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Massive gravitational waves from the Cosmic Defect theory

N. Radicella and A. Tartaglia

Dipartimento di Fisica, Politecnico di Torino and INFN sez. Torino

Abstract. The Cosmic Defect theory (CD), which is presented elsewherein this conference, introduces in the standard
Einstein-Hilbert Lagrangian anelasticterm accounting for the strain of space-time viewed as a four-dimensional physical
continuum. In this framework the Ricci scalar acts as the kinetical term of the strain field whose potential is represented by
the additional terms. Here we are presenting the linearisedversion of the theory in order to analyze its implications inthe
weak field limit. First we discuss the recovery of the Newtonian limit. We find that the typical static weak field limit imposes
a constraint on the values of the two parameters (Lamé coefficients) of the theory. Once the constraint has been implemented,
the typical gravitational potential turns out to be Yukawa-like. The value for the Yukawa parameter is consistent with the
constraints coming from the experimental data at the Solar system and galactic scales. We then come to the propagating
solutions of the linearised Einstein equations in vacuo, i.e. to gravitational waves. Here, analogously with other alternative
or extended theories of gravity, the presence of the strain field producesmassivewaves, wheremassive(in this completely
classical context) means subluminal. Furthermore longitudinal polarization modes are allowed too, thus lending, in principle,
a way for discriminating these waves from the plane GR ones.

Keywords: Alternative models of gravity, gravitational waves
PACS: 04.30.-w, 04.50.Kd

FRAMEWORK

The Lagrangian density we want to analyse is

L = R +
1
2

Cµνρσ εµν ερσ ,

where the second term on the r.h.s. is a potential term, in theform of an elastic potential whose field is the strain tensor
εµν

.
= 1

2(gµν −ηµν), and the Ricci scalar is computed by means of the observed metric gµν .
The strain is ascribed to a cosmic point-like defect, this iswhy we called the theory the Cosmic Defect theory [1] In
our analogy we are interested in an isotropic medium; in thiscase the elastic constants take a simple form:

Cµνρσ = λ ηµν ηρσ + µ(ηµρηνσ + ηµσ ηνρ).

They now depends on two parameters only, the so-called Lamé coefficientsλ andµ .
The Elastic potential then translates in

V =
1
2

[

λ ε2 +2µεµνεµν]

,

where, following the structure of the elastic coefficients,the covariant version of theε tensor is obtained by lowering
the indices with the total metricg.
The action integral is then

S =

∫

d4x [R +V ]
√−g. (1)

By varying the action in eq.(1) w.r.t. the metricgµν that is the only dynamical field we obtain the Elastic Einstein
Equations (EEE):

Gµν = T e
µν (2)

where

T e
µν = λ ε

[(

ε
4

+
1
2

)

gµν − εµν

]

+ µ
[

εµν +
1
2

gµνεαβ εαβ −2εµαεα
ν

]

.
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WEAK FIELD LIMIT

In order to look for the gravitational waves of this theory wemust linearize it around the Minkowski space-time, to
which the theory reduces locally when the defect is not so strong.
It means that the metric can be written as

gµν = ηµν + εhµν ε ≪ 1,

where the perturation metrichµν is driven byε. The strain tensor becomes

εµν =
1
2

[

gµν −ηµν
]

=
1
2

εhµν ,

where we use the coordinate invariance of the theory in orderto fix the flat metric to be the Minkowski one (i.e.
Diag(−1,1,1,1)). The strain tensor represents the perturbation itself. Looking at the EEE, they are:

Gµν = Teµν , (3)

where

Teµν = λ ε
[(

ε
4

+
1
2

)

gµν − εµν

]

+ µ
[

εµν +
1
2

gµνεαβ εαβ −2εµαεα
ν

]

. (4)

First of all we should look at the linearized Einstein tensor, that, from

Rα
β γδ ≃ ∂γΓα

β δ − ∂δ Γα
β γ ,

reduces to

Gαβ ≃ 1
2

[

∂γ ∂β hγ
α + ∂ γ∂α hβ γ −�hαβ − ∂α∂β h−ηαβ ∂γ∂ δ hγ

δ + ηαβ�h
]

,

where indices are raised and lowered by means of the Minkowski metric andh is the trace of the perturbation1.
The linearised Elastic energy-momentum tensor becomes

T e
µν ≃ λ

2
εηµν + µεµν .

The linearised EEE in vacuo reduce to
[

∂γ∂β hγ
α + ∂ γ∂α hβ γ −�hαβ − ∂α ∂β h −ηαβ ∂γ∂ δ hγ

δ + ηαβ �h
]

− µ
(

hµν +
λ
2µ

hηµν

)

= 0
(5)

In order to investigate more deeply these equations we rewrite them by using their divergence and trace. The
divergence, thanks to the contracted Bianchi identities, gives a relation between the divergence of the perturbation
and that of its trace:

hµν
;ν = − λ

2µ
h;µ . (6)

By tracing eq.(5) one gets

2

(

1+
λ
2µ

)

�h− µ
(

1+
2λ
µ

)

h = 0. (7)

The trace of the perturbation becomes a dynamical field. Thisdegree of freedom is always ghostlike, regardless the
combination of the parameters [2, 3] (and it could be tachyonic, too): this makes the theory pathological from the
quantum point of view. To avoid this behaviour we must constraint our parameters so that 1+ λ/2µ = 0. This choice
reduces our linearised Elastic energy-momentum tensor to the Pauli-Fierz mass term [4, 5], which actually leads to

1 It is worthwhile here to be precise about the sign conventionon Riemann and Ricci tensors. In this paper we use the Riemanntensor written
above, where the upper index is the first one, and we contract the first and the third index in Riemann to obtain Ricci.
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different predictions from those of General Relativity, nomatter how small the graviton mass is [6, 7]. This is what is
called van Dam-Veltman-Zakharov discontinuity [8, 9], whose existence, accordingly to some authors, can be ascribed
to the explicit breaking of the gauge invariance by the mass term so that it can be cured if the mass is generated by
the compactification of a higher dimensional theory [10] or to the evaluation of the linearised theory around flat
backgrounds [11].
The debate on massive gravity is still open and we choose the Fierz-Pauli mass term as the linearised version of the
CD theory.
Coming back to eq.(7), the choiceλ = −2µ makes the trace of the perturbation to vanish in vacuum and now eq.(6)
translates in what would have been the Lorentz gauge in General Relativity. This really simplifies the linearised
Einstein tensor that reduces to−�hµν/2 so that the equations one finally gets are:

(�+ µ)hµν = 0 (8)

hµν
;ν = 0 (9)

h = 0. (10)

Gravitational waves

The set of eqs.(8, 9, 10) represent propagating massive waves and plane waves are solutions of this equations:

hµν = αµνeiκβ xβ
. (11)

Designating the propagation direction as thez axis, the wave vector isκ = (ω ,0,0,ck) and from the eq.(11) we obtain
the dispersion relation:

ω = ±c
√

k2− µ

The waves are subluminal, which is commonly referred to as being "massive" (µ < 0, consistently with the
cosmological limit). Let us now look at which are the polarisation modes of this spacetime. From eqs.(8,9,10), we
have 5 dynamical degrees of freedom but this does not mean that the expect the same number of polarisation modes.
In a metric theory of gravity there can be at most six polarisation modes, as shown in [12]. The analysis can be
performed by looking at the geodesic deviation equation, that states which is the displacement between a pair of free-
falling particles when a gravitational wave arrives. The three-acceleration depends on the "electric" components of the
Riemann tensor (Ri

0k0). It can be shown that there are six algebraically independent components of the Riemann tensor
by using the Newman-Pensore formalism. First, one choose a complex null basis, the so-called null tetrad(k, l,m,m̄),
that is related to a cartesian system{t,x,y,z} by

k =
1√
2
(1,0,0,1), l =

1√
2
(1,0,0,−1),

m =
1√
2
(0,1, i,0), m̄ =

1√
2
(0,1,−i,0).

We remember that we have chosen to orient the axes so that the wave travels in the+z direction, and,u being
u = t−z/c, thek vector is proportional to∇u. Then it is possible to split the Riemann tensor into irreducible parts [14]:
the Weyl tensor (Ψ0,Ψ1,Ψ2,Ψ3,Ψ4), the traceless Ricci tensor (Φ00,Φ01,Φ11, Φ12,Φ22,Φ02, that are five complex
scalars) and the Ricci scalar (Λ).
When considering plane waves only some of them are differentfrom zero and, among these, six are independent. The
ones that are helicity(s) eigenstates under rotations about thez axis are

Ψ2,Φ22 → s = 0,

Ψ3,Ψ̄3 → s = 1,

Ψ4,Ψ̄4 → s = 2.
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We recall that these six wave amplitudes are observer dependent but there are some invariant statements that are true
for all standard observers2 if they are true for anyone. These statements constitute theE(2) classification of waves,
based on the Petrov type of the Weyl tensor [13].

These are related to the Riemann tensor, in cartesian coordinates, as follows [12]:

Ψ2(u) = −1
6

Rz0z0(u),

Ψ3(u) = −1
2

Rx0z0(u)+
i
2

Ry0z0(u),

Ψ4(u) = −Rx0x0(u)+ Ry0y0(u)+2iRx0y0(u),

Ψ22(u) = −(Rx0x0(u)+ Ry0y0(u)) .

What we measure in a detection experiment is the relative acceleration of test masses, that is the six "electric"
components of the Riemann tensor. One can express these informations in the so-calleddriving-force matrix

Si j(t) = R0i0 j.

In general there are eight unknowns, six polarisations and two direction cosines, but if one can establish the direction
of the gravitational wave by other information, i.e. thek direction is known, the six elements of the Riemann tensor
are sufficient to determine the amplitudes of the gravitational waves.
Let us now apply this approach to our theory, where eqs.(8,9,10) must be satisfied. The second set, applied to a
perturbation that propagates in the positivez direction, shows that theh0µ modes are proportional to thehµz ones. The
null trace condition, instead, allows us to express theh00 or thehzz = ω2h00/k2 to thehxx andhyy modes. In our case
we still have all the six polarisation modes, as can be seen bycomputing the linearised Riemann tensor.
Coming back to the driving force matrix, it can be expresse interms of the basis polarization matrices in thez direction:

Si j(t) =
6

∑
r=1

p(z,t)re(z)r
i j,

where the amplitudespr(z,t) are real and the indexr runs over the six modes. The polarization tensor has the form
[12]:

e(z)1
i j = −6





0 0 0
0 0 0
0 0 1



 , e(z)2
i j = −2





0 0 1
0 0 0
1 0 0



 ,

e(z)3
i j = 2





0 0 0
0 0 1
0 1 0



 , e(z)4
i j = −1

2





1 0 0
0 −1 0
0 0 0



 ,

e(z)5
i j =

1
2





0 1 0
1 0 0
0 0 0



 , e(z)6
i j = −1

2





1 0 0
0 1 0
0 0 0



 ; (12)

the first tensor being related toΨ2, the second and the third to the real and imaginary part ofΨ3, the two next are those
that correspond toΨ4 and the last one is relative to the scalarΦ22 mode.
These modes can play a role in discriminating among theoriesof gravity, and in particular they can leave a signature
on the CMB anisotropies [15, 16]

Static weak field limit

When we want to reduce to Newtonian limit fields and eventual sources are taken to be static .

2 To determine standard observers each observer sees the wavetravelling in the z-dir and measures the same frequency for amonochromatic wave.
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Looking at eq.(8) we get a screened Poisson equation:

∇2hµν = −µhµν , (13)

whose solution is a Yukawa-like potential.

OBSERVATIONAL CONSTRAINTS

The only parameter left in our theory isµ . In order to quantify it we may have recourse to the fit of the type Ia
supernovae luminosity which we presented in [1]. There we found a value for the bulk modulus; it wasB ∼ 10−52

m−2. From this result we have
|µ | ∼ 10−51 m−2.

In order to compare it with the upper bounds that we find in literature it is worthwhile to rewrite our "mass" parameter
by using the Planck constanth̄ and the speed of lightc so to get it with dimensions of a mass:

mg =
√

|µ | h̄
c
≃ 6 ·10−66kg.

We know that General Relativity passes all Solar System tests so that this immediately provides an upper limit for the
µ parameter that determines the Yukawa-like fall off of eq.(13) [17]. Moreover, the absence of this effect at the galaxy
cluster level provides the limit we were able to find [18]:

mg ≤ 2 ·10−65kg.

Other limits come from the dispersion in gravitational waves since, if the graviton had a rest mass, the decay rate of
an orbiting binary would be affected. As the decay rates of binary pulsars agree very well with GR, the errors in their
agreements provide a limit on the graviton mass [19, 20, 21] but this limit is dramatically less restrictive than the one
from the Yukawa potential. There are a lot of work on similar effects on the timing of a pulsar signal propagating
in a gravitational field [22], or on the measurements of dispersion in gravitational waves using interferometers or by
observing gravitational radiation from in-spiralling orbiting binaries [23, 24, 25, 26, 27].
Finally, an exhaustive review on "massive" gravitons has been done by Goldhaber and Nieto [28].
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