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Analysis of some injection bounds for Sobolev spaces by
wavelet decomposition

Silvia Bertoluzzaa, Silvia Fallettab

aIMATI-CNR, V. Ferrata 1, 27100 Pavia
bDip. Matematica - Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino

Abstract

We consider the Sobolev spaces Hs(Ω) and Hs
0(Ω) and the Besov spaces B

1/2
2,∞(Ω),

where Ω is a sufficiently regular (see Lemma 0.2) subdomain of R2. It is well
known that for the values of s ∈ [0, 1/2) the two Sobolev spaces coincide, with
equivalence of the norms, and that the inclusion B

1/2
2,∞(Ω) ⊂ Hs(Ω) holds. The

paper is concerned with the explicit analysis of the constants appearing in the
continuity bounds for the injections Hs(Ω) ↪→ Hs

0(Ω) and B
1/2
2,∞(Ω) ↪→ Hs(Ω)

and of their dependence on the regularity s of the spaces. The analysis is carried
out by using the wavelet characterization of the corresponding norms.

Résumé

On considère les espaces de Sobolev Hs(Ω) et Hs
0(Ω), et l’espace de Besov

B
1/2
2,∞(Ω), ou Ω est un domaine suffisamment régulier (voir Lemma 0.2) de R2.

C’est connu que pour des valeurs de s ∈ [0, 1/2) les deux espaces de Sobolev
cöıncident, avec équivalence des normes, et que on a l’inclusion B

1/2
2,∞(Ω) ⊂

Hs(Ω). Cet article donne une analyse explicite des constantes que apparaissent
dans les bornes d’inclusion Hs(Ω) ↪→ Hs

0(Ω) and B
1/2
2,∞(Ω) ↪→ Hs(Ω) et, plus

précisément, de leur dépendence du paramètre de régularité s. On utilise pour
cela la caractérisation par ondelettes des normes correspondentes.

Let Ω ⊂ R2 be a bounded polygonal domain. For s ∈ [0, 1/2), we consider the
Sobolev spaces Hs(Ω) and Hs

0(Ω), defined respectively, by space interpolation
([7]), as Hs(Ω) = [H1(Ω), L2(Ω)]1−s and Hs

0(Ω) = [H1
0 (Ω), L2(Ω)]1−s. It is well

known ([6]) that Hs(Ω) and Hs
0(Ω) coincide, and that the corresponding norms

are equivalent, that is that there exist two constants cs and Cs, depending on
the regularity parameter s and on the domain Ω, such that

cs‖u‖Hs(Ω) ≤ ‖u‖Hs
0 (Ω) ≤ Cs‖u‖Hs(Ω). (1)
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The injection B
1/2
2,∞(Ω) ↪→ Hs(Ω) holds as well ([7]), that is there exists a con-

stant Bs, depending on s such that

‖u‖Hs(Ω) ≤ Bs‖u‖B
1/2
2,∞(Ω)

. (2)

The way the constants Cs and Bs behave as s converges to 1/2 plays a key role
in several applications [1, 2, 5]. We are interested here in explicitly studying
such a dependence by means of wavelet analysis. In what follows the notation
A . B (A & B) signifies that the quantity A is bounded from above (below) by
C ·B, where C is a constant that does not depend on the regularity parameter
s. A ' B stands for B . A . B .

Wavelet characterization of Sobolev and Besov norms. It is well known that it
is possible to express equivalent norms for Sobolev and Besov spaces in terms of
suitable norms on the sequences of wavelet coefficients. More precisely we can
select a sufficiently regular Daubechies orthonormal wavelet basis for L2(R),
starting from which it is possible ([4]) to construct two orthonormal bases B =
{ϕk,k ∈ Kj0} ∪ {ψj,k, j ≥ j0,k ∈ Ij}, and B0 = {ϕ0

k,k ∈ Kj0} ∪ {ψ0
j,k, j ≥

j0,k ∈ Ij}, (the elements of B0 satisfying homogeneous boundary conditions)
such that every u ∈ L2([0, 1]2) can be written in both ways as

u =
∑

k∈Kj0

(u, ϕk)ϕk +
∑

j≥j0

∑

k∈Ij
(u, ψj,k)ψj,k

=
∑

k∈Kj0

(u, ϕ0
k)ϕ0

k +
∑

j≥j0

∑

k∈Ij
(u, ψ0

j,k)ψ0
j,k,

and the following norm equivalences hold for all s ∈ [0, 1]:

‖u‖2Hs([0,1]2) '
∑

k∈Kj0

|(u, ϕk)|2 +
∑

j≥j0

∑

k∈Ij
22js |(u, ψj,k)|2, (3)

‖u‖2Hs
0 ([0,1]2) '

∑

k∈Kj0

|(u, ϕ0
k)|2 +

∑

j≥j0

∑

k∈Ij
22js |(u, ψ0

j,k)|2, s 6= 1
2
. (4)

Here Kj0 = {1, . . . , 2j0}2. Ij ∼= {1, . . . , 2j+1}2 \ {1, . . . , 2j}2 denotes the multi-
index set corresponding to the wavelet functions at level j, which are obtained
from the corresponding one dimensional basis by tensor product.

By using the Littlewood-Paley decomposition in terms of the wavelet basis,
one can also derive the characterization of Besov spaces in terms of wavelets
coefficients. Precisely,

‖u‖2
B

1/2
2,∞([0,1]2)

'
∑

k∈Kj0

|(u, ϕk)|2 + sup
j≥j0

2j
∑

k∈Ij
|(u, ψj,k)|2. (5)

The dependence of the norm equivalence constants Cs and Bs on s. By using
(3), (4) and (5) it is possible to prove the following results [3]:
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Lemma 0.1. If u ∈ Hs([0, 1]2), 0 < s < 1/2, then

‖u‖Hs
0 ([0,1]2) . 1

1/2− s
‖u‖Hs([0,1]2). (6)

If u ∈ B
1/2
2,∞([0, 1]2) then for all s, 0 < s < 1/2,

‖u‖Hs([0,1]2) . 1√
1/2− s

‖u‖
B

1/2
2,∞([0,1]2)

. (7)

The proof of Lemma 0.1 consists in expressing u as a linear combination of the
functions of the basis B and injecting such an expression in the norm equivalence
(4). After observing that the two bases have in common all basis functions whose
support is strictly included in (0, 1)2, a suitable a priori bound on the terms
|(ψj,k, ψ0

`,n)| of the form

|(ψj,k, ψ0
`,n)| . 2−|j−`|,

and on all other scalar products between the basis functions of B and B0 allows
to prove the bound (6) by applying a Schur Lemma type argument. The term
(1/2−s)−1 appears by taking the limit of the sum of the series

∑
j≥j0

2−(1−2s)j .
The bound (7) is proven by a similar argument.

The result of Lemma 0.1 can be extended to fairly regular generic domain
Ω, thanks to the following Lemma [3]:

Lemma 0.2. Let T : Ω −→ [0, 1]2 be a bounded and boundedly invertible
map, with bounded Jacobian such that the equivalence |(x1, y1) − (x2, y2)| '
|T (x1, y1)− T (x2, y2)| holds for all (x1, y1), (x2, y2) ∈ Ω (T is bi-Lipschitz). Let
u ∈ L2([0, 1]2) and let û(x) := u ◦ T (x). Then, for each s ∈ [0, 1/2),

û ∈ Hs(Ω) ⇔ u ∈ Hs([0, 1]2), ‖û‖Hs(Ω) ' ‖u‖Hs([0,1]2),

û ∈ Hs
0(Ω) ⇔ u ∈ Hs

0([0, 1]2), ‖û‖Hs
0 (Ω) ' ‖u‖Hs

0 ([0,1]2),

û ∈ B
1/2
2,∞(Ω) ⇔ u ∈ B

1/2
2,∞([0, 1]2), ‖û‖

B
1/2
2,∞(Ω)

' ‖u‖
B

1/2
2,∞([0,1]2)

.

Corollary 0.3. For every domain Ω ⊂ R2 such that there exists a map T :
Ω −→ satisfying the assumptions of Lemma 0.2, it holds that if u ∈ Hs(Ω),
0 < s < 1/2, then

‖u‖Hs
0 (Ω) . 1

1/2− s
‖u‖Hs(Ω), (8)

and if u ∈ B
1/2
2,∞(Ω) then for all s, 0 < s < 1/2,

‖u‖Hs(Ω) . 1√
1/2− s

‖u‖
B

1/2
2,∞(Ω)

. (9)

3



The optimality of the injection bounds. The dependence of the constants ap-
pearing in (8) on the regularity parameter s ∈ [0, 1/2) is sharp and cannot be
improved. In order to prove this, it is sufficient to exhibit a function u whose
Hs-norm is bounded uniformly with respect to s, while its Hs

0 -norm behaves
like 1

1/2−s . The existence of such a function [3] can be proven constructively,
also with the aid of wavelets, as stated by the following proposition.

Proposition 0.1. There exists a function u ∈ H1/2(Ω), u 6∈ H
1/2
00 (Ω) such that

‖u‖Hs
0 (Ω) & 1

1/2− s
.

Analogously, the optimality of the bound (9) holds as well. In particular the
following result holds:

Proposition 0.2. There exists a function u ∈ B
1/2
2,∞(Ω), u 6∈ H1/2(Ω) such that

‖u‖Hs(Ω) & 1√
1/2− s

.
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