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Abstract

In the present work, we illustrate a methodology for the reconstruction and modeling of three-

dimensional micro-structures of highly anisotropic composite materials. Specifically, we focus

on disk-shaped nano-fillers dispersed in a polymer matrix and detailed numerical investiga-

tions, based on the lattice Boltzmann method (LBM), are carried out on the global thermal

conductivity.

Key Words: Lattice Boltzmann method, Thermal conductivity, Carbon nano-fillers, Contin-

uum percolation theory.

Symbols 1

PP Polypropylene. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .[ − ]

KS4 Commercial graphite. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .[ − ]

LB Lattice Boltzmann. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .[ − ]

SEM Scanning electron microscope. . . . . . . . . . . . . . . . . . . . . . . . . . [ − ]

S Generic surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .[ − ]

A Area of a surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .[ µm2 ]

x, y, z Cartesian axes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .[ − ]

Q Global rate of conductive heat. . . . . . . . . . . . . . . . . . . . . . . . . . [ LB ]

Qf Rate of conductive heat through the filler. . . . . . . . . . . . . . . . . . . [ LB ]

1According to the standard lattice Boltzmann method, all thephysical quantities involved are dimensionless:
In the nomenclature, this is indicated by the notation [LB].
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Qp Rate of conductive heat through the polymer matrix. . . . . . . . . . . . [ LB ]

kf , k
p
f Thermal conductivity of the filler. . . . . . . . . . . . . . . . . . . . . . . . [ LB ]

kp Thermal conductivity of the polymer. . . . . . . . . . . . . . . . . . . . . . [ LB ]

keff Global thermal conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . [ LB ]

T Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .[ LB ]

Tf Temperature of filler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .[ LB ]

Tp Temperature of polymer matrix. . . . . . . . . . . . . . . . . . . . . . . . . [ LB ]

∂γ Partial derivative with respect toγ . . . . . . . . . . . . . . . . . . . . . . . . [ − ]

pf Volume fraction of the filler. . . . . . . . . . . . . . . . . . . . . . . . . . . . [ − ]

Yf Mass fraction of the filler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [ − ]

ρf Mass density of the filler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [ g · cm−3 ]

ρp Mass density of the polymer. . . . . . . . . . . . . . . . . . . . . . . . . . . [ g · cm−3 ]

p Volume (Area) fraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .[ − ]

pc Percolation threshold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .[ − ]

n Particle concentration per unit volume (area). . . . . . . . . . . . . . . . . [ m−3(m−2) ]

nc Critical particle concentration per unit volume (area). . . . . . . . . . . . [ m−3(m−2) ]

L Box edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .[ µm ]

a, b, c Semi-axes of ellipses and ellipsoids. . . . . . . . . . . . . . . . . . . . . . [ µm ]

ε Aspect ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .[ − ]

η Cumulative volume of spheres in the unit box. . . . . . . . . . . . . . . . [ − ]

ηc Critical cumulative volume of spheres per unit volume. . . . . . . . . . . [ − ]

φ Particle size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .[ µm ]

φmin Smallest particle size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .[ µm ]

φ′ Shifted particle size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .[ µm ]

D10, D50, D90 Diameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .[ µm ]

f Distribution function of particle size. . . . . . . . . . . . . . . . . . . . . . [ µm−1 ]

F Cumulative curve off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .[ − ]

ᾱ Dimensionless parameter off . . . . . . . . . . . . . . . . . . . . . . . . . . [ − ]

2



β̄ Parameter off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .[ µm−(1+ᾱ) ]

µ̄ Parameter off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .[ µm ]

σ̄ Parameter off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .[ µm ]

R Rotation matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .[ − ]

Rx Rotation matrix ofx-axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [ − ]

Ry Rotation matrix ofy-axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [ − ]

Rz Rotation matrix ofz-axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [ − ]

ϑx, ϑy, ϑz Rotation angles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .[ rad ]

ϑ̄x, ϑ̄y Mean rotation angles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .[ rad ]

σ Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .[ rad ]

N Number of lattice nodes along each Cartesian axis. . . . . . . . . . . . . [ − ]

dx Spacial stepping alongx-axis . . . . . . . . . . . . . . . . . . . . . . . . . . . [ µm ]

dy Spacial stepping alongy-axis . . . . . . . . . . . . . . . . . . . . . . . . . . . [ µm ]

dz Spacial stepping alongz-axis . . . . . . . . . . . . . . . . . . . . . . . . . . . [ µm ]

Vc Cumulative volume of particles in the unit box. . . . . . . . . . . . . . . . [ − ]

M Mesh array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .[ − ]

A,B Box facets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .[ − ]

(Th − Tc) Temperature difference betweenA andB . . . . . . . . . . . . . . . . [ LB ]

l Line connectingA andB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [ − ]

D3Q19 Lattice Boltzmann scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . [ − ]

fi Lattice Boltzmann populations. . . . . . . . . . . . . . . . . . . . . . . . . . [ LB ]

f eq
i Lattice Boltzmann equilibrium populations. . . . . . . . . . . . . . . . . . [ LB ]

~ci = (cix, ciy, ciz) Velocities of the lattice Boltzmann populations. . . . . . . . [ LB ]

ω Relaxation frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .[ LB ]

ωf Relaxation frequency of filler. . . . . . . . . . . . . . . . . . . . . . . . . . . [ LB ]

ωp Relaxation frequency of polymer matrix. . . . . . . . . . . . . . . . . . . . [ LB ]

x Arbitrary point of the computational domain. . . . . . . . . . . . . . . . . [ LB ]

t Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .[ LB ]
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dt Time stepping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .[ LB ]

wi weight of thei-th population . . . . . . . . . . . . . . . . . . . . . . . . . . . [ − ]

~j = (jx, jy, jz) First order moment. . . . . . . . . . . . . . . . . . . . . . . . . . . [ LB ]

c2s Parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .[ LB ]

ρ Mass density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .[ LB ]

cp Specific heat capacity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .[ LB ]

α Thermal diffusivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .[ LB ]

∇T Temperature gradient. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .[ LB ]

∇Tf Temperature gradient of filler. . . . . . . . . . . . . . . . . . . . . . . . . . . [ LB ]

∇Tp Temperature gradient of polymer matrix. . . . . . . . . . . . . . . . . . . . [ LB ]

n̂ Unit normal vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .[ − ]

Si Random configuration of a composite material sample. . . . . . . . . . . [ − ]

R2
x, R

2
z Coefficients of determination. . . . . . . . . . . . . . . . . . . . . . . . . . [ − ]

θ Angle of the orientation of the extrusion axis. . . . . . . . . . . . . . . . . [ rad ]

i, β, γ, τ indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .[ − ]

1. Introduction and motivation

A large variety of additives are nowadays available to endowpolymer compounds with en-

hanced physical properties, such as transport quantities (electrical and thermal conductivity)

and elastic moduli. Due to the recent development of novel carbon-based particles with ex-

cellent properties, composite materials showing high performances are expected. The present

work describes a general numerical tool aiming at characterizing the global thermal conductiv-

ity of percolating networks of highly conductive nano-fillers, dispersed in a polymer matrix: In

particular, here we focus on extruded composite material made of polypropylene and graphite

nano-particles. Starting from two-dimensional scanning electron microscope (SEM) images,

the micro-topology of material samples is reconstructed, discretized by means of a regular

Cartesian mesh, and utilized for solving the unsteady heat conduction problem. Numerical

simulations are based on a fully parallelized three-dimensional lattice Boltzmann (LB) solver,

the computational domain is represented by a cube with a fixedtemperature difference between

two opposite facets, while periodic condition is assumed for the rest of the boundary.

General aspects on physical properties (such as thermal andelectrical conductivity, mechanical

properties, etc.) of composite materials can be investigated in the framework of the continuum
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percolation theory [1], as testified by the extensive literature in this field (see, e.g., [2, 3, 4,

5, 6, 7]). Notice that, the latter theory usually addresses the issue of evaluating the minimal

fraction of filler that gives rise to a percolating network, under the assumption of randomly

oriented particles of the same shape and size: Toward this end, the Monte Carlo Method is a

typical numerical tool for such investigations [8].

However, the study of realistic composite materials often involves fillers with high aspect-ratio

(e.g., tubes and lamellae) and significant differences in size. In addition, the hypothesis of fully

random orientation may break down, if particles show a tendency to align along preferential

lines or planes: This is, for example, the case of manufacturing by extrusion, where particles

preferably align along the extrusion axis. As a matter of fact, performances of realistic com-

posite materials, in terms of heat conduction, cannot be investigated only on the basis of the

continuum percolation theory, and accurate numerical simulations become necessary.

This manuscript is organized in sections as follows. In section 2, the ideal upper limit of

thermal conductivity of composite materials is discussed,while some basic notions on the

continuum percolation theory are reviewed in section 3. In section 4, a methodology for the

reconstruction of a composite material micro-topology is worked out. The mathematical model

adopted for the evaluation of the global thermal conductivity of a composite material is dis-

cussed in section 5, while validation results are reported in section 6 for thermal resistances

connected in series and parallel arrangements. Finally, results of numerical simulations of the

global thermal conductivity are presented in section 7, anddiscussed in section 8.

2. Ideal limit

The most effective way to enhance thermal conductivity of a polymer, by mixing it with a

highly conductive filler, is schematically represented in Fig. 1. In this ideal scenario, the

amount of filler is fully exploited for generating percolating paths (with constant cross sec-

tional area) throughout the poorly conductive matrix. At the steady state, the heat flux through

a surfaceS with areaA, orthogonal toz− axis, is given by the Fourier’s law:

Q = Qf +Qp = kfpfA∂zT + kp(1− pf )A∂zT = [kfpf + kp (1− pf )]A∂zT, (1)

whereQf andQp denote the rate of conductive heat due to the filler and the polymer, re-

spectively, while∂zT is the derivative of temperature with respect toz. The global thermal

conductivity of the composite materialkeff can be easily related to the thermal conductivity

of filler kf and polymerkp as follows:

keff =
Yf

ρf − Yf (ρf − ρp)
kf +

(

1−
Yf

ρf − Yf (ρf − ρp)
ρp

)

kp, (2)

whereρp represents the density of the polymer, whileρf andYf are the density and the mass

fraction of the filler, respectively. Based on formula (2), Fig. 2 shows that, in the ideal case,
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a small amount of filler is able to produce an increase in the thermal conductivity of the com-

posite materialkeff up to a few orders of magnitude compared tokp.

Nevertheless, instead of segregating as above, filler particles typically tend to randomly dis-

perse within the polymer matrix. In this case, heat flow is delegated to both the polymer

matrix and to highly non-regular percolating clusters of particles, which are created if a criti-

cal amount of filler is used. Notice that, now part of the filleris not exploited for conduction,

and the value (2) only represents an ideal upper limit ofkeff . This phenomenon can be in-

vestigated in the framework of the continuum percolation theory, and quantified by means of

detailed numerical simulations, as describes in the sections below.

S

Z

Polimer
Filler

X
0 20 40

10
−1

10
1

10
3

Filler mass fraction[%]

k ef
f/k

p

 

 

Graphite 
CNT

Figure 1: Left-hand side: Cross-section of an ideal composite material, where highest global thermal conductivity
(alongz−axis) keff is achieved with a fixed amount of filler. In principle, a smallamount of filler is able to
significantly increase the value ofkeff . Right-hand side: Here, we compare the benefit due to graphite (KS4)
and carbon nano-tubes (CNT), wherekKS4 = 400[W/mK], kCNT = 3000[W/mK], ρKS4 = 1.75[g/cm3] and
ρKS4 = 2.255[g/cm3] are assumed.

3. Continuum percolation theory

Below, we briefly review some basic notions of the continuum percolation theory, which will

prove useful for a better understanding of this work. The interested reader can refer to classical

works on percolation for further details (see, e.g., [1]).

General phenomena, where at least one pathway spans the entire domain of a physical sys-

tem, can be described in the framework of percolation theory: In particular, transport and

mechanical properties of multiphase compounds can be studied by referring to the continuum

percolation theory [1, 2, 4]. Here, neglecting every detailed description of the interface con-

tact among different phases, one is typically interested inevaluating the geometric percolation

thresholdpc, namely the minimum amount of materials which gives rise to percolation. Per-

colation thresholds are indeed among the most important inputs in design and optimization of

such materials. A two dimensional problem of continuum percolation theory is schematically

illustrated in Fig. 2, where identical elliptical particles are randomly placed in a square box.
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Figure 2: (Color online) Two dimensional model of a binary mixture: Identical ellipses with areaA randomly
dispersed in a square box with areaL× L.

Let p denote the fractional area of the white phase, namely the area of the box remaining after

placing all the ellipses, whereas their fractional area is1− p. It often proves convenient to re-

late fractional areas to particle concentrations per unit arean, because the latter only requires

counting, and no area evaluation is involved. Under the assumption of sufficient randomness

and identical particles, it is easy to find such a relation forany dimension and particle shape. In

a configuration characterized by the concentrationn (and fractionp), the area in the box free to

be occupied by particles ispL2. Hence, additional ellipses will remove the areapL2Adn, while

the concentrationn increases up ton+ dn andA is the area of a single particle. Moreover, the

free area in the box is reduced according to:

pL2 − (p+ dp)L2 = pL2Adn, (3)

which can be recast as follows:

dp/p = −Adn, (4)

i.e.,

p = e−An. (5)

Notice that, the generalization of (5) in three dimensions is straightforward, by replacingA

with the particle volume. In the case of ellipses:A = πab, with a andb denoting major and

minor semiaxes, respectively. At percolationn = nc, and the threshold can be computed as

follows:

1− pc = 1− e−πabnc . (6)
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For circlesa = b, it is know from the literature [4] that

1− pc = 1− e−πa2nc ≃ 0.67. (7)

On the other hand, it has been observed that shape significantly affects the value ofpc, and

particles with higher aspect ratio percolate at lower fractions [3]. For instance, in theneedle

limit where the ratiob/a ≪ 1, the percolation threshold is [4]

1− pc ≃ 4.2b/a, (8)

meaning that the smallerb/a the fewer needles cross the entire domain, and these have basi-

cally no area given thatpc → 1.

In the following, we focus on binary mixtures of polypropylene and graphite particles (see Fig.

3 below) that we assume can be modeled as disk-shaped plates.Hence, for our purposes, here

we are particularly interested in three dimensional systems, where ellipsoids of revolution

are randomly placed in a matrix. Leta, b andc be three semiaxes of an arbitrary ellipsoid.

Garboczi et al. [9] have investigated the influence of objectshape on the percolation threshold

pc ranging from the extremeprolate limit (a = b ≪ c) of needle-like particles to the extreme

oblate limit(a = b ≫ c) of plate-like particles. By means of asymptotic analysis, in the latter

case, it has been found that:

1− pc = 1− e−ηcε, ηc = 1.27, (9)

where the small parametersε = c/a = c/b defines the aspect ratio, whileη is the volume of a

sphere with radiusr = a = b, multiplied by the particle concentrationn:

η =
4

3
πa3n. (10)

Notice that, more recent results show remarkable deviations from the result in (9) [8, 10]. For

instance, based on Monte Carlo simulations, Yi et al [8] have found thatηc = 0.9614. The

origin of such a discrepancy is not yet clear.

4. Micro-topology reconstruction

The scanning electron microscope (SEM) is the essential tool for performing micro-topology

reconstruction. In organic polymers, which consist exclusively of light atoms such as carbon,

hydrogen, oxygen, and nitrogen, the scattering is weak and therefore produces poor contrast.

To meet these conditions needed for successful electron microscopy, polymers require special

sample preparation. These obstacles can be combated and overcome by proper cleaning and

drying, etching and staining of low contrast samples, lightly coating to prevent charging and
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Figure 3: SEM micro-images of a sample with30% (mass fraction) of graphite lamellae dispersed in a polypropy-
lene matrix. Due to extrusion manufacturing, particles tend to align along a fixed axis (extrusion direction).
Kindly provided by Dr A. Fina (Department of Materials Science and Chemical Engineering, Politecnico di
Torino).

protect from beam damage, making a pathway to ground with conductive paint or tape, and

sectioning with an ultramicrotome for ultrathin sections [11].

Our modeling activity starts from SEM images of a composite material, obtained mixing

polypropylene (PP) with the powder of a commercial graphite(KS4). Fig. 3 depicts the mate-

rial sample along a fracture surface: Here, the one phase KS4(brighter particles) is dispersed

in the form of lamellae in a more abundant PP phase (darker part). Due to their significant

anisotropy, during manufacturing, graphite particles tend to align along the extrusion axis,

whose projection onto the image plane can be clearly distinguished in the micrographs of Fig.

3. As illustrated in the image on the left-hand side of Fig. 4,graphite particles will be rep-

resented by means of oblate ellipsoids, whose major axis2a = 2b, in the following, will be

referred to asparticle sizeφ.

Powders consist of a collection of particles, that can be characterized by a size distribution

function. However, from product data-sheets, three valuesare typically assigned:D10, D50,

D90 representing diameters at which10%, 50% and90% of powder particles have smaller size,

respectively. Therefore, the particle size distribution functionf (φ) posses a cumulative curve

F (φ) =

∫ φ

φmin

f (ϕ)dϕ (11)

matching those three points. The functionf can be explicitly computed, as soon as more

specific assumptions on its shape are made. In our simulations, we consider the following

Poisson-like distribution function (which is suitable forcharacterizing small occurrences):

f (φ′) = β̄φ′ᾱe−[(φ′−µ̄)/σ̄]2 , (12)

where the shiftφ′ = φ−φmin imposes that no particle, with a size smaller thanφmin = 0.4µm,
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Figure 4: (Color online) Left-hand side: Graphite particles are modeled as oblate ellipsoids. Right-hand side: The
ellipsoid sizeφ follows a distribution function (dashed line) reconstructed on the basis of cumulative experimental
data (squares). The corresponding cumulative curve is alsoreported with a continuous line.

is present. Other parametersβ̄, ᾱ, µ̄ and σ̄ are free to choose under the condition that the

corresponding cumulative curve is in agreement with the experimental data:D10,D50,D90. On

the right-hand side of Fig. 4, we show both the particle size distribution functionf (computed

according to (12)) and the cumulative curve corresponding to the KS4 graphite powder utilized

in the material sample under study. Here, a good matching is achieved with the following

choice of parameters:

β̄ = 0.51, ᾱ = 0.87, µ̄ = −1.9, σ̄ = 3.6. (13)

The complete geometric characterization of the ellipsoid in Fig. 4 is accomplished as soon

as it is known the minor axis2c, representing the thickness of the graphite platelets. To this

respect, no experimental data were found, hence we must relyupon SEM micrographs such

as the one reported in Fig. 3: Based on this kind of information, we can assume that platelet

thickness is ranging from2c ≃ 0.1µm up to 2c ≃ 0.3µm. Below, in order to reduce the

computational cost, all simulations are performed with a fixed thickness2c = 0.3µm.

In the same spirit of the continuum percolation theory, the micro-topology of composite ma-

terial samples is reconstructed by placing several oblate ellipsoids in a cube with the edge

L = 15µm, following the methodology described below. We first generate an ellipsoidE

centered at the origin(x0 = 0, y0 = 0, z0 = 0), and described by the equation:

x2 + z2

a2
+

y2

c2
= 1, (14)

where2a = φ is a random value chosen from the distribution function in Fig. 4. Second, a
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linear transformation, describing a rigid rotation and translation, is imposed as follows:







x′

y′

z′






= R−1







x

y

z






+







xc

yc

zc






, (15)

where the matrixR = RzRyRx, with

Rx =







1 0 0

0 cosϑx − sinϑx

0 sinϑx cosϑx






, Ry =







cosϑy 0 − sinϑy

0 1 0

sinϑy 0 cosϑy






, Rz =







cosϑz − sinϑz 0

sinϑz cosϑz 0

0 0 1






.

(16)

Here, (xc, yc, zc) represent random coordinates of the center, whileϑx, ϑy and ϑz are the

rotation angles around thex, y and z axes, respectively. In order to mimic the alignment

of particles along a fixed extrusion axis,ϑz is chosen fully random, whileϑx andϑy follow

a Gaussian distribution around their mean valuesϑ̄x, ϑ̄y with a varianceσ. Let us consider

a N × N × N regular Cartesian mesh where the edge of the cubeL = (N − 1)dx, with

dx = dy = dz denoting the spatial stepping. The mesh can be stored in a three dimensional

arrayM, where the presence of polymer matrix is denoted byM (i, γ, τ) = 0, while the filler

by M (i, γ, τ) = 1. In the latter case, mesh nodes posses coordinates
(

x′

f , y
′

f , z
′

f

)

that satisfy

the following inequality:
x2 + z2

a2
+

y2

c2
≤ 1, (17)

with

R







x′

f − xc

y′f − yc

z′f − zc






=







x

y

z






. (18)

Notice that, according to the formula (5), an arbitrary material sample with a prescribed vol-

ume fractionp̄f is obtained by iterating the above construction subject to the following condi-

tion

1− e−Vc ≤ p̄f , (19)

whereVc represents the cumulative volume of the particles located within the unit box of Fig.

5.

In the latter figure, we show two examples of micro-topology reconstruction, where10% mass

fraction of graphite with̄ϑx = ϑ̄y = ϑ̄z = 0 andσ = 0.15 (left-hand side) are imposed. On the

right-hand side of Fig. 5, we use30% mass fraction of graphite with̄ϑx = ϑ̄z = 0, ϑ̄y = π/4

andσ = 0.15.
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Figure 5: (Color online) Left-hand side: Reconstructions of three dimensional mixture of polypropylene (90%
mass fraction) and graphite lamellae (10% mass fraction), where the extrusion axis is assumed parallel to z:
ϑ̄x = ϑ̄y = ϑ̄z = 0. Right-hand side: Reconstructions of three dimensional mixture of polypropylene (80%
mass fraction) and graphite lamellae (20% mass fraction), where the extrusion axis is trasversal toz: ϑ̄x =
ϑ̄z = 0, ϑ̄y = π/4. ValuesρPP = 0.8903

[

g/cm3
]

andρKS4 = 2.255
[

g/cm3
]

are adopted for the density of
polypropylene and graphite, respectively.

5. Mathematical model

By referring to the Fig. 5, at the steady state, we define the global thermal conductivitykeff
of a cubic sample of composite material by means of the following Fourier-like expression:

Q = −keffLL
Th − Tc

L
= −keffL (Th − Tc) , (20)

where the rate of conductive heatQ flows along thez-axis under a fixed temperature difference

(Th − Tc) maintained between the uppermost facet (in the following, facetA at Th) and the

lowermost one (facetB atTc). Let the above domain be discretized by a(N ×N ×N) regular

lattice withdx = dy = dz, such thatL = (N − 1) dz with dx, dy anddz being the spacing

along thex-, y- andz-axis respectively. The rate of heatQ through an arbitrary cross-section

S (orthogonal to thez-axis), evaluated according to the Fourier’s law, can be approximated as

follows:

Q =

∫

S

−k∂zTdS =

∣

∣

∣

∣

∣

∣

(N−1)2
∑

i=1

(−k∂zT )i dz
2

∣

∣

∣

∣

∣

∣

S

=
L2

(N − 1)2

∣

∣

∣

∣

∣

∣

(N−1)2
∑

i=1

(−k∂zT )i

∣

∣

∣

∣

∣

∣

S

, (21)

whereT and∂zT denote the local temperature and the component of the temperature gradient

alongz, respectively, whereas the Fourier heat flux(−k∂zT )i is averaged over the four corners

of thei-th computational cell. Moreover, the temperature difference between the facetsA and

B can be evaluated as follows:

(Th − Tc) =

∫

l

∂zTdl,
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wherel is any continuous line connecting two arbitrary points ofA andB, respectively. In the

following, for the sake of simplicity, we assumel parallel to thez-axis, hence:

(Th − Tc) =
L

N − 1

∣

∣

∣

∣

∣

N−1
∑

i=1

(∂zT )i

∣

∣

∣

∣

∣

l

, (22)

where the derivative(∂zT )i is averaged over the extreme values of thei-th computational

segment ofl. Upon substitution of (22) and (21) in the above expression (20), the global

conductivity reads:

keff =

∣

∣

∣

∑(N−1)2

i=1 (k∂zT )i

∣

∣

∣

S

(N − 1)
∣

∣

∣

∑N−1
i=1 (∂zT )i

∣

∣

∣

l

. (23)

In our computations, we make use of a lattice Boltzmann (LB) method, which belongs to the

family of mesoscopic methods. In this method, each conservation law is related to a micro-

scopic quantity which is conserved exactly by the collisionoperator of an evolution equation,

describing the dynamics of distribution functions moving with discretized velocities between

the nodes of the computational grid [12]. The LB models for convection-diffusion [13, 14, 15]

are constructed similarly to hydrodynamic models: They arebased on a hydrodynamic-type

isotropic equilibrium function but discard momentum conservation. A similarity of equilib-

rium functions enables to build the tracer transport directly with the population solutions ob-

tained for flow equation. In the following three dimensionalcomputations, 19 discretized

velocities are used: hence, the adopted lattice is the so-called D3Q19. Essentially, the numer-

ical code is based on 19 distribution functions (or populations)fi, which move on the above

regular lattice with the following velocities~ci = (cix, ciy, ciz):

(0, 0, 0) i = 0

(±1, 0, 0) i = 1, 2

(0,±1, 0) i = 3, 4

(0, 0,±1) i = 5, 6

(±1,±1, 0) i = 7, ..., 10

(0,±1,±1) i = 11, ..., 14

(±1, 0,±1) i = 15, ..., 18.

According to the LB algorithm [14], population dynamics is dictated by the following equa-

tions at any pointx of the spacial domain and any time instantt:

∂tfi (x, t) + ciβ∂βfi (x, t) = ω (f eq
i (T )− fi (x, t)) , i = 0, ..., 18, (24)

where∂t and∂β represent the partial derivatives with respect to time and spacial directionβ

respectively, while Einstein summation convention is adopted for the repeated indexβ. The

equilibrium distribution functions are assumedf eq
i (T ) = wiT , wherewi represents a fixed

13



weight associated with thei-th populationfi:

wi = 1/3 i = 0

wi = 1/18 i = 1, ..., 6

wi = 1/36 i = 7, ..., 18.

(25)

The zeroth- and first-order moments of populationsfi are related to the dimensionless temper-

atureT and its gradient∇T , respectively, as follows:

T =
18
∑

i=0

fi, ~j = (jx, jy, jz) =
18
∑

i=0

fi~ci = −
c2s
ω
∇T, (26)

with c2s = 1/3. In the macroscopic limit, the LB equations (24) mimic the following partial

differential equation (PDE) [14]:

∂tT +∇ ·~j = −
c2s
2
∇2T. (27)

Upon substitution of the expressions (26) in the equation (27) (under the assumptions of ho-

mogeneous and isotropic materials with constant physical properties), the latter PDE takes the

form of the unsteady equation for heat conduction:

∂tT = ∇ · (α∇T ) = α∇2T, (28)

if the thermal diffusivityα = k/ρcp is linked to the relaxation frequencyω as follows:

α = c2s

(

1

ω
−

1

2

)

, (29)

with k, ρ andcp denoting constant thermal conductivity, density and specific heat capacity,

respectively. Letωf andωp be the relaxation frequencies corresponding to the filler (KS4) and

the matrix (PP), respectively. In our computations, we makeuse of the following discretized

form of equations (24):

fi (x+ ~cidt, t+ dt) = fi (x, dt)+ωγ (f
eq
i (T )− fi (x, t)) , i = 0, ..., 18, γ = f, p, (30)

wheredt is the discrete time step, andω is locally adjusted in order to take into account of

spatial inhomogeneity (different phases). Notice that, rigorously speaking, the equations (24)

can only be applied to homogeneous and isotropic materials with constant physical properties.

Hence, although the above equations (30) remain valid within each of the two phases of the

composite material in Fig. 5 (under the assumptions of homogeneous and isotropic phases),

in general they do not hold globally due to an inaccurate treatment of the interface between

PP and KS4. In other words, the model (30) automatically imposes both the continuity of the

14



temperature field at the boundary points between two different phases:

Tf = Tp (31)

and the continuity of the flux of vectorα∇T (it can be proven by applying the Gauss-Green

theorem to Eq. (28)):

(αf∇Tf · n̂) / (αp∇Tp · n̂) = 1, (32)

where the unity vector̂n is locally normal to the interface, while the subscriptsf andp denote

quantities which are evaluated within the filler and the matrix, respectively.

On the other hand, using (26) and (29), the Fourier heat flux can be recast as

~q = −k∇T = ρcp

(

1−
ω

2

)

~j, (33)

whereas the continuity of its normal component, at any interface, requires

(~qf · n̂) / (~qp · n̂) = 1, (34)

or equivalently

(αf∇Tf · n̂) / (αp∇Tp · n̂) = (ρcp)p / (ρcp)f . (35)

Hence, we note that the correct condition at the interface between two different phases (35)

can be approximated by (32) only in the case:

(ρcp)p
∼= (ρcp)f . (36)

Nevertheless, it is worth stressing that, at the steady state, the equation for heat conduction

(28) takes the simpler form:

k∇2T = 0, (37)

where, according to (29), a constantk is linked to the relaxation frequencyω

k = c2s

(

1

ω
−

1

2

)

, (38)

and can be interpreted as thermal conductivity. We stress that, all values below are computed

at the steady state, hence we do not need to resort to the approximation (36) and further make

use of the relationship (38). Accordingly, at the steady state, the global thermal conductivity

keff can be formulated by recasting the formula (23) as follows:

keff =

∣

∣

∣

∑(N−1)2

i=1 (k∂zT )i

∣

∣

∣

S

(N − 1)
∣

∣

∣

∑N−1
i=1 (∂zT )i

∣

∣

∣

l

=

∣

∣

∣

∑(N−1)2

i=1

(

−jz +
1
2
ωγjz

)

i

∣

∣

∣

S

(N − 1)
∣

∣

∣

∑N−1
i=1

(

−
ωγ

c2
s

jz

)

i

∣

∣

∣

l

, γ = f, p, (39)
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kf/kp ω1 ω2 Deviation
19 0.1 1 13.9%
81 0.2 1.8 13.2%
199 0.01 1 56.9%
1800 0.0011 1 65.4%

Table 1: Thermal resistances in parallel withpf = 0.111 are simulated at different ratioskf/kp. Results are
compared to the corresponding theoretical values: The choice of the relaxation frequenciesωγ significantly
affects the accuracy of numerical predictions.

where, in evaluating the numerator of the latter expression, the relation given by Eq. (33) has

been used. In all the simulations below,keff is computed by means of the expression (39),

where the summation at the numerator is replaced with its averaged value over theN surfaces

Sτ with 0 < x, y < L, z = τdz and τ = 0, ..., N − 1. Similarly, the summation at the

denominator of (39) is replaced by its averaged value over theN2 vertical line segmentsli,γ
with 0 < z < L, x = idx, y = γdy andi, γ = 0, ..., N − 1.

Finally, all computations below are carried out by the LABORA code. The LABORA (LAttice

BOltzmann for Raster Applications) project started back in 2005 and it originally aimed at

developing a 3D parallel code for simulating fluid flow of reactive mixtures through complex

geometries [16]. In particular, the LABORA code was developedin C++ by extensive use of

the object programming. In the first release, the free communication library MPICH 1.3 was

adopted, while nowadays OPENMPI is used, both based on MPI technology [17].

Concerning the hardware, the reported numerical results were obtained by the EnerGRID com-

putational facility, available at Politecnico di Torino (Italy). The EnerGRID computational

facility consists of a Transtec(R) HPC cluster, made of 72 total virtual cores, with 144 GB of

total RAM, 5.5 TB total disk capacity (3.0 TB failure free) anda double networking system

(Infiniband for processing data and GBit for monitoring). Thetested peak performance (ac-

cording to the TOP500 standard [18]) is 376.09 GFlop/s with mvapich2/IB (which is roughly

60 of the theoretical peak performance 596.48 GFlop/s).

6. Code validation

The numerical model described in the above section 5 has beenvalidated in the case of thermal

resistances connected in series and in parallel arrangements. Specifically, by referring to the

picture on the left-hand side of Fig. 1, the global thermal conductivity of such an ideal com-

posite material can be computed along both thez-axis (parallel arrangement) and thex-axis

(series arrangement), in order to compare the simulation results with the corresponding exact

values:

keff = pfkf + (1− pf ) kp, (40)

keff =

[

pf
1

kf
+ (1− pf )

1

kp

]−1

, (41)
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Figure 6: (Color online) Comparison between the simulationresults (circles) and the exact values (continuous
lines) ofkeff/kp for thermal resistances placed in series and in parallel arrangements. a) Thermal resistances
arranged in parallel with a fixed ratiokf/kp = 2.33 evaluated at several volume fractionspf : The maximal
deviation is0.45%. b) Thermal resistances arranged in series with a fixed ratiokf/kp = 2.33 evaluated at
several volume frationspf : The maximal deviation is1.7%. c) Thermal resistances arranged in parallel with a
fixed volume fractionpf = 0.3 at several ratioskf/kp: The maximal deviation is2.5%. d) Thermal resistances
arranged in series with a fixed volume fractionpf = 0.3 at several ratioskf/kp: The maximal deviation is0.6%.
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Yf keff/kp alongz-axis keff/kp alongx-axis Lattice nodes
S1 0.298 3.21 2.24 1203

S2 0.295 3.20 2.17 1203

S3 0.297 3.24 2.40 1203

S4 0.303 3.35 2.28 1203

S5 0.302 3.16 2.24 1203

S6 0.297 3.22 2.18 1203

S7 0.299 3.23 2.20 1203

S8 0.295 3.20 2.29 1203

S9 0.300 3.36 2.33 1203

S10 0.302 3.32 2.26 1203

Mean value - 3.25 2.26 -
Variance - 0.00505 0.00503 -
S11 0.296 3.36 2.27 2403

Table 2: Ten composite material samples have been generatedwith Yf = 0.3± 0.005: Ratioskeff/kp have been
computed along both thez-axis andx-axis for any of thei-th sampleSi with a fixed ratiokf/kp = 36.5 using
1203 lattice nodes.

valid for resistances in parallel and in series, respectively. Validation results are reported in

Fig. 6 in terms of the dimensionless ratiokeff/kp. Here, using603 lattice nodes, deviations

can be bounded up to a few percent by restricting the choice ofthe relaxation frequencies

within the following range:0.5 ≤ ωf , ωp < 2. On the contrary, as summarized in Table 1,

remarkably larger deviations have been observed as soon as the lower limit ofωγ is decreased

further down:ωγ ≤ 0.2. Notice that, the latter result is not surprising, since it is well known

that the accuracy of LBM in the parameter range0 < ωγ < 1 is much smaller than that in the

the upper range1 ≤ ωγ < 2 (see Fig. 5 in Ref. [19]).

7. Numerical results

In the following, we investigate the dependence of the global thermal conductivitykeff on the

valueskf , kp and orientation of the extrusion axis, in composite material samples with a fixed

amount of filler. First of all, toward the end of verifying therepeatability of the reconstruction

strategy described in section 4, ten different random samplesSi=1,...,10 are generated by setting

Yf = 0.3 ± 0.005, L = 15µm, kf/kp = 36.5, and imposing the extrusion axis parallel to

z: ϑ̄x = ϑ̄y = ϑ̄z = 0 with σ = 0.15. Any of the latter micro-topology is discretized by

means of a regular lattice with1203 nodes, whereas the ratiokeff/kp is computed along both

thez- andx-axis: As reported in Table 2, results fluctuate around a meanvalue with variance

≈ 0.005. Notice that, grid-independence of the above numerical predictions is demonstrated

by consistent simulation results of one more sampleS11 discretized by means of2403 lattice

nodes. Furthermore, various computations have been carried out adopting the reconstruction

S1 (Yf = 0.298) in correspondence of different valueskf/kp: Results are illustrated in Fig. 7

along with the corresponding theoretical solutions for thermal resistances in parallel and series
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Figure 7: (Color online) Left-hand side: Simulation results of a material sample withYf = 0.298 at different
ratioskf/kp. Ratioskeff/kp have been evaluated along both thez−axis (diamonds) and thex−axis (circles).
Starting fromkf/kp ≈ 50 a linear dependence can be observed. Right-hand side: Polardiagram of the ratio
keff/kp. Several material samples are reconstructed under fixed mass fractionYf = 0.3 ± 0.005 and different
orientations of the extrusion axis (thick arrow). Simulation results (symbols), under fixed conductivity ratio
kf/kp = 36.5, tend to be located along anellipse of thermal conductivity(dashed line), typically observed in
anisotropic materials.

arrangements, as dictated by formula (40) and (41), respectively. Numerical evidences suggest

a remarkable linear dependence ofkeff/kp starting fromkf/kp ≈ 45 − 50. In particular, the

tendency lines in the picture on the left-hand side of Fig. 7 are evaluated by the least squares

method, on the basis of data withkf/kp > 40, and the following coefficients of determination

are found:R2
z = 0.997, R2

x = 0.975 for the results along thez-axis andx-axis, respectively.

Notice that, the latter feature proves particularly convenient in the case of phases with large

conductivity ratios (e.g.,kf/kp > 100) where, in order to avoid both significant numerical

errors (ωγ < 0.2) and prohibitively long computations (ωγ ≈ 2), the valuekeff/kp can be

linearly extrapolated from results obtained at lower ratios (e.g.,60 < kf/kp < 80). Finally, in

order to investigate the dependence ofkeff/kp on the orientation of the extrusion axis, com-

posite material samples have been reconstructed imposing:Yf = 0.3 ± 0.005, ϑ̄x = ϑ̄z = 0,

ϑ̄y = θ, andkf/kp = 36.5. Results are shown by means of a polar diagram on the right-

hand side of Fig. 7 for different values ofθ, and a typicalellipse of thermal conductivityof

highly anisotropic materials is shown. Notice that, anisotropy of thermal conductivity typi-

cally arises from experiments on composite materials, and the ellipse of thermal conductivity

can be observed by using, for instance, photoreflectance microscopy (see, e.g., [20]). Each

configurationSi=1,...,10 reported in Table 2 and in Fig. 7, was computed by using 64 proces-

sors on the EnerGRID computational facility, where 100000 LBsteps require≈ 6 hours to be

completed.
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Figure 8: (Color online)Yf = 0.298, kf/kp = 36.5. Left-hand side: Streamlines of the heat flux along perco-
lating paths, where the extrusion axis is aligned with thex−axis. Right-hand side: Streamlines of the heat flux
along percolating paths, where the extrusion axis is aligned with thez−axis. Colors provide an indication of the
heat flux intensity.

8. Discussion and outlook

In this paper, we illustrate a general methodology for both accurately reconstructing the micro-

topology of composite materials, and predicting the globalthermal conductivitykeff , by

means of the lattice Boltzmann method, which has revealed suitable for handling such complex

geometries [14]. More specifically, here the dependence ofkeff on the thermal conductivity

kp of a polymer matrix (polypropylene) and the thermal conductivity kf of a filler compound

(graphite particles) is investigated at a fixed content of graphite. In this respect, a remarkable

linear dependence ofkeff/kp on the ratiokf/kp, starting fromkf/kp ≈ 45 − 50, is observed.

Such an evidence suggests an indirect method for computing the global thermal conductiv-

ity corresponding to phases with large conductivity ratios(e.g.,kf/kp > 100), where it be-

comes desirable to avoid both significant numerical errors (ωγ < 0.2) and long computations

(ωγ ≈ 2). Moreover, the anisotropy of thekeff in such a composite material is demonstrated by

computing the ellipse of thermal conductivity, consistently with experimental evidences [20].

Finally, it is worth stressing that the numerical tool described in this work may be utilized, in

combination with experimental data, for characterizing the contact between filler particles in

a percolating path. Here, any percolating cluster of filler particles is considered homogeneous

and isotropic, so that thermal conductivity can be described by a constant valuekf . However,

more rigorously, at the interface between filler particles,the effects due to interfacial thermal

resistances and weak contact are to be considered since theydo play an important role in heat

conduction (see, e.g., [21]). Hence,kf is to be interpreted as aneffective thermal conductivity

of the filler within percolating paths, rather than thermal conductivity of pure fillerkp
f . In other

words, comparing the numerical prediction forkeff with the corresponding experimental data,
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it is possible to estimate a deviation of the effective thermal conductivitykf from kp
f , which

globally quantifies the above effects. The presented modeling activity will proceed further

along that direction in the near future, where our investigations shall be focused on a detailed

study of heat transfer across filler particles.

9. Acknowledgments

We are indebted to Prof. Guido Saracco and Dr. Alberto Fina for proving us with SEM micro-

images and for the useful discussions. Prof. Michele Cali andProf. Romano Borchiellini are

gratefully acknowledged for supporting this work. We wish to state our appreciation to Valerio

Novaresio for the precious help in obtaining the images in Fig. 8. Finally, useful discussions

are acknowledged with Dr. Ahmad Al-Zoubi, Prof. Dimosthenis Trimis and Prof. Ulrich

Gross of Technical University Berg-akademie Freiberg (TUBAF).

References

[1] D. Stauffer, and A. Aharony, Introduction to Percolation Theory, second ed., Taylor &

Francis, London, (1994), pp. 89–103.

[2] G. E. Pike, and C. H. Seager, Percolation and conductivity: A computer study. I, Phys.

Rev. B 10 (1974) 1421–1434.

[3] Y. B. Yi, and A. M. Sastry, Analytical approximation of thetwo–dimensional percolation

threshold for fields of overlapping ellipses, Phys. Rev. E 66 (2002) 066130.

[4] W. Xia, and M. F. Thorpe, Percolation properties of random ellipses, Phys. Rev. A 38

(1988) 2650–2656.

[5] L. Berhan, Y. B. Yi, A. M. Sastry, E. Munoz, M. Selvidge, and R.Baughman, Mechanical

properties of nanotube sheets: Alterations in joint morphology and achievable moduli in

manufacturable materials, J. App. Phys. 95 (2004) 4335–4345.

[6] L. Berhan, and A. M. Sastry, Modeling percolation in high–aspect–ratio fiber systems. I.

Soft–core versus hard–core models, Phys. Rev. E 75 (2007) 041120.

[7] L. Berhan, and A. M. Sastry, Modeling percolation in high–aspect–ratio fiber systems.

II. The effect of waviness on the percolation onset, Phys. Rev. E 75 (2007) 041121.

[8] Y. B. Yi, and E. Tawerghi, Geometric percolation thresholds of interpenetrating plates in

three–dimensional space, Phys. Rev. E 79 (2009) 041134.

[9] E. J. Garboczi, K. A. Snyder, J. F. Douglas, and M. F. Thorpe, Geometrical percolation

threshold of overlapping ellipsoids, Phys. Rev. E 52 (1995) 819–828.

21



[10] Y. B. Yi, and A. M. Sastry, Analytical approximation of the percolation threshold for

overlapping ellipsoids of revolution, Proc. R. Soc. London,Ser. A, 460 (2004) 2353–

2380.

[11] A.M. Schrand, Polymer Sample Preparation for ElectronMicroscopy, Advances in

Instrumentation and Techniques – Metallographic Techniques and Applications, Mi-

croscopy and Microanalysis 2005 in Honolulu, Hawaii, USA, July 31–August 4, 2005.

[12] I. Ginzburg. Equilibrium–type and Link–type Lattice Boltzmann models for generic ad-

vection and anisotropic–dispersion equation. Adv. Water Resour. 28 (2005) 1171–1195.

[13] E. G. Flekkoy, U. Oxaal, J. Feder, T. Jossang, Hydrodynamic dispersion at stagnation

points–simulations and experiments, Phys Rev E 52 (1995) 4952–4962.

[14] D. Wolf-Gladrow, Lattice gas cellular automata and lattice Boltzmann models: an intro-

duction, Lecture notes in mathematics, vol. 1725, Springer, (2000).

[15] R. G. M. Van der Sman, M. H. Ernst, Advection–diffusion lattice Boltzmann scheme for

irregular lattices, J. Comp. Phys. 160 (2000) 766–782.

[16] P. Asinari, M. Cal, M.R. von Spakovsky, and B.V. Kasula, Direct numerical calculation

of the kinematic tortuosity of reactive mixture flow in the anode layer of solid oxide fuel

cells by the lattice Boltzmann method, Journal of Power Sources 170 (2007) 359–375.

[17] Writing Message–Passing Parallel Programs with MPI, Edinburgh Parallel Computing

Centre, The University of Edinburgh.

[18] http://www.top500.org/

[19] P. Asinari, T. Ohwada, Connection between kinetic methods for fluid–dynamic equations

and macroscopic finite–difference schemes, Computers and Mathematics with Applica-

tions, 58 (2009) 841–861.

[20] D. Rochais, H. Le Hoüedec, F. Enguehard, J. Jumel, and F. Lepoutre, Microscale thermal

characterization at temperatures up to 1000C by photoreflectance microscopy. Applica-

tion to the characterization of carbon fibres, J. Phys. D: Appl. Phys. 38 (2005) 1498–

1503.

[21] S. Shenogin, L. Xue, R. Ozisik, P. Keblinski, and D.G. Cahill, Role of thermal boundary

resistance on the heat flow in carbon–nanotube composites. JAppl Phys 95 (2004) 8136–

8144.

22


