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Abstract 

In the last decade, a broad array of disciplines has shown a general interest in 

enhancing discrete choice models by considering the incorporation of 

psychological factors affecting decision making. This paper provides insight into 

the comprehension of the determinants of route choice behavior by proposing and 

estimating a hybrid model that integrates latent variable and route choice models. 

Data contain information about latent variable indicators and chosen routes of 

travelers driving regularly from home to work in an urban network. Choice sets 

include alternative routes generated with a branch and bound algorithm. A hybrid 

model consists of measurement equations, which relate latent variables to 

measurement indicators and utilities to choice indicators, and structural equations, 

which link travelers’ observable characteristics to latent variables and explanatory 

variables to utilities. Estimation results illustrate that considering latent variables 

(i.e., memory, habit, familiarity, spatial ability, time saving skills) alongside 

traditional variables (e.g., travel time, distance, congestion level) enriches the 

comprehension of route choice behavior.   

Keywords: Route choice behavior; Latent variables; Hybrid model; Measurement 

and structural equations; Path size correction logit. 
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1 Introduction 

As the core of traffic assignment and simulation procedures, route choice models 

allow predicting traffic conditions and forecasting travelers’ reactions under future 

hypothetical scenarios. As the representation of individual behavior, route choice 

models allow understanding travelers’ choices on transportation networks. 

The literature in route choice modeling has focused mainly on addressing 

the “core of traffic assignment” perspective by developing enhanced path 

generation techniques and discrete choice models. In the first direction, several 

solutions to the path enumeration problem have been proposed: variations of 

shortest path algorithms (e.g., Akgün et al. 2000; Hunt and Kornhauser 1997; 

Lombard and Church 1993; Van der Zijpp and Fiorenzo-Catalano 2005), 

minimization of generalized cost functions (Ben-Akiva et al. 1984), application  

of heuristic rules (e.g., Azevedo et al. 1993; De la Barra et al. 1993), single and 

doubly stochastic simulation approaches (e.g., Bekhor et al. 2006; Bovy and 

Fiorenzo-Catalano 2007), consideration of logical and behavioral constraints 

within a branch and bound algorithm (Prato and Bekhor 2006), implementation of 

a biased random walk algorithm (Frejinger et al. 2009), and combination of 

breadth first search with network reduction (Schuessler et al. 2010). In the second 

direction, several solutions to the problem of representing the correlation structure 

across alternatives have been offered: representation within the deterministic part 

of the utility function by adding either correction factors (Cascetta et al. 1996) or 

path size measures (Ben-Akiva and Bierlaire 1999; Bovy et al. 2008), and 

representation within the stochastic part of the utility function by either relating 

model parameters to the network topology (Bekhor and Prashker 2001; Prashker 

and Bekhor 1998) or assuming proportionality between path utility covariance and 

overlap lengths (Bekhor et al. 2002; Frejinger and Bierlaire 2007; Yai et al. 1997). 

The literature in route choice modeling has focused also on addressing the 

“representation of individual behavior” perspective by presenting route choice 

models from revealed preference data (e.g., Bekhor et al. 2006; Frejinger and 

Bierlaire 2007; Hoogendoorn-Lanser 2005; Li et al. 2005; Menghini et al. 2010; 

Nielsen 2004; Prato 2005; Prato and Bekhor 2006; Ramming 2002; Rich et al. 

2007; Wolf et al. 2004). These studies mainly concentrate on the analysis of 
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different applications of path generation techniques and discrete choice models, 

rather than on the investigation of determinants of individual behavior other than 

travel times and costs. The only exception is the analysis of the relation between 

network knowledge and socio-economic factors of travelers with a Multiple 

Indicator-Multiple Cause model (Ramming 2002), even though without the 

inclusion of latent variables within the estimated route choice models.  

In the last decade, a broad array of disciplines (e.g., psychology, 

economics, marketing, transportation engineering) has shown a general interest in 

enhancing discrete choice models by considering the incorporation of 

psychological factors affecting decision making (Ben-Akiva et al. 2002). A gap 

still exists between economic modelers, who develop practical models of decision 

making, and behavioral scientists, who concentrate on the comprehension of agent 

behavior (Kahneman 2002). In order to bridge this gap, latent constructs need to 

be incorporated in economic models of decision making (McFadden 2001). 

This paper addresses the “representation of individual behavior” 

perspective and answers the call for incorporating latent constructs in discrete 

choice models by providing insight into route choice behavior with a hybrid 

model that integrates latent variable and route choice models. Latent constructs 

(i.e., memory, habit, familiarity, spatial ability, time saving skills) enter the utility 

function alongside traditional variables (e.g., travel time, distance) to enrich the 

comprehension of travelers’ behavior on urban networks.  

Behavioral determinants other than travel times and costs have been 

considered when investigating route diversion, consistency and pre-planning. 

Madanat et al. (1995) identified the importance of attitudes toward route diversion 

and perceptions of information reliability on route change following traffic 

accidents. Abdel-Aty et al. (1995) showed the significant influence of travel time, 

information reliability and roadway characteristics on route choice between two 

alternatives. Polydoropoulou et al. (1995) illustrated that a reliable and frequently 

updated traffic information system primarily affects en-route diversion. Abdel-

Aty and Huang (2004) expressed the relevance of travel direction, trip frequency, 

age and residency on route choices. Bogers et al. (2005) constructed a simulation 

experiment to explore the influence of information, learning and habit on choices 

between two routes. Parkany et al. (2006) explained that attitudinal indicators 
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influence consistency and diversion for both stated and revealed preferences of 

drivers. Ben-Elia et al. (2008) demonstrated that information and personal 

experience lead to choices between two alternative routes that are different with 

respect to choices in the same context without any knowledge about the two 

alternatives. Papinski et al. (2009) examined spatial or temporal deviations 

between observed and pre-planned routes. While not exhaustive, this list of 

studies suggests that although recognized as important, latent variables were 

considered to represent route diversion and planning rather than route choice 

behavior modeling.  

This paper proposes a hybrid model while accounting for spatial abilities 

and behavioral patterns alongside observable variables, considering several 

alternatives in a real urban network rather than binary choices in a synthetic 

experiment, and adopting the framework thoroughly described by Walker (2001) 

rather than incorporating indicators in utility functions.   

Data contain information about travelers who move regularly from home 

to work in an urban network and participated in a web-based survey. The first part 

of the survey consisted of four sections of questions: classification of the 

respondent, investigation of spatial abilities connected to transportation tasks, 

exploration of spatial abilities not related to transportation tasks, and inquiry of 

driving preferences. The second part of the survey consisted of the collection of 

routes considered by the survey participants to drive from home to work. 

Route choice sets for modeling purposes contain alternative routes 

generated with a variation of the branch and bound algorithm (Prato and Bekhor 

2006). The proposed variation accounts for the notion that travelers develop their 

network knowledge by following a transition from landmark recognition to path 

definition (see Freundschuh 1992; Gale et al. 1990; Garling and Golledge 2000; 

Golledge and Garling 2003), thus the definition of path similarity shifts from the 

physical sharing of a number of links to the physical sharing of a number of 

anchor points through which travelers define their routes.  

The hybrid model consists of measurement and structural equations. 

Measurement equations relate latent variables to measurement indicators and 

utilities to choice indicators. Structural equations relate travelers’ characteristics 

to latent variables and observable route attributes and unobservable latent 
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variables to utilities. The latent variable model assumes that indicators are 

independent on the basis of results from exploratory factor analysis (Prato et al. 

2005). The choice model assumes a Path Size Correction Logit formulation (Bovy 

et al. 2008), since this model allows to account for similarities among alternatives 

while maintaining the simple Logit structure. The model is estimated through the 

maximization of a likelihood function that is the integral of the choice model over 

the distribution of the latent variables. 

The remainder of the paper is structured as follows. Section 2 introduces 

data collection and survey participants. Section 3 describes the choice set 

generation technique implemented in this study. Section 4 illustrates the structural 

and the measurement equations composing the hybrid model. Section 5 presents 

the estimation results and section 6 summarizes major findings of the route choice 

case study. 

2 Data 

2.1 Survey design 

The data collection process consisted of a web-based survey administered to 

faculty and staff members of Politecnico di Torino in Italy.  

Survey design aimed at being comprehensible. The use of simple and 

easily understandable language allowed reducing problems related to personal 

interpretation of the questions. The limitation of the number of questions and the 

division of the survey in four parts allowed containing the time of survey 

completion and thus avoiding possible fatigue issue. 

The first section included questions about travelers’ characteristics such as 

gender, age, composition of the family, type of employment, level of education 

and place of residence. The second section investigated spatial abilities involving 

travel and focused on route learning techniques, perception of travel time for 

different trip purposes, capacity of memorizing routes under different conditions, 

and tendency to repeat the same itinerary in different environments. The third 

section explored spatial abilities not involving travel and concentrated on use of 

modern search technologies, ability in navigating in different environments, 

capacity in different memory tasks, and behavior during usual and occasional 
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shopping. The fourth and last section searched for information about knowledge 

of the city network, capability of estimating distance and time, preferences 

towards landmark use, highly scenic itineraries and traffic lights avoidance, and 

preferences towards diversions related to accidents, works or suggestions on the 

way. Classification questions were formulated in closed form, and latent variable 

indicators were expressed as Likert-type items of seven points.  

A route choice survey accompanied the latent variable survey. Given the 

purpose of comprehending individual behavior in urban networks, only the urban 

part of the routes was collected. Initially, each respondent recognized the origin of 

the trip by individuating on the map either the house location (if resident in 

Torino) or the access point to the urban network (if resident outside Torino). 

Then, each respondent identified the common destination by spotting the location 

of the Politecnico. Last, each respondent indicated the considered routes from 

home to work by annotating sequences of junctions that were coded on the city 

map and sending them through a web form. Figure 1 represents an example of 

coded junctions in proximity of the common destination. 

“Insert Figure 1 about here” 

Answers to the route choice part of the survey collected information about 

the routes considered by the respondents. The network for the city of Torino 

consists of 23 districts, 92 zones, 417 nodes, and 1427 links, and covers an area 

containing roughly 900,000 inhabitants within the city’s limits. The network 

comprises main roads that cross the town from north to south and from east to 

west, main arterials that connect different districts of the city, minor arterials that 

connect points within the same district, and some local streets. 

Web-design matched the structure of the survey by preparing an Active 

Server Page (ASP) page for each section, in which closed-form items presented 

the text of the question followed by the available alternative answers and latent 

variable items showed the text of the question followed by a graphic 

representation of the Likert-scale reporting the semantic meaning of the two 

extremes (e.g., “difficult…easy”). Automatic recording of identifying session 

variables and typing actions of the respondents allowed the seamless collection of 

the answers through the ASP pages. Further details about the web-based survey 

are presented by Prato et al. (2005). 
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2.2 Survey participants 

Survey participants in the sample for model estimation completed the web-based 

survey in both the latent variable and the route choice parts. The sample for model 

estimation consists of 236 individuals indicating a total of 575 routes from home 

to work, as some respondent provided more than one chosen route in the second 

part of the survey. Observed routes average 4.8 kilometers in length with a 

standard deviation of 2.0 kilometers, and 15.4 minutes in time with a standard 

deviation of 5.9 minutes. 

Answers to the first section of the survey provided information about 

travelers’ characteristics that are summarized in table 1. It should be noted that the 

sample includes mainly males, most likely because of a prevalence of male 

population among faculty and staff members in the Politecnico di Torino, and 

graduated respondents, most probably because the participation in the survey of 

faculty members skewed the sample from the education level perspective.  

“Insert Table 1 about here” 

Answers to the second through the fourth part of the survey provided 

information about latent variable indicators. Measures of internal consistency and 

sampling adequacy (Prato et al. 2005) showed the suitability of 28 indicators for 

modeling purposes, according to their high internal consistency throughout the 

entire latent variable survey (Cronbach’s Alpha = 0.76), and their high adequacy 

at the item level (Kaiser-Meyer-Olkin > 0.7). Moreover, exploratory factor 

analysis helped individuating latent variables likely affecting route choice 

behavior (Prato et al. 2005) and showed each indicator having high factor loading 

on only one latent factor. Accordingly, the latent variables and the related 

indicators are presented in table 2. 

“Insert Table 2 about here” 

3 Choice set generation 

Modeling route choice behavior usually consists of the individuation of available 

alternative routes and the calculation of the probability of choosing a certain route 

from the generated choice set. 
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While the web-based survey collected the chosen routes, the 

implementation of the branch and bound algorithm (Prato and Bekhor 2006) 

allowed generating routes alternative to the chosen ones reported by survey 

participants. The algorithm explicitly constructs a connection tree between origin 

and destination of each registered trip by processing sequences of links according 

to a branching rule that accounts for behavioral and logical constraints. Each 

sequence of links reaching the destination while satisfying all the constraints 

enters the choice set of each observation as a feasible solution to the path 

enumeration problem. 

The following logical and behavioral constraints were considered for path 

generation purposes: 

 A directional constraint excludes from consideration paths containing links 

that take the driver farther from the destination and closer to the origin, with a 

tolerance equal to 10%.  

 A temporal constraint rejects paths that travelers would consider unrealistic 

since their travel time is excessively higher than the shortest path, with a 

tolerance equal to 50% travel time in excess. 

 A loop constraint discards path segments that travelers would not consider 

because they constitute a detour larger than an acceptable value, with a 

tolerance equal to 10% extra time for detours.  

 A similarity constraint removes highly overlapping paths that travelers would 

not consider as separate alternatives. Specifically, paths are considered similar 

when sharing more than 3 common landmarks that are defined as the 

intersections between the major arterials according to the city road hierarchy. 

 A movement constraint eliminates unrealistic path segments causing delay and 

apprehension in drivers approaching the junction. Specifically, a movement 

threshold limits to 4 the number of left turns in signalized intersections since 

traffic light regulation in Torino does not reserve green time for left turns. 

Note that the definition of the constraints differs slightly from the original 

formulation proposed by Prato and Bekhor (2006), as this variation of the 

algorithm accounts for the notion that travelers develop their network knowledge 

by following a transition from landmark recognition to path definition (see 

Freundschuh 1992; Gale et al. 1990; Garling and Golledge 2000; Golledge and 
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Garling 2003). According to this notion, travelers navigate through landmarks and 

might consider as similar paths that share the same sequences of landmarks. 

Hence, the similarity constraint considers that routes are alike not because of their 

physical sharing of a number of links, but because of their physical sharing of a 

number of anchor points through which travelers define them. 

The branch and bound algorithm produced a set of alternatives for each 

observation by processing the origin-destination pair of each of the 575 observed 

routes recorded in the survey. The number of generated alternatives varies 

between 2 and 19 with a median value of 11 alternative routes per observation. 

The comparison of the generated choice sets with the observed routes reveals that 

the coverage (see Ramming 2002) is 85.4% with a 100% overlap threshold and 

91.3% with an 80% overlap threshold. Associating these values with the 

consideration that all observed routes overlap at least 64.5% with the generated 

routes shows high realism of the implemented path generation technique with 

respect to the observed behavior.  It should be noted that the observed routes not 

reproduced at the 80% overlap threshold were added to the generated choice set. 

As the impact of choice set size and composition on model estimates has 

recently received attention (e.g., Prato and Bekhor 2007; Bliemer and Bovy 

2008), alternative choice set generation techniques were implemented in order to 

perform a sensitivity analysis of model estimates with respect to choice set 

composition. The random walk algorithm (Frejinger et al. 2009) was implemented 

with both parameters of the Kumaraswamy distribution equal to one for 50 

iterations. Choice sets contain between 3 and 35 alternatives with a median value 

of 17, and the coverage is 78.4% with a 100% overlap threshold and 87.3% with 

an 80% overlap threshold. The breadth first search on link elimination (BFS-LE) 

algorithm (Schuessler et al. 2010) was applied with shuffling of the sub-network 

list. Choice sets include between 2 and 21 routes with a median value of 11, and 

the coverage is 80.7% with a 100% overlap threshold and 90.6% with an 80% 

overlap threshold. 
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4. Hybrid model  

4.1 Model formulation 

The hybrid model framework integrates a latent variable model and a route choice 

model. The latent variable model consists of structural equations, which describe 

the latent variables as a function of observable individual characteristics, and 

measurement equations, which relate the unobservable latent variables to 

observable indicators. The route choice model consists of structural equations, 

which link observable and latent variables to the route utilities, and measurement 

equations, which express the choice as a function of the unobservable utilities. 

Figure 2 represents the hybrid model framework inspired from the original 

framework proposed by Walker (2001). 

“Insert Figure 2 about here” 

The structural equations of the latent variable model express the 

distribution of the latent variables (Walker 2001): 

     *

1 ; and 0,n n n nX g S D       (1) 

where X
*

n is a vector of latent variables, Sn is a vector of characteristics of 

individual n, ωn is a vector of error terms following distribution D with covariance 

matrix Σω, and γ is a matrix of parameters to be estimated.  

The structural equations of the choice model express the distribution of the 

utilities (Walker 2001): 

     *, ; and 0,n n n n nU V Z X D       (2) 

where Un is a vector of utilities of alternative routes, Zn is a vector of attributes of 

alternative routes, εn is a vector of error terms following distribution D with 

covariance matrix Σε, and β is a vector of parameters to be estimated.  

The measurement equations of the latent variable model express the 

distribution of the indicators (Walker 2001): 

     *

2 ; and 0,n n n nI g X D        (3) 
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where In is a vector of indicators, υrn is a vector of error terms following 

distribution D with covariance matrix Συ, and α is a vector of parameters to be 

estimated.  

The measurement equations of the choice model express the choice as a 

function of the utilities (Walker 2001): 

 
1 if

0 otherwise

  
 


in jn

in

U U j i
y   (4) 

where yin is the indicator of choosing route i over alternative routes j, and Uin is 

the utility of route i. 

The estimation of the hybrid model is performed by maximum simulated 

likelihood. If the latent variables were not present, the choice probability P(yn | Zn, 

β, Σε) of selecting the observed routes would be sufficient to write the likelihood 

function. As the latent variables are present in the hybrid model, the choice 

probability should be expressed as P(yn | X
*

n, Zn, β, Σω, Σε), but since latent 

variables are not actually observed, the choice probability is obtained by 

integrating over the distribution of the latent variables: 

       
*

* * *

1, , , , , , , , , ,

n

n n n n n n n n n

X

P y Z S P y X Z f X S dX            (5) 

where f1(X
*

n | Sn, γ, Σω) is the density function of the latent variables. 

Since indicators are observed, the joint probability of observing choice and 

latent variable indicators is written as: 

 

 

     
*

* * * *

2 1

, , , , , , , ,

, , , , , , ,

n

n n n n

n n n n n n n n

X

P y I Z S

P y X Z f I X f X S dX

  

  

  

  

   

   
 (6) 

where f2 (In |X
*

n, α, Συ) is the density function of the indicators.  

In this hybrid model, the functional form of the route choice model is a 

Path Size Correlation Logit (Bovy et al. 2008) that allows accommodating the 

correlation across alternative routes while maintaining the simple Logit structure: 

   
 
 

*

*

*

exp
, , ,

exp


  


  

 
 

 
in obs in lat i PSC

in n n

jn obs jn lat j PSC

j

Z X PSC
P y X Z

Z X PSC
 (7) 
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where Zin is a vector of attributes of route i, X
*

in is a vector of latent variables 

associated to route i, PSCi is the path size correction of route i, βPSC is a parameter 

related to the path size correction, βobs is a vector of parameters related to the 

observable route attributes, and βlat is a vector of parameters related to the latent 

variables. The path size correction is calculated as (Bovy et al. 2008): 

  ln
i

a
i aj

a ji

D
PSC

D




 
   

 
   (8) 

where Di is the length of route i, Da is the length of link a within the set of links 

Γi, and δaj is the link-path incidence dummy equal to one if route j uses links a and 

zero otherwise. 

In this hybrid model, the densities of the latent variables and the indicators 

are expressed as follows: 

  
*

*

1

1

1
, ,

l l

L
ln ln l

n n

l

X S
f X S 

 


  

 

 
  

 
 

   (9) 

   
*

*

2

1

1
, ,

r r

R
rn ln r

n n

r

I X
f I X 

 


  

 

 
  

 
 

  (10) 

where Sln is a vector of individual characteristics related to one of L latent 

variables, Irn is one of R indicators, ζωl and ζυr are variances of error terms in 

vectors ω and υ, αr and γl are parameters respectively related to indicators and 

latent variables, and Φ is the standard normal density function. 

Given the expectation form, the choice probability may be replaced by an 

empirical mean that simulates the L-dimensional integral: 

   

 

 
 

* *

*
1 1

, , , , , , , ,

exp1 1

exp
r r

n n n n

h
RH

in obs in lat i PSC rn ln r

h
h rjn obs jn lat j PSC

j

P y I Z S

Z X PSC I X

H Z X PSC

  

 

  

   


    

   

   
 
    

 


 (11) 

where H is the number of draws and 
*h

jnX is a random draw of the latent variable l 

that is calculated as: 

  * where 0,1
l

d d

ln ln l ln ln l ln lnX S S N             (12) 
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The objective function becomes:  

    , ,

1

max ln , , , , , , , ,       


  
N

n n n n

n

P y I Z S  (13) 

The maximization of the likelihood function is performed simultaneously 

by simulating the integration of the choice model over the distribution of the fitted 

latent variables with code written in Gauss matrix language. Following the 

literature about integral simulation (e.g., Bhat 2003; Train 2003) and about hybrid 

model estimation (e.g., Walker 2001; Bolduc et al. 2008), 1000 Halton draws are 

used for the simulation of the L-dimensional integral. 

4.2 Model specification 

Measurement equations of the latent variable model associate the latent variables 

to the indicators according to the correspondence in table 2, and as an example the 

first of the 28 equations is presented:  

 1 1  n n nMEMROUTE MEM   (14) 

Structural equations of the latent variable model associate the latent 

variables to the individual characteristics, and after statistical significance tests for 

the parameters within γ, some parameters were constrained to zero and the five 

structural equations of the latent variable model are written as: 

 
nnnn

nnnnn

CONSTSTOPCHILDREN

EDUC55AGEM35AGELMALEMEM

19,17,16,1

4,13,12,11,1








 (15) 

 
nnnn

nnnnn

CONSTSTOPSINGLE

EDUC55AGEM35AGELMALEHAB

29,27,25,2

4,23,22,21,2








 (16) 

 
nnn

nnnn

CONSTRESCITY

STOPCHILDRENMALEFAM

39,38,3

7,36,31,3








 (17) 

 
nnnn

nnnn

CONSTRESCITYSTOP

CHILDRENEDUCMALESPAB

49,48,47,4

6,44,41,4








 (18) 

 
nnnnn

nnnnn

CONSTRESCITYSTOPSINGLE

EDUC55AGEM35AGELMALETSAV

59,58,57,55,5

4,53,52,51,5








 (19) 
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where MALEn indicates the gender (equal to 1 if male, 0 if female), AGEL35n and 

AGEL55n refer to the age (less than 35 or more than 55 years old, respectively), 

EDUCn denotes the education level (equal to 1 if at least M.Sc., 0 otherwise), 

SINGLEn and CHILDRENn represent the family status (single or married with 

children, respectively), RESCITYn indicates the residence location (equal to 1 if 

within the city, 0 otherwise), and STOPn refers to stops along the commute trip 

(equal to 1 if usual, 0 otherwise).  

Structural equations of the choice model associate route utilities with route 

attributes and latent variables as perceived by individual n: 

 

1 2 3 4 5

6 7 8 9

10 11 12

13 14 15

jn jn jn jn jn jn

jn n jn n jn n jn

n jn n jn n jn

n jn n jn n jn

n

V DIST TIME DELPC TMRPC TURNS

PSC MEM DIST MEM DELPC HAB DIST

HAB TMRPC HAB TURNS FAM DELPC

FAM TMRPC FAM TURNS SPAB TMRPC

SPAB

    

   

  

  

     

    

   

   

 16 17 18jn n jn n jnTURNS TSAV TIME TSAV DELPC   

 (20) 

where DISTjn is the distance, TIMEjn is the travel time, DELPCjn is the percentage 

of delay, TMRPCjn is the percentage of time on major roads, TURNSjn is the 

number of turns and PSCjn is the path size correction factor of the alternative route 

j within the choice set of individual n. The values of the latent variables MEMn, 

HABn, FAMn, SPABn and TSAVn for each respondent are associated to each route 

recorded through interaction terms with the route attributes. A systematic process 

of considering every possible interaction term between latent variables and route 

attributes and examining the significance of the estimated parameters led to the 

significant interaction terms in equation (20).  

The measurement equations of the choice model individuate the chosen 

routes within the sets of alternative routes.  

5 Model results 

5.1 Latent variable model  

Estimates of the measurement equations are presented in table 3, where 5 

parameters are constrained to one for identification purposes (see Walker 2001) 

and estimates of the 28 standard deviations ζυr are not reported. 
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“Insert Table 3 about here” 

As the model measures the effects of the latent variables on each indicator, 

some considerations are drawn from the results. As expected, the latent variable 

MEM has a positive correlation with all memorizing tasks and especially with 

transportation related tasks such as remembering a route just learned, a route 

traveled as a passenger or a parking location. The latent variable HAB is 

positively linked to the habit of driving through the same route and the recurrence 

of shopping in the same places, and is negatively linked to the tendency to modify 

itinerary as a consequence of either traffic congestion or received information. 

The correlation of the latent variable FAM is positive at a large extent with the 

ability of describing routes usually taken and evaluating travel time of any route, 

is positive at a smaller extent with the capability of navigating at home in the 

dark, and is negative with the tendency of using main roads for navigation across 

the city. The correlation of the latent variable SPAB is positive with the ability of 

evaluating distances on a map, at a lesser extent positive with using maps and 

navigating through landmarks, and is negative with the preference for scenic 

roads. The latent variable TSAV is positively linked at a larger extent to the 

search for shortcuts and the preference for routes without traffic lights, and at a 

lesser extent to the tendency of properly estimating times and distances. 

Estimates of the structural equations are presented in table 4 and estimates 

of the 5 standard deviations ζωl are not reported. It should be noted that 

covariances of the latent variables are constrained to zero, after initial 

unconstrained estimation of the model verified that estimates of covariances are 

not significantly different from zero. The orthogonality of the latent variables 

confirms analogous findings by Prato et al. (2005). 

“Insert Table 4 about here” 

As the model links travelers’ characteristics with the latent variables, some 

considerations are elicited from the results. Being a male is related to higher 

mnemonic capability, higher level of familiarity with the environment, better 

spatial abilities and superior time saving skills. Younger respondents seem 

expectedly related to having both better memory and time saving skills and appear 

understandably connected to a lower tendency to follow routine behavior, while 
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older respondents seem logically related to opposite tendencies. Having obtained 

a degree seems understandably correlated to higher abilities in terms of memory, 

spatial orientation ability and time saving skills, but also to higher propensity to 

be habit-bound. Family composition shows also association to the latent variables, 

as being single seems predictably related to less habitual behavior and not 

expectedly connected to lower time saving skills, while having children appears to 

relate to higher mnemonic ability and familiarity with the choice environment. 

Having stops on the way to work is linked positively to habit and negatively to 

spatial abilities, but is also less expectedly related positively to time saving skills 

and negatively to memory and familiarity of the environment. Last, being resident 

in the city seems logically associated positively with higher familiarity with the 

environment, routine behavior and ability in saving time, and negatively with 

spatial abilities.    

5.2 Route choice model 

Estimates of the route choice model are presented in table 5, alongside the 

estimates of a stand-alone route choice model without latent variables.  

“Insert Table 5 about here” 

Notably, the inclusion of the latent variables identified by the structural 

equations improves the goodness-of-fit of the hybrid model with respect to the 

stand-alone choice model. As the number of parameters of the hybrid model is 

much larger, an account of prediction performance of the models is given by 

applying the models to estimation and validation samples. Prediction involved 

drawing randomly 475 observations for estimation purposes and 100 observations 

for validation purposes, repeating the procedure 10 times for reducing the effect of 

the random draws, and computing probabilities of choosing each alternative route 

in order to calculate the average probability of correctly predicting the choice of 

each observation. While the application of the PSC-Logit model is 

straightforward, the application of the hybrid model implies the integration of the 

choice model over the distribution of the disturbances of the structural equations 

of the latent variable model (Walker 2001). The hybrid model outperforms the 

stand-alone route choice model in terms of average probability of correct 

prediction (32.4% versus 25.0%). It should be noted that the relatively low values 
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must be put into perspective by considering that an average of 11 routes are 

available for each observation in the validation sample. It should be also noted 

that the average overlap of the predicted routes (i.e., routes with the highest choice 

probability in the validation sample) with respect to the chosen routes further 

confirms that the hybrid model outperforms the stand-alone route choice model 

(78.1% versus 70.3%)  

Parameter estimates of the route attributes suggest that increasing 

distances and travel times have an expected negative effect on the selection of a 

route. Logically, the same applies to the percentage of delay that measures the 

average level of congestion on the route as the ratio of the difference between 

congested and free flow time with respect to the congested travel time. Also 

logically, the same concerns the number of turns in accordance with the notion of 

travelers preferring direct routes. Plausibly, the percentage of time on major roads 

is positively related to route choices of individuals in accordance to the notion that 

travelers prefer to navigate through landmarks and in this specific case through 

major arterials. The sign of the parameter of the path size correction factor is 

positive, to confirm the desired reduction in the utility of overlapping routes. 

Parameter estimates of the interaction terms between latent variables and 

route attributes suggest that mnemonic, spatial and time saving abilities seem to 

have a positive correlation with the described preferences of individuals for the 

route attributes, while habit and familiarity appear to have a negative one. On the 

one hand in fact, individuals with higher mnemonic capacity seem to look for 

shorter and less congested paths, better spatial ability is not surprisingly related to 

a larger use of landmarks and a lower number of turns, and travelers with high 

time saving skills appear to tend toward faster and less congested alternatives. On 

the other hand, habit-bound travelers seem not to care about longer distances, 

lower use of major arterials and higher number of turns in their route choices, 

while individuals highly familiar with the environment in which they travel 

appear less bothered by higher congestion levels, lower use of landmarks and 

increasing turning movements. 

Table 6 presents a sensitivity analysis of model estimates with respect to 

the choice set generation technique. Not only the parameter signs are not different, 

but also the parameter estimate values are not significantly different when 
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estimating the hybrid model with choice sets generated by either branch and 

bound (Prato and Bekhor 2006), or random walk (Frejinger et al. 2009), or BFS-

LE (Schuessler et al. 2010) algorithms. Even though literature in route choice 

modeling shows that choice set composition affects model estimates (e.g., Prato 

and Bekhor 2007; Bliemer and Bovy 2008), the hybrid model seems not to be 

affected. On the one hand, this finding could be explained by the fact that choice 

set sizes and compositions are comparable for this specific case-study. On the 

other hand, this finding could be explained by the fact that latent variables are 

invariant to the choice set generation technique. 

“Insert Table 6 about here” 

6 Summary and conclusions 

This paper provides insight into route choice behavior by estimating a hybrid 

latent variable choice model where latent constructs (i.e., memory, habit, 

familiarity, spatial ability, time saving skills) enter the utility function alongside 

traditional variables (e.g., travel time, distance, congestion level) to enrich the 

comprehension of individual behavior on urban networks. 

The collection of latent variable indicators, the recording of chosen routes 

and the generation of choice sets provided the data for modeling purposes. The 

design of a web-based survey allowed collecting travelers’ characteristics, 

transportation and non-transportation related spatial abilities, behavioral patterns, 

and 575 routes chosen by the survey respondents to drive from home to work. A 

modification of the branch and bound algorithm (Prato and Bekhor 2006) 

accounted for the notion that travelers perceive similarity among paths on the 

basis not only of the physical sharing of a number of links, but also of the physical 

sharing of a number of anchor points through which they define their routes. 

Random walk (Frejinger et al. 2009) and BFS-LE (Schuessler et al. 2010) 

algorithms allowed performing a sensitivity analysis of hybrid model estimates 

with respect to the choice set generation technique implemented. 

Simultaneous estimation of the hybrid model allowed estimating the 

parameters of both the latent variable and the route choice models.  
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Notably, the inclusion of the latent variables improves the goodness-of-fit 

of the hybrid model over the stand-alone choice model, as shown by both 

goodness-of-fit measures and prediction performances.  

Expectedly, increasing distances, travel times, congestion levels and 

number of turns have a negative effect on the choice of routes, while higher 

percentage of time on major roads has a positive effect. These results confirm well 

known findings about minimization of travel time and distance (e.g., Ramming 

2002; Hoogendoorn-Lanser 2005; Prato 2005), minimization of congestion levels 

(e.g., Prato 2005; Papinski et al. 2009) and maximization of route directness 

(Raghubir and Krishna 1996; Conroy Dalton 2003; Papinski et al. 2009).  

Latent variables provide additional insight into route choice behavior by 

suggesting that mnemonic, spatial and time saving abilities seem to have a 

positive correlation with the preferences of individuals with respect to route 

attributes in the sense that probably individuals with these skills tend to look for 

better alternatives and to remember to use them. On the other hand,  habit and 

familiarity appear to have a negative correlation with the preferences of 

individuals for route attributes in the sense that possibly individuals with these 

characteristics do not tend to search for better alternative routes even if their 

choice is not optimal.  

Probably, being able to search for alternatives that allow saving time and 

being able to remember several available alternatives may increase the utility of 

route choices in the sense that individuals tend to look for better alternatives and 

to remember using them. In fact, greater spatial knowledge is related to greater 

variation in route (Ramming 2002), as travelers with better spatial abilities might 

be aware of more routes and look for information to decide among them, or might 

listen to travel reports and read maps to acquire additional alternatives.  

Presumably, having the habit of following the same route and navigating 

mainly through familiar places may reduce the utility of route choices in the sense 

that individuals do not tend to search for better alternative routes even if their 

choice is not optimal in terms of travel time, congestion and number of turns. In 

fact, commuting route choices are frequent choices that are goal-directed habitual 

behavior (Aarts and Dijksterhuis 2000) and hence are characterized by 
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automaticity and partial lack of awareness (Verplanken and Aarts1999) that leads 

travelers not necessarily to minimize distance and travel time. 

These results confirm previous findings found in the travel behavior 

literature. Model estimates suggest that latent variables alter the perception of 

alternative attributes by travelers (e.g., habit leads to choosing longer routes), as 

hypothesized in the conceptual framework proposed by Bovy and Stern (1990) to 

describe the route choice process as dependent not only on route attributes, but 

also on spatial abilities, behavioral patterns and driving preferences of travelers. 

Also, the significance of the latent factors generalize to route choice from revealed 

preferences findings about route choice in simulation experiments, performed for 

example by Polydoropoulou et al. (1995), who determined the influence of 

attitudes on route choice diversions, Bogers et al. (2005), who analyzed the effect 

of learning and habit in a simulation of selection between two routes, and Parkany 

et al. (2006), who illustrated that attitudes affect consistency and diversion in the 

choice of paths. Moreover, the relevance of habit and familiarity agrees with the 

theory that behavior really has core preferences based on habitual behavior and 

contingent preferences based on context (Fujii and Garling 2003). 

Undoubtedly, estimating a hybrid model contributes to the understanding 

of determinants of individual route choice behavior in urban networks. Findings 

suggest that individuals generally prefer shorter, faster and less congested routes, 

but also that their characteristics, their spatial abilities and their behavioral 

patterns significantly influence their preferences and could even bring them to 

ignore better alternatives because they are comfortable with their current choices. 

Further research could concentrate on the simplification of the model specification 

with a lower number of variables, on the consideration of the concept of landmark 

similarity in the route choice model and not only in the choice set generation, and 

on the analysis of the effect of latent variables on the choice set formation process 

when a joint model of choice set generation and route choice is proposed and 

estimated.  
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Fig. 1 An example of coded junctions on the city map 
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Fig. 2 Hybrid model framework 
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Table 1 Characteristics of the survey participants 

Characteristic Description % 

Gender male 58.9 

 female 41.1 

Age less than 25 years old 10.9 

 between 25 and 35 years old 31.4 

 between 35 and 45 years old 31.4 

 between 45 and 55 years old 48.3 16.9 

 more than 55 years old 9.4 

Family composition single 15.7 

 married without children 49.2 

 married with children 35.1 

Education intermediate school  3.7 

 high-school 30.3 

 M.Sc. 39.7 

 Ph.D. 20.0 

Location residence inside the city  62.3 

 residence outside the city 37.7 

Stops  usually stops on the way to work 27.4 

 never stops on the way to work 72.6 
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Table 2 Latent variables and indicators considered in the hybrid model 

Latent variable Indicator Description 

MEM 

mnemonic ability 

I1 - MEMROUTE Remembering a route just learned 

I2 - MEMHOME Remembering the positions of objects at home 

I3 - MEMMIND Remembering dates and events 

I4 - MEMLAYOUT Remembering the layout of a shopping mall 

I5 - MEMWAY Remembering a route as a passenger 

I6 - MEMPARK Remembering the parking place 

HAB 

habit within the choice 

environment 

I7 - SMRTWORK Using the same route to go to work 

I8 - SMRTSHOP Using a route just learned 

I9 - DISTSHOP Shopping daily close to home or work 

I10 - SAMESHOP Shopping daily in the same place 

I11 - TENDSDCH Tendency to change route for traffic conditions 

I12 - TENDCHSG Tendency to change route for a suggestion 

FAM 

familiarity with the 

choice environment 

I13 - DSCFAMRT Describing familiar routes 

I14 - DSCRTHOM Describing the route to own house 

I15 - EVALROUTE Evaluating time for a generic route 

I16 - NAVHOME Navigating in the dark at home 

I17 - DRVMAIN Driving through main roads 

SPAB 

spatial ability 

I18 - BUYMAP Buying a map in an unknown city 

I19 - TENDMAP Tendency to use a map 

I20 - DISTTOWN Evaluating distances on a map 

I21 - DRVLANDM Driving through landmarks 

I22 - DRVSCEN Driving through scenic roads 

TSAV 

time saving skill 

I23 - ESTTIME Estimating time for the route to own house 

I24 - USEINT Using internet for information search 

I25 - SHORTCUT Looking for shortcuts on a generic route 

I26 - DRVNOTL Driving on roads without traffic lights 

I27 - TNDESTTM Tendency to estimate time correctly 

I28 - TNDESTDS Tendency to estimate distances correctly 
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Table 3 Estimates of the measurement equations of the latent variable model 

 MEM    HAB  

Variable estimate t-stat.  Variable estimate t-stat 

MEMROUTE 1.000 -  SMRTWORK 1.000 - 

MEMHOME 0.969 6.43  SMRTSHOP 0.989 2.25 

MEMMIND 0.869 6.31  DISTSHOP 1.485 3.12 

MEMLAYOUT 0.746 5.32  SAMESHOP 1.724 3.12 

MEMWAY 1.346 7.09  TENDSDCH -0.958 -2.11 

MEMPARK 1.338 7.72  TENDCHSG -1.401 -3.65 

 

 FAM    SPAB  

Variable estimate t-stat.  Variable estimate t-stat 

DSCFAMRT 1.000 -  BUYMAP 1.000 - 

DSCRTHOM 0.767 7.16  TENDMAP 0.519 2.46 

EVALROUTE 0.640 5.48  DISTTOWN 2.772 2.75 

NAVHOME 0.186 2.45  DRVLANDM 0.682 2.38 

DRVMAIN -0.099 -1.70  DRVSCEN -0.562 -2.78 

 

 TSAV  

Variable estimate t-stat 

ESTTIME 1.000 - 

USEINT 3.346 2.47 

SHORTCUT 3.842 2.43 

DRVNOTL 3.669 2.41 

TNDESTTM 2.057 2.24 

TNDESTDS 2.288 2.12 
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Table 4 Estimates of the structural equations of the latent variable model 

 MEM  HAB  FAM  

Variable estimate t-stat. estimate t-stat. estimate t-stat. 

MALE 0.221 2.22 -0.080 -1.13 0.238 2.52 

AGEL35 0.192 3.26 -0.216 -2.67 - - 

AGEM55 -0.125 -1.87 0.217 2.27 - - 

EDUC 0.270 2.61 0.223 3.00 - - 

SINGLE - - -0.319 -3.15 - - 

CHILDREN 0.306 2.78 - - 0.260 2.60 

STOPS -0.361 -3.18 0.260 3.35 -0.364 -3.40 

RESCITY - - 0.246 3.37 0.240 2.23 

CONSTANT -0.204 -2.08 -0.125 -1.76 -0.271 -2.67 

 

 SPAB  TSAV  

Variable estimate t-stat. estimate t-stat. 

MALE 0.365 4.98 0.267 3.29 

AGEL35 - - 0.234 2.53 

AGEM55 - - -0.315 -2.91 

EDUC 0.607 7.99 0.272 3.28 

SINGLE - - -0.237 -2.08 

CHILDREN 0.070 2.14 - - 

STOPS -0.208 -2.54 0.228 2.60 

RESCITY -0.144 -1.91 0.247 2.03 

CONSTANT -0.461 -3.64 -0.463 -3.27 
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Table 5 Estimates of the route choice model 

 PSC-LOGIT  PSC-LOGIT  

 
without latent 

variables 
 with latent variables  

Variables estimate t-stat. estimate t-stat. 

DIST -0.620 -4.13 -0.838 -4.81 

TIME -0.341 -6.62 -0.284 -5.11 

DELPC -0.458 -3.13 -0.300 -2.91 

TMRPC 0.525 3.68 0.520 3.47 

TURNS -0.163 -2.46 -0.190 -2.82 

PSC 0.655 3.12 0.690 3.29 

MEM – DIST - - -0.533 -1.87 

MEM – DELPC - - -0.137 -1.80 

HAB – DIST - - 0.893 2.59 

HAB – TMRPC - - -0.810 -2.31 

HAB – TURNS - - 1.910 2.38 

FAM – DELPC - - 0.313 1.76 

FAM – TMRPC - - -0.815 -2.36 

FAM - TURNS - - 2.120 2.31 

SPAB – TMRPC - - 0.515 2.03 

SPAB – TURNS - - -1.200 -2.57 

TSAV – TIME - - -0.135 -1.71 

TSAV - DELPC - - -0.145 -1.72 

Number of parameters: 6  103  

Null log-likelihood: -1298.38  -1298.38  

Final log-likelihood: -1061.69  -947.92  

Rho-bar squared: 0.182  0.270  

Adjusted rho-bar squared: 0.178  0.191  
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Table 6 Estimates of the route choice model from different choice set generation methods 

 
PSC-

LOGIT 
 PSC-LOGIT 

 
PSC-LOGIT  

 
branch 

and bound 
 random walk 

 
bfs-le  

Variables estimate t-stat. estimate t-stat. estimate t-stat. 

DIST -0.838 -4.81 -0.917 -3.45 -0.793 -4.04 

TIME -0.284 -5.11 -0.313 -4.42 -0.253 -4.21 

DELPC -0.300 -2.91 -0.340 -2.11 -0.327 -2.69 

TMRPC 0.520 3.47 0.562 2.80 0.552 3.54 

TURNS -0.190 -2.82 -0.216 -2.21 -0.209 -2.59 

PSC 0.690 3.29 0.656 2.14 0.673 3.21 

MEM – DIST -0.533 -1.87 -0.623 -1.86 -0.482 -1.68 

MEM – DELPC -0.137 -1.80 -0.144 -1.75 -0.160 -1.79 

HAB – DIST 0.893 2.59 1.066 2.13 0.841 2.10 

HAB – TMRPC -0.810 -2.31 -0.897 -1.99 -0.890 -2.50 

HAB – TURNS 1.910 2.38 2.002 1.93 1.959 2.38 

FAM – DELPC 0.313 1.76 0.359 1.69 0.343 1.68 

FAM – TMRPC -0.815 -2.36 -0.941 -1.97 -0.855 -2.38 

FAM - TURNS 2.120 2.31 2.196 2.07 2.285 2.16 

SPAB – TMRPC 0.515 2.03 0.587 1.87 0.548 2.13 

SPAB – TURNS -1.200 -2.57 -1.252 -2.00 -1.279 -2.37 

TSAV – TIME -0.135 -1.71 -0.157 -1.62 -0.139 -1.67 

TSAV - DELPC -0.145 -1.72 -0.171 -1.60 -0.152 -1.64 

Null log-likelihood: -1298.38  -1298.38  -1298.38  

Final log-likelihood: -947.92  -956.05  -953.90  

Rho-bar squared: 0.270  0.264  0.265  

Adjusted rho-bar squared: 0.191  0.184  0.186  

 

 


