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Università di Torino, Italy
Email: garetto@di.unito.it

Emilio Leonardi
Dipartimento di Elettronica
Politecnico di Torino, Italy

Email: leonardi@polito.it

Abstract—Stochastic geometry proves to be a powerful tool
for modeling dense wireless networks adopting random MAC
protocols such as ALOHA and CSMA. The main strength of
this methodology lies in its ability to account for the randomness
in the nodes’ location jointly with an accurate description at
the physical layer, based on the SINR, that allows to consider
also random fading on each link. Existing models of CSMA
networks adopting the stochastic geometry approach suffer from
two important weaknesses: 1) they permit to evaluate only
spatial averages of the main performance measures, thus hiding
possibly huge discrepancies in the performance achieved by
individual nodes; 2) they are analytically tractable only when
nodes are distributed over the area according to simple spatial
processes (e.g., the Poisson point process). In this paper we
show how the stochastic geometry approach can be extended
to overcome the above limitations, allowing to obtain node
throughput distributions as well as to analyze a significant class
of topologies in which nodes are not independently placed.

I. INTRODUCTION

The last few years have witnessed the proliferation of WiFi
Access Points (APs) in many urban areas, both at public places
(airports, train stations, coffee shops, university campuses)
and private premises (residential homes, corporate buildings).
Today, WiFi-enabled home routers are commonly offered upon
subscription of a high-speed Internet service (e.g., ADSL or
cable). As consequence, at any spot of a large city it is
not uncommon to be in the communication range of several
APs (even more than ten). The high density of APs can
easily lead to poor performance due to increasing levels of
interference among APs employing the same channel. The
complex behavior of dense networks of interfering APs is still
far to be fully understood, making of crucial importance the
availability of analytical models that can predict the impact
of the cumulative interference produced by the APs operating
over the same channel, by incorporating a realistic description
at the physical layer.

Traditional models of CSMA (and in particular 802.11)
networks are based on Markovian approaches. When all APs
are in the sensing range of each other, very accurate and de-
tailed models of 802.11 are available [1]. Large-scale wireless
networks employing CSMA are instead very hard to analyze,
especially if one wants to incorporate the specific details
of 802.11 and its impairments (e.g., hidden terminals) [2].
Simplified versions of CSMA are still amenable to Markovian
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analysis by exploiting the independent sets method originally
proposed in [3], which has recently been revisited, coupled
with statistical physics arguments, to explain the severe un-
fairness observed in heavily loaded networks [4]. However,
markovian models can only be applied to either small or large
but regular topologies, and fail to incorporate physical layer
effects (such as cumulative interference, fading etc.).

From a different perspective, stochastic geometry has been
proposed as a powerful tool to analyze random, arbitrarily
large and arbitrarily dense wireless networks employing vari-
ants of ALOHA and CSMA, with an accurate description at
the physical layer based on the SINR [5]. However, existing
stochastic geometric models of CSMA (see Section II) suffer
from two main limitations: i) they assume that APs are
distributed according to a Poisson process; ii) they evaluate
only spatial performance averages over the entire population
of nodes.

While the assumption that nodes are distributed according to
a Poisson process can well represent scenarios in which APs
independently pop up in an uncoordinated manner (such as
residential APs), it is not adequate in the case in which APs
are placed in a coordinated/planned manner (e.g., corporate
WLANs, or publicly accessible APs deployed by the same
Internet Service Provider).

On the other hand, while spatial averages permit to capture
within a single metric the average node performance (such as
throughput and delay), they completely hide the possibly huge
discrepancies in the performance achieved by different nodes.
On this regard, [6] has shown (for dense networks employing
ALOHA) that the spatial average of the access delay may
become unbounded (through a phase transition) even if the
spatial average of the throughput is not null. This effect is
caused by strong inhomogeneities among nodes’ throughputs:
a fraction of the nodes in the network are almost starved so that
their access delay is extremely large, with a dramatic impact
on the overall spatial average.

In this paper we address both limitations above providing
two main contributions: first, we show how to extend the
stochastic geometry analysis of dense CSMA networks to
obtain approximate throughput distributions, instead of just
averages; second, we propose an analytically tractable tech-
nique that permits to consider scenarios in which APs are not
distributed according to a Poisson point process. In particular,
our methodology allows to analyze random topologies subject
to a minimum separation constraint, which are likely to be



found in planned networks.
Our work provides new insights into the behavior of ran-

dom, densely deployed CSMA network, such as: what is the
impact of the sensing threshold on the node throughput distri-
bution? What is the impact of physical channel parameters
(such as path loss exponent, fading) on nodes throughput
(distribution)? Which performance gains are achievable by
a more careful strategy of AP placement, with respect to
uncoordinated deployment? Such questions have not yet been
analytically addressed, to the best of our knowledge, in random
CSMA networks.

II. RELATED WORK

We limit ourselves to mentioning related works based on
stochastic geometry, which has been applied to modeling
wireless networks only in the last few years (see [5], [7]
for a more comprehensive overview of the literature). While
the behavior of ALOHA has been throughly investigated [8],
[9], [6], CSMA-like protocols cannot be analyzed exactly due
to intrinsic difficulties in characterizing the point process of
nodes which are allowed concurrently to transmit. In [10]
(which is the starting point of our work), the authors proposed
a modified Matérn point process to capture key properties of
CSMA networks (for Poisson node distribution) while provid-
ing a conservative estimate of the transmitters’ density. Less
conservative hard-core models, such as the Simple Sequential
Inhibition [11], [12], turn out to be very challenging to analyze.

In [7, Ch.3] the authors characterize the interference dis-
tribution in Poisson networks, both in the absence and in the
presence of fading. For CSMA networks, they assume that the
interference is produced only by transmitters located outside a
disc of radius equal to the sensing range. They also consider
the case in which transmitters are distributed according to
a Poisson cluster process. The work [13] investigates the
optimization of the sensing range in the absence of fading (to
maximize the aggregate capacity under the SINR model) for
CSMA-like networks where nodes form a Poisson process. In
[14] authors develop simple bounds to the outage probability
of unslotted ALOHA and CSMA in Poisson networks.

More recently, it has been found that, in the high Signal-to-
Interference regime (i.e., when the density of interferers goes
to zero), it is possible to characterize the asymptotic behavior
of the outage probability and of the transmission capacity for
general isotropic distributions of the transmitters, including the
(CSMA-like) Matérn hard-core process [15].

III. NETWORK MODEL

A. Location of Access Points and users

We first assume, similarly to previous works [10], that
Access Points (APs) are located according to a homogeneous
Poisson point process over the plane with intensity λa. This
assumption is fairly reasonable when APs are deployed in
a fully unplanned fashion, such as in residential scenarios.
Indeed, the Poisson assumption implies that APs are uniformly
and independently located over the area, which reflects the
lack of coordination of unplanned deployment. In Section VI
we will propose a different model of APs location which
we believe to be suitable to represent planned scenarios. We
denote by ΦA = {x1,x2, . . .xk, . . .} the set of AP locations.

We assume that users are always associated with their
closest AP. In particular, we suppose that, for each AP, the
associated users (we assume there is at least one user per AP)
are uniformly distributed within the AP’s Voronoi cell.

B. Radio propagation model

We assume that the power received at a point x from a
transmitter located at a point y, denoted by P (x,y), is given
by P (x,y) = P · l(x,y) · F (x,y), where:

• P is the (fixed) transmitted power, common to all APs;
• l(x,y) is the deterministic component of the path loss

between x and y;
• F (x,y) is a random variable representing fading and

shadowing on the wireless link between x and y.
We suppose that l(x,y) depends only on the Euclidean dis-
tance d(x,y) between the transmitter and the receiver. Even if
all our expressions hold for a general function l(d(x,y)), the
results that we will present in this paper are obtained under
the following model accounting for near-field effects:

l(x,y) =

{
d(x,y)−α if d(x,y) > r0
r−α
0 if d(x,y) ≤ r0

(1)

where r0 > 0, and α > 2 is the path-loss exponent, which
depends on the environment. We will also use the equivalent
notation l(r) = min(r, r0)

−α for all positive real numbers
r. The random variables F (x,y) are instead assumed to be
i.i.d., with generic distribution, for any pair (x,y)1. Let gF (ζ)
be the probability density function of the fading/shadowing
random variable, and φF (s) its Laplace transform. We denote
by GF (ζ) the cumulative distribution function of gF (ζ), and
by ḠF (ζ) = 1−GF (ζ) the complementary of GF (ζ).

C. MAC contention model

To determine the subset of APs that transmit simultaneously,
we adopt the modified Matérn model proposed in [10], which
captures key features of CSMA-like protocols while maintain-
ing analytical tractability. In particular, the model captures the
fact that an AP refrains from transmitting when it senses the
activity of another AP which has extracted a smaller back-off
time. This behavior is modeled in the following way: each
point x of ΦA is attributed an independent mark tx uniformly
distributed in [0, 1], representing the back-off time. The node
transmits if it does not sense the activity of any other node
having smaller mark, i.e., nodes that have extracted a shorter
backoff. The subset ΦT of APs transmitting concurrently can
be formally defined as

ΦT = {x ∈ ΦA : tx < ty , ∀y : P (x,y) > σ} (2)

Notice that, in the absence of fading, set ΦT becomes a
standard hard-core Matérn process with fixed inhibition radius.

The considered MAC contention model ignores collisions,
exponential back-off and history of timers. Moreover, it is
more suitable to describe the synchronized, slotted version of
CSMA, in which nodes independently extract a back-off time
at the beginning of a slot, and all concurrent transmissions
finish by the end of the slot. The behavior of unslotted,

1In the following we will also denote by F the generic marginal random
variable F (x,y).



asynchronous CSMA is much more complex, and tends to
introduce severe short- and long-term unfairness among the
nodes, especially when the average back-off time is much
smaller than the packet duration, as in 802.11 (see [4]). Despite
its approximate nature, the modified Matérn process provides
a conservative, reasonable estimate of the transmitters’ density
in 802.11 networks, as shown in [10] by comparison with ns2
simulations.

D. Transmission model and throughput analysis

We assume that a transmission is successfully decoded if the
SINR at the receiver is larger than a predefined threshold β,
which determines the instantaneous rate. We focus on down-
link traffic only (i.e., from the APs to the users), assuming that
uplink traffic is negligible. Moreover, we assume that APs are
constantly backlogged by packets to send. A user located at
x correctly receives data sent by its closest AP at y when

SINR(x) =
P(x,y)

N0 +
∑

j∈ΦT\y P(x, j)
> β (3)

where N0 is the (constant) ambient noise power and I(x,y) =∑
j∈ΦA\y P (x, j) is the cumulative interference produced by

all other transmitting APs.
In our throughput analysis we focus on a typical AP and

consider the instantaneous rate at which this AP is transmitting
at a given time to one of its associated users (there exists by
hypothesis at least one user for each AP), which are assumed
to be granted an equal number of transmission opportunities
irrespective of their distance from the AP. Notice that we are
not computing the user-perceived throughput but the aggregate
throughput of the AP, to avoid the additional complexity of
analyzing the bandwidth sharing among users associated to
the same AP (i.e., located in the same Voronoi cell). The user
throughput can be derived from the AP throughput adopting
the approach proposed in [10].

For simplicity, we consider a unique threshold β, and we
normalize to one the corresponding transmission rate. It should
be clear, however, that if we are able to evaluate the probability
of (3) for an arbitrary β, than we can easily compute the
throughput achievable with a set of different rates (modulation
schemes) selected by an auto-rate function of the SINR (for
example, a piecewise constant function).

Under our assumptions, the instantaneous throughput of the
typical AP equals the product of probabilities that: i) the AP
is transmitting; ii) the transmission is successfully decoded by
the intended receiver. In this paper we are interested both in
the spatial average of the AP throughput and in its spatial
distribution.

IV. BASELINE ANALYSIS

In this section we briefly recall the technique proposed in
[10] to approximate the spatial average T of the AP throughput
in the case of a Poisson distribution of APs, to put the reader
in a position to understand our extended analysis. The spatial
average of the throughput can be obtained by first conditioning
on the distance r between the AP and the user:

T =

∫ ∞

0

T (r)fD(r) dr (4)

where fD(r) is the probability density of the distance between
a user and its closest AP. In the Poisson case,

fD(r, Poisson) = 2πrλae
−λaπr

2

(5)

The conditional throughput T (r) can be expressed as the
product of: the conditional transmission probability pT (r) of
the tagged AP, given that there is a user at distance r whose
closest AP is the tagged AP; ii) the probability ps(r) of
successful reception at distance r from the AP, given the
occurrence of the previous event.

To compute the exact value of pT (r), suppose that the
receiving node is located at point y = (r, 0), and its closest
AP is located at the origin 0 (we denote this AP with 0 in the
following). We have

pT (r)=

∫ 1

0

e−λat0
∫
R2\B(y,r)

S(x) dx dt0=
1−e−λa

∫
R2\B(y,r)

S(x)dx

λa
∫
R2\B(y,r)

S(x) dx

(6)

where B(y, r) is the ball of radius r centered at y, whereas
S(x) is the probability for 0 to sense another AP located at x.
The spatial integral in (6) can be intuitively explained (see [5]
for a rigorous proof based on Palm probability and Slivnyak’s
Theorem) considering that the infinitesimal area dx centered
at any point x of the plane (excluding ball B(y, r), which by
hypothesis does not contain APs) must be free of nodes sensed
by 0. Conditioning on the mark t0 of AP 0 (which provides the
outer integral in (6)), the intensity of the Poisson Point process
of APs that can potentially prevent 0 from transmitting, i.e.
those having mark smaller than t0, is λat0. This point process
is then further thinned by the (location-dependent) probability
S(x) that 0 indeed senses an AP located at x. Under the
modified Matérn model of CSMA, all nodes with mark smaller
than t0 are assumed to transmit with probability one, hence

S(x) equals Pr[P (0,x) > σ] = ḠF

(
σ

Pl(x)

)
, (where x

denotes the euclidean norm ||x||) which is the probability that
the signal transmitted at x is received by 0 with power above
the sensing threshold σ.

To evaluate the probability of successful reception ps(r),
we need to compute (though in an approximate way) the
cumulative interference produced by all of the other APs
concurrently transmitting with 0.

For this, we first need an auxiliary function h(x, λa), which
provides the probability that an AP transmits, conditioned on
the fact that there is a transmitting AP at distance x from it,
belonging to the same Poisson point process of intensity λa.
An exact evaluation of h(x, λa) can be carried out as follows.
Let 0 and x be two APs at distance x from each other, and
let t0 and tx be their marks. We can express h(x, λa) as

h(x, λa) = P
0,x
ΦA

{x ∈ ΦT | 0 ∈ ΦT } =

P
0,x
ΦA

{x ∈ ΦT ,0 ∈ ΦT }
P
0,x
ΦA

{0 ∈ ΦT }
(7)

where P
0,x
ΦA

{} is the probability law associated to the point

process ΦA + 0 + x; observe that P0,x
ΦA

{x ∈ ΦT ,0 ∈ ΦT } is
the probability that two APs placed at distance x from each



other transmit concurrently, whereas P
0,x
ΦA

{0 ∈ ΦT } is the
probability that 0 transmits, given that there is another AP at
distance x from it (not necessarily concurrently transmitting).

We start computing the joint probability that 0 and x trans-
mits concurrently. When considering all possible combinations
of tx and t0, we can limit ourselves to the case t0 < tx, and
then multiply the result by two (the case tx < t0 is symmetric).
Besides nodes 0 and x, we need to consider the superposition
of two independent homogeneous Poisson point processes: a
process of intensity λat0, related to those nodes having mark
t < t0 that can be sensed by nodes 0 and/or node x; a process
of intensity λ(tx − t0), related to those nodes having mark
t0 < t < tx that can be sensed by node x only. Hence we can
express P

0,x
ΦA

{x ∈ ΦT ,0 ∈ ΦT } as

P
0,x
ΦA

{x ∈ ΦT ,0 ∈ ΦT } = 2GF

(
σ

P l(x)

)
∫ 1

0

∫ 1

t0

e−λa(tx−t0)
∫
R2

Sx(z) dz dtx

e−λat0
∫
R2

S0 or x(z) dz dt0 (8)

In the above equation, the term GF

(
σ

Pl(x)

)
corresponds to

the probability that the AP transmitting first is not sensed by
the other, which is the only requirement to have the two nodes
concurrently transmitting when there are no other nodes in the
network; Sx(z) is the probability that node x senses a node
at z; S0 or x(z)=1−(1−S0(z))(1−Sx(z)) is the probability
that at least one node (between 0 and x) senses a node at z.

The conditional probability P
0,x
ΦA

{0 ∈ ΦA} can be obtained
in a similar way, this time considering all possible combina-
tions of t0 and tx:

P
0,x
ΦA

{0 ∈ ΦT } =

∫ 1

0

{∫ tx

0

e−λat0
∫
R2

S0(z) dz dt0+∫ 1

tx

GF

(
σ

P l(x)

)
e−λat0

∫
R2

S0(z) dz dt0

}
dtx (9)

In the above expression, GF

(
σ

Pl(x)

)
is the probability that 0

does not sense the transmission of x, when t0 > tx.
Having computed h(x, λa), we can evaluate in an approxi-

mate way the cumulative interference plus noise suffered at
the receiving node. The approximation consists in assum-
ing that interfering APs form an (in-homogenous) Poisson
point process whose local intensity depends (through function
h(x, λa)) only on the distance x from the AP transmitting the
useful signal. Under this approximation, the Laplace transform
ψI+N0(s) of interference plus noise is given by (see [5] for
details),

ψI+N (s) = ψI(s)ψN (s) ≈

≈ e−λa

∫
2π
0

∫ ∞
r

h(b(ρ,θ),λa)[1−φF (sP l(ρ))]ρ dρ dθe−sN0 (10)

where the spatial integral is computed using polar coordinates
centered at the receiving node. In this coordinate system,
b(ρ, θ) = ρ2 + r2 − rρ cos(θ) provides the distance of the

generic point (ρ, θ) from the AP transmitting the useful signal,
which is assumed to be located at (r, 0).

Recall that the signal is decoded successfully if the received
power exceeds threshold β, see (3). This requires that, for a
given value ξ of (I+N0), the fading variable F is larger than
βξ

Pl(r) . For a general fading distribution, we have

ps(r) =

∫ ∞

0

ḠF

(
βξ

P l(r)

)
L−1{ψI+N0(s)}|ξ dξ (11)

which requires to numerically invert the Laplace transform
ψI+N0(s). A direct computation of ps(r) is possible in the
special case in which the fading is exponentially distributed
(i.e., Rayleigh fading). Indeed, when F is exponential with
mean 1/μ, we have

ps(r) =

∫ ∞

0

e−
μβξ
Pl(r) dPr(I +N0 ≤ ξ) (12)

which is equivalent to evaluate the Laplace transform
ψI+N0(s) at s = μβ/(Pl(r)). The expression (12) can
be generalized to the case in which fading is phase-type

distributed, GF (z) = 1 −
∑

i ci

(∑Ki

k=0
(μiz)

k

k! e−μiz
)

, with

ci ≥ 0 and
∑

i ci = 1, obtaining:

ps(r) =
∑
i

ci

(
Ki∑
k=0

∫ ∞

0

γki
k!
e−γi dPr(I +N0 ≤ ξ)

)
(13)

where γi = μiβξ/(P�(r)). The computation of (13) reduces
to evaluate a linear combination of the Laplace transform
ψI+N0(s) and its derivatives at points si = μiβ/(Pl(r)).

V. BEYOND SPATIAL AVERAGES

In this section we describe how the stochastic geometry
approach can be extended to obtain, besides spatial averages,
also an estimate of the distribution of the throughput achieved
by the APs. Doing so, we will get interesting insights into the
impact of several system parameters (especially the sensing
threshold and the distribution of fading/shadowing) on the
discrepancies that we can observe among the throughputs of
different APs in a random network. This analysis is especially
important to understand how the natural throughput unbalance
due to the randomness in the topology (i.e., the presence
of areas more or less populated by nodes) is perturbed by
the randomness in the wireless channel, and how this natural
unbalance can be mitigated by a proper selection of protocol
parameters. We will see that stochastic geometry can provide
an answer to these questions in a simple and natural way.

Notice that (4) already contains one source of variability,
i.e., the one due to the variable distance between the AP and
the receiver, that we can already isolate with the previous
analysis. Besides the impact of the distance distribution, we
(separately) capture two additional sources of variability: the
variability in the transmission probability pT (r), in Section
V-A, and the variability in the probability ps(r) of successful
reception, in Section V-B. Then in Section V-C we combine
everything together obtaining our final estimate of the through-
put distribution.



A. Variability in the transmission probability

Clearly, the chance of an AP to access the channel is
strongly affected by the pattern of contenders in its neighbor-
hood: even in the presence of fading, the nodes that are most
likely to prevent an AP from transmitting are those located in
close proximity to it. To capture this fact, we will evaluate the
conditional probability pdT (r, n) that the tagged AP, located at
0, is allowed to transmit, given that there are n other APs
within distance d from it (excluding the empty disc of radius
r centered at the receiver), where d is a parameter of the
analysis. We have,

pdT (r, n) =

∫ 1

0

e−t0E(r,d)(1− t0I(r, d))n dt0 (14)

where,

E(r, d) = λa

∫
R2\(B(0,d)∪B(y,r))

S(x) dx

I(r, d) =

∫
B(0,d)\B(y,r)

S(x) dx∫
B(0,d)\B(y,r)

dx

and S(x) = ḠF

(
σ

Pl(x)

)
.

Proof: Similarly to (6), we condition on the mark t0 asso-
ciated to AP 0. To transmit, the AP must not sense any other
AP having smaller mark. The APs located outside the ball
B(0, d), having mark smaller than t0, form a Poisson process
of intensity λat0 and can be treated exactly in the same way
as before, providing the term e−λat0E(r,d), which is identical
to (6) except for a difference in the spatial integration domain
(now we have to exclude two discs from R

2). Then we need
to consider the n APs located in the region B(0, d) \ B(y, r),
considering that each of them is uniformly distributed in this
region, and with probability t0 it has mark smaller than t0.
Quantity I(r, d) provides the average probability that the
AP senses one of them, considering all possible locations
within the region B(0, d) \ B(y, r). Since the AP must not
sense any of them, we obtain for this set of nodes the term
(1− t0I(r, d))n in (14).

The parameter d has to be chosen with care: if it is too
small, the expected number of APs in B(0, d) is also small,
and the conditioning becomes ineffective. If it is set large,
we lose control on the number of critical APs (i.e., the nodes
most likely to be sensed). A natural choice is to set d equal
to the ‘effective’ sensing range R0 = l−1(σ/(PF̄ )), which
is the fixed inhibition radius of a system in which the fading
variable is deterministically equal to its mean.

B. Variability in the probability of successful reception

The probability of successful reception ps(r) at distance
r from the AP is strongly affected by the pattern of inter-
ferers around the receiver, as well as on the characteristics
of the wireless channel (i.e., path loss exponent, and fad-
ing/shadowing distribution). To capture this fact, we proceed in
a similar way as for the transmission probability, evaluating the
conditional probability pes(r,m) of successful reception, given
that there are m APs within distance e from the receiver, with

e > r (by construction there are no APs at distance smaller
than r).

The Laplace transform on the corresponding conditional
interference plus noise distribution is given by

ψe
I+N0

[r,m](s) = e−λa

∫
2π
0

∫∞
e

h(b(ρ,θ),λa)[1−φF (sP l(ρ))]ρ dρ dθ(∫ 2π

0

∫ e

r
h (b(ρ, θ), λa)φF (sP l(ρ))ρ dρ dθ∫ e

r h (b(ρ, θ), λa) ρ dρ dθ

)m

e−sN0 (15)

Proof: By definition the cumulative interference at the
receiver is the sum of all powers received from transmitting
APs other than the good one. The corresponding Laplace trans-
form is the product of the Laplace transform of the individual
contributions. The contribution of APs located outside the disc
of radius e centered at the receiver can be treated exactly in
the same way as before, providing the first exponential term
in (15), which is identical to (10) except for the different
integration domain. Note that we are using polar coordinates
centered at the receiver, with the transmitter located at (r, 0).

Then we need to consider the m APs located in the region
B(0, e) \ B(0, r), considering that each of them is located at
point (ρ, θ) with density proportional to the local intensity
λah (b(ρ, θ), λa) of the inhomogeneous Poisson process of
APs concurrently transmitting. Hence the contribution of each
of the m APs is∫ 2π

0

∫ e

r
h (b(ρ, θ), λa)φF (sP l(ρ))ρ dρ dθ∫ e

r
h (b(ρ, θ), λa) ρ dρ dθ

Considering also the contribution of the ambient noise, we
get the expression in (15).

The conditional probability pes(r,m) can then be derived
from ψe

I+N0
[r,m](s) according to (11), (12), (13), respectively

for general, Rayleigh or phase type fading distribution. Again,
parameter e has to be chosen with care, trying to isolate those
APs which are responsible for the highest variability in the
interference. In our results we have set e = 1.5r, which has
empirically been found to provide the best fit with simulations.

C. Throughput distribution

Putting things together, we define the conditional throughput
T (n,m, r) of an AP, located at r, transmitting to a user located
at the origin 0, given that there are n other APs within the area
B(r, d)\B(0, r) and m other APs in the ring B(0, e)\B(0, r):

T (r, n,m) = pdT (r, n)p
e
s(r,m) (16)

Denoting by Ad
r the area of region B(r, d) \ B(0, r), the

probability F d
r (n) to find n other APs in it is

F d
r (n) = e−λaAd

r
(λaAd

r)
n

n!

Instead, the probability F e
r (n) to find m other APs in the ring

B(0, e) \ B(0, r) is

F e
r (n) ≈ e−λa

∫
2π
0

∫
e
r
h(b(ρ,θ),λa)ρ dρ dθ

(λa
∫ 2π

0

∫ e

r
h(b(ρ, θ), λa)ρ dρ dθ)

m

m!



The joint probability F d,e
r (n,m) to find n APs in region

B(r, d) \ B(0, r) and m APs in region B(0, e) \ B(0, r) can
be approximated as

F d,e
r (n,m) ≈ F d

r (n)F
e
r (n)

where the approximation lies in the fact that the above two
regions are non disjoint, thus the numbers of points falling in
them are not independent. At last, we can express our estimate
of the throughput distribution according to:

P{T < η} ≈
∑
n

∑
m

∫ ∞

0

1(T (r,n,m)<η)F
d,e
r (n,m)fD(r) dr

VI. BEYOND THE POISSON PROCESS

Usually in planned networks APs are not placed indepen-
dently of each other. Hence the Poisson point process is
not well suited to describe controlled network topologies. In
particular, in the Poisson point process we can find nodes
arbitrarily close to each other, which is something that any
reasonable strategy of nodes placement tries to avoid. To min-
imize mutual interference, while maximizing area coverage,
the optimal solution would be to place the APs according to
a regular tessellation of the plane (e.g., a triangular lattice).
However, APs cannot in general be deployed at any location,
due to physical and cost constraints. Hence some randomness
in the AP topology has to be considered. To reflect the
above facts, we model the point process of APs by a hard-
core Matérn process of parameters (λ,R), which guarantees
a minimum separation constraint of R between APs. Notice
that this model can also be used to represent, in unplanned
scenarios, the repulsive effect induced by intelligent channel
selection schemes, or, in the context of green networking,
the effect of switching off redundant APs covering the same
region of the network area. Fig. 1 shows a portion of a sample
topology generated by a Matérn process with parameters
λ = 10/π, R = 1.

In this section we will show that the Matérn model of
AP placement can be smoothly incorporated in the previous
analysis, resorting to the same Poisson approximation of the
(conditional) Matérn process.

A. Transmission probability

Similarly to what has been done before to characterize the
set of transmitting APs, we first characterize the set of AP
locations by computing the probability g(x, λ,R) that, given
the existence of an AP in the origin, we find another AP
at distance x from it. More formally, let Φ be the set of
‘candidate’ AP locations generated by the original Poisson
point process of rate λ, and let P0,x

Φ {} be the probability law
associated with point process Φ+0+x. The desired function

g(x, λ,R) = P
0,x
Φ {x ∈ ΦA | 0 ∈ ΦA}

can be evaluated in a way analogous to function h(x, λa)
in (7), although with a very different meaning (here we are
characterizing the set of APs location, not yet the set of
transmitting APs). In particular, by specializing (7) to the case
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Fig. 1. Example of topology gen-
erated by a Matérn process with
λ = 10/π, R = 1.
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Fig. 2. Geometry used to com-
pute joint/conditional probabilities of
node patterns in the Matérn process.

of no fading (we consider now a hard-core Matérn process),
we obtain the closed form expression

g(x, λ,R) = 1(x > R)
2

1− e−λπR2[
1− e−λ(πR2+M(x))

λ(πR2 +M(x))
− e−λπR2 1− e−λM(x)

λM(x)

]

where M(x) is the area of B(x, R) \ B(0, R), illustrated in
Figure 2 by a light gray region. Then we approximate the
law λ0a(x) of ΦA, conditioned on the event 0 ∈ ΦA, by an
in-homogeneous Poisson point process of intensity

λ0a(x) = λ g(x, λ,R) (17)

At last, the conditional transmission probability pT (r) can be
easily obtained extending (6) to the case in which APs are
placed according to an inhomogeneous Poisson process:

pT (r) =

∫ 1

0

e−t0
∫
R2\B(y,r)

λ0
a(x)S(x) dx dt0 (18)

B. Probability of successful reception

To evaluate the probability of successful reception ps(r), we
need to characterize the set of APs transmitting concurrently
with the tagged AP located at 0. The key step consists again
in computing function h(x, λ,R) = P

0,x
ΦA

{x ∈ ΦT | 0 ∈ ΦT },
which can be interpreted as the conditional probability that
AP x ∈ ΦA transmits, given that AP 0 ∈ ΦA is transmitting.
Function h(x, λ,R) can then be used to characterize (in an
approximate way) the law of transmitting APs around AP 0.

The computation of h(x, λ,R) can be carried out by approx-
imating the law of the other APs (different from x and 0) with
an inhomogeneous Poisson process of intensity λ0,xa (z) =

λP0,x,z
Φ {z ∈ ΦA | 0 ∈ ΦA,x ∈ ΦA} where P

0,x,z
Φ {} is the

probability law associated to the point process Φ+ 0+x+ z.
Function h(x, λ,R) can then be computed by extending (8)
and (9) to the case of an in-homogeneous Poisson process of
intensity λ0,xa (z). In particular, (8) becomes:

P
0,x
ΦA

{x ∈ ΦT ,0 ∈ ΦT } = 2GF

(
σ

P l(x)

)
∫ 1

0

∫ 1

t0

e−(tx−t0)
∫
R2

λ0,x
a (z)Sx(z) dz dtx

e−t0
∫
R2

λ0,x
a (z)S0 or x(z) dz dt0 (19)



and similarly for (9).
To compute λ0,xa (z), we extend the approach used to derive

(17) to the case of three points, obtaining

λ0,xa (z) = λP0,x,z
Φ {z ∈ ΦA | 0 ∈ ΦA,x ∈ ΦA} =

= λ
P
0,x,z
Φ {z ∈ ΦA,0 ∈ ΦA,x ∈ ΦA}

P
0,x,z
Φ {0 ∈ ΦA,x ∈ ΦA}

=

= λ
6P0,x,z

Φ {z ∈ ΦA,0 ∈ ΦA,x ∈ ΦA | tz<tx<t0}
2P0,x,z

Φ {0 ∈ ΦA,x ∈ ΦA | tx < t0}
=

= 3λ

∫ 1

0

∫ 1

tz

∫ 1

tx
e−λt0πR

2

e−λtxM(x)e−λtzN(x,z) dt0 dtx dtz∫ 1

0

∫ 1

tx
e−λt0πR2e−λtxM(x) dt0 dtx

=

which can be computed in closed form as function of the
area M(x) of B(x, R) \ B(0, R), and of the area N(x, z) of
B(z, R)\(B(x, R)∪B(0, R)), illustrated in Figure 2 by a light
gray region and a dark gray region, respectively.

Given that we approximately describe the process of trans-
mitting APs around AP 0 as an inhomogeneous Poisson
process of intensity λ0a(x)h(x, λ,R), we can easily obtain the
characteristic function of the cumulative interference adapting
(11):

ψI(s) = e−
∫

2π
0

∫
r
0
λ0
a(b(ρ,θ))h(b(ρ,θ),λ,R)[1−φF (sP l(ρ))]ρ dρ dθ (20)

where we remind that the spatial integrals are computed
using polar coordinates centered at the receiving node, being
b(ρ, θ) the distance of the generic point (ρ, θ) from the AP
transmitting the useful signal. The success probability ps(r)
can finally be obtained plugging ψI+N (s) = ψI(s)e

−sN0 in
(11), (12), and (13), respectively for general, Rayleigh or phase
type fading distribution.

At last we wish to emphasize that our Matérn model of
AP locations can be extended to evaluate also throughput
distributions, following the same approach outlined in Section
V, which essentially requires to replace λA with λ0A(x) and
h(z, λA) with h(z, λ,R) in (14) and (15).

C. Distance distribution between transmitter and receiver

To compute the throughput according to (4), we also need
to evaluate the distribution fD(r,Matérn) of the distance r
between an AP and its intended receiver, which requires to
compute the distance distribution between a node n arbitrarily
placed on the plane and the closest node belonging to ΦA

(denoted with A). When ΦA is a (hard-core) Matérn point
process, the distance distribution is (to the best of our knowl-
edge) not known in closed form. Therefore we propose to
approximate it with a form similar to (5), which is sufficiently
accurate for our purposes. Our approximation is based on a
simple observation, which allows to modify (5) adapting it to
the case of a Matérn process of parameters (λ,R).

The observation is that, for all values r such that 2r ≤ R,
the exact probability fD(r,Matérn) is

fD(r,Matérn) = 2πrλp 2 r ≤ R (21)

where p = 1−e−λπR2

λπR2 is the probability of retaining a point in
the original Poisson point process. Indeed, consider the case

A

case case 

n n Ar

M(r, R)

2 r > R2 r ≤ R

R

r

R

Fig. 3. Illustration of the two cases arising in the approximate computation
of the distance distribution between a node n and its closest Access Point A,
in the case of a Matérn process of APs.

2r ≤ R illustrated in the left part of Figure 3. Once we know
that there is a point A ∈ ΦA at distance d ∈ [r, r + dr] (this
event has probability 2πrλp dr), we do not need to worry
about the presence of other APs closer to n than A (i.e.,
other nodes belonging to ΦA, lying within the disk of radius
r centered at n). Indeed, when 2 r ≤ R this disk is entirely
contained in the disk of radius R centered at A, which by
definition cannot contain any other point belonging to ΦA.

Instead, in the case 2r > R, we need to worry about the
possible presence of APs closer to n than A, but only in the
area denoted by a shaded region in the right part of Figure 3.
Our approximation is to assume that the existence of these
closer APs depends uniquely on the area M(r, R) of the
region where we can find them. The value of M(r, R) can be
computed in closed form applying elementary geometry, and
we omit its expression here. Moreover, we assume that nodes
belonging to ΦA populate area M(r, R) with a probability
equivalent to that of a virtual Poisson point process of intensity
λ∗. Hence we write

fD(r,Matérn) ≈ 2πrλpe−λ∗M(r,R) (22)

which is valid also for 2r ≤ R, assuming that M(r, R) = 0 in
this case. At last, the value of λ∗ to be used in (22) is the only
one that guarantees that fD(r,Matérn) is a proper pdf, i.e., it
is the unique value λ∗ such that

∫∞
0 2πrλpe−λ∗M(r,R) dr = 1.

We have found that this simple approximation provides suffi-
ciently accurate distributions for all values of λ and R.

VII. NUMERICAL RESULTS AND INSIGHTS

In this section we report a selection of the most inter-
esting results that can be obtained following the approach
presented in this paper. Since our formulas contain several
approximations, model predictions are checked against results
obtained by a Montecarlo simulator of the system as described
in Section III. The use of a Matérn process to describe the
pattern of simultaneous transmitters in CSMA networks has
been already discussed in [10], [5].

In all presented cases, we will always assume (due to lack
of space) that P = 1, α = 3, β = 1. We start considering
a scenario in which APs are placed according to a Poisson
process with intensity λa = 1/π, while fading is exponentially
(Raileigh) distributed with mean 1/μ = 1.

Fig. 4 reports the average AP throughput T , the average
transmission probability pT =

∫∞
0
pT (r)fD(r) dr and the av-

erage success probability ps =
∫∞
0 ps(r)fD(r) dr, as function

of the sensing threshold σ. Models predictions turn out to
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Fig. 4. Average AP throughput (left y axis), average transmission probability
pT and average success probability ps (right y axis), as function of the sensing
threshold σ, for λA = 1/π, Rayleigh fading.

be very accurate, despite the several approximations (for the
throughput figure we have also reported 99%-level confidence
intervals derived from our simulations).

As expected, the transmission probability pT increases with
σ (since it is less likely to sense nearby nodes and thus
refrain from transmitting), whereas the success probability
ps decreases with σ (since there is more interference). It is
instead less obvious that the overall effect is to produce an
AP throughput that increases with σ up to a maximum value,
after which the throughput decreases very little as we further
augment σ (a similar behavior occurs for different values
of α and β). Recall that we assume that users are always
associated to the closest AP (the decay of the throughput after
the optimum value can be more pronounced under different
user-AP association models). Looking only at Fig. 4 it would
be tempting to conclude that in dense random networks the
sensing mechanism is not that useful (at least under the closest-
AP user association), since an aloha-like protocol2 would
achieve nearly maximum throughput. However, the spatial
average of AP throughput provides alone a limited view of
the system behavior, and here is exactly where our approach
to estimating the throughput distribution comes into play to
better understand the role of sensing.

Fig. 5 reports the estimated cumulative distribution function
(cdf) of the AP throughput in the same setting of Fig. 5, for
three values of σ = 0.1, 1, 10. We observe that the sensing
threshold has a dramatic impact on the throughput distribution.
Indeed for large values of σ a significant fraction of APs
(those in more unfavorable topological conditions) experience
negligible throughput, being their transmissions systematically
affected by strong interference. Reducing σ (i.e., increasing the
sensing range) permits to even out the throughput of contend-
ing APs in a sensing neighborhood, at the cost of a reduction in
the average AP throughput. Although capacity-fairness trade-
offs are commonly found in many communication systems,
ours is probably the first analytical model to show such trade-

2As σ tends to infinity, the system behaves like slotted-Aloha with transmit
probability equal to 1.
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Fig. 5. CDF of AP throughput, for different values of the sensing threshold
σ, in the same scenario as of Figure 4. Comparison between analysis (left
plot) and simulation (right plot).

off in the stochastic geometry framework of random CSMA
networks. We observe that our approach to estimating the
throughput distribution captures most (not all) of the variability
measured in simulation, well predicting the impact of σ.
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Another interesting effect that can be captured by our
analysis is that related to the shape of the fading/shadowing
variable. In Fig. 6 we show again the cdf reported in 5
in the case of σ = 10, which was found to produce a
severe unbalance in the throughput distribution under Rayleigh
fading. This time, we increase the variation coefficient of the
fading/shadowing variable (while maintaining the same mean),
considering two second-order hyper-exponential distributions
of parameters μ1 = 1/3, μ2 = 3 (moderate variation coeffi-
cient) or μ1 = 1/10, μ2 = 10 (large variation coefficient). We
observe that higher diversity in the signal attenuation over the
wireless links can help to alleviate the starvation of APs in
unfavorable topological conditions, by actually reducing the
variability in the throughput distribution (again at the expense
of a reduction in the average throughput, not shown here).
Again, the model captures fairly well this counter-intuitive
phenomenon.

Next, we evaluate the effect of different APs placements
on the average throughput and its distribution. Fig. 7 reports
the spatial average T as function of the average density λ̄
of APs in the network, in the case of Rayleigh fading with
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σ = 1. Besides the Poisson process (for which λ̄ = λa),
we consider hard-core Matérn processes (λ,R) with different
radius R, in which we let λ vary from very small to very large

values, obtaining average node densities λ̄ = 1−e−λπR2

πR2 . For
given λ̄, we observe that the average AP throughput increases
with R (but notice that R cannot exceed 1/

√
πλ̄), which

can be explained by the fact that the resulting topologies
become more and more regular, with a beneficial effect also
on the distance distribution between AP and user. What is
somehow surprising is that, for fixed R, the AP throughput
can even increase for increasing values of the APs density, if
R is sufficiently large (see curves related to R = 0.75, 1, 2).
This can be again attributed to the fact that, for a given R,
Matérn processes become more regular by increasing λ (and
λ̄), although this beneficial effect can be offset, for small R, by
the increased interference. We observe, again, that our model
is able to capture fairly well this interesting phenomenon.

0.0001

 0.001

 0.01

 0.1

 1

 0.001  0.01  0.1  1

AP Throughput

Analysis

Matern σ = 0.1
Poisson σ = 0.1

Matern σ = 1
Poisson σ = 1

Matern σ = 10
Poisson σ = 10

0.001  0.01  0.1  1

AP Throughput

Simulation

Matern σ = 0.1
Poisson σ = 0.1

Matern σ = 1
Poisson σ = 1

Matern σ = 10
Poisson σ = 10

Fig. 8. CDF of AP throughput, for different values of the sensing threshold σ,
in the case of a Matérn process with R = 1, λ = 10/π, and the corresponding
Poisson (with the same AP density), for Rayleigh fading. Comparison between
analysis (left plot) and simulation (right plot).

At last, Fig. 8 reports the throughput cdf for a fixed
Matérn process with λ = 10/π and R = 1. We consider
Rayleigh fading, and different values of the sensing threshold
σ = 0.1, 1, 10. We have also reported the corresponding cdf’s

resulting from a Poisson process having the same average
AP density. We observe that, besides increasing the average
AP throughput (see Fig. 7), a more regular displacement of
the APs with respect to the Poisson process is also able
to reduce the variability in the throughput distribution, as
correctly predicted by the model.

VIII. CONCLUSIONS

In this paper we have extended the stochastic geometry
approach to modeling dense CSMA networks. So far, spa-
tial averages of performance measures have provided only
a limited, possibly misleading view of the system behavior,
and therefore they must be supplemented with an analysis of
the spatial distribution of the same measures. We have shown
how the stochastic geometry analysis can provide fundamental
insights into the throughput distribution, especially how the
inherent unbalance due to the randomness in the topology
is affected by the sensing mechanism and the variability
of radio signal propagation. Moreover, we have proposed a
methodology that permits to consider scenarios in which APs
are not distributed according to a Poisson process, obtaining
additional insights that could guide the topology design and
control of densely deployed CSMA networks. We believe that
our work offers an important contribution in the direction
of exploring the potentialities of the stochastic geometry
approach to modeling wireless networks. In particular we
believe that the methodology devised in this paper can be
successfully applied to the design of better performing, and
more energy efficient new generation WiFi networks.
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