. This methodology does not
take into account the hardware and the environment on which
the code is executed, hence the bounds overestimate the WCET
and underestimate the BCET. The second methodology is
measurement-based: the code, or a portion of it, is executed
on a given hardware or a simulator for a set of inputs.
Then, WCET and BCET are obtained from observation: these
methods provide estimates and not bounds, and they usually
underestimate the WCET and overestimate the BCET.
Despite the high number of techniques developed for both
approaches, the problem for WCET analysis in the field of
Java applications has not been deeply examined yet: Harmon
and Klefstad conducted a survey of WCET analysis for Real-
Time Java [11], but they were able to find fewer than twenty
publications addressing the problem. Source code annotations
as instructions to WCET tools ([12], [13]), low-level and
high level analysis of bytecode ([14] [15]) and Java-native
processors ([16]) are the most common solutions proposed,
however it is very difficult to find a methodology to obtain
precise and generalizable bounds for the WCET and the BCET
in Java: the main motivation is the overhead and the variability
introduced at execution time by VM services (e.g. automatic
memory management) [17]. However, since the object of our
experiment is very simple code, makes measurement simpler
for us. For instance, we test code with only one possible path,
thus we can exclude all static measurement-based approaches.
Moreover, we are interested in the comparison of execution
times: for this reason, we think it is considerable to abandon
the usual concepts of WCET and BCET and adopt average
values and confidence intervals. We focused on a specific ASA
tool that is FindBugs v1.3.9 [18]. FindBugs uses analyzers
called Bug Detectors to search for simple bug patterns. These
bug detectors contain numerous heuristics to filter out or
deprioritize warnings that may be inaccurate, or that may not
represent serious problems in practice. FindBugs warningsare
organized in 369 issues or bug patterns1, grouped subse-
quently into Categories (Correctness, Performance, Security,
etc) and priorities (high, medium, or low), based to the
severity of the problem detected. Both categories and priorities
are assigned by tool’s authors, based on their wisdom and
experience reviewing warnings in industrial and university
contexts. A subset of FindBugs patterns is part of category
Performance: they are supposed by tools’ authors to have
negative impact on Performance, i.e. the efficiency of the code.

III. G OAL DEFINITION

Let us consider a simple code fragment:

Collection<Integer> col =
new LinkedList<Integer>();

...
col.removeAll(col);

If FindBugs were run on the above code it would signal
the issue DMI USING REMOVEALL TO CLEAR COLLEC-

1The full list of patterns is available at
http://findbugs.sourceforge.net/bugDescriptions.html

TABLE I
EXPERIMENT GOAL DEFINITION

Evaluate a subset of FindBugs issues
for the purpose of assessing the actual impact

compared to their removal by refactoring
with respect to the time efficiency of code

from the viewpoint of Java programmers
in the context of archetypal ad-hoc code.

TION. The description of the issues provided by the tool
is: “If you want to remove all elements from a collection
c, usec.clear(), not c.removeAll(c)”. In response
to such a notification from the tool the developer should
refactor the code according to what is suggested by the issue
description. i.e. replacingcol.removeAll(col); with
col.clear();.

The research question we would like to answer with this
study is whether the issue represents an actual threat to time
efficiency. In other words:does refactoring out the issue
yields a code that exhibits an improved time efficiency?

We define our experiment following the GQM template
[19] for goal definition.

Object of study. The object of the study is represented by
the issues signaled by FindBugs.

Purpose. The purpose of the experiment is to identify
those issues that impact time efficiency and quantitatively
assess the delay introduced. Having experimental evidenceof
this impact, programmers can be sure that if they refactor the
code deleting these issues, the system will be faster.

Perspective. The perspective is from the point of view
of programmers of Java applications that take care of
performance issues in delivering their software.

Quality focus. Efficiency is the quality characteristic that
we address. It is defined in ISO-IEC 9126 [9] as ”the set
of attributes that bear on the relationship between the level
of performance of the software and the amount of resources
used, under stated conditions”. Efficiency can be specified
both in terms of time and resource behavior: we focus our
experiment on time behavior, i.e. the amount of time to
perform one or more operations.

Context. The context is artificially developed code. We
conduct our tests on code developed ad hoc to violate
the issues that might impact negatively the efficiency-time
behavior of the code.

Summarizing, our goal is defined by the scheme in Table I.

IV. EXPERIMENT PLANNING

A. Context and Variable Selection

Although one of the categories defined by the FindBugs tool
is named Performance, we think that also issues belonging
to other categories could actually affect the time efficiency

of code. For this reason, we select from FindBugs site a
subsection of issues that might have a negative impact on the
time efficiency with respect to the following set of criteria.

A Issue belongs to category performance
B Issue has a negative impact on performance with

respect to expert judgment. The selection is made by
the authors of this paper: two of them are professors
of Java Programming course at Politecnico di Torino
since more than ten years, whilst the first author is a
second year PhD Student assisting the professors in
the Java Course since four years. The experts read
the description of the issues and for each of them
classified them into one of the following categories
(and implicitly assigned the relative score):

a) the issue impacts negatively the time efficiency
of code (score: +1)

b) the issue does not impact negatively the time
efficiency of code (score: -1)

c) no decision (score: 0)

Each issues is assigned a score that is the sum of
the scores corresponding to the categories selected
by the experts. Then an issue is selected for the
experimentation when the total score is≥ 2.

C Refactoring does not change functionality. For in-
stance, the issue DLS OVERWRITTEN INCRE-
MENT looks for code that performs an increment
operation and then immediately overwrites it (e.g.,
i++; added in a for loop to skip an iteration). A
possible code refactoring action would be to delete
the offending increment: however, this action could
change the functional behavior of the code, hence
the issue is not selected.

D Efficiency does not depend on local (e.g. network)
factors. For example, the issue DMI BLOCKING
METHODS ON URL has a negative impact on per-
formance because theequals andhashCode method
of URL perform domain name resolution, thus this
can result in a performance hit. However, this case
is out of our interest because the cause of delay
is the network and not the code. For the same
reason we do not include in the experimentation DMI
COLLECTION OF URLS .

E Identification of one issue per equivalence classes.
The aim is to pick only one issue from each set of
similar issues. In fact some issues are redundant, or
one is a generalization of many others. For instance,
consider the issue BC IMPOSSIBLE INSTANCEOF:
it is signaled when theinstanceof operator will
always returnfalse, hence this is a useless operation
that might lead to a delay. A similar issue is BC
VACUOUS INSTANCEOF, that is complementary
to the previous one, because it is signaled when
instanceof test will always returntrue. Therefore
latter issue is representative also for the former one.

TABLE II
ISSUES SELECTED AS OBJECTS OF THE EXPERIMENT.

Code Issue A
1 BC VACUOUS INSTANCEOF
2 BX BOXING IMMEDIATELY UNBOXED TO PERFORM

COERCION X
3 DLS DEAD LOCAL STORE
4 DM BOOLEAN CTOR X
5 DM NEW FOR GETCLASS X
6 DM NUMBER CTOR X
7 DM STRING CTOR X
8 DM STRING TOSTRING X
9 DMI RANDOM USED ONLY ONCE

10 DMI USING REMOVEALL TO CLEAR COLLECTION
11 ISC INSTANTIATE STATIC CLASS
12 RCN REDUNDANT NULLCHECK OF NONNULL VALUE
13 REC CATCH EXCEPTION
14 SBSC USE STRINGBUFFER CONCATENATION X
15 SIC INNER SHOULD BE STATIC X
16 SS SHOULD BE STATIC X
17 UM UNNECESSARY MATH X
18 UPM UNCALLED PRIVATE METHOD X
19 URF UNREAD FIELD X
20 WMI WRONG MAP ITERATOR X

An issue is selected if it satisfies the following combination
of the five criteria:(A ∨B) ∧C ∧D ∧E.

Table II shows all the issues selected as objects in the
experiment. The first column indicates the numerical ID of the
issue, the second column indicates its name, the last indicates
whether the issue belongs to category performance or not
(criterion A).

B. Variable selection and Hypotheses Formulation

Since the goal of the study is to evaluate the relationship
of issues with time efficiency the only dependent variable is
the execution timet. We will consider two variants of the
same code: either containing the issue (I) or with the issue
refactored out (R). Therefore the main factor we use is the
code type,C ∈ {I, R}.

In addition we measure and control other independent
variables:

• the specific issues (Issue ∈ 1..20) in the set of issues
selected as described above,

• the platform (P), both hardware and software, where the
experiment is conducted,

• the batch run (B) of each specific experiment.
Given our original research question and the selected vari-

ables we can formulate our null and alternative hypotheses,
where the subscript indicate the level of the factor.

• H0 : tI ≥ tR
• Ha : tI < tR

C. Instrumentation and Experiment Design

The instrumentation required for our experiment is a soft-
ware framework that allow the measurement of the ex-
ecution times of the two different code fragments. In-
spired by the JUnit2 framework for automated software

2http://www.junit.org/

testing we developed a very simple framework. It consists
of an abstract class,Experiment, that can be extended
by concrete experimental classes. Each experimental class
must provide two methodsperformWithIssue() and
performWithoutIssue() that contain respectively the
code including the issue and with the issue refactored out. In
addition the methodsetUp() may be optionally redefined
to prepare for the execution. For instance the experimental
class for the issue DMI USING REMOVEALL TO CLEAR
COLLECTION can be written as follows:

public class
DMI_USING_REMOVEALL_TO_CLEAR_COLLECTION
extends Experiment {

Collection<Integer> col;
private void setUp(){
col = new LinkedList<Integer>();
for(int i=0;i<1000;i++){

col.add(Integer.valueOf(i));
}

}
public void performWithIssue() {
col.removeAll(col);

}
public void performWithoutIssue() {
col.clear();

}
}

The execution times of the meth-
ods performWithIssue() and
performWithoutIssue() are expected to be in the order
of nanoseconds. Unfortunately the standard measurement
methods are not able to record precisely times at such order
of magnitude. For this reason, the execution of each method
is repeated consecutively a very high number of times (e.g.
1 million) to accumulate enough time to be detected by
system APIs. We assume that each execution of the measured
methods is independent on each other. This is true if no
attribute is used except those initialized in thesetUp()
method.

The framework provides the method:
perform(int nSamples , long nIter)
that returns the results of the experiment in terms of the

execution times. It takes as parameters two integers: the
number of measurement samples to be generated (nSamples,
set to 100 by default), and the number of iterations of the
perform methods (nIter, set to 1 million by default). At
the end of the experiment we will havenSamples samples,
each of them representing the execution times ofnIter
iterations of both perform methods. We decide to have a batch
of 6 runs of the basic experiment; each run was carried on
at different random times during the day to compensate the
possible confounding effect of periodical tasks performedby
the operating system.

In addition, since the software and hardware platform is
extremely relevant in terms of complexity when compared

TABLE III
L IST OF PLATFORMS HOSTING THE EXPERIMENTS

Platform U W M
Operating Ubuntu 10.10 Windows 7 Mac OS X 10.6.6
System kernel 2.6.35-25 Home Premium Darwin 10.6.0
Bits 64 64 64
Processors 2 2 2
Proc. Type Intel Core 2 Pentium Dual Intel Core 2 Duo

T5270 Core T4500
Proc. Freq. 1.40 GhZ 2.30 GHz 2.66 GHz
Memory 2 GB 4 GB 4 GB
Java SE 1.6.0 1.6.0 1.6.0
build 22-b04 23-b05 24-b07

to the experimented code fragments, we decided to execute
the experiment batch on three different platforms. Table III
contains the characteristics of the platforms that hosted the
experiments.

D. Analysis methodology

The goal of data analysis is to apply appropriate statistical
tests to reject the null hypothesis. The analysis will be con-
ducted separately for each issue in order to evaluate which
one has an actual impact on time efficiency.

First of all we will test the null hypothesisH0 for each
issue across all platforms. Then we will analyze separately
the different platforms.

Since we expect the values not to be normally distributed,
we will adopt non parametric tests, in particular we selected
the Mann-Whitney test [20]. Since the hypothesis is clearly
directional the one-tailed variant of the test will be applied. We
will draw conclusions from our tests based on a significance
levelα = 0.01, that is we accept a 1% risk of type I error – i.e.
rejecting the null hypothesis when it is actually true. Moreover,
since we perform multiple tests on the same data – precisely
twice: first overall and then by platform – we apply the
Bonferroni correction to the significance level and we actually
compare the test results versus aαB = 0.01/2 = 0.005.

After testing our experimental hypothesis, we will also
check the potential confounding effect introduced by the co-
factors: the platform and the different batch runs. Since the co-
factors have more than two levels, we analyze the dependence
of execution time on them using the Kruskall-Wallis rank sum
test [20]. The null hypotheses we will attempt rejecting is that
the co-factors have no effect on the dependent variable (time).

E. Validity evaluation

We identify two important threats to the validity of the
experiment. The first threat affects the internal validity:ex-
periments are executed inside an operating system, hence
confounding factors could affect final results. Moreover, it is
possible that the execution times for individual instructions
are not independent from the execution history [10], because
of caches and pipelines in processors, that could also cause
the appearance of timing anomalies: therefore, we accept
that the execution time of individual instructions may vary
depending on the state of the processor in which they are
executed, because we can not control the processor and avoid

the hardware-related problems. However, it is possible to take
some counter measures to reduce the noise introduced by the
upper levels (OS and VM): we repeat the experiment 6 times
on three different operating systems and machines, obtaining
overall 1800 samples for each version of the code, and we
isolate as much as possible the environment in which the
experiment program runs, disabling for instance network and
network routines or avoiding to launch the program in the
same time of operating system subroutines. Furthermore, the
experiment is the only user program that runs in the machine.
All these provisions do not delete the confounding factors,but
limit them and let us to have a reduced noise on results.

The second threat is a construct threat: if a difference is
found, we say that the cause of the difference is the refactoring
action. However, the platform on which the code runs could
affect results. Therefore, there are generalization problems: we
try to control this threat by using three different platforms.
Moreover, we make available on our website3 the Eclipse
project the experiment framework developed and we invite
other researchers to repeat the experiment and compare the
results with ours. In this way it is possible to build up a
benchmark and make the empirical validation of the impact
of issues on efficiency more reliable.

V. A NALYSIS AND INTERPRETATION

The data collected during the experiments are summarized
in table IV, which reports the average execution times ex-
pressed in milliseconds, for the three different platformsand
separating the execution time of the code containing the issue
(tI) from the execution time of code with the issue refactored
out (tR).

We can immediately observe a wide variability of times and
small differences mainly among different issues, but also to a
smaller extent between platforms. In order to report in the
same diagram such varying values we opted for the rest of
this analysis to plot times using a logarithmic scale.

Columns p in table IV report the p-values of Mann-
Whitney tests carried on overall and by platforms (W, U,
M); statistically significant values are reported in bold face.
The boxplot of figure 1 reports the execution times recorded
in the experiment, divided by issue, in practice it add the
dispersion to the information provided in the first four columns
of the table. Execution times of code containing the issue is
drawn in black, while for code with the issues refactored out
(R) it is represented in red. A gray background is present
corresponding to the issues for which we can reject the null
hypothesis. The boxplot in figure 2 is similar but it reports the
execution times recorded in each platform.

We can observe a range of patterns in terms of hypothesis
rejection overall (figure 1) and for specific platforms (figure 2).
On one side, the null hypothesis can be rejected both overall
and for every tested platform for issues 2, 4, 6, 7, 9, 10, 11, 14,
16, 19, and 20. At the opposite side, the null hypothesis could
not be rejected neither overall nor on any platform for issues

3http://softeng.polito.it/vetro/confs/InfQ2011/EfficiencySmells.zip

TABLE V
P-VALUES OF KRUSKAL-WALLIS TEST FOR CO-FACTORS

ID Platform Run
1 ≤ 0.001 * 0.01
2 ≤ 0.001 * 0.60
3 ≤ 0.001 * ≤ 0.001 *
4 ≤ 0.001 * 0.02
5 ≤ 0.001 * 0.16
6 ≤ 0.001 * 0.02
7 ≤ 0.001 * ≤ 0.001 *
8 ≤ 0.001 * ≤ 0.001 *
9 ≤ 0.001 * 0.19

10 ≤ 0.001 * 0.18
11 ≤ 0.001 * ≤ 0.001 *
12 ≤ 0.001 * 0.04
13 ≤ 0.001 * ≤ 0.001 *
14 ≤ 0.001 * ≤ 0.001 *
15 ≤ 0.001 * ≤ 0.001 *
16 ≤ 0.001 * 0.05
17 ≤ 0.001 * ≤ 0.001 *
18 ≤ 0.001 * ≤ 0.001 *
19 ≤ 0.001 * ≤ 0.001 *
20 ≤ 0.001 * ≤ 0.001 *

8, 12, and 18. Among the remaining issues: for issues 3 and
13 we rejectedH0 overall and on two out of three platforms,
for issue 1 we could reject overall and on 1 platform, and for
issues 5, 15, and 17 we could reject only on one platform.

The effect of co-factors on the main dependent variable has
been checked with the Kruskal-Wallis test, whose results are
reported in table V.

We observe that, concerning the Platform, the hypothesis
can be rejected for all issues. While, the batch Run influenced
the execution time of 11 out of 20 issues.

A. Discussion

Based on results in table IV, 11 of the issues selected have
undoubtably a negative impact on time efficiency, since there
is a statistically significant difference in all conditions. Such
issues are:

2 A primitive boxed value is constructed and then imme-
diately converted into a different primitive type (e.g.,
newDouble(d).intV alue()) instead of performing direct
primitive coercion (e.g.,(int)d).

4 A method invokes a Boolean constructor, instead of using
Boolean.valueOf(...)

6 Code uses newInteger(int) whereas
Integer.valueOf(int) should be used, because it
allows caching of values to be done by the compiler,
class library, or JVM.

7 The java.lang.String(String) constructor is used in-
stead ofString parameter directly.

9 Code creates ajava.util.Random object, uses it to gen-
erate one random number, and then discards theRandom
object. Subsequently, to generate a new random number,
a newjava.util.Random object is created. Code should
be refactored so that theRandom object is created once
and saved to be invoked each time a new random number
is needed.

TABLE IV
SUMMARY OF EXECUTION TIMES.

Platform: all M U W
ID tI tR p tI tR p tI tR p tI tR p

1 34.72 34.48 < 0.001 55.41 55.32 0.01 47.04 47.13 1.00 1.70 1.00< 0.001
2 8.39 2.78 < 0.001 10.03 3.67 < 0.001 12.70 2.73 < 0.001 2.45 1.93 < 0.001
3 68.10 35.27 < 0.001 109.43 54.32 < 0.001 90.78 46.99 < 0.001 4.10 4.51 1.00
4 9.81 5.43 < 0.001 10.57 4.19 < 0.001 13.63 7.18 < 0.001 5.24 4.93 < 0.001
5 180.20 183.31 1.00 167.03 155.49< 0.001 237.84 242.74 1.00 135.72 151.69 1.00
6 9.65 4.78 < 0.001 10.64 3.07 < 0.001 13.77 7.12 < 0.001 4.53 4.16 < 0.001
7 14.72 5.15 < 0.001 17.29 4.20 < 0.001 18.88 7.09 < 0.001 7.99 4.16 < 0.001
8 84.16 88.54 1.00 75.29 75.79 1.00 113.92 121.16 1.00 63.26 68.67 1.00
9 2162.58 1117.11 < 0.001 326.57 164.02 < 0.001 3687.10 1901.80 < 0.001 2474.06 1285.49 < 0.001

10 468.66 213.77 < 0.001 411.45 210.21 < 0.001 728.38 278.32 < 0.001 266.16 152.78 < 0.001
11 8.70 5.08 < 0.001 8.24 4.17 < 0.001 13.15 6.84 < 0.001 4.70 4.22 < 0.001
12 591.41 592.08 0.74 80.33 80.22 0.42 1671.77 1673.89 1.00 22.14 22.14 0.47
13 35.81 35.47 < 0.001 55.64 55.08 < 0.001 47.25 47.31 1.00 4.54 4.03 < 0.001
14 561.95 302.34 < 0.001 455.71 268.63 < 0.001 767.91 409.92 < 0.001 462.24 228.46 < 0.001
15 6.98 7.04 0.08 5.28 5.66 1.00 8.82 9.07 1.00 6.83 6.39< 0.001
16 9.71 8.62 < 0.001 10.78 8.35 < 0.001 13.77 13.45 < 0.001 4.57 4.05 < 0.001
17 592.05 594.41 0.55 3.84 4.15 1.00 1767.72 1775.06 0.01 4.59 4.01 < 0.001
18 537.67 544.22 1.00 462.41 462.53 1.00 707.32 716.04 1.00 443.28 454.10 1.00
19 11.80 11.04 < 0.001 13.94 13.89 < 0.001 16.23 13.93 < 0.001 5.22 5.30 < 0.001
20 582.91 539.86 < 0.001 558.12 514.13 < 0.001 668.55 633.61 < 0.001 522.05 471.84 < 0.001

Fig. 1. Boxplot of execution times for all issues.

10 The code removes all elements from a collectionc, using
c.removeAll(c) instead ofc.clear().

11 A class allocates an instance of a class that only supplies
static methods. The refactoring action is to use the static
methods directly using the class name as a qualifier.

14 Code builds aString using concatenation in a loop
instead of usingStringBuffer.

16 A class contains an instance final field that is initializedto
a compile-time static value. Since the field is immutable
for each object of the class, it should be static.

19 A field which is never read
20 Code accesses the value of aMap entry, using a key that

was retrieved from a keySet iterator. It is more efficient

to use an iterator on theentrySet of the map, to avoid
theMap.get(key) lookup.

More than half of the issues (nr 2, 4, 6, 7, 9, 11) concerns
a useless creation of objects. The other issues are related to
different problems, relating to inefficient, albeit functionally
correct, set of operations.

Being known the number of times that the code containing
the issues is invoked, it is possible to estimate the average
delay that each of these issues bring to the code. The code
fragments invoke issues only once to minimize the confound-
ing factors: therefore the total number of invocations is 1
million times. However, issues 14 and 20 are inside afor
cycle of respectively 5 and 10 iterations, thus they are executed

Fig. 2. Boxplot of execution times for all issues.

TABLE VI
MEAN EXPECTED DELAY [ns] OF VERIFIED ISSUES

Platform
Issue Iterations U W M

2 1 M 8.23 0.43 6.14
4 1 M 6.43 0.43 6.29
6 1 M 6.67 0.43 7.40
7 1 M 11.81 3.91 13.02
9 1 M 1786.00 1185.80 159.60

10 1 M 449.20 113.00 201.10
11 1 M 6.29 0.43 3.90
14 5 M 74.74 51.16 37.81
16 1 M 0.40 0.43 2.36
19 1 M 2.21 0.44 0.11
20 10 M 4.36 4.96 4.07

5 and 10 millions times. Table VI contains the estimated
delays, in nanoseconds, for each issue and platform, computed
aggregating the measurements of the different batches.

All issues concerning the useless creation of objects (except
nr 9) have similar unitary delays: few nanoseconds (3 to 11) in
environments U and M, less than 1 in environment W. Similar
delay is for the wrong map iteration (issue 20). The issue nr

9 (useless Random object) has the highest delay, that is in
the order of magnitude of 1µs. Also issue 10 (emptying the
content of a collection) exhibits high delays (in the order of
magnitude of some hundreds ofns), whereas issue 14 causes a
delay of tens ofns. The smallest delays are those ones of issue
16, a field that should be static, and issue 19, a field that is
never read. In real contexts these numbers can easily reach the
order ofms ands: in real projects there are millions of lines of
code where there can be millions of these simple issues or even
billions if they are insidefor/while cycles. Moreover, these
figures may be directly relevant in Real Time Applications,
where the usage of Java is steadily increasing (for instance,
Boeing has adopted real-time Java in drone aircrafts, and the
United States Navy decided to use it in its next-generation
battleships [11]).

On the basis of the above findings, we can assert that
likely also the following issues, which were not object of our
experiments, have impact on time efficiency, because related
to the previous eleven: BX BOXING IMMEDIATELY UN-
BOXED, BX UNBOXED AND COERCED FOR TERNARY
OPERATOR, DM BOXED PRIMITIVE TOSTRING, DM FP
NUMBER CTOR (similar to issues 2, 6), DM STRING VOID

CTOR (similar to issue 7), issue UUF UNUSED FIELD
(similar to issue 19).

Moreover, we observe that issues 8, 12 and 18, instead,
do not have any negative impact on performance. We further
investigate this fact computing the estimated differencesbe-
tween the two set of execution times (tI − tR). Issue DM
STRING TOSTRING (nr 8, calltoString() on a String)
has negative differences both overall and in every platform;
issue RCN REDUNDANT NULLCHECK OF NONNULL
VALUE (nr 12, check of a known null value) has a significant
difference only in platform U, whilst UPM UNCALLED
PRIVATE METHOD (nr 18, a private method never used) is
significantly different under all conditions. This data shows
that the refactored code of these three issues perform worst
than the original code: this is an unexpected result. Nev-
ertheless, it is probable that optimization enforced by the
compiler and/or the hardware deletes the negative effect of
the three issues at run time. All the three issues concern
useless operations and bad programming practice: even if
they do not impact the efficiency, refactor the code is worthy
to increase its maintainability or decrease its complexity.
Similar issues in Findbugs, not selected for our experiment,
are : RCN REDUNDANT (COMPARISON OF NULL AND
NONNULL VALUE, COMPARISON TWO NULL VALUES,
NULLCHECK OF NULL VALUE, NULLCHECK WOULD
HAVE BEEN A NPE) that are similar to issue nr 12,
and UMAC UNCALLABLE METHOD OF ANONYMOUS
CLASS that is similar to issue 18.

VI. SUMMARY AND CONCLUSIONS

We set up an experiment to quantitatively assess the impact
of selected FindBugs issues on time efficiency. We selected,
through expert judgments, 20 representative issues and for
each one we compared the average execution time of a code
fragment containing that issue against the same code with the
issue refactored out. The measurements were conducted on
three different platforms.

Experts’ examination of issues revealed that, mainly because
FindBugs issue taxonomy is exclusive, a few issues having
a potential impact on performance in fact do not belong to
the Performance category. Moreover experiment revealed that
3 out of 11 verified issues do not belong to the Performance
category, while 2 out of 3 unverified issues belong – apparently
without justification – to that category. Overall, based on
our findings we can select 11 issues that have a proved and
quantified (table VI) impact on time efficiency

We provide these results to programmers that develop their
applications in environments similar to those ones we used in
the experiments, enabling them to estimate the delay provoked
by code that violates the same issues we identified, or a subset.

We plan to investigate deeper the issues without proved
impact on efficiency and to repeat the experiment for other
issues, in different platforms. We are also conducting similar
experiments in industrial contexts. Finally, we make available
the code of the experimental Java framework developed to
enable other researchers repeating the tests on their own

platforms: we will be grateful to collect results and build a
benchmark.

REFERENCES

[1] M. Fowler, Refactoring: Improving the Design of Existing Code.
Boston, MA, USA: Addison-Wesley, 1999.

[2] S. Kim and M. D. Ernst, “Which warnings should i fix first?” in ESEC-
FSE ’07: Proceedings of the the 6th joint meeting of the European
software engineering conference and the ACM SIGSOFT symposium on
The foundations of software engineering. New York, NY, USA: ACM,
2007, pp. 45–54.

[3] ——, “Prioritizing warning categories by analyzing software history,” in
MSR ’07: Proceedings of the Fourth International Workshop on Mining
Software Repositories. Washington, DC, USA: IEEE Computer Society,
2007, p. 27.

[4] S. Wagner, F. Deissenboeck, M. Aichner, J. Wimmer, and M.Schwalb,
“An evaluation of two bug pattern tools for java,” inICST ’08:
Proceedings of the 2008 International Conference on Software Testing,
Verification, and Validation. Washington, DC, USA: IEEE Computer
Society, 2008, pp. 248–257.

[5] S. Wagner, J. Jrjens, C. Koller, P. Trischberger, and T. U. Mnchen,
“Comparing bug finding tools with reviews and tests,” pp. 40–55, 2005.

[6] N. Ayewah and W. Pugh, “The Google FindBugs fixit,” inProceedings
of the 19th international symposium on Software testing andanalysis,
ser. ISSTA ’10. New York, NY, USA: ACM, pp. 241–252.

[7] N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix, and Y. Zhou,
“Evaluating static analysis defect warnings on productionsoftware,” in
PASTE ’07: Proceedings of the 7th ACM SIGPLAN-SIGSOFT workshop
on Program analysis for software tools and engineering. New York,
NY, USA: ACM, 2007, pp. 1–8.

[8] A. Vetro’, M. Torchiano, and M. Morisio, “Assessing the precision
of findbugs by mining java projects developed at a university,” in
Proceedings of MSR 2010, I. C. Press, Ed., 2010, pp. 110–113.

[9] ISO/IEC, ISO/IEC 9126. Software engineering – Product quality.
ISO/IEC, 2001.

[10] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
I. Puaut, P. Puschner, J. Staschulat, and P. Stenström, “The worst-case
execution-time problem overview of methods and survey of tools,” ACM
Trans. Embed. Comput. Syst., vol. 7, pp. 36:1–36:53, May 2008.

[11] T. Harmon and R. Klefstad, “A survey of worst-case execution time anal-
ysis for real-time java,”Parallel and Distributed Processing Symposium,
International, vol. 0, p. 232, 2007.

[12] G. Bernat, A. Burns, and A. Wellings, “Portable worst-case execution
time analysis using java byte code,” inIn Proc. 12th Euromicro
International Conference on Real-Time Systems, 2000, pp. 81–88.

[13] E. Y.-S. Hu, G. Bernat, and A. Wellings, “Addressing dynamic dispatch-
ing issues in wcet analysis for object-oriented hard real-time systems,”
Object-Oriented Real-Time Distributed Computing, IEEE International
Symposium on, vol. 0, p. 0109, 2002.

[14] I. Bate, G. Bernat, G. Murphy, and P. Puschner, “Low-level analysis of a
portable java byte code wcet analysis framework,”Real-Time Computing
Systems and Applications, International Workshop on, vol. 0, p. 39,
2000.

[15] I. Bate, G. Bernat, and P. Puschner, “Java virtual-machine support for
portable worst-case execution-time analysis,” inIn Proc. 5th IEEE Intl.
Symp. on Object-Oriented Real-Time Distributed Computing, 2002, pp.
83–90.

[16] D. S. Hardin, “Real-Time Objects on the Bare Metal: An Efficient
Hardware Realization of the JavaTM Virtual Machine,”Object-Oriented
Real-Time Distributed Computing, IEEE International Symposium on,
pp. 0053+.

[17] M. Arnold, S. J. Fink, D. Grove, M. Hind, and P. F. Sweeney, “A survey
of adaptive optimization in virtual machines,”Proceedings of the IEEE,
no. 2, pp. 449–466, Feb.

[18] D. Hovemeyer and W. Pugh, “Finding bugs is easy,” inOOPSLA ’04:
Companion to the 19th annual ACM SIGPLAN conference on Object-
oriented programming systems, languages, and applications. New York,
NY, USA: ACM, 2004, pp. 132–136.

[19] R. Van Solingen and E. Berghout,Goal/Question/Metric Method.
McGraw-Hill Inc.,US, January.

[20] M. H. . D. A. Wolfe, Nonparametric Statistical Methods. New York:
John Wiley & Sons, 1973.

