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in a polymer matrix by the lattice Boltzmann method
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Abstract

In the present work, we illustrate a methodology for the nstauction and modeling of three-
dimensional micro-structures of highly anisotropic cosipmaterials. Specifically, we focus
on disk-shaped nano-fillers dispersed in a polymer matrék detailed numerical investiga-
tions, based on the lattice Boltzmann method (LBM), are carogt on the global thermal
conductivity.

Key Words: Lattice Boltzmann method, Thermal conductivity, Carbonongilfers, Contin-
uum percolation theory.

Symbols !

PP Polypropylene. . . .. [—]
KS4 Commercial graphite . .~ . ... ... [—]
LB  Lattice Boltzmann . . . .. ... [—]
SEM Scanning electron microscope . . . . . ... [—]

S Genericsurface. . . . .. ... [—]

A Areaofasurface. . . ... . ... [ pm?]
x,y,z Cartesianaxes. . .. . ... ... [—]
Q Global rate of conductive heat. . . . . ... . ... ... .. . . ... [LB]
)  Rate of conductive heat through the filler. . . .. ... ... ... .. .. [LB]

LAccording to the standard lattice Boltzmann method, allphgsical quantities involved are dimensionless:
In the nomenclature, this is indicated by the notation [LB].



Qy Rate of conductive heat through the polymer matrix . . . . . . . = .. [LB]
kg, k:? Thermal conductivity of the filler .~ . ... ... .. [LB]

k, Thermal conductivity of the polymer. . .. ... ... . ... . . . [LB]
kesr  Global thermal conductivity. . ... . ... ... ... ... ... .. ... . [LB]

T Temperature. . . . ... [LB]

Ty Temperature of filler. . . .. ... [LB]

T, Temperature of polymer matrix . . ... ... ... ... . ... . . ... [LB]

0y Partial derivative with respecttp. . . . . . . . . .. ... ... ... [—]

Py \olume fraction of the filler . . . ... ... ... . ... . . . [—]

Yy Mass fraction of the filler. . .. ... ... ... .. [—]

Py Mass density of the filler . . . .. ... ... ... .| [g-cm™
Pp Mass density of the polymer . . . .. ... ... ... . . [g-cm™
P \Volume (Area) fraction . . . . . ... .. [—]

De Percolation threshold . . .~ . . .. .. ... ... ... ... . [—]

n Particle concentration per unit volume (area). . . . . ... ... . [m—3(m™2)]
Ne Critical particle concentration per unit volume (area). . . . . . . . .. [m3(m~2?)]
L Boxedge . . .. .. [ um]
a,b,c Semi-axes of ellipses and ellipsoids. . . . ... ... ... . . . [ pm]

€ Aspectratio. . . ... [—]

n Cumulative volume of spheres in the unitbox ... .. . . ... . . . [—]

Ne Critical cumulative volume of spheres per unit volume. . = = = . [—]

0] Particle size . . . [ um]
Omin  Smallest particle size . . . .. ... [ um]

o4 Shifted particle size . . .. ... .. [ pm]
Do, Dso, Do Diameters. . . . . . .. [ um]

f Distribution function of particle size . . .. ... ... .. .. .. ... [ pm~!]
F Cumulative curve off . [—]

a Dimensionless parameter¢f . . . . . ... ... [—]



3 Parameterof . . .. ... ... [ e~ 1+ ]
i Parameterof . . . . ... ... [ pm]
o Parameterof . .. . .. ... ... [ um]
R Rotation matrix . . . ... ... ... [—]
R, Rotation matrix ofz-axis . . . ... . ... ... [—]
R, Rotation matrix ofy-axis . . . . . .. ... ... [—]
R, Rotation matrix okz-axis . . . ... ... ... ... [—]
U, 0,0, Rotationangles. .. ... ... ... [rad]
J.,9, Meanrotationangles .. .. ... ... ... [rad]
o Variance. . . . .. [rad]
N Number of lattice nodes along each Cartesianaxis. . . . . . . . . . [—]
dx Spacial stepping alongraxis. . .. ... ... ... [ um]
dy Spacial stepping alongraxis. . . ... ... ... [ pm]
dz Spacial stepping alongraxis. . .. .. ... ... [ um]
V. Cumulative volume of particles inthe unitbox . . . .. . . ... . . .. [—]
M Mesharray . . . . [ —]
A, B Boxfacets . ... ... [—]
(T, —T.) Temperature difference betwegnand3 . . . ... ... .. . . [LB]
[ Line connectingdandB . . . . .. ... [—]
D3Q19 Lattice Boltzmann scheme. . . . ... ... ... ... [—]
fi Lattice Boltzmann populations. . . . ... ... ... ... [LB]
£ Lattice Boltzmann equilibrium populations. . . . .. ... ... ... .. [LB]
G = (ciz, ciyy, ciz)  Velocities of the lattice Boltzmann populations . . . . . . [LB]
w Relaxation frequency . . . . .. . . ... ... [LB]
Wy Relaxation frequency of filler .~ . ... ... . [LB]
Wy Relaxation frequency of polymer matrix . . . ... ... ... . .. .. . [LB]
T Arbitrary point of the computational domain. . .. . . ... .. [LB]
t Time . .. [LB]



dt Timestepping . . . . ... ... [LB]

w; weight of thei-th population. . .. . ... . ... ... ... . [—]
j = (jurjy,j-) Firstordermoment .. . . . [LB]
2 Parameter. . . . . .. ... [LB]
p Mass density. . . . . ... [LB]
cp Specific heat capacity. . . . . ... [LB]
Q@ Thermal diffusivity . . . .. [LB]
VT  Temperature gradient. .. ... .. ... [LB]
VT; Temperature gradientoffiller. . . ... .. .. .. .. .. .. [LB]
VT, Temperature gradient of polymer matrix . . . ... ... ... .. ... . [LB]
n Unitnormal vector . . . . . . ... ... [—]
Si Random configuration of a composite material sample . . . . . = .. [—]
R%, R* Coefficients of determination. . . . .. .. ... .. .. .. [—]
0 Angle of the orientation of the extrusionaxis . . . . .. ... .. .. .. [rad]
i, B,y, 7 indexes . .. [—]

1. Introduction and motivation

A large variety of additives are nowadays available to engolymer compounds with en-
hanced physical properties, such as transport quantélest(ical and thermal conductivity)
and elastic moduli. Due to the recent development of novdlaabased particles with ex-
cellent properties, composite materials showing highgrarances are expected. The present
work describes a general numerical tool aiming at charaaerthe global thermal conductiv-
ity of percolating networks of highly conductive nano-fiedispersed in a polymer matrix: In
particular, here we focus on extruded composite materiaenoé polypropylene and graphite
nano-particles. Starting from two-dimensional scannilegteon microscope (SEM) images,
the micro-topology of material samples is reconstructesirdtized by means of a regular
Cartesian mesh, and utilized for solving the unsteady headwion problem. Numerical
simulations are based on a fully parallelized three-dinwgras lattice Boltzmann (LB) solver,
the computational domain is represented by a cube with atieragerature difference between
two opposite facets, while periodic condition is assumedife rest of the boundary.

General aspects on physical properties (such as thermalegctdcal conductivity, mechanical
properties, etc.) of composite materials can be investtyat the framework of the continuum
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percolation theory [1], as testified by the extensive liigra in this field (see, e.g., [2, 3, 4,
5, 6, 7]). Notice that, the latter theory usually addreskesigsue of evaluating the minimal
fraction of filler that gives rise to a percolating networkider the assumption of randomly
oriented particles of the same shape and size: Toward tdistee Monte Carlo Method is a
typical numerical tool for such investigations [8].

However, the study of realistic composite materials ofteives fillers with high aspect-ratio

(e.g., tubes and lamellae) and significant differenceszm $n addition, the hypothesis of fully
random orientation may break down, if particles show a tangé¢o align along preferential

lines or planes: This is, for example, the case of manufaxguoy extrusion, where particles
preferably align along the extrusion axis. As a matter of,fperformances of realistic com-
posite materials, in terms of heat conduction, cannot besitnyated only on the basis of the
continuum percolation theory, and accurate numerical lsitimms become necessary.

This manuscript is organized in sections as follows. Inieac®, the ideal upper limit of
thermal conductivity of composite materials is discussehile some basic notions on the
continuum percolation theory are reviewed in section 3.éeetisn 4, a methodology for the
reconstruction of a composite material micro-topologyasked out. The mathematical model
adopted for the evaluation of the global thermal condugtiof a composite material is dis-
cussed in section 5, while validation results are reponteskection 6 for thermal resistances
connected in series and parallel arrangements. Finadly/tseof numerical simulations of the
global thermal conductivity are presented in section 7,@diadussed in section 8.

2. ldeal limit

The most effective way to enhance thermal conductivity obgper, by mixing it with a
highly conductive filler, is schematically represented ig.F1. In this ideal scenario, the
amount of filler is fully exploited for generating percoladi paths (with constant cross sec-
tional area) throughout the poorly conductive matrix. At eady state, the heat flux through
a surfaceS with areaA, orthogonal to:— axis, is given by the Fourier’s law:

Q - Qf + Qp == kfpanZT + k'p(l — pf)AazT = [kfpf + /{?p (1 — pf)] A(‘?ZT, (1)

where@; and ), denote the rate of conductive heat due to the filler and thenperd, re-
spectively, whileo, T is the derivative of temperature with respect:toThe global thermal
conductivity of the composite material;, can be easily related to the thermal conductivity
of filler £y and polymerk, as follows:

Yy
pr—Yi(pr— pp

kepp = )kf + <1 - b )pp> Ky, 2)

pr—Yi(pr— pp

wherep, represents the density of the polymer, whileandY; are the density and the mass
fraction of the filler, respectively. Based on formula (2)g.F2 shows that, in the ideal case,
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a small amount of filler is able to produce an increase in teentlal conductivity of the com-
posite materiak. sy up to a few orders of magnitude compared:}o

Nevertheless, instead of segregating as above, fillercpesttypically tend to randomly dis-

perse within the polymer matrix. In this case, heat flow isedated to both the polymer
matrix and to highly non-regular percolating clusters atipg&es, which are created if a criti-

cal amount of filler is used. Notice that, now part of the filenot exploited for conduction,

and the value (2) only represents an ideal upper limikgf. This phenomenon can be in-
vestigated in the framework of the continuum percolatiaotly, and quantified by means of
detailed numerical simulations, as describes in the sectielow.

Az
Filler

/ \/Y Poli/mer

/AN -

-=-Graphite
—CNT

<

: 20
Filler mass fraction[%]

Figure 1: Left-hand side: Cross-section of an ideal contpasaterial, where highest global thermal conductivity
(along z—axis) k.5 ¢ is achieved with a fixed amount of filler. In principle, a smathount of filler is able to
significantly increase the value &f;;. Right-hand side: Here, we compare the benefit due to geikiB4)
and carbon nano-tubes (CNT), whéfgs, = 400[W/mK], kont = 3000[W/mK], pxss = 1.75[g/em?] and
prss = 2.255[g/cm?] are assumed.

3. Continuum percolation theory

Below, we briefly review some basic notions of the continuumclation theory, which will
prove useful for a better understanding of this work. Theriested reader can refer to classical
works on percolation for further details (see, e.g., [1]).

General phenomena, where at least one pathway spans the damiain of a physical sys-
tem, can be described in the framework of percolation thedmyparticular, transport and
mechanical properties of multiphase compounds can beestinyi referring to the continuum
percolation theory [1, 2, 4]. Here, neglecting every dethillescription of the interface con-
tact among different phases, one is typically interestexvaiuating the geometric percolation
thresholdp., namely the minimum amount of materials which gives risedrcplation. Per-
colation thresholds are indeed among the most importantsip design and optimization of
such materials. A two dimensional problem of continuum pkxtion theory is schematically
illustrated in Fig. 2, where identical elliptical partislare randomly placed in a square box.



Figure 2: (Color online) Two dimensional model of a binarytare: ldentical ellipses with ared randomly
dispersed in a square box with area< L.

Let p denote the fractional area of the white phase, namely tleecihe box remaining after
placing all the ellipses, whereas their fractional arela-isp. It often proves convenient to re-
late fractional areas to particle concentrations per ueida, because the latter only requires
counting, and no area evaluation is involved. Under theraption of sufficient randomness
and identical particles, it is easy to find such a relatiorafoy dimension and particle shape. In
a configuration characterized by the concentratigand fractiorp), the area in the box free to
be occupied by particles jg.%. Hence, additional ellipses will remove the agd& Adn, while
the concentration increases up te + dn and A is the area of a single particle. Moreover, the
free area in the box is reduced according to:

pL?* — (p+dp) L* = pL?Adn, 3)

which can be recast as follows:
dp/p = —Adn, (4)

p=e " (5)

Notice that, the generalization of (5) in three dimensiastraightforward, by replacing
with the particle volume. In the case of ellipse$:= mab, with « andb denoting major and
minor semiaxes, respectively. At percolation= n., and the threshold can be computed as
follows:

1 —p,=1— e mbne, (6)



For circlesa = b, it is know from the literature [4] that
1—p.=1—e ™" ~(.67. (7)

On the other hand, it has been observed that shape signijiedfgcts the value op.., and
particles with higher aspect ratio percolate at lower foas [3]. For instance, in theeedle
limit where the ratid/a < 1, the percolation threshold is [4]

1 —p.~4.2b/a, (8)

meaning that the smalléya the fewer needles cross the entire domain, and these have bas
cally no area given that. — 1.

In the following, we focus on binary mixtures of polypropyteand graphite particles (see Fig.
3 below) that we assume can be modeled as disk-shaped piatese, for our purposes, here
we are particularly interested in three dimensional systewhere ellipsoids of revolution
are randomly placed in a matrix. Lef b andc be three semiaxes of an arbitrary ellipsoid.
Garboczi et al. [9] have investigated the influence of obgbetpe on the percolation threshold
p. ranging from the extremprolate limit (¢ = b < ¢) of needle-like particles to the extreme
oblate limit(a = b > ¢) of plate-like particles. By means of asymptotic analysighie latter
case, it has been found that:

l—p.=1—e""" n.=1.27, (9)

where the small parameters= c¢/a = ¢/b defines the aspect ratio, whiles the volume of a
sphere with radius = a = b, multiplied by the particle concentration
4 3

n=gman. (20)

Notice that, more recent results show remarkable deviafimm the result in (9) [8, 10]. For
instance, based on Monte Carlo simulations, Yi et al [8] haed that). = 0.9614. The
origin of such a discrepancy is not yet clear.

4. Micro-topology reconstruction

The scanning electron microscope (SEM) is the essentibfdoperforming micro-topology

reconstruction. In organic polymers, which consist exgklg of light atoms such as carbon,
hydrogen, oxygen, and nitrogen, the scattering is weak la@éfore produces poor contrast.
To meet these conditions needed for successful electramsaiapy, polymers require special
sample preparation. These obstacles can be combated amdmecby proper cleaning and
drying, etching and staining of low contrast samples, lighbating to prevent charging and
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Figure 3: SEM micro-images of a sample wth% (mass fraction) of graphite lamellae dispersed in a polgpro
lene matrix. Due to extrusion manufacturing, particledtém align along a fixed axis (extrusion direction).
Kindly provided by Dr A. Fina (Department of Materials Saienand Chemical Engineering, Politecnico di
Torino).

protect from beam damage, making a pathway to ground witllwctive paint or tape, and
sectioning with an ultramicrotome for ultrathin sectiofi& .

Our modeling activity starts from SEM images of a composiieanal, obtained mixing
polypropylene (PP) with the powder of a commercial grapfii®4). Fig. 3 depicts the mate-
rial sample along a fracture surface: Here, the one phasgst&hter particles) is dispersed
in the form of lamellae in a more abundant PP phase (darké). paue to their significant
anisotropy, during manufacturing, graphite particlesdtém align along the extrusion axis,
whose projection onto the image plane can be clearly digtshgd in the micrographs of Fig.
3. As illustrated in the image on the left-hand side of Figgeaphite particles will be rep-
resented by means of oblate ellipsoids, whose majoraxis 2b, in the following, will be
referred to aparticle sizep.

Powders consist of a collection of particles, that can beadtarized by a size distribution
function. However, from product data-sheets, three vatwegypically assignedD,, D5,

Dy representing diameters at whieti’%, 50% and90% of powder particles have smaller size,
respectively. Therefore, the particle size distributiondtion f (¢) posses a cumulative curve

2
Fio)= | I (1D

matching those three points. The functigrcan be explicitly computed, as soon as more
specific assumptions on its shape are made. In our simusatiwe@ consider the following
Poisson-like distribution function (which is suitable fdraracterizing small occurrences):

() = Bgee @ =mial, (12)

where the shift = ¢ — ¢,,;,, Imposes that no particle, with a size smaller thign, = 0.4um,
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Figure 4: (Color online) Left-hand side: Graphite partichee modeled as oblate ellipsoids. Right-hand side: The
ellipsoid sizep follows a distribution function (dashed line) reconstaedtbn the basis of cumulative experimental
data (squares). The corresponding cumulative curve igefsmted with a continuous line.

is present. Other parametefs @, ji ands are free to choose under the condition that the
corresponding cumulative curve is in agreement with theerpental datab;, D5y, Dgo. On

the right-hand side of Fig. 4, we show both the particle sig&ibution functionf (computed
according to (12)) and the cumulative curve correspondirige KS4 graphite powder utilized
in the material sample under study. Here, a good matchinghgweed with the following
choice of parameters:

B=051, a=087, p=-19, &=236. (13)

The complete geometric characterization of the ellipsniig. 4 is accomplished as soon
as it is known the minor axi8c, representing the thickness of the graphite platelets.hiko t
respect, no experimental data were found, hence we mustpely SEM micrographs such
as the one reported in Fig. 3: Based on this kind of informatiee can assume that platelet
thickness is ranging fromdc¢ ~ 0.1um up to2¢ ~ 0.3um. Below, in order to reduce the
computational cost, all simulations are performed with adithicknesgc = 0.3um.

In the same spirit of the continuum percolation theory, theroatopology of composite ma-
terial samples is reconstructed by placing several obldifsseids in a cube with the edge
L = 15um, following the methodology described below. We first geteian ellipsoidf
centered at the origify = 0,30 = 0, 2o = 0), and described by the equation:

2+ 22 P

+ = =1, (14)

a? c?

where2a = ¢ is a random value chosen from the distribution function ig. 4. Second, a
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linear transformation, describing a rigid rotation anchsiation, is imposed as follows:

xT xr Te
y/ — R*l y + yc , (15)
/ 2,

where the matrix® = R, R, R,, with

1 0 0 cosdy, 0 —sind, cost, —sind, 0
R,= 1|0 cosd, —sind, |,R, = 0 1 0 R, = sind, cos?d, 0
0 sind, cosd, sind, 0 cosd, 0 0 1

(16)

Here, (z., y., z.) represent random coordinates of the center, whileJ, and v, are the
rotation angles around the y and z axes, respectively. In order to mimic the alignment
of particles along a fixed extrusion axi#, is chosen fully random, whilg, and?, follow

a Gaussian distribution around their mean valﬂgsﬁy with a variances. Let us consider
a N x N x N regular Cartesian mesh where the edge of the dube (N — 1)dz, with

dx = dy = dz denoting the spatial stepping. The mesh can be stored irea thmensional
array M, where the presence of polymer matrix is denotedubyi, v, 7) = 0, while the filler
by M (i,~v,7) = 1. In the latter case, mesh nodes posses coordhﬁa’;eg}, z}) that satisfy
the following inequality:

CLQ E S 17 (17)
with
x} — . T
Rlyi—y | =1y |- (18)
z} — 2 z

Notice that, according to the formula (5), an arbitrary matesample with a prescribed vol-
ume fractionp; is obtained by iterating the above construction subjediédollowing condi-
tion

1—e " < py, (19)

whereV, represents the cumulative volume of the particles locati#dmthe unit box of Fig.
5.

In the latter figure, we show two examples of micro-topologganstruction, wher&)% mass
fraction of graphite with),, = 9, = 9, = 0 ando = 0.15 (left-hand side) are imposed. On the
right-hand side of Fig. 5, we us®% mass fraction of graphite with, = 9, = 0, 9, = 7/4
ando = 0.15.
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Figure 5: (Color online) Left-hand side: Reconstructiohshoee dimensional mixture of polypropyleng0{%
mass fraction) and graphite lamella®)% mass fraction), where the extrusion axis is assumed phtalle
J, = 9, = 9, = 0. Right-hand side: Reconstructions of three dimensionaturé of polypropylene&§0%
mass fraction) and graphite lamellaz0% mass fraction), where the extrusion axis is trasversal t@/, =
U, =0,9, = 7/4. Valuesppp = 0.8903 [g/cm?| andpxss = 2.255 [g/cm?| are adopted for the density of
polypropylene and graphite, respectively.

5. Mathematical model

By referring to the Fig. 5, at the steady state, we define thieagithermal conductivity:. ;¢
of a cubic sample of composite material by means of the foligrourier-like expression:

T, —T.
Q = —kesf LL="

= —kess L (Th — T.), (20)

where the rate of conductive he@flows along the:-axis under a fixed temperature difference
(T, — T.) maintained between the uppermost facet (in the followiagefA at 7},) and the
lowermost one (facds at7,). Let the above domain be discretized byax N x N) regular
lattice withdx = dy = dz, such thatL = (N — 1) dz with dz, dy anddz being the spacing
along thex-, y- andz-axis respectively. The rate of he@tthrough an arbitrary cross-section
S (orthogonal to the-axis), evaluated according to the Fourier’s law, can be@pmated as
follows:

(N-1)? 2 |’
Q= / —k0.TdS = | > (=k0.T),d2*| = ——=| Y (-ka.T),| , (21)
S i=1 (N—1) i=1
S S
whereT ando,T denote the local temperature and the component of the teupergradient
alongz, respectively, whereas the Fourier heat flext:0.7'), is averaged over the four corners
of the:-th computational cell. Moreover, the temperature diffieeebetween the facet$ and

B can be evaluated as follows:
(T, — T.) = /aszl,
l
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wherel is any continuous line connecting two arbitrary pointsdodnd B, respectively. In the
following, for the sake of simplicity, we assumearallel to thez-axis, hence:

N—-1

=1

(Th - Tc) - L

N1 (22)

l

where the derivativé0,T'), is averaged over the extreme values of tie computational
segment ofl. Upon substitution of (22) and (21) in the above expressif),(the global
conductivity reads:

]21 N (k0.7
N-1) ‘ZN L aT)

kepr = (23)

In our computations, we make use of a lattice Boltzmann (LBaebt which belongs to the
family of mesoscopic methods. In this method, each contiervéaw is related to a micro-
scopic quantity which is conserved exactly by the collissperator of an evolution equation,
describing the dynamics of distribution functions movinghwdiscretized velocities between
the nodes of the computational grid [12]. The LB models fanaxtion-diffusion [13, 14, 15]
are constructed similarly to hydrodynamic models: Theylased on a hydrodynamic-type
isotropic equilibrium function but discard momentum canagon. A similarity of equilib-
rium functions enables to build the tracer transport diyewith the population solutions ob-
tained for flow equation. In the following three dimensiolgamputations, 19 discretized
velocities are used: hence, the adopted lattice is the lfEdda3()19. Essentially, the numer-
ical code is based on 19 distribution functions (or popats) f;, which move on the above
regular lattice with the following velocitie§ = (c;,, ¢iy, ¢i2):

(0,0,0) i=0
(£1,0,0) i=1,2
(0,+1,0) =34

(0,0,4£1) i=5,6

(£1,4+1,0) i=7,..,10
(0,+1,+1) i=11,..,14
(£1,0,41) i=15,...,18.

According to the LB algorithm [14], population dynamics istdted by the following equa-
tions at any pointc of the spacial domain and any time instant

Oifi (@, t) + cipdsfi (x,t) =w (ff(T) — fi(z,t)), i=0,..,18, (24)

whered, andds represent the partial derivatives with respect to time gatisl directions
respectively, while Einstein summation convention is dddgdor the repeated index The
equilibrium distribution functions are assumgd (7') = w;T, wherew; represents a fixed
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weight associated with theth populationf;:

wi=1/3 i=0
wi=1/18 i=1,..,6 (25)
wi=1/36 i=17,..18.

The zeroth- and first-order moments of populatignare related to the dimensionless temper-
atureT” and its gradien¥/ 7', respectively, as follows:

18 2
CS
T = E fb ] Jwa]ya]z E fzcz = ;VT7 (26)
i=0

with ¢2 = 1/3. In the macroscopic limit, the LB equations (24) mimic thédeing partial
differential equation (PDE) [14]:

2
OT+V -] = —%SWT. (27)

Upon substitution of the expressions (26) in the equatidi (@nder the assumptions of ho-
mogeneous and isotropic materials with constant physroglegties), the latter PDE takes the
form of the unsteady equation for heat conduction:

OT =V - (aVT) = aV*T, (28)

if the thermal diffusivitya = k/pc, is linked to the relaxation frequencyas follows:

a=c (é—%), (29)

with &, p andc, denoting constant thermal conductivity, density and debeat capacity,
respectively. Letv; andw, be the relaxation frequencies corresponding to the fill&§4}Kand

the matrix (PP), respectively. In our computations, we made of the following discretized
form of equations (24):

fi(x + &dt, t +dt) = fi (x,dt) +w, (ff7(T) - fi (z,t)), i=0,..,18, ~v=f,p, (30)

wheredt is the discrete time step, andis locally adjusted in order to take into account of
spatial inhomogeneity (different phases). Notice thgpmously speaking, the equations (24)
can only be applied to homogeneous and isotropic materidiscanstant physical properties.
Hence, although the above equations (30) remain valid wighich of the two phases of the
composite material in Fig. 5 (under the assumptions of ha@anegus and isotropic phases),
in general they do not hold globally due to an inaccuratetrimeat of the interface between
PP and KS4. In other words, the model (30) automatically sedooth the continuity of the
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temperature field at the boundary points between two diftgrhases:
Ty =T, (31)

and the continuity of the flux of vectarVT (it can be proven by applying the Gauss-Green
theorem to Eq. (28)):
(ayVTy-n) [ (VT - 0) =1, (32)

where the unity vectoi is locally normal to the interface, while the subscriptandp denote
guantities which are evaluated within the filler and the matespectively.

On the other hand, using (26) and (29), the Fourier heat floYbearecast as

7= —kVT = pc, (1 — 2) 7, (33)

whereas the continuity of its normal component, at any fater, requires

(@5 -7) /(G- 7) =1, (34)
or equivalently
(ayVTy-n) [ (VT - 1) = (pcp)p / (Pcp>f- (35)

Hence, we note that the correct condition at the interfad¢eden two different phases (35)
can be approximated by (32) only in the case:

(pcp)p = (Pcp)f : (36)

Nevertheless, it is worth stressing that, at the steadg,stla¢ equation for heat conduction
(28) takes the simpler form:
kV2T =0, (37)

where, according to (29), a constanis linked to the relaxation frequency

,(1 1
]{?:CS (;—5), (38)

and can be interpreted as thermal conductivity. We stregsdhl values below are computed
at the steady state, hence we do not need to resort to thexapptmn (36) and further make
use of the relationship (38). Accordingly, at the steadyestidne global thermal conductivity
k.r; can be formulated by recasting the formula (23) as follows:

\2%”2 (ko.7),|
—1) (ZN L aT)

S et i),

- W-n[En (g |

keff_ :f7p7 (39)
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ke/k, w1 wy | Deviation
19 0.1 1 13.9%
81 0.2 1.8 13.2%
199 0.01 1 56.9%

1800 | 0.0011| 1 65.4%

Table 1: Thermal resistances in parallel with = 0.111 are simulated at different ratids; /k,,. Results are
compared to the corresponding theoretical values: Thecehof the relaxation frequencies, significantly
affects the accuracy of numerical predictions.

where, in evaluating the numerator of the latter expressimnrelation given by Eq. (33) has
been used. In all the simulations beldw,; is computed by means of the expression (39),
where the summation at the numerator is replaced with itsageel value over thd” surfaces

S, with0 < z,y < L,z = 7dzandr = 0,...,N — 1. Similarly, the summation at the
denominator of (39) is replaced by its averaged value owenthvertical line segments .,
with0 < z < L, x = idx,y = ydy andi,y =0, ..., N — 1.

Finally, all computations below are carried out by the LABORAle. The LABORA (LAttice
BOltzmann for Raster Applications) project started back i02@nd it originally aimed at
developing a 3D parallel code for simulating fluid flow of reae mixtures through complex
geometries [16]. In particular, the LABORA code was develojpe@++ by extensive use of
the object programming. In the first release, the free comeation library MPICH 1.3 was
adopted, while nowadays OPENMPI is used, both based on MRhtdogy [17].

Concerning the hardware, the reported numerical results a#eained by the EnerGRID com-
putational facility, available at Politecnico di Torinagly). The EnerGRID computational
facility consists of a Transtec(R) HPC cluster, made of 72ltattual cores, with 144 GB of
total RAM, 5.5 TB total disk capacity (3.0 TB failure free) aadlouble networking system
(Infiniband for processing data and GBit for monitoring). Thseted peak performance (ac-
cording to the TOP500 standard [18]) is 376.09 GFlop/s wittajpnch2/IB (which is roughly
60 of the theoretical peak performance 596.48 GFlop/s).

6. Code validation

The numerical model described in the above section 5 hasvadidated in the case of thermal
resistances connected in series and in parallel arrangsm®pecifically, by referring to the
picture on the left-hand side of Fig. 1, the global thermaldiectivity of such an ideal com-
posite material can be computed along both tkeis (parallel arrangement) and theaxis
(series arrangement), in order to compare the simulatisumtsewith the corresponding exact
values:

kepr = prky + (1 —py) Ky, (40)
1 1771
kepr = PIy (L =pr) | (41)
P
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Figure 6: (Color online) Comparison between the simulat@sults (circles) and the exact values (continuous
lines) of k. s /k, for thermal resistances placed in series and in parallahgements. a) Thermal resistances
arranged in parallel with a fixed ratib; /k, = 2.33 evaluated at several volume fractiops. The maximal
deviation is0.45%. b) Thermal resistances arranged in series with a fixed kgti@, = 2.33 evaluated at
several volume frationg;: The maximal deviation i4.7%. c) Thermal resistances arranged in parallel with a
fixed volume fractiorp; = 0.3 at several ratiog;/k,: The maximal deviation i8.5%. d) Thermal resistances
arranged in series with a fixed volume fractipn= 0.3 at several ratios /k,: The maximal deviation i8.6%.
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Y | kess/k, alongz-axis | k.sr/k, alongz-axis | Lattice nodes

Si 0.298 3.21 2.24 120°
Sy 0.295 3.20 2.17 1203
Sy 0.297 3.24 2.40 1203
Sy 0.303 3.35 2.28 1203
S 0.302 3.16 2.24 120°
Se 0.297 3.22 2.18 120°
S7 0.299 3.23 2.20 1203
Ss 0.295 3.20 2.29 1203
So 0.300 3.36 2.33 1203
S1o 0.302 3.32 2.26 120°
Mean value| - 3.25 2.26 -

Variance - 0.00505 0.00503 -

St 0.296 3.36 2.27 240°

Table 2: Ten composite material samples have been genevitell; = 0.3 +0.005: Ratiosk.¢¢/k, have been
computed along both the-axis andz-axis for any of thei-th sampleS; with a fixed ratiok; /k, = 36.5 using
120° lattice nodes.

valid for resistances in parallel and in series, respegtivéalidation results are reported in
Fig. 6 in terms of the dimensionless rafig;;/k,. Here, usingi0® lattice nodes, deviations
can be bounded up to a few percent by restricting the choidbeofelaxation frequencies
within the following range:0.5 < wy,w, < 2. On the contrary, as summarized in Table 1,
remarkably larger deviations have been observed as sobe &sner limit ofw, is decreased
further down:w, < 0.2. Notice that, the latter result is not surprising, since ivell known
that the accuracy of LBM in the parameter rarige w., < 1 is much smaller than that in the
the upper rangé < w., < 2 (see Fig. 5 in Ref. [19]).

7. Numerical results

In the following, we investigate the dependence of the dltermal conductivityk. s on the
valuesky, k, and orientation of the extrusion axis, in composite makteaaples with a fixed
amount of filler. First of all, toward the end of verifying thepeatability of the reconstruction
strategy described in section 4, ten different random sesi#fl; 1, are generated by setting
Yy = 0.3 £0.005, L = 15um, k¢/k, = 36.5, and imposing the extrusion axis parallel to
zi d, =Y, =, = 0with o = 0.15. Any of the latter micro-topology is discretized by
means of a regular lattice witt20* nodes, whereas the ratio, /%, is computed along both
the z- andz-axis: As reported in Table 2, results fluctuate around a mehre with variance
~ 0.005. Notice that, grid-independence of the above numericaliptiens is demonstrated
by consistent simulation results of one more sanfjlediscretized by means @fi0? lattice
nodes. Furthermore, various computations have been damieadopting the reconstruction
S1 (Y = 0.298) in correspondence of different valuks/k,: Results are illustrated in Fig. 7
along with the corresponding theoretical solutions forried resistances in parallel and series
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Figure 7: (Color online) Left-hand side: Simulation reswf a material sample with’; = 0.298 at different
ratiosky /k,. Ratiosk.ys/k, have been evaluated along both theaxis (diamonds) and the—axis (circles).
Starting fromk/k, ~ 50 a linear dependence can be observed. Right-hand side: dtagram of the ratio
kery/kyp. Several material samples are reconstructed under fixed fragionY; = 0.3 4= 0.005 and different
orientations of the extrusion axis (thick arrow). Simuwatiresults (symbols), under fixed conductivity ratio
k¢/k, = 36.5, tend to be located along atlipse of thermal conductivitfdashed line), typically observed in
anisotropic materials.

arrangements, as dictated by formula (40) and (41), respctNumerical evidences suggest
a remarkable linear dependencekpf;/k, starting fromk;/k, ~ 45 — 50. In particular, the
tendency lines in the picture on the left-hand side of Figrefevaluated by the least squares
method, on the basis of data with/k, > 40, and the following coefficients of determination
are found:R? = 0.997, R? = 0.975 for the results along the-axis andr-axis, respectively.
Notice that, the latter feature proves particularly comeehin the case of phases with large
conductivity ratios (e.g.ks/k, > 100) where, in order to avoid both significant numerical
errors (v, < 0.2) and prohibitively long computationss{ ~ 2), the valuek.;/k, can be
linearly extrapolated from results obtained at lower ={®.9.,60 < k;/k, < 80). Finally, in
order to investigate the dependencetgf;/k, on the orientation of the extrusion axis, com-
posite material samples have been reconstructed impogjng: 0.3 4 0.005, ¥, = ¥, = 0,

9, = 0, andks/k, = 36.5. Results are shown by means of a polar diagram on the right-
hand side of Fig. 7 for different values 6f and a typicakllipse of thermal conductivitgf
highly anisotropic materials is shown. Notice that, an®oy of thermal conductivity typi-
cally arises from experiments on composite materials, hactlipse of thermal conductivity
can be observed by using, for instance, photoreflectanceosaiopy (see, e.g., [20]). Each
configurationS;—; ;o reported in Table 2 and in Fig. 7, was computed by using 64gsroc
sors on the EnerGRID computational facility, where 100000skdps require= 6 hours to be
completed.
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Figure 8: (Color online}y = 0.298, k¢ /k, = 36.5. Left-hand side: Streamlines of the heat flux along perco-
lating paths, where the extrusion axis is aligned with:thexis. Right-hand side: Streamlines of the heat flux
along percolating paths, where the extrusion axis is atigmi¢h the z—axis. Colors provide an indication of the
heat flux intensity.

8. Discussion and outlook

In this paper, we illustrate a general methodology for bottuaately reconstructing the micro-
topology of composite materials, and predicting the glabarmal conductivityk.;s, by
means of the lattice Boltzmann method, which has reveal¢aldaifor handling such complex
geometries [14]. More specifically, here the dependende gfon the thermal conductivity
k, of a polymer matrix (polypropylene) and the thermal conghitgt %, of a filler compound
(graphite particles) is investigated at a fixed content apgite. In this respect, a remarkable
linear dependence @&f;/k, on the ratiok/k,, starting fromk,/k, ~ 45 — 50, is observed.
Such an evidence suggests an indirect method for computaglobal thermal conductiv-
ity corresponding to phases with large conductivity ra{@es)., k;/k, > 100), where it be-
comes desirable to avoid both significant numerical errors< 0.2) and long computations
(wy = 2). Moreover, the anisotropy of thig; in such a composite material is demonstrated by
computing the ellipse of thermal conductivity, consisiemtith experimental evidences [20].
Finally, it is worth stressing that the numerical tool désed in this work may be utilized, in
combination with experimental data, for characterizing tontact between filler particles in
a percolating path. Here, any percolating cluster of filketigles is considered homogeneous
and isotropic, so that thermal conductivity can be desdriipea constant valuk,;. However,
more rigorously, at the interface between filler partictes, effects due to interfacial thermal
resistances and weak contact are to be considered sincddhpgy an important role in heat
conduction (see, e.g., [21]). Hendg,is to be interpreted as affective thermal conductivity
of the filler within percolating paths, rather than thermahductivity of pure fiIIerk?. In other
words, comparing the numerical prediction fQf; with the corresponding experimental data,
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it is possible to estimate a deviation of the effective tharoonductivityk; from k%, which
globally quantifies the above effects. The presented muglelctivity will proceed further
along that direction in the near future, where our invesiige shall be focused on a detailed
study of heat transfer across filler particles.

9. Acknowledgments

We are indebted to Prof. Guido Saracco and Dr. Alberto Finarfoving us with SEM micro-
images and for the useful discussions. Prof. Michele CaliRnod. Romano Borchiellini are
gratefully acknowledged for supporting this work. We wislstate our appreciation to Valerio
Novaresio for the precious help in obtaining the images g Bi Finally, useful discussions
are acknowledged with Dr. Ahmad Al-Zoubi, Prof. Dimostteeiirimis and Prof. Ulrich
Gross of Technical University Berg-akademie Freiberg (TWRA

References

[1] D. Stauffer, and A. Aharony, Introduction to Percolati®heory, second ed., Taylor &
Francis, London, (1994), pp. 89-103.

[2] G. E. Pike, and C. H. Seager, Percolation and conductiitgomputer study. I, Phys.
Rev. B 10 (1974) 1421-1434.

[3] Y. B.Yi, and A. M. Sastry, Analytical approximation of th&o—dimensional percolation
threshold for fields of overlapping ellipses, Phys. Rev. EA&®R) 066130.

[4] W. Xia, and M. F. Thorpe, Percolation properties of ramdellipses, Phys. Rev. A 38
(1988) 2650—-2656.

[5] L.Berhan, Y. B.Yi, A. M. Sastry, E. Munoz, M. Selvidge, andBaughman, Mechanical
properties of nanotube sheets: Alterations in joint molpiyp and achievable moduli in
manufacturable materials, J. App. Phys. 95 (2004) 433%-434

[6] L. Berhan, and A. M. Sastry, Modeling percolation in higispect-ratio fiber systems. I.
Soft—core versus hard—core models, Phys. Rev. E 75 (20072041

[7] L. Berhan, and A. M. Sastry, Modeling percolation in higispect—ratio fiber systems.
Il. The effect of waviness on the percolation onset, Phys. Réb (2007) 041121.

[8] Y. B.Yi, and E. Tawerghi, Geometric percolation threstbf interpenetrating plates in
three—dimensional space, Phys. Rev. E 79 (2009) 041134.

[9] E. J. Garboczi, K. A. Snyder, J. F. Douglas, and M. F. Tlegi@eometrical percolation
threshold of overlapping ellipsoids, Phys. Rev. E 52 (199%)-828.

21



[10] Y. B. Yi, and A. M. Sastry, Analytical approximation ofeéhpercolation threshold for
overlapping ellipsoids of revolution, Proc. R. Soc. Lond8ey. A, 460 (2004) 2353-
2380.

[11] A.M. Schrand, Polymer Sample Preparation for ElectMicroscopy, Advances in
Instrumentation and Techniques — Metallographic Techesgand Applications, Mi-
croscopy and Microanalysis 2005 in Honolulu, Hawaii, US@lyB1-August 4, 2005.

[12] 1. Ginzburg. Equilibrium—type and Link—type Lattice Bomann models for generic ad-
vection and anisotropic—dispersion equation. Adv. WatesoRe 28 (2005) 1171-1195.

[13] E. G. Flekkoy, U. Oxaal, J. Feder, T. Jossang, Hydrodynalispersion at stagnation
points—simulations and experiments, Phys Rev E 52 (1995)-4952.

[14] D. Wolf-Gladrow, Lattice gas cellular automata anditst Boltzmann models: an intro-
duction, Lecture notes in mathematics, vol. 1725, Sprin@&00).

[15] R. G. M. Van der Sman, M. H. Ernst, Advection—diffusiottiee Boltzmann scheme for
irregular lattices, J. Comp. Phys. 160 (2000) 766—782.

[16] P. Asinari, M. Cal, M.R. von Spakovsky, and B.V. Kasula, d2ir numerical calculation
of the kinematic tortuosity of reactive mixture flow in theoal® layer of solid oxide fuel
cells by the lattice Boltzmann method, Journal of Power Sesifz0 (2007) 359-375.

[17] Writing Message—Passing Parallel Programs with MPinkigrgh Parallel Computing
Centre, The University of Edinburgh.

[18] http://www.top500.0rg/

[19] P. Asinari, T. Ohwada, Connection between kinetic még#hor fluid—dynamic equations
and macroscopic finite—difference schemes, Computers atloekhatics with Applica-
tions, 58 (2009) 841-861.

[20] D. Rochais, H. Le Ho&dec, F. Enguehard, J. Jumel, and F. Lepoutre, Microscaisti
characterization at temperatures up to 1000C by phototaflee microscopy. Applica-
tion to the characterization of carbon fibres, J. Phys. D:1ABpys. 38 (2005) 1498—
1503.

[21] S. Shenogin, L. Xue, R. Ozisik, P. Keblinski, and D.G. QlaRiole of thermal boundary
resistance on the heat flow in carbon—nanotube composigpl Phys 95 (2004) 8136—
8144.

22



