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Abstract: The formation control of a long-distance, drag-free, low-thrust, low-Earth orbit satellite is 
outlined, in view of future Earth-gravity monitoring missions employing long baseline interferometry (> 
10 km) and lasting at least six years. To this purpose, a formation consisting of two drag-free satellites, 
orbiting at a fixed distance in a sun-synchronous orbit, has been proposed as a baseline. Formation 
fluctuations are bounded by a box 500x50x50 m. Although at first sight not demanding, the formation 
control induces non-gravitational accelerations, that are obliged to respect tight drag-free requirements, 
and are constrained by millinewton thrust bounds. In addition formation fluctuations due to tide forces 
should not be impaired as their measurement is the mission goal. Requirements are formulated as four 
time and frequency–domain inequalities, to be suitably parameterized by control gains. Exploiting close-
loop Hill’s equation properties and asymptotic approximations, explicit design inequalities are obtained 
leading to a first-trial control design. Simulated runs through a fine spacecraft and low-Earth-orbit 
simulation dominated by the highly variable thermosphere drag show the first-trial design meets the tight 
control requirements, and demonstrates mission feasibility. 

Keywords: Satellite formation, drag-free, control, low-thrust, low-Earth-orbit 

 

1.  INTRODUCTION 
The paper addresses the formation control of a pair of 
satellites in a low-Earth orbit at a long distance, say > 10 km 
during a 6-year mission. The distance is fixed by the baseline 
of an interferometric gradiometer made by the pair of the 
satellites themselves, which are forced to free fall by 
cancelling their non gravitational forces (drag-free control). 
The differential acceleration becomes highly sensible to the 
local gravity tensor, less non gravitational residuals to be 
kept below a pre-specified target. The differential 
acceleration and the gravity tensor parameters are elaborated 
from the formation fluctuations reckoned by an inter-satellite 
laser interferometer, and from the satellite drag-free 
accelerations measured by GOCE-class accelerometers. 
Laser pointing accuracy is guaranteed by fine satellite 
alignment (attitude control) and by the formation 
displacement to stay within a box 500 50 50 m× ×  
(formation control). The latter should be considered a tight 
constraint as is tailored to J2 differential fluctuations (Fig. 3).  
All-propulsion actuation has been adopted. A layout of ten 
thrusters (one of them in cold redundancy) has been designed 
from the heritage of the early GOCE design (Canuto, 2008, 
Canuto and Massotti, 2009), later abandoned because of 
immature technology. A pair of redundant mini-thrusters (< 
20 mN) is dedicated to along-track drag-free and formation. 
Eight micro-thrusters (< 1.2 mN) in a balanced configuration 
are dedicated to lateral formation, drag-free and attitude 
control. The symmetric configuration allows biasing the 

thrust. Main limitation comes from a poor throttability range 
(<10) in front of the wide and unprecedented ratio (up to 40) 
requested by a long-term drag-free mission at low-Earth 
orbit. A 6-year drag-free mission must bear the extreme drag 
conditions of the thermosphere that are driven by variable 
solar and geomagnetic activities. Throttability may be 
attenuated by correlating orbit altitude with the expected 
average solar activity; nevertheless high solar activity is 
accompanied by wide fluctuations leading to the throttability 
target of 40. The overall control design, combining drag-free, 
attitude and formation, must guarantee to stay below thrust 
upper bound under normal conditions, and to smoothly 
degrade under thruster saturation.  

The paper outlines a formation control design capable of 
respecting thruster bounds together with formation and drag-
free requirements for a total of three norm inequalities 
(Section 3.1). Formation control perturbs each satellite with a 
non-gravitational acceleration, to be kept within drag-free 
limits. Drag-free control is fed by non-gravitational 
accelerations that are elaborated from the on-board 
accelerometer data. Formation control is fed by differential 
GPS range and rate, which are affected by the differential 
acceleration that includes the differential gravity to be 
measured by the mission. It is therefore mandatory that the 
formation command be sufficiently decoupled from gravity 
components, adding a further norm inequality (the fourth 
one) to control design. At the author’s knowledge, no 
formation control of this kind has been so far studied (Kapila 
et al., 2000, Rossi and Lovera, 2002, Xu et al., 2007).  
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Formation dynamics with stochastic disturbance dynamics 
(Canuto, 2007, Canuto et al., 2010a) is outlined in Section 2 
without proof (Canuto et al, 2011). Following Schweighart 
and Sedwick (2002) and Hinalhan et al. (2002), it accounts 
for eccentricity and J2 (Earth flatness) which latter make 
state equations to be periodic. Due to low eccentricity 
(<0.5%) control design is afforded in Section 3 with a linear, 
time-invariant approximation, where periodic terms play the 
role of input perturbations. The linear control law includes 
reference command, tracking errors and disturbance 
rejection, but the focus here is on the design of tracking error 
gains capable of respecting design inequalities. Reference 
generator and state predictor are not treated. It is shown that 
closed-loop eigenvalues can be decoupled, without impairing 
the tuning/optimizing capability of the feedback gains with 
respect to the design inequalities. A first-trial and explicit 
design is shown, based on the series expansion of the 
periodic input perturbations and on the asymptotic expansion 
of the closed-loop transfer functions. Design performance is 
demonstrated by the simulated results in Section 4. The latter 
ones have been obtained with a fine simulator of the low-
Earth-orbit environment making critical long-term missions 
because of the thermosphere drag. 

2.  FORMATION DYNAMICS 

2.1 Reference orbit and frame 
The following notations are employed: arrowed letters like 

r  denote vectors, bold letters like r  denote Cartesian 
coordinates in some frame. Formation relative position and 
rate coordinate vectors (longitudinal xΔ , radial zΔ  and 
cross-track yΔ ) 
 ( ) [ ]0 1 0 1,  TT x z yΔ Δ Δ Δ Δ= − = = −r r r v v v  (1) 

are defined with respect to the Local Orbital Frame (LORF) 

 { }, / , / ,O O O O OC i v v j r v r v k i j= = × × = × , (2) 

which is attached to the drag-free orbit of the formation 
Centre-of-Mass (CoM) C . The natural order of the radial 
and cross-track entries is reversed in (1). The formation CoM 
is defined by ( )0 1 / 2r r r= + , where ,  0,1kr k =  denotes the 
Earth-centered satellite CoM position (Fig. 1).  

Ok

Oj

Oi

Mean CoM orbit

Reference quasi-circular 
orbit

0r 1r

rΔ

O tθ ω+r rδ+

rδC
0C 1C

 
Fig. 1. Formation geometry and local orbital frame. 

Orbit and frame are materialized by averaging on-board 
GPS measurements and retrieving the LORF quaternion Oq  
through a suitable state predictor. The orbit of C  is taken as 
the reference weakly elliptic orbit subject to J2. Notice the 
actual orbit is subject to a drift ( )0 1 / 2r r rδ δ δ= +  in Fig. 1, 
that is caused by the drag-free residual bias, as a result of the 

on-board accelerometer offset. The drift 500 m/dayrδ ≅  is 
a common-mode error not affecting formation dynamics. The 
latter is affected by the differential drift 0 1r r rδ δ δ= − , to be 
actively rejected as shown below. 
2.2 Formation dynamics and perturbations 

Formation dynamics for a quasi-polar orbit / 2i π≅ , leads 
to the following linear, time-invariant equation, written with 
radial and cross-track coordinates in reverse order as in (1): 

( ) ( ) ( )( )2

0 0 0

0 0 0 0

r

v a

d d d

A I
t A I t I

Δ Δ
Δ Ω Δ Δ θ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − + + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

r r
v v u g w

x x w
. (3) 

Sub-matrices and vectors hold 

 2 2

2

0 2 0 0 0 0 0 0 0
0 0 0 , 2 0 0 , 0 0
0 0 0 0 0 0 0 0

r v z

y

A A
ω

ω Ω ω
ω

⎡ ⎤−⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥= = = ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. (4) 

Measurements are provided by on-board differential GPS. 
The forcing functions are the formation command Δu , the 
periodic function ( )θg  and the wide-band noise vectors 

,a dw w  generating the stochastic process  
 ( ) ( ) ( )d at t t= +d x w . (5) 

The latter is the sum of a random drift and noise, and 
accounts for drag-free residuals and thruster noise, according 
to Canuto et al., 2010a. The command is implemented by 
dispatching the opposite component to each spacecraft, i.e. 
 0 1 0 1 0,  / 2,   Δ Δ= − = = −u u u u u u u . (6) 
In this way peak command is reduced on both spacecrafts as 
requested by (11). The differential drag-free residual Δa  
must include the formation command and is defined by 

 ( ) ( ) ( ) ( ) ( )d ht t t tΔ Δ Δ Δ θ= + = +a d u a a . (7) 

The last sum in (7) split the residuals into random 
components dΔa  and periodic components ( )hΔ θa . 

The orbit frequencies 1.2 mrad/s, zω ω≅ and yω  are 
slightly discrepant due to J2 and eccentricity. Such 
discrepancies lead to a long-term beat as shown in Fig. 3. 
The following lemma is immediate. 

Lemma 1. The eigenvalues of (3) are the square root of the 
diagonal entries of 2Ω− , i.e.  
 0, 1 0, 1 0, 10,  ,  x x z z z y y yj jλ λ ω λ ω= = ± = ± .  (8) 

Lemma 1 shows (3) is unstable.  
Formation state predictor and control are designed and 

implemented around a discrete-time version of (3) as in 
Canuto, 2010b, where the wide-band noise vectors ,a dw w  
become discrete-time white noise with bounded variance, 
and the time unit T  is designed such that 1Tω << .  
2.3 Actuator layout and bounds 

Drag-free, formation and attitude control has been 
designed to be all–propulsion, mainly for noise reasons. The 
thruster assembly is partitioned into a pair of mini-thrusters 
(one redundant, 0.45 to 18 mN) and eight micro-thrusters 
(0.05 to 2 mN). 

Bounds on the disturbance signals ( )j jg dθ +  and on the 
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formation commands juΔ  in (3) are listed in Table 1. It 
shows that the radial bias is incompatible with the command 
limits. The force bound in Table 1, row 2.1, is an absolute 
value restricted to formation axes, which has been computed 
allocating 20% of the peak thrust to formation. The last row 
converts force into acceleration through the satellite mass 

500 kgm = . Thrust allocation in Table 1, rows 2.1 and 2.2, 
has been traded-off with drag-free and attitude control 
authority. The disturbance overshoot in Table 1, rows 0.1, 
1.2 and 1.3, may be avoided in two ways. Radial 
accelerometer bias, row 0.1, should be reduced either by re-
design or by bias estimation before the drag-free control is 
activated. Gravity and eccentricity perturbations, rows 1.2 
and 1.3, are periodic with ω  and of higher order. Formation 
control should avoid their rejection. 

 
Table 1. Bounds to perturbations and commands  

No. Type (symbol) Along-track 
[mN] 

Radial 
[mN] 

Cross-track 
[mN] 

0 Generic disturbance jd  
0.1 Acceler. bias   0.06 6( 0.06) 0.06 
0.2 Drift  negligible 0.004 negligible 
1 Periodic disturbance ( )2 ,  jJ g θ>  
1.1 Gravity, 2J>  0.5 0.5 0.1 
1.2 Gravity, 2J   33  37  negligible 
1.3 Eccentricity e  50  negligible negligible 
2 Command juΔ  
2.1 Force bound  1.5 (mini) 1.2 (micro) 1.2 (micro) 
2.2 Acceleration  3 2.4 2.4 

3.  CONTROL OBJECTIVES AND DESIGN 

3.1 Control objectives 

10-4 10-2

10-2

100

Frequency [Hz]

 P
S

D
 [ μ

m
/s

2 / √
H

z]

 

 

x axis
y axis
z axis
CoM bound

 
Fig. 2. Spectral density of target and simulated residuals. 

Formation objectives assume the drag-free control is 
operating on each satellite. Drag-free requirements may be 
relaxed to withstand thruster saturation, whereas formation 
bounds are assumed to stay fixed. Different than drag-free 
control where control is fed with the measurements of non 
gravitational accelerations provided by on-board 
accelerometers, formation control is fed by differential 
position and rate, depending on the whole of the differential 
acceleration: gravity anomalies, eccentricity and drag-free 
residuals. It implies that formation command may couple 
with gravitational anomalies, a condition to be avoided inside 
the mission measurement bandwidth (MBW) defined by 

 0 11 mHz 10 mHzf f f= ≤ ≤ = , (9) 
and corresponding to the minimum of the bowl-shaped 
profile in Fig. 2. Control objectives are formulated as set of 
inequalities to be respected by control gains.  
1) The formation bound is a time-domain constraint. 

Define the tracking error δ Δ Δ= −r r r , with respect to a 
reference displacement, equal, at the end of the 
acquisition phase, to [ ]0 0T dΔ =r . The tracking 
error box is defined by 

 { }max 50 m, diag 1,1,1r r rxW r W wδ δ
∞

≤ = = <<r . (10) 

2) The thrust bound is a time-domain constraint defined by 
 { }2

max 2.4 m/s , diag 1,1,1u u uxW u W wΔ Δ μ
∞

≤ = = <u .(11) 

3) The drag-free bound is a frequency-domain inequality 
involving the spectral density matrix ( )2

a fS  of the 
random differential drag-free residuals dΔa  in (7), as 
follows 

 ( )( ) ( )2 2
max max max,  0.01 μm/s / Hza af jf a aσ Δ Δ≤ ≤S V  (12) 

where maxσ  is the root of the largest eigenvalue, 
( ) 1a f ≥V  is bowl-shaped as in Fig. 2 and maxaΔ  is the 

bound in the MBW.  
4) The periodic component hΔa  of the drag-free residuals 

must decouple from the periodic function ( )θg  in the 
MBW 

 ( )( ) 3
max ,max 0max 10 ,  f hjf f fσ σ −≤ = ≥V , (13) 

where V  is a closed-loop transfer function to be 
defined in (16), and maxσ  is the max singular value. 

3.2 The control law  
Following Canuto (2007) and Canuto et al. (2010a), the 

control law combines tracking and disturbance rejection into  
 ( ) ( ) ( )r v dt t K KΔ Δ δ Δ= − + +u u r v x , (14) 

where ( ) 0tΔ =u  as soon as formation acquisition has been 
obtained, that is assumed here. As a control strategy, the 
periodic term ( )θg  does not appear in (14), since it must not 
be rejected for two different reasons: (i) the eccentricity and 
J2 components overshoot the thruster bound as shown in 
Table 1, (ii) periodic components higher than J2 are the 
mission objective, and must not be cancelled from the 
formation relative position as entailed by inequality (13). The 
control design aims to find gain matrices rK  and vK  
satisfying the constraints (10) to (13).  

The law (14) must be kept as ideal, as actually it is 
affected by measurement errors through the state predictor, 
not treated here. On the other hand, the ideal law (14) is not 
capable of fully rejecting the stochastic disturbance d  in (5) 
because of causality, leaving the unpredictable noise aw  to 
force the tracking error. Notice aw  includes all 
unpredictable sources as for instance prediction errors. 
Closed-loop transfer functions follow from (3) and (14) as 

 
( ) ( )

( ) 1

,  a a

a d

I

s

Δ Δ

Δ −

= − − = − +

= − + −

a V w Vg r SM w g

u V w g w
, (15) 

where s  has been dropped and 
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 ( ) 1,  I −= = +V CSM S CM , (16) 

and  

 

{ }

( ) ( )
( )

2 2 2 2 2 2

2 2 2 2

1

,  diag , ,

4 / 2 / 0

2 / 1 0
0 0 1

r v m z z y

z

m

K K s s s s

s s s

s s s

ω ω ω

ω ω ω

ω−

= + = + + +

⎡ ⎤+ − −
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦

C D

M D
. (17) 

3.3 Design steps 
It is shown how to reduce the four inequalities to a pair 

and how to formulate their expressions. Time-domain 
inequalities (10) and (11) are first tackled by expanding 
tracking errors and command components into a harmonic 
series of the orbit angular frequency ω  as follows 

 
( ) ( ) ( )1

max 1

1

  sin

1,  

d r k kk

T
k k kx kz kyk

t t W r k t

a a a

δ δ δ ω ϕ∞−
=

∞

= ∞

= + + +

⎡ ⎤≤ = ⎣ ⎦

∑
∑

r r a

a a
, (18) 

where dδr  is a zero-mean random component, to be kept as 
negligible with respect to the periodic component, since 

( )θg  is not rejected. As the forcing frequency ω  is very 
close to zω  and yω , forcing (17) with a series like (18) 
generates a bounded beat motion as mentioned in Section 2.2 
and proved by high-fidelity simulation (Fig. 3). The series 
coefficients follow from the closed-loop transfer functions in 
(15), and from expanding ( )θg  as in (18): they are 
parameterized by the control gains in (14). An approximate, 
worst-case solution is adopted. The tracking error 
coefficients in (18) are kept equal to their peak values, which 
makes them independent of the control gains. Inserting (18) 
in (14) provides a series expansion of ( )tΔu  with 
coefficients depending on the control gains. Using this series 
in (11) the first design inequality is obtained.  

The second design inequality is achieved by showing that 
only inequality (13) affects control gains, whereas inequality 
(12) decides sensor and actuator noise. In fact V  is a low-
pass filter whose high-frequency asymptote is shaped by rK  
and vK ; moreover the bandwidth of V  must be sufficiently 
smaller than the lower limit 0f  of the MBW (9) so as to 
guarantee (13). This is formulated by the limit  
 ( )( )

0
lim f f I jf I> − →V , (19) 

and by the fact that ( )2
a fS  in (12) is just the spectral density 

of the wide-band noise aw  in (15). The latter sums up high-
frequency accelerometer, thruster and sensor noise, and 
allows to allocate them. Using (16), and observing that 

( )jfS  satisfies a limit like (19), the high-frequency 
asymptote holds 

 

( ) ( ) ( )

( )
( )

0

1

1

lim lim

1 0

1 0
2

0 0 1

f f f

v

jf jf jf

j f
K

j f
j f

ω π

ω π
π

> →∞

−

−

= =

⎡ ⎤−
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦

V C M

. (20) 

Next step is to find a suitable parameterization of the 
control gains, making feasible the solution of (11) and (13).  

3.4 Decoupled closed-loop eigenvalue design  
Control gain parameterization passes through a decoupled 

eigenvalue design and the closed-loop Hill’s equation 
properties. To this end, rearrange the controllable part of (3) 
and the control law (14) as   

 

( )
( )
( )
( )

0
0

0 0

x xx xz x x dx ax x

z zx zz z z dz az z

y yy y y dy ay y

x xx xz xy x

z zx zz zy z

y yx yz yy y

A A B u x w g
t A A B u x w g

A B u x w g

u K K K x
u K K K
u K K K

Δ
Δ

Δ

Δ
Δ
Δ

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ + + +
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + + + +⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ + + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x x
x x
x x

x
x
x

dx

dz

dy

x
x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

,(21) 

with the following matrices and vectors  

 22

1 1 2 0 0
,  ,  

0 1 0 0 1

1 01 10 0
,  ,

000 2

,  ,  

xx xz

zx zz yy
yz

x z y
ya z

A A B

A A A

yx z
vv v

ω

ωωω

δδ δ
ΔΔ Δ

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤⎡ ⎤⎡ ⎤

= = = ⎢ ⎥⎢ ⎥⎢ ⎥ −−⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤⎡ ⎤ ⎡ ⎤

= = = ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦ ⎣ ⎦

x x x

. (22) 

The first step is to fix closed-loop eigenvalues that 
guarantee bounded-input-bounded-output stability to (21) 
and (14). Following Lemma 1 and the decoupling inequality 
(13), the following closed-loop eigenvalues are fixed 

( ) ( )
0 0 1 1

2 2
0, 1 0, 1

0,  0

1 , 1

x x x x

z z z z z y y y y y

p p

j j

λ λ

λ ζ ζ ω λ ζ ζ ω

= − < = − <

= − ± − = − ± −
,(23) 

where the first pair refers to longitudinal motion that must be 
bounded in position and rate, the second and third to radial 
and cross-track displacements which must be weakly damped 
not to degrade gravitational components.  

Feedback gains guaranteeing (23) follow from the results 
below. The first one is immediate. 

Result 1. Since cross-track dynamics in (21) is fully 
decoupled from longitudinal and radial dynamics, the 
feedback matrix in (21) reduces to 

 
0
0

0 0

xx xz

zx zz

yy

K K
K K K

K

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

. (24) 

Cross-track gains derive from a well-known result, which 
is stated without proof (see Canuto, 2010b). 

Result 2. Assuming y ayg w
∞

+ is bounded, a feedback 
matrix yy ry vyK k k⎡ ⎤= ⎣ ⎦  which stabilizes yy yyA BK− , and 
bounds yuΔ  in agreement with (11), is a damping feedback 
 0,  2ry vy y yk k ζ ω= = , (25) 

where 0yζ >  must be  selected to be compatible with (13).  
In order to apply Result 2 to radial feedback, i.e. to fix  

 0,  2rz vz z zk k ζ ω= = , (26) 
in [ ]zz rz vzK k k= , longitudinal and radial closed-loop 
dynamics in (21) must possess a decoupling property. 
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Lemma 2 and Result 3 provide the feedback gain properties 
of the closed-loop matrix 

 xx xx xz xz

zx zx zz zz

A BK A BK
A BK A BK

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥⎣ ⎦

 (27) 

that ensure decoupling. The next Lemma follows from the 
characteristic polynomial of (27). 

Lemma 2. A necessary and sufficient condition for the 
eigenvalues of (27) are equal to the eigenvalues of the 
diagonal matrices in (27), is  
 ( )( ) ( )1 0zx zx xx xx xz xzA BK I A BK A BKλ −− − + − =  (28) 

Straightforward algebra in (28) and (22) leads to a pair of 
first-degree polynomials in λ , namely 

 
( )( ) ( )( )

( )( ) ( )
2 2 0

0,  2
rzx rxz rzx vx rx rxz rzx

rzx vxz vzx

k k k k k k k k k

k k k k k

λ ω ω ω ω

ω λ ω ω

+ + − + =

+ = = −
,(29) 

which must be solved for the four gains in [ ]xz rxz vxzK k k=  
and [ ]zx rzx vzxK k k= . A pair of solutions exist, but only one 
of them allows to bound uW Δ

∞
u  (Canuto, 2010b), namely 

( )21 1 4 / ,  0rxz rzx r vx rx vx vzx vxzk k k k k k k kω= = = − ± − = = .(30) 

By adopting (30), the following result follows. 
Result 2. Feedback gains (25), (26) and (30) lead to a 

control law which can be fully tuned through four 
parameters: the damping coefficients ,y zζ ζ , and the 
eigenvalues { }xj xjpλ = − , 0,1j = , which latter set the gains 
in [ ]xx rx vxK k k= .  

Proof. The proof follows by writing  
 0 1 0 1,  rx x x vx x xk p p k p p= = + , (31) 
and by observing the non-zero gain in (30) is minimized by  
 { }0 12 ,  min ,r x x x xk p p p pω= − = . (32) 

Then Δu  becomes fully tunable, since also the rejected 
disturbance dx  might be suitably filtered if the case: 

 
( )0 1 0 1 2

2 2
2

x x x x x x x dx

z z z z x dz

y y y y dy

u p p x p p v p z x
u v p x x
u v x

Δ δ Δ ω δ
Δ ζ ω Δ ω δ
Δ ζ ω Δ

= − − + + −

= − + −

= − −

. (33) 

In the following the design parameters are reduced to the pair  
 0 1,  y z x x xp p pζ ζ ζ= = = = , (34) 

and the orbit frequencies are simplified to be equal, i.e.  
 z yω ω ω= = . (35) 

Simulated gains account for different orbit frequencies. 

3.5 Gain tuning  
Assuming (35), the control law (33) is employed to solve 

inequalities (11) and (13) for the final parameters in (34). 
Start from the command inequality (11) which upon (33) and 
(18), can be rewritten as 

( )( )

( )

1
max 1

1
,max max

1
max ,max max1

2
max ,max max1

2 2

2

2

x x rx x kx x kz rxk

d ux

z kz x kx rx dk

y ky dk

u p w r p k a p a w

x w u

u r k a p a w x u

u r k a x u

Δ δ ω ω

Δ

Δ ωδ ωζ Δ

Δ ω ζδ Δ

∞−
=

−

∞ −
=

∞

=

≤ + + +

+ ≤

≤ + + ≤

≤ + ≤

∑

∑
∑

, (36) 

where ,maxdx  is the uniform bound to the entries of dx , 
mainly depending on the accelerometer bias in Table 1.  

A first-trial solution is found by assuming the longitudinal 
pole much smaller than the orbit frequency, i.e. 2xp ω<< , 
which simplifies the first inequality in (36) to  
 1 1

max max ,max1
2x rx kx ux dk

p w r k a w u xδ ω Δ∞− −
=

≤ −∑ . (37) 

Allocating the same bound to terms of zuΔ , assuming 1st 
and 2nd harmonics to dominate (36), and the higher 
harmonics to roll down with -40 dB/dec, which implies 

 
1

2,  , ,kjk
k a j x y zγ∞

=
≤ < =∑ , (38) 

the solution splits into 

( )( )
( ) ( )

12 3
max ,max max

1 3
max ,max max

2 5 10

4 10  rad/ms 2

d

x d rx

u x r

p u x w r

ζ Δ ω δ γ

Δ ωδ ω

− −

− −

≤ − ≅ ×

≤ − ≅ <<
.(39) 

The above values may be iterated versus actual position 
bounds, thus relaxing the worst-case assumption leading to 
(36). Since as Fig. 3 shows, the along-track component xδ  
can be bounded as zδ  below maxrδ , one might fix 1rxw ≅  in 
(10) and (39), thus leading to a faster pole.  

Consider now inequality (13), which, having observed that 
the maximum in (13) occurs at 0f f= , i.e. on the left border 
of the MBW in (9), and employing (20), (25), (26) (31), (34) 
and (35), is rewritten as  

( ) 1
max ,max 0

0

0
0 ,  1

0 0

x x

h

p j p
j j f
f

α
σ αωζ ζω σ α π ω

π
ζω

−
⎛ ⎞⎡ ⎤

−⎜ ⎟⎢ ⎥− ≤ = <⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

. (40) 

Direct computation shows the max singular value in (40) is 
bounded as 

 ( ) ( )( )1 2 2 2 2
0 ,max1x hf pπ ζ ω α σ− + + ≤ , (41) 

which yields a further design inequality. If the values from 
(39) and (13) satisfy (41), as in this case, the first-trial design 
is complete. Note however that increasing xw  and therefore 

xp  as suggested above may not respect (41).  

4.  SIMULATED RESULTS 

4.1 Simulated conditions 
Simulated results have been obtained from an in-house 

fine simulator and have been confirmed by the mission end-
to-end simulator. A sun-synchronous orbit has been 
simulated; the initial parameters are: inclination 1.69 radi = , 
eccentricity 0 0.002e = , geodetic altitude 0 325 kmh = , right 
ascension of the ascending node 0 1.98 radΩ = . To 
experience the worst-case low-Earth-orbit environment, an 
extreme solar activity index, 22 2

10.7 380 10  W/m /HzF −= × , 
has been assumed, partly mitigated by average geomagnetic 
index 20 nTpA = .  

Formation has been assumed to be already achieved. 
Simulation lasted more than 5 Ms (about 2 months) so as to 
experience the formation beat motion generated by 
eccentricity and J2 as expected. The accelerometer noise 
spectral density is bowl-shaped and can be found in Canuto 
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and Massotti (2009). Below 1 mHz, a 2nd order drift sets-up, 
which must be counteracted by formation control. Drift range 
is much lower than bias as Table 1 shows. The whole suite of 
drag-free, formation and attitude control has been 
implemented, including reference generators, state predictors 
and control laws. 
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Fig. 3. Residual relative position during 2-month mission. 
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Fig. 4. Enlargement of the onset in Fig. 3. 

The relative position residuals during a 2-month mission 
are shown in Fig. 3. The formation is assumed to start within 
the bounds (10) and close to a minimum (500 ks) of the beat 
motion. Then the latter naturally increases (and then 
decreases) inside the formation bounds: formation control 
must not reduce it, not to reach command saturation and 
degrade gravitational components. The long-term oscillation 
in Fig. 3 modulates the amplitude of the orbit oscillations; 
the latter ones have a period of 2 / 5400 sπ ω ≅ . Fig. 4 
shows the enlargement of Fig. 3 at the simulation onset. The 
initial peak allows tracking the accelerometer bias. Closed-
loop time constants are very long and are imposed by the low 
thrust limits in Table 1 as explained in Section 3. A gain 
scheduling has been implemented, the wide-band phase 
terminating at 600 ks. This is better appreciated in Fig. 5. 

4.2 Simulated performance 
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Fig. 5. Residuals from wide- to narrow-band control. 

Fig. 5 shows the residual non-gravitational acceleration 

that must respect the drag-free bound in (12). During bias 
tracking until 600 ks, the latter is not respected. Fig. 2 shows 
the spectral density of the 3D components of the residual non 
gravitational acceleration since 600 ks, when the narrow-
band control has been applied after bias tracking, so as to 
ensures zero-mean relative position. Overshoots below the 
MBW frequency limit of 1 mHz, are due to non-zero radial 
and cross-track damping, spilling orbit harmonics into 
formation command, but respecting (13).  

5.  CONCLUSIONS 
The paper outlines the formation control design and the 

simulated results, constrained by low command authority, 
formation box, drag-free bounds below 20.01 m/sμ  in a mid 
frequency band around 1 mHz, and command decoupling 
from periodic input perturbations due to tide forces. Coupled 
with a low-Earth orbit and 10-km distance formation, the 
above requirements make the control design and the relevant 
technology challenging. The paper shows that formation 
fluctuations can be kept within the required box, also under 
worst-case environment conditions. They compete with 
formation control authority at the level of drag-free and 
attitude control, because of an all-propulsion mission. 
Further developments concern formation acquisition and 
GPS/optical metrology sensor fusion. 
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