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Massive gravitational waves from the Cosmic Defect theory

N. Radicella and A. Tartaglia
Dipartimento di Fisica, Politecnico di Torino and INFN sez. Torino

Abstract. The Cosmic Defect theory (CD), which is presented elsewiretdis conference, introduces in the standard
Einstein-Hilbert Lagrangian aalasticterm accounting for the strain of space-time viewed as adimensional physical
continuum. In this framework the Ricci scalar acts as thetidal term of the strain field whose potential is represgie
the additional terms. Here we are presenting the lineansesion of the theory in order to analyze its implicationghe
weak field limit. First we discuss the recovery of the Newgniimit. We find that the typical static weak field limit impess

a constraint on the values of the two parameters (Lamé ciagiff) of the theory. Once the constraint has been implesdent
the typical gravitational potential turns out to be Yukalike: The value for the Yukawa parameter is consistent whith t
constraints coming from the experimental data at the Sglstem and galactic scales. We then come to the propagating
solutions of the linearised Einstein equations in vacum,td gravitational waves. Here, analogously with othesralitive

or extended theories of gravity, the presence of the strald firoducesnassivewaves, wherenassive(in this completely
classical context) means subluminal. Furthermore lodgial polarization modes are allowed too, thus lendingringiple,

a way for discriminating these waves from the plane GR ones.

Keywords: Alternative models of gravity, gravitational waves
PACS: 04.30.-w, 04.50.Kd

FRAMEWORK

The Lagrangian density we want to analyse is
1 v g

where the second term on the r.h.s. is a potential term, ifotine of an elastic potential whose field is the strain tensor
Euv = %(gw — Nuv), and the Ricci scalar is computed by means of the observertrggs .

The strain is ascribed to a cosmic point-like defect, thishy we called the theory the Cosmic Defect theory [1] In
our analogy we are interested in an isotropic medium; indhge the elastic constants take a simple form:

Cuvpo = ANuvNpo + H(NupNve + NuaNvp)-

They now depends on two parameters only, the so-called Laeféacientsh andpu.
The Elastic potential then translates in
1
¥ =2 [Ae?+2ugy ety
5 [ + ZUEy ] ;
where, following the structure of the elastic coefficiettii® covariant version of thetensor is obtained by lowering

the indices with the total metrig.
The action integral is then

S= / d*X[R+ 7] v/=g. (1)

By varying the action in eq.(1) w.r.t. the metgtV that is the only dynamical field we obtain the Elastic Einstei
Equations (EEE):
Guv = Tﬁv (2)

where L .
&
Tﬁv =Ae [(Z + é) Ouv — euv] +u [&lv + éguveape"p — 2€ua£\(}
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WEAK FIELD LIMIT

In order to look for the gravitational waves of this theory mest linearize it around the Minkowski space-time, to
which the theory reduces locally when the defect is not sangtr
It means that the metric can be written as

Ouv = Nuv +&Ehyy £,

where the perturation metrig,, is driven bye. The strain tensor becomes

1 1
Euy = > [guv - nuv] = thuw

where we use the coordinate invariance of the theory in aiéix the flat metric to be the Minkowski one (i.e.
Diag(—1,1,1,1)). The strain tensor represents the perturbation itsetikirgy at the EEE, they are:

Guv = Teuw (3)
where
e 1 1 aB o
Teuv = A€ Z+§ Ouv —&uv | +H 5uv+§guv5aﬁ5 —2&uq8y | - 4)
First of all we should look at the linearized Einstein ten#oat, from
a a a
RBV6 ~ ‘9vrpa aérpy,

reduces to 1
Gap = 5 | 0ydshl + 6" dahgy — Dhap — dadsh— Napd,d°h + nagh|

where indices are raised and lowered by means of the Minkiawskic andh is the trace of the perturbatién
The linearised Elastic energy-momentum tensor becomes

A
T~ > €M + UEuy.
The linearised EEE in vacuo reduce to

[0y3h% + 9¥9ahg, — g — dadph —Napdyd°h + nagh|

A
—H (hyv + Ehnuv> =0

In order to investigate more deeply these equations we tewhiem by using their divergence and trace. The
divergence, thanks to the contracted Bianchi identitiagsa relation between the divergence of the perturbation
and that of its trace:

(®)

A
.IJV = - — H
Y = hi. (6)
By tracing eq.(5) one gets
A 2A
2 1+—>Dh— <1+—>h:0. 7
( o )on-u(1+2 @)

The trace of the perturbation becomes a dynamical field. déjgee of freedom is always ghostlike, regardless the
combination of the parameters [2, 3] (and it could be taciydno): this makes the theory pathological from the
qguantum point of view. To avoid this behaviour we must caistrour parameters so thatA /2 = 0. This choice
reduces our linearised Elastic energy-momentum tensdret@auli-Fierz mass term [4, 5], which actually leads to

1 1t is worthwhile here to be precise about the sign conventinrRiemann and Ricci tensors. In this paper we use the Riereisor written
above, where the upper index is the first one, and we contradirst and the third index in Riemann to obtain Ricci.
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different predictions from those of General Relativity,matter how small the graviton mass is [6, 7]. This is what is
called van Dam-Veltman-Zakharov discontinuity [8, 9], wk@xistence, accordingly to some authors, can be ascribed
to the explicit breaking of the gauge invariance by the mess tso that it can be cured if the mass is generated by
the compactification of a higher dimensional theory [10] @ithe evaluation of the linearised theory around flat
backgrounds [11].

The debate on massive gravity is still open and we chooseiéie-Pauli mass term as the linearised version of the
CD theory.

Coming back to eq.(7), the choide= —2u makes the trace of the perturbation to vanish in vacuum andeap(6)
translates in what would have been the Lorentz gauge in @eRalativity. This really simplifies the linearised
Einstein tensor that reduces+dlh,, /2 so that the equations one finally gets are:

(O+uhy = 0 (8)
hyY = 0 (9)
h = o (10)

Gravitational waves
The set of egs.(8, 9, 10) represent propagating massivesveaneplane waves are solutions of this equations:
hyy = ap e (11)
Designating the propagation direction as #teis, the wave vector is = (w, 0,0, ck) and from the eq.(11) we obtain

the dispersion relation:
w==+c\/kZ—pu

The waves are subluminal, which is commonly referred to asgb#massive” (1 < 0, consistently with the
cosmological limit). Let us now look at which are the polatisn modes of this spacetime. From egs.(8,9,10), we
have 5 dynamical degrees of freedom but this does not meaththaxpect the same number of polarisation modes.
In a metric theory of gravity there can be at most six poléissamodes, as shown in [12]. The analysis can be
performed by looking at the geodesic deviation equaticat, states which is the displacement between a pair of free-
falling particles when a gravitational wave arrives. Thethacceleration depends on the "electric” componenteeof t
Riemann tensoiR;,,,). It can be shown that there are six algebraically indepenctemponents of the Riemann tensor
by using the Newman-Pensore formalism. First, one choosenplex null basis, the so-called null tetrgdl, m, m),
that is related to a cartesian systéiyx,y, z} by

1 1
k = —(1,0,0,1), |=-—-(1,0,0,—-1),
ﬁ( ) ﬁ( )
1 _ _ 1 .
m = —(0,1,i,0), m=-=(0,1,—i,0).
ﬁ( ) ﬁ( )

We remember that we have chosen to orient the axes so thatabe tnavels in thetz direction, andu being
u=t—z/c, thek vector is proportional tdlu. Then it is possible to split the Riemann tensor into irrédiegarts [14]:

the Weyl tensorp, W1, W,, W3, W,), the traceless Ricci tenso®gg, Po1, P11, P12, P22, Poo, that are five complex
scalars) and the Ricci scalak)

When considering plane waves only some of them are différent zero and, among these, six are independent. The
ones that are helicitys) eigenstates under rotations about 2fzis are

Il
N RO

Wy, @22 — S
L|J3, Yi; — S
W4, l-|J4 — S

)
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We recall that these six wave amplitudes are observer depébdt there are some invariant statements that are true
for all standard observers they are true for anyone. These statements constitut& (B classification of waves,
based on the Petrov type of the Weyl tensor [13].

These are related to the Riemann tensor, in cartesian cadedi as follows [12]:

Wo(u) = —%Rz()zo(u),

ng(u) = —%Rxozo(u) + iERyOZO(U),

l-|J4(U) = —Rxoxo(U) + RyOyO(u) + 2i Rxoyo(u),
Wor(u) = —(Reoxo(U)+ Ryoyo(u)) .

What we measure in a detection experiment is the relativelaetion of test masses, that is the six "electric"
components of the Riemann tensor. One can express thesmatifons in the so-calledriving-force matrix

Sij(t) = Roioj-

In general there are eight unknowns, six polarisations aodiirection cosines, but if one can establish the direction
of the gravitational wave by other information, i.e. thdirection is known, the six elements of the Riemann tensor
are sufficient to determine the amplitudes of the gravitatiovaves.

Let us now apply this approach to our theory, where eqsi8)anust be satisfied. The second set, applied to a
perturbation that propagates in the posithdirection, shows that thiey, modes are proportional to tlig, ones. The
null trace condition, instead, allows us to expresshfigor theh, = oozhoo/k2 to thehy andhyy modes. In our case
we still have all the six polarisation modes, as can be seaoinputing the linearised Riemann tensor.

Coming back to the driving force matrix, it can be expresgerims of the basis polarization matrices in titérection:

6

i)=Y pzt) e,

r=1

where the amplitudep; (z t) are real and the indexruns over the six modes. The polarization tensor has the form
[12]:

0 00 0 0 1
e = -6/ 0 0 0], e2i=-2(00 0],
0 01 100
0 00 1 00
3 4 1
ez = 2 803 , 82 =3 8—(1)3 ;
1
1[{0 10 1[100
27 = (10 0], e2i=->[010|; (12)
2\ o0 0 0 2\o 0 0

the first tensor being related %, the second and the third to the real and imaginary paHzthe two next are those
that correspond t&, and the last one is relative to the scatgn, mode.

These modes can play a role in discriminating among theofigsavity, and in particular they can leave a signature
on the CMB anisotropies [15, 16]

Static weak field limit

When we want to reduce to Newtonian limit fields and eventoalses are taken to be static .

2 To determine standard observers each observer sees théraulting in the z-dir and measures the same frequency fiapmochromatic wave.
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Looking at eq.(8) we get a screened Poisson equation:
Dzhuv = —phyy, (13)

whose solution is a Yukawa-like potential.

OBSERVATIONAL CONSTRAINTS

The only parameter left in our theory js. In order to quantify it we may have recourse to the fit of theetya
supernovae luminosity which we presented in [1]. There waéba value for the bulk modulus; it w&s~ 10-°2
m~2. From this result we have

|| ~10°tm=2,

In order to compare it with the upper bounds that we find imditigre it is worthwhile to rewrite our "mass" parameter
by using the Planck constahtaind the speed of lightso to get it with dimensions of a mass:

A
my = ‘/“"E ~6-10 %%g.

We know that General Relativity passes all Solar Systers ssthat this immediately provides an upper limit for the
u parameter that determines the Yukawa-like fall off of e§) (1L 7]. Moreover, the absence of this effect at the galaxy
cluster level provides the limit we were able to find [18]:

my < 2-10 %%g.

Other limits come from the dispersion in gravitational wagince, if the graviton had a rest mass, the decay rate of
an orbiting binary would be affected. As the decay rates wélyi pulsars agree very well with GR, the errors in their
agreements provide a limit on the graviton mass [19, 20, @d{tbs limit is dramatically less restrictive than the one
from the Yukawa potential. There are a lot of work on similfeets on the timing of a pulsar signal propagating
in a gravitational field [22], or on the measurements of disjo@ in gravitational waves using interferometers or by
observing gravitational radiation from in-spiralling dibg binaries [23, 24, 25, 26, 27].

Finally, an exhaustive review on "massive" gravitons hantaone by Goldhaber and Nieto [28].
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