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Summary. A coupled static-dynamic method  is proposed and applied to bladed disks with shrouds, in order to calculate the nonlinear 

forced response in presence of friction damping in the frequency domain. The novel approach allows to improve the already existing 

methods, which require a preliminary static analysis. 

Introduction 

Rotor blades inside turbo-machines have to resists remarkable static and dynamic forces during their operative life. To 

avoid high cycle fatigue (HCF) failures, it is necessary to reduce the response level increasing the damping of the 

system. One of the most exploited damping sources is friction damping and one of the most common configuration of 

friction dampers are shrouds ([1]) located at the blade tip. By means of shrouds each blade is connected to the adjacent 

blades and energy is dissipated by friction due to the relative displacements of the blades. 

Numerical solvers are developed to compute the forced response of shrouded bladed disks in the frequency domain by 

means of the Harmonic Balance Method [2], studying the periodic response of the system subjected to periodic 

excitation as a superposition of harmonics and reducing the differential equations of motion of the system to a 

nonlinear, complex, algebraic system of equations. The classical approach available in the literature is based on the 

following steps: 

1. Normal pre-loads acting on contact surfaces are calculated by means of static equilibrium equations as function 

of centrifugal, thermal forces acting on the system; 

2. Dynamic response of the non-linear system is computed in the frequency domain with the Harmonic Balance 

Method using the normal pre-loads computed at step 1 as input parameters. 

In this paper, a coupled static/dynamic approach, originally implemented for underplatform dampers ([3]) is 

implemented for the forced response calculation of shrouded bladed disks. By means of the proposed approach the step 

1 of the current state-of-the-art procedure is no more necessary. 

The improvement is made possible by refining the contact element [4], which represents the state of the art in the field. 

Balance Equations 

The balance equations of a bladed disk with shrouds are 

 
   ̈( )     ̇( )     ( )     ( )    (   )   (1)   

where  ,   and   are the mass, damping and stiffness matrices,   is the vector of nodal displacements including disk, 

blades and shrouds degrees of freedom,     is a periodic excitation, whose harmonic components are called engine 

orders and have angular frequencies multiple of the angular speed  of the rotor and   (Q,t) are the nonlinear contact 

forces exerted at shrouds interfaces. 

In order to compute the steady-state forced response of the system, the HBM can be used and periodic displacements   

and contact forces    are approximated with a Fourier series 
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where   is the rotation speed of the bladed disk and n∙  is the frequency of the generic n
th

 engine-order excitation. As 

a consequence, the differential equation (1) is turned into a set of algebraic complex equations 
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where  ( )( )         (  )    is the n
th
 order dynamic stiffness matrix. 

In order to reduce the size of the nonlinear problem and to be able to perform calculations of real bladed disks for 

industrial applications, a reduced order model must be generated. The Component Mode Synthesis can be used ([5]), 

keeping as physical dofs the contact nodes and adding a set of slave modes large enough to model accurately the 

dynamics of the system. 

The resulting set of reduced non-linear equations is 
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with  ( )     ( ), being   the reduction matrix. Inverting the dynamic stiffness matrix, the receptance notation can 

be finally adopted 
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Since the dofs of the system can be partitioned in contact dofs qc, where the contact forces fc act, and non-contact dofs 

qnc, where no contact forces are applied, the non-linear subset of balance equation is: 
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being    
( )   ( )( )     

( )  the linear response to the external excitation. 

In order to avoid the inversion of the  ( )( ) matrix at each frequency  during the force response calculation, the 

receptance matrix of the reduced system is computed as 
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where i, i and  are the natural frequency and the modal damping and the mass-normalized mode shapes of the 

reduced system, whose size is NM. 

Contact Element 

In order to solve the set of non-linear algebraic equations (6), it is necessary to compute the periodic contact forces at 

shrouds due to the relative displacement of contact points and their Fourier coefficients. The contact element used in 

this paper has been originally introduced in [4], but with respect to the original formulation its constitutive equations 

have been refined in order to couple the static and the dynamic equations of the bladed disk. 

The contact element, as shown in Figure 1, is made of two springs of stiffness kn and kt, simulating the normal and the 

tangential contact stiffness and connecting the Coulomb slider to one of the body in contact. Given a periodic relative 

motion u(t) in the tangential direction and v(t) in the normal direction, defined as 
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periodic normal and tangential contact forces can be computed. Three states are possible: stick when the tangential force 

T is lower than the Coulomb limit force , being  the coefficient of friction and N the normal force, slip when the 

tangential force T reaches the Coulomb limit force  and lift-off when the contact forces are null. Transitions are 

controlled by means of transition criteria which allow to compute numerically the transition points. 

 

Figure 1: Contact element (left) and hysteresis cycles: full stick (middle) and stick-slip (right) 

 

The normal contact force is modelled with the following equation  
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taking into account the effect of normal relative displacement of contact point and imposing null values in case of 

separation of the contact points. The initial static interference, existing between the contact points before vibration 

starts, is defined as v0, and the static normal force is directly linked to the value of the final static interference (or gap) 

(v0+v
(0)

) of the contact points and not computed with a preliminary static analysis. 

The tangential contact force depends on the contact state: 
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If the contact enters the slip or the lift-off state during vibration, the periodic cycle of the tangential contact force T 

computed by means of the constitutive equations (9) is unique. On the contrary if the vibration amplitude is not large 

enough to induce slip or lift-off and the contact is perfectly elastic, unique periodic tangential force T cannot be com-

puted, since the static value T
(0)

 can be included in the range 
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being T
(0)

min the value corresponding to the elastic force tangent to the lower Coulomb limit -N and T
(0)

max the value 

corresponding to the elastic force tangent to the upper Coulomb limit +N. 

In order to have unique values of tangential contact force T(t), in case of elastic contact (full sticking conditions), the 

following refinement of the contact model is here proposed, based on a predictor-corrector approach. 

The tangential force is initially set equal to 
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then no correction is made. On the contrary, if during the period it is verified that 
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the value of Eq. (20) is corrected as 
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At the same way, if 
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the value of Eq. (20) is corrected as 
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By means of the proposed approach the coupled set of static and dynamic balance equations of the bladed disk with 

shrouded contact allows computing a unique forced response without any preliminary static calculation of simplified 

hypothesis about the distribution of normal pre-loads on the shroud contact area. 

Once the periodic forces T(t) and N(t) are known in a local coordinate system, their Fourier coefficients can be comput-

ed, rotated in the bladed disk coordinates and added to the vector   
( )

 of equation (6). 

Test case 

In order to verify that the implemented algorithm and methods work correctly, an ad-hoc dummy blade has been de-

signed as test case.  

 

 
 

Forced response calculation 

 

The contact has been distributed over 9 nodes (3x3 grid) on the contact area shown in Figure 2; the tangential and 

normal contact stiffness has been computed with the model developed in [7], and evenly distributed among the contact 

nodes. 

All the blades are assumed to be identical, and so the cyclic symmetry boundary conditions ([1]) are applied to the 

shroud contact area, allowing  to simulate the dynamics of an array of interconnected blades modelling only one of the 

blades, hence called the fundamental blade. 

Referring to the non-linear balance equation (6), the displacements of contact nodes qC of the fundamental blade can be 

divided in two sets: left contact nodes qC,L and right contact nodes qC,R, as shown in Figure 3. 

 

Contact 

area 

Design 

angle 

Figure 2: dummy blade used as test case and zoom of the contact area at the shroud 
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According to the cyclic symmetry boundary conditions, the Fourier components of the relative displacements between 

the right contact surface of the fundamental blade and the left contact surface of the adjacent blade are expressed as 

      
( )      

( )      
( ) ∙                                (17)   

where  is the physical inter-blade phase angle, defined as  = 2/Nb, where Nb is the number of blades. 

The relative displacements defined in equation (17) are used to compute the tangential and the normal relative 

displacements u and v necessary to compute, with the above described contact element, the Fourier coefficients of the 

contact forces     
( )

 acting on the right contact surface of the fundamental blade, then the contact forces acting on the left 

contact surface are obtained using the relationship 

     
( )        

( )  ∙                                 (18)   

and the vector of contact forces   
( ) of equation (6) can be assembled. 

Forced response calculation 

Since the contact model is able to take into account variable normal contact forces, partial lift-off may occur and, as 

shown in the literature, the FRF curve may exhibit the so-called jump phenomenon ([4]) and turning points on the curve 

as well as multiple balance conditions may exist in a given range of excitation frequencies. In order to compute 

properly the response of the system when partial lift-off occurs, a pseudo-arc length continuation method ([6]), has been 

adopted to solve the balance equations (6). Apart from the first frequency, when a classical Newton-Raphson method is 

used, The method at the k
th
 frequency 

(k)
 is based on a predictor-corrector approach: 

1. The predictor step is performed tangent to the response curve starting from the solution at the (k-1)
th
 frequen-

cy; 

2. The corrector step consists in an iterative solution based on Newton-Raphson using as a search direction the di-

rection normal to the predictor step. 

At each iteration, the following steps are performed: 

1. Computation of relative displacements of contact points; 

2. Computation of physical displacements and forces in the time domain; 

3. Harmonic components of contact forces are obtained back by means of an FFT algorithm; 

4. Check of the residual of the balance equations. 

The adopted procedure can be schematically represented as shown in Figure 4. 

 

 
 

Static & Harmonic 

absolute displacements 

Contact kinematics 

Static & Harmoni 

relative displacements 

Static & Harmonic 

Balance Contact model 
Static & Harmonic 

Contact Forces Convergence? 
Forced 

Response 

YES 
NO 

Figure 4: coupled static/dynamic balance solution algorithm 

Figure 3: Cyclic symmetry: left and right contact areas of the fundamental blade. 
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Analysis and results 

The coupled method is implemented in a numerical solver to calculate the frequency response function (FRF) of the 

dummy bladed disk by varying the shroud design angle   and the engine order (eo) of the excitation force for different 

initial normal gap or interference v0. 

For the response calculation only the zero order and the fundamental harmonics have been selected. 

 

Figure 5: response curves for different initial static interference (or gap) for design angle  = 70°. 

 

In Figure 5 the response curves for the shroud configuration depicted in Figure 2 are shown for different values of the 

design static interference v0 between adjacent blades. The typical trend of the free-slip-stick nonlinear phenomenon is 

clearly visible: by gradually increasing the initial interference from negative (gap) to positive values, the resonant fre-

quency shifts to higher values than the free configuration (i.e. no contact at shroud during whole vibration cycle), and 

finally reaches the stick response. This behavior is due to the increase of the contact normal load at shroud contact area 

interfaces. In parallel, the maximum response peak shows a minimum corresponding to the maximum friction damping 

generated at the shroud contacts. 

On the left side of the figure, a jump phenomenon is slightly visible and it produces a small hardening effect, due to par-

tial lift-off of the contacts during vibration, as described in [4], for small negative values of the initial interference. The 

stable and unstable branches of that response curve have been successfully computed thanks to the pseudo-arc length 

continuation method. 

On the contrary, on the right side of the figure there are no jump phenomena and this is a sign of the good design of the 

shroud contact interface adopted for this calculation. 

 

Figure 6: response curves for different initial static interference (or gap) for design angle  = 180°. 
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In Figure 6 the response curves for a different shroud configuration are shown for different values of the initial interfer-

ence between adjacent blades. The design angle represented in Figure 2 has been increased and the displacement com-

ponents normal to the shroud contact area are now of greater significance. While in the previous ideal design case it was 

clearly identifiable a minimum condition between the free and full stick conditions, in this case there is a monotonous 

trend towards lower peak values. The minimum condition now coincides with the full stick configuration. 

Given the shroud design, jump phenomena are far more evident than in the previous case, both on the free side of the 

figure and on the stick side. The partial lift-off on the right side of the figure causes a softening effect of the system. 

In Figure 7 the response curves for different engine order excitations are shown for a constant value v0<0 (i.e small 

gap). The shroud contact area configuration adopted is the same as the case depicted in Figure 6, where jump phenome-

na produced by partial lift-off during vibration cycle are more significant. Different behaviors are observed, since the 

value of the engine order affects the value of the inter-blade phase angle, which defines the cyclic symmetry boundary 

conditions applied to the fundamental blade. 

First, the hardening effect (i.e. shift of the peak towards higher frequencies) increases as the engine order value grows 

larger, since the vibration mode of two consecutive blades tends towards the out-of-phase vibration and, as a result, the 

displacements normal to the contact area, which produce lift-off, become higher. Second, the vibration amplitude shows 

a minimum condition which is close to eo=30, showing that, for this configuration, the damping of the system reaches 

its maximum value in that condition. 

 

Figure 7: response curves for different engine orders of the excitation force. 

 

Conclusions 
 

In this paper, a coupled static/dynamic method is proposed for the forced response calculation of shrouded bladed disks. 

The method relies on the simultaneous calculation of the static and the dynamic balance of the system, without any 

preliminary static analysis. The proposed method is applied to an array of turbine blades. The forced response of the 

system around the first blade bending mode is computed. The validity of the proposed approach is shown and the effect 

of the main design parameters (i.e. initial gap/interference, shroud contact area design angle, excitation engine order) is 

investigated. 
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