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Abstract

This paper addresses the static deformations and free vibration analysis of lam-
inated composite and sandwich plates by collocation with radial basis functions,
according to a Layerwise formulation. The present layerwise approach accounts for
through-the-thickness deformations. The equations of motion and the boundary con-
ditions are obtained by the Carrera’s Unified Formulation, and further interpolated
by collocation with radial basis functions.

1 Introduction

The material properties of layered or sandwich composites introduce strong
discontinuities of the deformed pseudo-normal to the middle surface at the
interfaces, see Fig. 1.

This zig-zag (ZZ) effect i(see an historical review on zig-zag theories by Car-
rera [1]), makes difficult the use of classical theories such as Kirchhoff [2] or
Reissner-Mindlin [3,4] type theories, due to the fact that all layers share the
same degrees-of-freedom.

In recent years, radial basis functions (RBFs) proved to be an accurate tech-
nique for interpolating data and functions. A radial basis function, φ(‖x −
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Fig. 1. Scheme of the layerwise assumptions for a three-layered laminate

xj‖) depends on the Euclidian distance between distinct data centers xj , j =
1, 2, ..., N ∈ R

n, also called collocation points. Kansa [5] introduced the con-
cept of solving PDEs by an unsymmetric RBF collocation method based upon
the MQ interpolation functions. The use of alternative methods to the Finite
Element Methods for the analysis of plates, such as the meshless methods
based on radial basis functions is atractive due to the absence of a mesh and
the ease of collocation methods. The authors have recently applied the RBF
collocation to the static deformations of composite beams and plates [6–8].

In this paper it is investigated for the first time how the Unified Formulation
can be combined with radial basis functions to the analysis of thick laminated
plates, using a layerwise formulation, allowing for through-the-thickness defor-
mations. The quality of the present method in predicting static deformations
and free vibrations of thin and thick laminated and sandwich plates is com-
pared and discussed with other methods in some numerical examples.

2 The Unified Formulation for the Layerwise theory

The Unified Formulation (UF) proposed by Carrera [9,10], also known as CUF,
has been applied in several finite element analysis, either using the Principle of
Virtual Displacements, or by using the Reissner’s Mixed Variational theorem.
The stiffness matrix components, the external force terms or the inertia terms
can be obtained directly with this UF, irrespective of the shear deformation
theory being considered.

For the sake of completeness, the Carrera’s Unified formulation [9,10] is briefly
reviewed. It is shown how to obtain the fundamental nuclei, which allows the
derivation of the equations of motion and boundary conditions, for the present
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RBF collocation.

2.1 Governing equations and boundary conditions in the framework of Uni-

fied Formulation

A multi-layered plate with Nl layers is considered. The Principle of Virtual
Displacements (PVD) for the mechanical case is defined as:

Nl∑

k=1

∫

Ωk

∫

Ak

{
δǫkpG

T
σk

pC + δǫknG

T
σk

nC

}
dΩkdz =

Nl∑

k=1

δLk
e (1)

where Ωk and Ak are the integration domains in plane (x,y) and z direction,
respectively. Here, k indicates the layer and T the transpose of a vector, and
δLk

e is the external work for the kth layer. G means geometrical relations and
C constitutive equations.

Stresses and strains are separated into in-plane and normal components, de-
noted respectively by the subscripts p and n. The mechanical strains in the
kth layer can be related to the displacement field uk = {uk

x, u
k
y, u

k
z} via the

geometrical relations:

ǫkpG = [ǫxx, ǫyy, γxy]
kT = Dk

pu
k , (2)

ǫknG = [γxz, γyz, ǫzz]
kT = (Dk

np + Dk
nz) uk ,

wherein the differential operator arrays are defined as follows:

Dk
p =




∂x 0 0

0 ∂y 0

∂y ∂x 0



, Dk

np =




0 0 ∂x

0 0 ∂y

0 0 0



, Dk

nz =




∂z 0 0

0 ∂z 0

0 0 ∂z



, (3)

The 3D constitutive equations are given as:

σk
pC = Ck

pp ǫ
k
pG + Ck

pn ǫ
k
nG

σk
nC = Ck

np ǫ
k
pG + Ck

nn ǫ
k
nG

(4)
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with

Ck
pp =




C11 C12 C16

C12 C22 C26

C16 C26 C66




Ck
pn =




0 0 C13

0 0 C23

0 0 C36




Ck
np =




0 0 0

0 0 0

C13 C23 C36




Ck
nn =




C55 C45 0

C45 C44 0

0 0 C33




(5)

The three displacement components ux, uy and uz and their relative variations
can be modelled as:

(ux, uy, uz) = Fτ (uxτ , uyτ , uzτ) (δux, δuy, δuz) = Fs (δuxs, δuys, δuzs) (6)

with Taylor expansions from first up to 4th order: F0 = z0 = 1, F1 = z1 = z,
. . ., FN = zN , . . ., F4 = z4 if an Equivalent Single Layer (ESL) approach is
used.

In case of Layer Wise (LW) models, each layer k of the given multi-layered
structure is separately considered:

(uk
x, u

k
y, u

k
z) = F k

τ (uk
xτ , u

k
yτ , u

k
zτ) (δuk

x, δu
k
y, δu

k
z) = F k

s (δuk
xs, δu

k
ys, δu

k
zs)

(7)
where combinations of Legendre polynomials are employed as thickness func-
tions:

Ft =
P0 + P1

2
Fb =

P0 − P1

2
Fl = Pl − Pl−2

with τ, s = t, b, l and l = 2, . . . , 14 (8)

Here, t and b indicate the top and bottom values for each layer, Pl are the

Legendre polynomials (P0 = 1, P1 = ζk, P2 =
(3ζ2

k
−1)

2
and so on) with ζk = 2zk

hk

that is the non-dimensionalized thickness coordinate ranging from −1 to +1
in each layer k. zk is the local coordinate and hk is the thickness of the kth
layer.
The chosen functions have the following interesting properties:

ζk = +1 : Ft = 1; Fb = 0; Fl = 0 at the top

ζk = −1 : Ft = 0; Fb = 1; Fl = 0 at the bottom
(9)
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It is obvious that for a single layer shell the ESL and LW evaluations coincide.

In the present formulation, we choose

F k
t = [

1 − 2/hk

(
z − 1

2
(zk + zk+1)

)

2

1 + 2/hk

(
z − 1

2
(zk + zk+1)

)

2
]

for displacements u, v, w. Note that zk, zk+1 correspond to the bottom and top
z-coordinates for each layer k. We then obtain all terms of the equations of
motion by integrating through the thickness direction.

It is interesting to note that under this combination of the Unified Formulation
and RBF collocation, the collocation code depends only on the choice of Ft, Fs,
in order to solve this type of problems. We designed a MATLAB code that
just by changing Ft, Fs can analyse static deformations and free vibrations for
any type of C◦ shear deformation theory.

In figure 2 it is shown the assembling procedures on layer k for LW approach.

Fig. 2. Assembling procedure for LW approach.

Substituting the geometrical relations, the constitutive equations and the uni-
fied formulation into the variational statement PVD, for the kth layer, one
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has:

∫

Ωk

∫

Ak

[
(Dk

p Fsδu
k
s)

T (Ck
ppD

k
p Fτu

k
τ + Ck

pn(D
k
nΩ + Dk

nz)Fτu
k
τ )

+ ((Dk
nΩ + Dk

nz)Fsδu
k
s)

T (Ck
npD

k
p Fτu

k
τ + Ck

nn(D
k
nΩ + Dk

nz)Fτu
k
τ )

]
dΩkdz = δLk

e

(10)

At this point, the formula of integration by parts is applied:

∫

Ωk

(
(DΩ)δak

)T
akdΩk = −

∫

Ωk

δakT
(
(DT

Ω)ak
)
dΩk +

∫

Γk

δakT
(
(IΩ)ak

)
dΓk

(11)

where IΩ matrix is obtained applying the Gradient theorem:

∫

Ω

∂ψ

∂xi

dυ =
∮

Γ
niψds (12)

being ni the components of the normal n̂ to the boundary along the direction
i. After integration by parts, the governing equations and boundary conditions
for the plate in the mechanical case are obtained:

∫

Ωk

∫

Ak

( δuk
s)

T
[((

− Dk
p

)T (
Ck

pp(D
k
p) + Ck

pn(D
k
nΩ + Dk

nz

)

+
(
− Dk

nΩ + Dk
nz

)T (
Ck

np(D
k
p) + Ck

nn(Dk
nΩ + Dk

nz)
))

FτFsu
k
τ

]
dxdydz

+
∫

Ωk

∫

Ak

( δuk
s)

T
[(

IkT
p

(
Ck

pp(D
k
p) + Ck

pn(Dk
nΩ + Dk

nz)
)

+ IkT
np

(
Ck

np(D
k
p) + Ck

nn(D
k
nΩ + Dk

nz)
))

FτFsu
k
τ

]
dxdydz =

∫

Ωk

δukT
s Fsp

k
udΩk .

(13)

where Ik
p and Ik

np depend on the boundary geometry:

Ik
p =




nx 0 0

0 ny 0

ny nx 0



, Ik

np =




0 0 nx

0 0 ny

0 0 0



. (14)
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The normal to the boundary of domain Ω is:

n̂ =



nx

ny


 =



cos(ϕx)

cos(ϕy)


 (15)

where ϕx and ϕy are the angles between the normal n̂ and the direction x and
y respectively.

The governing equations for a multi-layered plate subjected to mechanical
loadings are:

δuk
s

T
: Kkτs

uu uk
τ = Pk

uτ (16)

where the fundamental nucleus Kkτs
uu is obtained as:

Kkτs
uu =

[(
−Dk

p

)T (
Ck

pp(D
k
p) + Ck

pn(Dk
nΩ + Dk

nz

)

+
(
− Dk

nΩ + Dk
nz

)T (
Ck

np(D
k
p) + Ck

nn(Dk
nΩ + Dk

nz)
)]

FτFs

(17)

and the corresponding Neumann-type boundary conditions on Γk are:

Πkτs
d uk

τ = Πkτs
d ūk

τ , (18)

where:

Πkτs
d =

[
IkT
p

(
Ck

pp(D
k
p) + Ck

pn(Dk
nΩ + Dk

nz)
)
+

IkT
np

(
Ck

np(D
k
p) + Ck

nn(D
k
nΩ + Dk

nz)
)]

FτFs

(19)

and Pk
uτ are variationally consistent loads with applied pressure.
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2.2 Fundamental nuclei

The fundamental nuclei in explicit form are then obtained as:

Kkτs
uu11

=(−∂τ
x∂

s
xC11 − ∂τ

x∂
s
yC16 + ∂τ

z ∂
s
zC55 − ∂τ

y∂
s
xC16 − ∂τ

y∂
s
yC66)FτFs

Kkτs
uu12

=(−∂τ
x∂

s
yC12 − ∂τ

x∂
s
xC16 + ∂τ

z ∂
s
zC45 − ∂τ

y∂
s
yC26 − ∂τ

y∂
s
xC66)FτFs

Kkτs
uu13

=(−∂τ
x∂

s
zC13 − ∂τ

y∂
s
zC36 + ∂τ

z ∂
s
yC45 + ∂τ

z ∂
s
xC55)FτFs

Kkτs
uu21

=(−∂τ
y∂

s
xC12 − ∂τ

y∂
s
yC26 + ∂τ

z ∂
s
zC45 − ∂τ

x∂
s
xC16 − ∂τ

x∂
s
yC66)FτFs

Kkτs
uu22

=(−∂τ
y∂

s
yC22 − ∂τ

y∂
s
xC26 + ∂τ

z ∂
s
zC44 − ∂τ

x∂
s
yC26 − ∂τ

x∂
s
xC66)FτFs

Kkτs
uu23

=(−∂τ
y∂

s
zC23 − ∂τ

x∂
s
zC36 + ∂τ

z ∂
s
yC44 + ∂τ

z ∂
s
xC45)FτFs

Kkτs
uu31

=(∂τ
z ∂

s
xC13 + ∂τ

z ∂
s
yC36 − ∂τ

y∂
s
zC45 − ∂τ

x∂
s
zC55)FτFs

Kkτs
uu32

=(∂τ
z ∂

s
yC23 + ∂τ

z ∂
s
xC36 − ∂τ

y∂
s
zC44 − ∂τ

x∂
s
zC45)FτFs

Kkτs
uu33

=(∂τ
z ∂

s
zC33 − ∂τ

y∂
s
yC44 − ∂τ

y∂
s
xC45 − ∂τ

x∂
s
yC45 − ∂τ

x∂
s
xC55)FτFs

(20)

Πkτs
11 =(nx∂

s
xC11 + nx∂

s
yC16 + ny∂

s
xC16 + ny∂

s
yC66)FτFs

Πkτs
12 =(nx∂

s
yC12 + nx∂

s
xC16 + ny∂

s
yC26 + ny∂

s
xC66)FτFs

Πkτs
13 =(nx∂

s
zC13 + ny∂

s
zC36)FτFs

Πkτs
21 =(ny∂

s
xC12 + ny∂

s
yC26 + nx∂

s
xC16 + nx∂

s
yC66)FτFs

Πkτs
22 =(ny∂

s
yC22 + ny∂

s
xC26 + nx∂

s
yC26 + nx∂

s
xC66)FτFs

Πkτs
23 =(ny∂

s
zC23 + nx∂

s
zC36)FτFs

Πkτs
31 =(ny∂

s
zC45 + nx∂

s
zC55)FτFs

Πkτs
32 =(ny∂

s
zC44 + nx∂

s
zC45)FτFs

Πkτs
33 =(ny∂

s
yC44 + ny∂

s
xC45 + nx∂

s
yC45 + nx∂

s
xC55)FτFs

(21)

2.3 Dynamic governing equations

The PVD for the dynamic case is expressed as:

Nl∑

k=1

∫

Ωk

∫

Ak

{
δǫkpG

T
σk

pC + δǫknG

T
σk

nC

}
dΩkdz =

Nl∑

k=1

∫

Ωk

∫

Ak

ρkδukT ükdΩkdz +
Nl∑

k=1

δLk
e

(22)

where ρk is the mass density of the k-th layer and double dots denote acceler-
ation.

By substituting the geometrical relations, the constitutive equations and the
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Unified Formulation, we obtain the following governing equations:

δuk
s

T
: Kkτs

uu uk
τ = Mkτsük

τ + Pk
uτ (23)

In the case of free vibrations one has:

δuk
s

T
: Kkτs

uu uk
τ = Mkτsük

τ (24)

where Mkτs is the fundamental nucleus for the inertial term. The explicit form
of that is:

Mkτs
11 = ρkFτFs; Mkτs

12 = 0; Mkτs
13 = 0 (25)

Mkτs
21 = 0; Mkτs

22 = ρkFτFs; Mkτs
23 = 0 (26)

Mkτs
31 = 0; Mkτs

32 = 0; Mkτs
33 = ρkFτFs (27)

The geometrical and mechanical boundary conditions are the same of the
static case.

3 The radial basis function method

For the sake of completeness we present here the basics of collocation with
radial basis functions for static and vibrations problems.

3.1 The static problem

In this section the formulation of a global unsymmetrical collocation RBF-
based method to compute elliptic operators is presented. Consider a linear
elliptic partial differential operator L and a bounded region Ω in R

n with some
boundary ∂Ω. In the static problems we seek the computation of displacements
(u) from the global system of equations

Lu = f in Ω (28)

LBu = g on ∂Ω (29)

where L, LB are linear operators in the domain and on the boundary, re-
spectively. The right-hand side of (28) and (29) represent the external forces
applied on the plate and the boundary conditions applied along the perimeter
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of the plate, respectively. The PDE problem defined in (28) and (29) will be
replaced by a finite problem, defined by an algebraic system of equations, after
the radial basis expansions.

3.2 The eigenproblem

The eigenproblem looks for eigenvalues (λ) and eigenvectors (u) that satisfy

Lu + λu = 0 in Ω (30)

LBu = 0 on ∂Ω (31)

As in the static problem, the eigenproblem defined in (30) and (31) is replaced
by a finite-dimensional eigenvalue problem, based on RBF approximations.

3.3 Radial basis functions approximations

The radial basis function (φ) approximation of a function (u) is given by

ũ(x) =
N∑

i=1

αiφ (‖x− yi‖2) ,x ∈ R
n (32)

where yi, i = 1, .., N is a finite set of distinct points (centers) in R
n. Although

we can use many RBFs, in this paper we restrict to the Wendland function,
defined as

φ(r) = (1 − c r)8
+

(
32(c r)3 + 25(c r)2 + 8c r + 1

)
(33)

where the Euclidian distance r is real and non-negative and c is a positive
shape parameter. The shape parameter (c) was obtained by an optimization
procedure, as detailed in Ferreira and Fasshauer [11].

Considering N distinct interpolations, and knowing u(xj), j = 1, 2, ..., N , we
find αi by the solution of a N ×N linear system

Aα = u (34)

where A = [φ (‖x− yi‖2)]N×N , α = [α1, α2, ..., αN ]T and u = [u(x1), u(x2), ..., u(xN)]T .

10



3.4 Solution of the static problem

The solution of a static problem by radial basis functions considers NI nodes
in the domain and NB nodes on the boundary, with a total number of nodes
N = NI + NB. We denote the sampling points by xi ∈ Ω, i = 1, ..., NI and
xi ∈ ∂Ω, i = NI + 1, ..., N . At the points in the domain we solve the following
system of equations

N∑

i=1

αiLφ (‖x− yi‖2) = f(xj), j = 1, 2, ..., NI (35)

or
LI

α = F (36)

where
LI = [Lφ (‖x− yi‖2)]NI×N (37)

At the points on the boundary, we impose boundary conditions as

N∑

i=1

αiLBφ (‖x− yi‖2) = g(xj), j = NI + 1, ..., N (38)

or
Bα = G (39)

where
B = LBφ [(‖xNI+1 − yj‖2)]NB×N

Therefore, we can write a finite-dimensional static problem as



LI

B


 α =




F

G


 (40)

By inverting the system (40), we obtain the vector α. We then obtain the
solution u using the interpolation equation (32).

3.5 Solution of the eigenproblem

We consider NI nodes in the interior of the domain and NB nodes on the
boundary, with N = NI +NB. We denote interpolation points by xi ∈ Ω, i =
1, ..., NI and xi ∈ ∂Ω, i = NI +1, ..., N . At the points in the domain, we define
the eigenproblem as

N∑

i=1

αiLφ (‖x− yi‖2) = λũ(xj), j = 1, 2, ..., NI (41)
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or
LI

α = λũI (42)

where

LI = [Lφ (‖x− yi‖2)]NI×N (43)

At the points on the boundary, we enforce the boundary conditions as

N∑

i=1

αiLBφ (‖x− yi‖2) = 0, j = NI + 1, ..., N (44)

or
Bα = 0 (45)

Equations (42) and (45) can now be solved as a generalized eigenvalue problem



LI

B


 α = λ



AI

0


 α (46)

where
AI = φ [(‖xNI

− yj‖2)]NI×N

3.6 Discretization of the equations of motion and boundary conditions

The radial basis collocation method follows a simple implementation proce-
dure. Taking equation (13), we compute

α =



LI

B




−1 


F

G


 (47)

This α vector is then used to obtain solution ũ, by using (7). If derivatives of
ũ are needed, such derivatives are computed as

∂ũ

∂x
=

N∑

j=1

αj
∂φj

∂x
(48)

∂2ũ

∂x2
=

N∑

j=1

αj
∂2φj

∂x2
, etc (49)

In the present collocation approach, we need to impose essential and natural
boundary conditions. Consider, for example, the condition w = 0, on a simply
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supported or clamped edge. We enforce the conditions by interpolating as

w = 0 →
N∑

j=1

αW
j φj = 0 (50)

Other boundary conditions are interpolated in a similar way.

3.7 Free vibrations problems

For free vibration problems we set the external force to zero, and assume
harmonic solution in terms of displacements uk, vk, wk, for each layer, as

uk = Uk(w, y)eiωt; vk = V k(w, y)eiωt; wk = W k(w, y)eiωt (51)

where ω is the frequency of natural vibration. Substituting the harmonic ex-
pansion into equations (46) in terms of the amplitudes Uk, V k,W k, we may
obtain the natural frequencies and vibration modes for the plate problem, by
solving the eigenproblem

[
L − ω2G

]
X = 0 (52)

where L collects all stiffness terms and G collects all terms related to the
inertial terms. In (52) X are the modes of vibration associated with the natural
frequencies defined as ω.

4 Numerical examples

All numerical examples consider a Chebyshev grid.

4.1 Static problems-cross-ply laminated plates

A simply supported square laminated plate of side a and thickness h is com-
posed of four equally layers oriented at [0◦/90◦/90◦/0◦]. The plate is subjected
to a sinusoidal vertical pressure of the form

pz = P sin
(
πx

a

)
sin

(
πy

a

)
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with the origin of the coordinate system located at the lower left corner on the
midplane and P the maximum load (at center of plate). Note that the load can
now be applied at the top surface (z = h/2), or middle-surface (z = 0), because
the formulation considers transverse displacements in every layer interface.

The orthotropic material properties for each layer are given by

E1 = 25.0E2 G12 = G13 = 0.5E2 G23 = 0.2E2 ν12 = 0.25

The in-plane displacements, the transverse displacements, the normal stresses
and the in-plane and transverse shear stresses are presented in normalized
form as

w =
102w(a/2,a/2,0)h

3E2

Pa4
σxx =

σxx(a/2,a/2,h/2)h
2

Pa2
σyy =

σyy(a/2,a/2,h/4)h
2

Pa2

τxz =
τxz(0,a/2,0)h

Pa
τxy =

τxy(0,0,h/2)h
2

Pa2

In Table 1 we present results for for the present layerwise theory, using 11×11
up to 17×17 points. We compare results with higher-order solutions by Akhras
[12] , and Reddy [13], FSDT solutions by Reddy and Chao [14], and an exact
solution by Pagano [15]. We also compare with results by the authors using
RBFs with Reddy’s theory [8], and a layerwise theory [16]. Our layerwise
theory produces excellent results, when compared with other HSDT theories,
for all a/h ratios, for transverse displacements, normal stresses and transverse
shear stresses. In Figure 3 the σxx evolution across the thickness direction is
illustrated, for a/h = 4, using 13 × 13 points, considering a top surface load.
In Figure 4 the τxz evolution across the thickness direction is illustrated, for
a/h = 4, using 13×13 points, considering a top surface load. In Figure 5 the σxx

evolution across the thickness direction is illustrated, for a/h = 4, using 13×13
points, considering the load applied at the middle surface. In Figure 6 the τxz

evolution across the thickness direction is illustrated, for a/h = 4, using 13×13
points, considering the load applied at the middle surface. The application of
the load at the top surface brings the stress profiles to be unsymmetrical
with respect to the middle surface. Note that the transverse shear stresses are
obtained directly from the constitutive equations.
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a
h Method w σxx τ zx

4 HSDT [13] 1.8937 0.6651 0.2064

FSDT [14] 1.7100 0.4059 0.1398

elasticity [15] 1.954 0.720 0.270

present (11 × 11 grid) 1.9432 0.6494 0.2190

present (13 × 13 grid) 1.9432 0.6497 0.2190

present (17 × 17 grid) 1.9433 0.6497 0.2190

10 HSDT [13] 0.7147 0.5456 0.2640

FSDT [14] 0.6628 0.4989 0.1667

elasticity [15] 0.743 0.559 0.301

present (11 × 11 grid) 0.7334 0.5548 0.3000

present (13 × 13 grid) 0.7335 0.5549 0.2999

present (17 × 17 grid) 0.7335 0.5550 0.2999

100 HSDT [13] 0.4343 0.5387 0.2897

FSDT [14] 0.4337 0.5382 0.1780

elasticity [15] 0.4347 0.539 0.339

present (11 × 11 grid) 0.4339 0.5432 0.3336

present (13 × 13 grid) 0.4351 0.5434 0.3358

present (17 × 17 grid) 0.4353 0.5438 0.3361

Table 1
[0◦/90◦/90◦/0◦] square laminated plate under layerwise formulation

4.2 Free vibration problems-cross-ply laminated plates

In this example, all layers of the laminate are assumed to be of the same
thickness, density and made of the same linearly elastic composite material.
The following material parameters of a layer are used:

E1

E2

= 10, 20, 30 or 40;G12 = G13 = 0.6E2;G3 = 0.5E2; ν12 = 0.25

The subscripts 1 and 2 denote the directions normal and transverse to the
fiber direction in a lamina, which may be oriented at an angle to the plate
axes. The ply angle of each layer is measured from the global x-axis to the
fiber direction.
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Fig. 3. Normalized normal σxx stress for a/h = 4, 13 × 13 points, load at z = h/2
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Fig. 4. Normalized transverse τxz stress for a/h = 4, 13× 13 points, load at z = h/2

The example considered is a simply supported square plate of the cross-ply
lamination [0◦/90◦/90◦/0◦]. The thickness and length of the plate are denoted
by h and a, respectively. The thickness-to-span ratio h/a = 0.2 is employed
in the computation. Table 2 lists the fundamental frequency of the simply
supported laminate made of various modulus ratios of E1/E2. It is found
that the present meshless results are in very close agreement with the values
of [17,18] and the meshfree results of Liew [19] based on the FSDT. The
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Fig. 5. Normalized normal σxx stress for a/h = 4, 13 × 13 points, load at z = 0
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Fig. 6. Normalized transverse τxz stress for a/h = 4, 13 × 13 points, load at z = 0

small differences may be due to the consideration of the through-the-thickness
deformations in the present formulation.
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4.3 Sandwich plate

In this example, we consider a simply-supported square sandwich plate loaded
by uniform transverse pressure p. The length and thickness of the plate are
denoted by a, h, respectively. The plate ratio a/h is taken as 10. It consists of a
two skins with equal thickness (0.1h) with the following mechanical properties:

E1/E2 = 25; G12/E2 = G13/E2 = 0.5; G23/E2 = 0.2; ν12 = 0.25 (53)

while the inner layer, the weak core, has a thickness of 0.8h and the following
mechanical properties:

E1/E2 = 1; G13/E2 = G23/E2 = 0.06; G12/E2 = 0.016; ν12 = 0.25
(54)

In Table 3 the present RBF formulation is compared with closed-form results
by Carrera and Ciuffreda [20] 1 .

Results are presented for transverse displacements Uz(a/2, b/2, 0), and in-plane
Sxx(a/2, b/2, h/2) and out-of-plane stress Sxz(0, b/2, 0). Figures 7, 9, 11 illus-
trate the evolution of the normal stress Sxx across the thickness direction, for
a/h = 4, 10, 100, respectively. Figures 8, 10, 12 illustrate the evolution of the
transverse shear stress Sxz across the thickness direction, for a/h = 4, 10, 100,
respectively.

1 Depending on the used variational statement (PVD or RMVT), the description
of the variables (LWM or ESLM), the order of the used expansion N , a number
of two-dimensional theories can be constructed. In order to denote different theo-
ries in a concise manner, acronims could conveniently used. Transverse stress and
displacement z-fields have the assumptions for layer-wise mixed cases: LM1(Layer-
wise Mixed, linear) and LM4 (Layer-wise Mixed, fourth-order). Only displacement
assumptions are made for LD1 (Layer-wise Displacement, linear) and LD3 (Layer-
wise Displacement, cubic) cases. A parabolic transverse stress field in each-layer
is associated to linear a zig-zag diplacement field for the EMZC1 case (Equivalent-
single-layer Mixed including Zig-zag and interlaminar-Continuity, linear) and fourth-
order transverse stress field in each-layer is associated to a cubic zig-zag displace-
ment field for the EMZC3 case (Equivalent-single-layer Mixed including Zig-zag and
interlaminar-Continuity, cubic). The EMZC3d approach is related with a theory
that accounts for constant W across the thickness direction (w = w0). The ED4 and
ED1 are Equivalent-single-layer displacement-based theories of the fourth-order and
first-order types.
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Fig. 7. Normalized normal Sxx stress for a/h = 4, 13 × 13 points, load at z = 0
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Fig. 8. Normalized transverse Sxz stress for a/h = 4, 13 × 13 points, load at z = 0

5 Conclusions

In this paper we presented a study using the radial basis function collocation
method to analyse static deformations and free vibrations of thin and thick
laminated and sandwich plates using a layerwise formulation, allowing for
through-the-thickness deformations.This has not been done before and serves
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Fig. 9. Normalized normal Sxx stress for a/h = 10, 13 × 13 points, load at z = 0
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Fig. 10. Normalized transverse Sxz stress for a/h = 10, 13×13 points, load at z = 0

to fills the gap of knowledge in this area.

Using the Unified Formulation with the radial basis collocation, all the Co

plate formulations can be easily discretized by radial basis functions collo-
cation. Also, the burden of deriving the equations of motion and boundary
conditions is eliminated with the present approach. All is needed is to change
one vector Ft that defines the expansion of displacements.
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Fig. 11. Normalized normal σxx stress for a/h = 100, 17 × 17 points, load at z = 0
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Fig. 12. Normalized transverse τxz stress for a/h = 100, 17×17 points, load at z = 0

We analysed square cross-ply laminated plates in bending and free vibrations.
The present results were compared with existing analytical solutions or com-
petitive finite element solutions and excellent agreement was observed in all
cases.

The present method is a simple yet powerful alternative to other finite element
or meshless methods in the static deformation and free vibration analysis of
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thin and thick isotropic or laminated or sandwich plates.
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Method Grid E1/E2

10 20 30 40

Liew [19] 8.2924 9.5613 10.320 10.849

Exact (Reddy, Khdeir)[17,18] 8.2982 9.5671 10.326 10.854

Present layerwise (ν23 = 0.25) 11 × 11 8.3435 9.6221 10.3738 10.8854

13 × 13 8.3431 9.6218 10.3735 10.8850

17 × 17 8.3430 9.6216 10.3733 10.8849

Table 2
The normalized fundamental frequency of the simply-supported cross-ply laminated
square plate [0◦/90◦/90◦/0◦] (w̄ = (wa2/h)

√
ρ/E2, h/a = 0.2)

Uz Sxx Sxz

a/h 4 10 100 4 10 100 4 10 100

11 × 11 10.8989 3.1330 1.2402 1.9940 1.5645 1.4923 0.4335 0.5248 0.5616

13 × 13 10.8857 3.1245 1.2757 1.9328 1.5437 1.5314 0.4423 0.5186 0.5654

17 × 17 10.893 3.1282 1.2748 1.9486 1.5503 1.5308 0.4489 0.5337 0.5743

LM4 10.682 3.083 1.262 1.902 1.509 1.505 0.4074 0.5276 0.5889

EMZC3 10.678 3.082 1.262 1.899 1.507 1.504 0.3949 0.5239 0.5886

EMZC3d 10.626 3.026 1.230 1.915 1.480 1.476 0.4031 0.5224 0.5865

ED4 9.909 2.923 1.260 1.929 1.519 1.506 0.3574 0.5104 0.5881

ED1 5.542 1.982 1.218 1.145 1.388 1.475 0.5249 0.5716 0.5876

FSDT 5.636 1.984 1.218 1.168 1.391 1.476 0.5249 0.5716 0.5876

CLT 1.2103 1.2103 1.2103 1.476 1.476 1.476 0.5878 0.5878 0.5878

Table 3
Load applied at z = 0: square sandwich plates
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